A Numerical Analysis of the Tensile Test for

Sheet Metals

AMIT K. GHOSH

The strain hardening, strain-rate hardening, and plastic anisotropy properties of metal
sheets are normally determined in a tensile test during the nearly uniform deformation
prior to the maximum load. Beyond this point, strain nonuniformity leading to a neck i8
poorly understood in terms of interaction of these material properties with changes in
strain-rate and stress-state within the neck, and the resulting load-extension plot. Satis-
factory modeling of this problem has been achieved by using a rigid/ plastic constitutive
law including strain hardening and strain-rate hardening. Progressive cessation of defor-
mation starting from elements in the specimen fillet region toward the center is demon-
strated. This effect is shown to generate a strain peak (neck) at the gage length center.
The predicted load-extension plots and strain distributions in the neck agree well with
experiments conducted on a number of test materials. This work provides a quantitative
measure of the influence of varicus material parameters on tensile ductility and identifies
the proper constitutive law for input into mathematical models of more complex forming

operations.

DURING tensile tests of engineering sheet mate~
rials, the records of load vs elongation are routinely
translated into true stress-true strain curves.
These records can be utilized up to the maximum
load points, since deformation is practically uni-
form over the gage length within this load range. In
strain hardening metals, true stress-true strain re-
lations are fitted to a power law, o = Ke”, and this
relationship i8 assumed to continue beyond maximum
load.

Beyond the maximum load deformation becomes
nonuniform, and gage length elongations can no
longer be used to obtain true strain or true stress in
the deforming element. In a specimen of strain-
hardening material containing an imperfection {e.g.,
variation in ¢ross sectional area) once the maximum
load for the imperfection site is attained, a simple one-
dimensional model suggests that all other material ele~
menis in the specimen would stop deforming; since this
site can now continue to deform under a falling load.
This further suggests negligible post-uniform* exten-

*In this paper, the term uniform elongation refers to strain at maxumum load,
while postumform extension is the efongation after maximum load. All elonga-
tions reported here are for a 50.8 mm gage length.

sion over the gage length. However the facts are that
the imperfection site does not deform by itself and that
the strain concentration is spread over the neighboring
elements. The strain nonuniformity so developed is
thus gradual and not of a step-function nature as as-
sumed in many investigations. In the present paper a
pseudotwo-dimensional analysis of plastic deforma-~
tion has been made with realistic strain gradients ac-
companying the development of a neck.

It is known that uniform elongation is directly re~
lated to the strain hardening exponent, », while the
post-uniform deformation is controlled by strain-
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rate sensitivity, m (as in the hardening law: o =
Ke™¢™) as the strain-rate gradients in the

specimen become sig‘niﬁcant."s In addition, since
the stress-state in the developing neck deviates

{rom uniaxial tension, the plastic anisotropy parame-
ter, r (the ratio of width-to-thickness strain) which
influences the local flow stress, also affects the
post-uniform extension.’>?

The relationship between these phenomenological
parameters and {ensile elongation has been only semi-
guantitatively defined until now.™ Analytical predic-
tions of strain-distribution, and in particular, tri-
axial stresses have been made {with the help of
finite element methods®’®} only for round tensile
specimens of elastic-plastic, strain hardening mate-
rials. The latter study was related to the initiation
of ductile fracture,® and not to the overall load-ex-
tension characteristics in a tensile test. Moreover,
none of these works incorporate the influence of
sirain-rate sensitivity. While siress triaxiality
may be ignored for sheet specimens, the strain-rate
sensitivity and the effect of the intermediate princi-
pal stress cannot be. The present analytical model
for the tensile test relates numerical results on
load, extension and neck development to phenomeno-
logical inputs, thereby providing a better understand-
ing of this widely-used engineering test.

ANALYSIS

We begin with a specimen which has developed a
nonuniform geometric profile under applied load.
The nonuniformity has been highly exaggerated for
illustrative purposes in Fig. 1(a). Cartesian coordi-
nates are located with the origin at the center of the
minimum cross section, x-axis along the specimen
axis, y-axis along the specimen width, and the z-axis
in the thickness direction. Shown in Fig. 1{b) are
photographs of actual sheet specimens with 0.5 mm
square grid printed on the surface to represent the
x and vy coordinates. During deformation this grid
transforms into curvilinear trajectories also shown
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here and schematically illustrated in Fig. 1{a). The
trajectories are mutually orthogonal and represent
the directions of principal stress and strain. The
width strain measured from the specimens has

been found fo be sxtremely uniform across the
specimen width af any x. This fact provides an im-
portant starting point for the present analysis. For
very wide specimens, however, in which the siress
system deviates from uniaxial, this assumption may
not be expected to hold.

A critical feature of a specimen possessing a
gradient in cross sectional area is that only the area
sum of the x-components of the trajectory stresses (o)
at each cross section will have to equal the axial
load, P. Consequently, o, along the curvilinear tra-
jectories could be larger than the average axial
stress, ¢,. For sufficiently large strain gradients,
as would occur if a neck is well developed, the stress
along the trajectory would be sufficient to cause de-
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Fig. 1—{a) Nonuniformity developed during defor-
mation of a sheet tensile specimen is highly exag-
gerated in two sectional views. Stress, oy, acts

along trajectories (shown in the inset), the sum of
whose components in the x-direction support the
axial load. The curvilinear nature of ¥y and z lines

is ignored and is replaced by straight lines, shown
dashed. ) An undeformed photogrid (0.5 mm square)
on a tensile specimen is contrasted with the deformed
grid on brass and steel specimens at failure. Except
for the failure region, most of the specimen exhibits
near-linear behavior of y-lines, as in the schematic
representation of Fig. 1#). Figure 1{) shows axial
stress {oy) distribution aeross the width according o
the present model, showing the greatest axial stress
along the central axis and a decrease toward the speci-
men edges.

formation in elements away from the minimum cross
section site even under a falling load.

To relate trajectory strain €, to axial strain ¢,, we
first recall that the width strain is found to be uni-
form at any x, which means that ¢; is fixed af any
x for all trajectories. Secondly, the curvatures of y-
lines are so slight even at fracture (see Fig. 1(5)},
that they can be assumed to be straight for the pur-
pose of computing axial strain. In Fig. 1{g), these
assumed y lines are indicated by dashed lines at
average x positions. This implies €;{x) = €,{x),
which in terms of original coordinate position, xu,
means €,{xo) = €,(xo). The uniformity of €,(x) also
implies uniformity of trajectory stress, o.(x),
throughout each cross section, the only variation
being in the angle of its application as functions of
v and z. Figure 1{c) shows that this permits the axial
stress component {of ;) to be greatest along the x-
axis and {o decrease toward the edges. This is con-
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sistent with previous calculations®’ of stress distri-
bution in a tensile neck. Thus the axial load, P(x) is
given by

t/z wrie

P(x)=4zf:a yfm o1{x) cos @ cos ¢ dy dz f1]

where o:(x} makes an angle ¢ with the x- plane, while
its projection on the x-y plane makes an angle & with
the x-axis; w and ! are, respectively, the current
width and thickness at x.

In terms of the original ccordinate positions xo, yo
and zq, the strain uniformity across the width {and
therefore thickness) implies

y =g’ = yo 25y %) [2a]
z = zeeesfxg} = zaeezi%} §2§}§

where ¢; and € are the width and thickness gtrains
along the trajectories, and €y and €; are the width and
thickness strains along the principal axes (y and 2).
Again, since dx = dxoe®**o’, cos 8 and cos ¢ in Eq. [1]
can be determined from the following expressions
which are obtained by differentiating Eqs. [2a] and
[2b] with respect to x:

& _ 1 dye dey ey- €
tan g = {ﬂyo Tro +E§; Yog ¥ X {3}
and
_dz _ {1 dz déz} P
tan@“d‘x_{zmim*?a;z"ez ¥, {4]

If tan @ and tan ¢ are known at any stage during
deformation, and since o,(xo) is independent of vy, and
Zg at any %, Eq. {1] can be written in terms of x, as

wiz tiz

dy dz
P(xo) = 4 oy (x
b = 4ol [ 55 T AT | & o 15}

where 4 = {(1/yoldyo/dx) + {dey/dxs)} o€ “€* und B
= {(1/ 2o H{dzo/ do) + (des/ éxg}}g% T€x. Now, using de-
rivative of Eqs. [2a] and [2b] and the law of volume
constancy in Eq. {5], axial load becomes

wy/2 t@/?

P(xq) = 4 0v(xp) @ €x%0) Vo Zo ‘
o br V1 + A’yo { V1 + B%z,°

[6]

Upon integration Eq. {8] becomes

Py} = %%%w {sinh"(Aw,/2) sinh™ B4,/ 2)}.
(7]

As 8 and ¢ approach zero, i.e., when the gradient is
negligible, (1/A)sinh™(4w,/2) and (1/B)sinh™(Bf/2)
reduce respectively to wo/2 and £,/ 2, and axial load
has the familiar form: P{x,) = {wofo) e €% %o’g,(x0).
Since the minimum section at x = % = 0 is likely to
have zero gradient (particularly if the specimen is
symmetric about x = 0}, the axial load on the speci-
men at any instant is given by

P = (woto) e™€% V0, (0). [8]

Thus both Egs. {7] and [8] are obtained in ferms of the
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trajectory stress, o,. The solution for €,(x,) at any
time now requires satisfying the load equilibrium con-
dition: P(x} = P, provided proper account is taken of
the departure of the stress-state from uniaxiality,
while computing o;{xs).

Principal Stresses and Stress-Ratio

The departure from uniaxiality of stress in each
element is handled by determining the average princi~
pal stresses in x, y and z directions which are subse-
quently used in calculating effective stress, Since
each element is treated as a unit, the principal stress
in the x-direction is obtained by dividing the axial
load from Eq. [7] by the cross sectional areas,

(wsto) €™ €1%9’ | Thus

0lo) = {smn-*(égf%)f(“*;"‘*)}

X {sinh"‘(i%@) /(%EQ)} o1{%o) 9]
The intermediate and through-thickness stresses
{0y and o, respectively) are obtained from considering
the sum of ¥- and z-components of o;, respectively.
Since body forces are absent in ¥ and 2 directions, oy
and o, could be obtained by differentiating the sum of
y~ and z-components with respect to x. Neglecting o,
for sheet specimens,* ¢, can be expressed by

*Since o2{xy) 15 Tather small for thin sheets until the stage of a through-
thickness neck formation, 1t will be excluded from the present analysss.

wiz
oylx) = é‘% {g o,{%x) sind dy], [10]

Now substituting dx = dxoe® %9, dy = dyo ¢€¥%o and
8in 6 = (Ayo/V1 + A%9¢%), Eq. [10] can be expressed in
terms of the original coordinates as

wol2
.4 cy-€ %} 11
§y(x9} - éX{; [gi{xﬁ}g - x gf gm { g

which can be further simplified to

O'y(xn) = g— [Ux(fo) ety” Ex{@ﬁ” . {12}

Q

The principal stress-ratio, [dy(xe)/ 0,(%0)], needed for
computing effective stress and strain-rate ratio in the
next section, is obtained by dividing Eq. [12] by Eq.[9].

Formulation of the Incremental Problem

A constitutive law describing effective stress o
in terms of effective strain € and effective strain rate
¢ is required as input for the present problem. Two
principal assumptions are used according to conti-
nuum plasticity theory in order to relate effective
stress and strain-rate fo axial stress and strain
rate. These are: i) planar isotropy in the sheet,
with the presence of normal anisotropy, v, and ii}
isotropic hardening, i.¢. uniform expansion of the
Hill-modified anisotropic yield surface. Based on
these assumptions, the effective stress is given by

- 13(1 | 2 Zre M7
o= m {14’6@ *‘m} Ty {13}
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where o = stress~ratio (03,/ 0y); the effective strain-
rate is given by

._-_‘/2(14-7')(24-7) 2 2rp M2,

€= 327 + 1) 1+p+1+1_} €x
where p = strain-rate ratio {éy/ €4): and finally a
modified form of the associated flow rule is given by

(14)

(1+7)p+r

- / —
a = (oy/0,) = Ty

(15]

If p(x) is known at a certain instant during deforma-
tion, a(x) can be obtained from Eq. [15], and substi-
tuted in Eq. [13] to express o,(x) in terms of o{x). The
trajectory stress, oy(x) can then be expressed in terms

of o(x) with the use of Eq. [9]. If both plx) and €,(x) are

known as functions of time, infegration of Eq. [14] with
respect to time gives the effective strain,

- ¢ 1/2
) - YU [ gt o R0

x ¢&,(x, f)dt. {18]
From these two steps, o0:(x) can be expressed in terms
of p(x) and é,(x) with the use of a proper constitutive
equation relating o{x) to €(x) and €(x). This o,(x) can
then be substituted in Eq. [7], while ¢,(x) in Eq. [7]

is determined from the integration:

t
€)= [ &.lx, t)dt.
G
The present method of solution for €,{x, ) is based
on a quasi-static approach in which a fixed strain
increment, Ae,(0), is assigned at the minimum cross
section during each step, and corresponding solutions
for ae,{x) or €,{x) are found that satisfy the equili-
brium equation: P = P{x). With initial p(x) and €,(0)
as inputs, successive solutions for e,(x, #) allow up-
dating of p(x, #) and €,{x, #). Details of the numerical
procedure are given later.

Constitutive Law

Most engineering materials exhibiting strain-rate
sensitivity at room temperature can be approximately
described by a constitutive law in which strain rate
hardening term is additive to the strain hardening
term. Such a law is given by

o= K[e" +m In(E/é)) [17a]

where ¢ = effective stress, € = effective strain, €
= effective strain-rate, €, = reference strain-rate, K
= strength coefficient, » = strain hardening exponent,
m = strain-rate hardening index. A very slow rate
{e.g. 0.003 s7') is chosen as the reference strain-
rate in this work. As long as Eq. [17a] describes the
material behavior for the strain-rates of interest,
the choice of this parameter {€,) has little effect on
the calculation. This equation has been used in most
of the calculations in this paper.

A second constitutive law, expressed as the product
of the sirain hardening and strain-rate hardening
terms and often quoted in the literature, is given by:
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o=Ke"Em'. [17p]
This strain-rate hardening exponent, m’, is different
from the previous value m. For the same flow-stress-
differential, Ao, between two strain-rates, '’ is
slightly larger than s. While some objections can be
raised to Eq. {17b], it applies somewhat better to
deformation at elevated temperature and a limited
number of calculations have been made using it.
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Fig. 2—{(a) One-half of an E~8 sheet tensile specimen has
been divided into 40 equal elements (41 nodes,. This half
covers 27.94 mm of straight central section and 22.86

mm of radiused fillet region. The central 25.4 mm of the
straight section belongs to the gage length (50.8 mm), over

which extension is measured. To provide sufficient ac~

curacy, the first iwo elements are subdivided into two more
elements. (A constant crosshead speed is maintained be-
tween the 1st and the 41st nodes.) (b) Graphical representa~
tion of the iterative scheme for calculating the strain incre-
ment at the (i + 1)th node when the same is known at the ith
node. Linearity of €y within each element is agssumed. The
various quantities for the equilibrium equation have been de-
veloped.
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NUMERICAL COMPUTATION
General Procedure

A finite difference procedure was used for computa-
tion of €,(x,t) along the specimen length at each time
step. The length (between grips) of an ASTM standard
E-8 specimen (101.6 mm) was divided into 80 equal
elements, each 1.27 mm long, along the x-direction.
(The central 55.88 mm has uniform cross section,
and the fillet radii near the ends cover the rest of
the specimen.) Since the specimen is symmetric
about x = 0 only one-half is considered (Fig. 2(a)),
with the first node at x = 0 and the 41st node at x
= 50.8 mm. Experiments with smaller size elements
proved to be unnecessary, while elements as coarse
as 3 mm may even be adequate. To provide adequate
capability for strain localization during the forma-
tion of a neck, the two central elements (on either
side of x = 0) were further subdivided equally, as
shown in Fig. 2(a). A constant displacement rate
(crosshead speed, S) was maintained across the
original length of 101.6 mm. Additional calculations
with the same crosshead speed applied only across
the gage length (50.8 mm), produced little difference
in the load-elongation characteristics and hence are
excluded from further discussion.

During each time increment (between ¢ and ¢ + Af),
€y is incremented by a constant amount (0.01) at x = 0,
and €,(x) is calculated throughout the specimen.
Strain, €,, is assumed to be a linear function of x
within each element. The graphical representation
in Fig. 2(b) shows that if strain is known at all node
positions at time ¢, and if Ae,, is known at the ith
node, the problem is one of finding A€, at (i + 1)th
node. The strain increment in the i{th element is
taken as the average of those at the bounding nodes
(¢th and (¢ + 1)th), while the strain gradient is deter-
mined by dividing the node strain difference by the
current node separation, Ax‘® = Ax, exp [1/2{ei(t + Af)
+ €71+ AN} = Axg exp [1/2{el (1) + €7 1(t) + Aet.

+ Ael’ '}, The unknown quantity, A€l {, is deter-
mined by equating axial load carried by the ith ele-
ment with that at x = 0, as discussed before. A sim-
ple Newton-Raphson iterative scheme is found ade-
quate for the solution. Starting from i = 1, progres-
sive solutions are thus made for each element, with
€,(¢ + A?) serving as the input for finding €2 (¢ + Af).

Once €,(x) is known for all nodes at ¢ + A¢, the cur-
rent length is computed by integrating over all ele-
ments, Ax®’, and the length increment is determined
by subtracting the length before the step. From the
known crosshead speed, the time increment, Af,
necessary for the length increment is calculated.
(Since A€, at x = 0 is fixed, this time increment is
not fixed and self-adjusting in nature.) The incre-
mental strain-rate (0.01/A¢f) at x = 0 is used for
the next time step. The incremental stress- and
strain-ratios (o’ and pi) are also calculated at the
end of each step from the current values of €% and
(de,/dx)® using Eqs. [9], [12], and [15], and used
as input for the next Af. The iterative solution pro-
cedure is then repeated and a new €, (x) is developed.
The specimen elongation in terms of engineering
strain is computed for the central 40 elements (i.e.
over 50.8 mm gage length) at each stage by a separate
integration scheme. The value of the axial load is
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also computed at each stage and load vs engineering
strain plots are shown later on in this paper.

Initialization

The solution procedure was started by assigning
€. =0, o’ = 0, and p’ = —R/(1 + R) for all i. This value
of p? follows from Eq. [15] under uniaxial stress state.
Beginning with the first time step, A€ (at the center
of the specimen) is chosen to be equal to 0.01.* Based

*Experiments with small strain increments did not produce any better ac-
curacy, while larger strain increments proved to be too coarse.

on the uniform central section of 55.88 mm the initial
strain rate would be $/55.88 s, while using the en-
tire sample length it is $/101.6 s™, where S = cross-
head speed in mm/s. An average of these two rates
is used as the initial strain rate at x = 0. At the end
of the first step the program calculates the appro-
priate strain-rate, p’ and of for the next step. This
procedure of using a strain increment at x = 0 is
somewhat arbitrary for specimens with no imperfec-
tion; however, it is quite reasonable when a small
imperfection is situated at the center of the specimen.

Specimen Imperfection

All imperfections are assumed to be geometric and
the material, itself, is treated as perfectly homoge-
neous. The role of inclusions and other material
inhomogeneities are neglected for the present cal-
culations since their micromechanics is quite com-
plicated, and in many ductile metals their role on
flow localization may not be significant. Engineer-
ing tests are normally performed with specimens
having a slight width taper toward the center (e.g.,
center width ~0.005 mm less than that near the
fillet), which was simulated by a cosine-wave type
width variation within the central 55.88 mm (Fig. 3).
This type of imperfection allows smooth slopes at
x =0 and at x = 27.94 mm. Calculations were car-
ried out for a number of imperfection size parame-
ters, f= (Aw/ wo). Additional calculations were made
for a half cosine-wave imperfection over the gage
length only, ignoring specimen fillet, a localized full
cosine-wave imperfection over the central 10.16 mm,
and no imperfection at all.

i Radiused Fillet

L 122.94mm ) ——————

Aw/2
(~0.025 mm ]{ -—%_‘
wi?
i 0
(6.35 mm )

l
\
Cwi2)= w201 —;—(1 +cos )
(Not to Scale)

Fig. 3—A schematic representation of the cosine-wave type
imperfection in the specimen width dimension. Semi-wave
length is 27.94 mm, which is equal to the straight section of
Fig. 2(a), beyond which the fillet radius starts. The above
cosine equation for the straight section and a quadratic equa-
tion for the fillet section are used to calculate w, for input
into Eq. [7].
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Fig. 4—(a) Distributions of axial and transverse strains in a
perfect tensile specimen as functions of original distance
from the center at different stages of deformation. Calcula-
tion has been carried out with {m = 0). Note that strain
within the straight section is uniform, when €, = 0.2. The
open circle indicates a node that is 1.27 mm from specimen
center, the deformation within which may be somewhat inac~
curately predicted, (b} Distributions of axial strain in a ten-
sile specimen on functions of original distance from the cen~
ter, at different stages of deformation of a specimen with
imperfection size (Aw/wy) of 0.004. Note that deformation
within the straight section becomes nonuniform even below
€ = 0.2. {c) Distributions of stress-ratio {0y /0y) as func-
tions of original distance from the center, af several
stages of deformation, for a perfect specimen withn = 0.2,
m =0.01 and = 1. The stages of straining are indicated by
noting the value of peak strain on each distribation.

Discontinuance of Straining

Since the quasi-static solutions are made incre-
mentally, a node with A€} = 0 during a certain step
may find suitable strain and strain-rate increments
later to permit A€l > 0. However, such solutions
should be allowed only while the load is still rising.
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Thus if the load increment in the last step has been
negative and Ael = 0, all nodes between  and 41

are considered inoperative. If the load increment has
been positive and yet Ael = 0, all nodes between {
and 41 remain at their previous strain values, This
mechanism allows the development of a strain peak
by discontinuance of deformation through successive
elements, particularly during unloading of the speci-
men. Eventually only the central node keeps on de-
forming and the computation procedure is ter-
minated when it reaches the fracture strain.

NUMERICAL RESULTS AND DISCUSSIONS

The results of computation provide general infor-
mation on strain and stress distributions along the
axial and transverse directions in the specimen, the
influence of the imperfection parameter, f, the
influences of material parameters, n, m and v and the
engineering stress-strain curves. The fracture strain
is chosen somewhat arbitrarily for the parameter
study. However, if fracture strain is large, small
variations in it do not seem to have any significant
influence on the tensile elongations measured over
50.8 mm gage length.

Figure 4(a) shows incremental axial and transverse
strains as functions of x, for the case of n = 0.2, m
= 0, and 7 = 1.0 in a specimen without imperfection.
The main features are: i) gage length strain is essen-
tially uniform (variation <0.0002), ii) there is a very
gradual decay toward the fillet, and iii) an exponential
drop-off within the fillet region. During deforma-
tion, the strain level increases in all regions, how-
ever, the strain nonuniformity within the gage length
increases as the ‘‘knee’’ between gage length and
fillet strain distributions moves closer to the speci-
men center. At Stage 3, the ‘‘knee’’ has already
moved into the central 55.88 mm (which originally
had uniform cross section), and fillet strain stops
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increasing. Subsequently, straining progressively Lo 7 y T Y ¥
discontinues in elements approaching the specimen
center and leads to the dynamic development of a
strain peak. Thus the constraints imposed by greater .
cross sectional areas in the fillet force the develop- Nearly Uniform Strain
ment and growth of a strain nonuniformity in an " Deformation  Localization
otherwise perfect specimen. :

A small cosine imperfection (f = 0.004) produces o
an appreciable strain nonuniformity much earlier
during deformation (Fig. 4(b)), thereby leading to
premature discontinuance of deformation in most
elements of the gage length. This results in an early
development of strain peak and a smaller uniform

strain. Thus €, cannot become greater than » as S oam 4
long as there is an imperfection within the gage tsechy
length.

The stress-ratio {O'y/ o) distribution in the speci-
men is shown in Fig. 4{(c). For most of the deforma-
tion history, this remains very small {(~10™). More
rapid increase takes place near x, = 0, and rises al- .
most up to 10~ when all but a couple of central ele- 01 S | -
ments have stopped aeforming. It is clear that the ° N2
thickness gradient becomes sufficiently large at this ) e
stage that the effects from o,/ o, should also be con- re1g
sidered in caleulating effective stresses. Since this fe0.004
is ignored in the present paper, the amount of de- Crossheag Speed = 0423 mm fsec
formation beyond this point is somewhat underesti-
mated. The strain disiributions and load-elongation &mmg : 52 * s.l ) LY
plots to be presented subsequently are marked by a € X, -0
closed circle to indicate this point, With reference (a)
to the metal forming literature, this strain would be
very close to the strain limit at the onset of a local-
ized thickness neck (forming limit).*

*H may be noted that duning gradual strain localization within the diffuse neck e ;
s condition of oblique localized necking (due to R. Hill J Mech, Phys. Solids, Horm 3 Diffusely | Strain
vol. 1, 1952, p. 19) may be satisfied for certain materials. This condition can be *—N‘“’”’s‘fg,ff,,‘ for ~ D'Sé;;‘;?ém e Localization
incorporated with the present analysis for 2 more complete picture, however this
would neither alter the total elongation nor forming hmit appreciably In fact,
when the deformung zone of metal shrinks to the sze of sheet thuckness, the
tocalized strain levels from the current analysss are m good agreement with ex-
penmentally ohserved formung limts

The tensile sirain rate (€,) in different elements
varies over several orders of magnitude during a
test at constant erosshead speed. Figures 5{a) and
{#) show the strain rate in various elements as a
function of €, at the center. The strain-rate at x,
= § is found to increase continuously from the start
of deformation, contrary to what might have been ex-
pected from the specimen elongation. The reason
for this lies in the drop in €, in other elements,
thereby forcing a greater deformation rate at x, = 0.
For » = 0.2 and m = 0 (Fig. 5{(a)}, two distincily dif-
ferent regimes of €, are observed for €, at x = 6. The b

; n=02
sharp rise in €, before €, = n is related to discon- ’ @00
tinuance of deformation in all fillet elements. In the s
second stage €, increases at a slower rate initially, X, = 50.8 mm .

. . : Crosshead Speed = 0,423 mm ! sec
however, gradual strain localization leads to a fur-

ther rapid increase in €, before fracture. In the
case of » = 0.2 and m = 0.01, the distinct change in \ , . , ; ;
deformation modes occurs much beyond €, = n. In o0 02 a4 0.6
fact, there is a substantial amount of diffusely dis-

€ X -0
tributed strain (0.20 = ¢, =< 0.36), during which ¢, ) 0
increases with gradually rising slope. All elements ¢ R
: . . X L ig. 5-Axi i 2 Euy a function of €, at
in the fillet discontinue to deform at €, ~0.36 leading figé ?Of’g?l s:tréuzn ;::ge mix_ Gfﬂgﬁd f 3{3’2 :nd m= 0.0L.
to a stage of strain localization. The rise in €, is, The strain rates at three locations on the specimen (each
however, much more gradual than in the case of m 25.4 mm apart) are shown.
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Fig. 6~Engineering stress-strain curves calculated for @) m = 0 and an imperfection size {f) of 0.004 for the various values
of n = 0.05, 0,10, 0.20, 0.30 and 0.40; )7 = 0.1 and an imperfection size (/) of 0.004 for the various values of m =0,

0.01, 0.02, 0.03, 0.04 and 0.05. The vertical arrows indicate the maximum load position and the open circles in the de-~
creasing load part of the curves correspond to the discontinuance of deformation at a node 1.27 mm from the specimen center.
{c) Distributions of axial strain at failure for three different specimens with values of m = 0, 0.02 and 0.05 as a function of
original distance from center for a fixed value of # = 0.1. The open cireles indicate a node that is 1.27 mm {rom specimen
center, the deformation within which may be somewhat inaccurately predicted. {d) Specimen width prefiles for two different
specimens, one with m = 0 and the other with m = 0,01, for nearly identical strains at the specimen center. The extension of
the elements ig contrasted against the original element size. Note a more diffusely distributed neck for m = 0.01, in com-

parison to the m = 0 case,

= 0 {Fig. 5{a}). Considerable additional elongation
due to this effect has been observed in previous ex-
perimental studies'’® and is more fully discussed
later.

Influence of

The influence of » on the engineering stress-strain
curves is studied for the case of = 0,004, m = 0 and
K =510.16 MPa (Fig. 6{(a)), for each of » = 0.05, 0.10,
0.20, 0.30 and 0.40. Having the same K for all cases
is responsible for the drop in the stress level with
increasing value of . For an imperfection size of
0.004, the uniform strain is always somewhat
smaller* than »n, As # increases, post-uniformportions

*n 13 m terms of true strams, wlnle specimen extensional stram 1 expressed
terms of engimeerng strain.

of these curves drop more slowly, thereby yielding
greater overall sirain and suggesting somewhat more
stable deformation. Yet, the total sirain over 50.8
mm is not rmuch greater than » due to the influence of
the imperfection.

Influence of m

The influence of m is described in Fig. 6(b} for =
= 0.1, K = 510.16 MPa and ¢, = 0.003, using the con-
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stitutive equation: ¢ = K[ €* + m In(é/¢)]. Engineer-
ing stress is raised slightly by an increase in w from
0 to 0.05. The influence of even small values of m
{0.01 — 0.05) in extending the post-uniform portion

of deformation is quite dramatic and agrees with
previous experimental results.””® While the stability
of post-uniform deformation increases and the rate
of load drop decreases with the rise inm, the uni-
form strain is affected very little.

This finding contradicts some previous specula-
tions on this subject. The presence of even a small
m continues to add deformation throughout the entire
gage length {much beyond »} in 2 quasi-sfable man-
ner as illustrated in Fig. 6{c). Strain in the fillet
region also increases in a similar manner. Note
that even though the strain nonuniformity in these
plots increases with larger values of m, this
would be hardly visible when plotted as a function
of instantaneous distance. Figure 6{d) showsthe in-
stantaneous width plotted as a function of instantane-
ous lengthfor 1) m=0 and2) m=0.01, revealing the
gradual nature of specimen profile. The wider true
neck size is clearly evident even for such a small
value of m. This large apparent ‘‘uniform’ strain
may have been responsible for the misconception
just cited.

METALLURGICAL TRANSACTIONS A



e T 7 " T ’ y T Figure 8(b) also shows the influence of a localized
cosine-shaped imperfection of f = 0.002, spread only
over the central 10.16 mm (4 elements on either side
of the center) of an otherwise perfect specimen. This
localization effect reduces post-uniform strain by

K «510 16 WP as much as 7 pet in comparison to a gradual imper-

ai” fection of the same size. The uniform strain is not

i{o‘)ﬁ sec” . affected, however.
Crosshead Speed = 0423 s/ sec The combined influence of # and f on the uniform
0 , : . ; \ \ , and total strain is illustrated in Fig. 8(c). Both uni-
’ o mcmzm:? . * 4 form and total strains decrease with increasing im-

TRAIN (%}
perfection size. The amount of drop in uniform
strain increases with the value of n itself, and the

. spread between uniform and total strain also shrinks
K,mm;pa in a similar manner. For imperfection size of ~0.006,
oy even the total strain falls short of the » value.
(Lgof)gg secd i

Crosshead Speed = 0423 mm - .
‘ sec Combined Influence of » and

g

r=10 r=20

2

8
;

ENGINEERING STRESS (MPa)

{uj

o It has been shown that the presence of m does not

influence the uniform strain significantly but affects

the post-uniform portion of the engineering stress-

strain plot. Figure 9 shows plots of post-uniform

op 4 strain as a function of m for » = 0.05, 0.10 and 0.20.

It is interesting to note that the increase in post-

. . \ , \ . uniform strain produced by » alone (for m = 0) is en-

’ " iy » e ®  hanced many times as m increases. On the other
CINEELINS STRAL 1 hand, the effect of m is complimented well by larger

(b} . .
Fig. 7-Engineering stress-strain curves calculated for @) values of n. Thus the combined influence of » and m

two different values of ¥ (1.0 and 2.0) for the case ofn = 0.2 is significantly greater than that of either n or m
and m = 0, () three different values of 7 (0.5, 1.0 and 2.0) alone.

for the case ofw = 0.2 and m = 0.01. The vertical arrow

indicates the maximum load position and the open circles

ENGINEERING STRESS tMPal
=
>,
S
>

in the decreasing load part of the curves correspond to the Influence of Constitutive Law
discontinuance of deformation at a node 1.27 mm from the
Specimen center. Figure 10 shows the influence of using Eq. [17b]

in comparison to Eq. [17a] for the same values of »
= 0.2 and m = m’ = 0.01. It must be emphasized
that m’ = 0.01 means a slightly higher rate sensi-
tivity than m = 0.01. In spite of this, however, Eq.

Influence of 7 [170] affects load equilibrium in such a manner as
The effect of v is shown for two different cases to produce slightly smaller elongation than Eq. [17a]
in Fig. T{a) and (b). An increase in » increases the suggests. It is clear that the test rate influences
post-uniform extension, much like the m-effect. This only the load level if Eq. [17b] is operative. In case
increase, however, is no more than 2 pct upon raising of Eq. [17a] both uniform and total elongations might
¥ from 1.0 to 2.0, for the case of n = 0.2, m =0 and f be affected by test rate as well as the level of load.

= 0.004. For m = 0.01 it is a bit larger, as shown in
Fig. 7(d). A drop in ¥ causes a sharper downtrend

for the last part of engineering stress-strain curve COMPARISON WITH THE
and a smaller strain at the onset of a localized thick- BIFURCATION THEORY
ness neck. Bifurcation theory has been used in studies of neck-

ing in circular cylindrical specimens.’® This
theory relates the change from a purely uniform

Influence of f deformation mode to a nonuniform one to the change

The influence of imperfection size on engineering in the slope of stress-strain curve. It predicts that
stress-strain curve is shown in Fig. 8(a), for n = 0.2, the necking (diffuse) strain for a specimen with fixed
m = 0, and v = 1.0. Only for a perfect specimen is grip ends is the same as the strain at maximum load,
the uniform strain equal to », and approximately 6 to 7 while the necking strain is somewhat greater for a
pet post-uniform strain achievable., The presence specimen with shear-free ends.” Even though it ap-
of an imperfection reduces both uniform and post- pears nearly impossible to pinpoint the diffuse
uniform parts of deformation. For m = 0.01, the necking strain experimentally, the above references
uniform strain is unaffected by small variations in f suggest that the difference between the strains for
(see Fig. 8(b)). With no imperfection post~uniform necking and maximum load is strongly influenced
strain in excess of 22 pct is now achievable, however, by vield strain, specimen geometry and » value. No
an increase in imperfection size causes a larger experimental corroboration of either of these effects
drop in post-uniform strain than that for m = 0. or similar effects on the load-extension plots (be-
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Fig. 8—Engineering stress-strain curves calculated fu- @) three different imperfection sizes (0, 0.002 and 0.004) for the case
ofn = 0.2 and m = 0, @) three different imperfection sizes (0, 0.002 and 0.004) for the case ofn = 0.2 and m = 0,01, The
vertical arrows indicate the maximum load position and the open circles in the decreasing load part of the curves correspond
fo the discontinuance of deformation at a node 1.27 mm from the specimen center. An additional calculation is also shown for
a localized imperfection of the type as in Fig. 3 (size = 0.002}, situated not over the entire 27.94 mm but over the central 4
elements (5.08 mm) on either side of the specimen center. (¢} Plots of eniform and total strains over 50.8 mm gage length

are shown as function of specimen imperfection size for the type of imperfection shown in Fig. 3. The results are for different
values of # = 0.1, 0.2, 0.3 and 0.4. Elongations up to the point of the open circle (as in Figs. 7 and 8) are considered only.

yond the maximum load) has been reported. In the
present work, the strain at maximum load was found
to equal #, for a perfect specimen with gripped
ends, which is what would be expected on the basis
of bifurcation theory. Detailed comparison of load-
extension plots from the present analytical results
could not be made, however, since this has not been
worked out using the bifurcation theory,

An aspect of the present model, apparently more
realistic than others, is that the change from a uni-
form state of deformation to a nonuniform one does
not occur at a single instant, but through a gradual
discontinuance of straining from the specimen fillet
region. Small degree of strain nonuniformity is pres-
ent even before maximum load and therefore, the
definition of a diffuse neck and its exact point of oe-
currence become arbitrary. Recent work on the bi-
furcation analysis of sheet specimens™ actually pre~
dicts that a large number of bifurcation modes are
possible even before the load maximum. This view
is somewhat closer to the concept of gradual develop-
ment of a nonuniformity. The remaining challenge
is thus an understanding of the load-extension plot
beyond maximum load. In the experimental results
to be presented for various sheet materials (as well

1230-VOLUME 8A, AUGUST 1977

as those in Ref. 1}, the differences in these plots (for
identical specimen geometry and yield strains) are
not explicable in ferms of their » values; the influ-
ence of strain-rate sensitivity, zero, positive or
negative, must be included to completely understand
these.

COMPARISON WITH EXPERIMENTAL RESULTS

To test the analytical model with real material be-
havior, tensile tests were conducted on the following
materials: 1) aluminum-killed steel, 2) rimmed steel,
3) 70 : 30 brass, 4) 2036-T4 aluminum (A1-2.7 pet Cu)
alloy and 5) 5182-0 aluminum (Al-4.0 pct Mg) alloy.
E-8 specimens were pulled at 1 em/min and =, X,
¥, and m parameters were determined. » and K val-
ues in Eq. [17a] are obtained respectively, from the
slope and intercept (at € = 1) of log (true stress) vs
log (true strain) plots. # values, i.e. the ratio of
width-to-thickness strains, are obtained from
measurements of deformed grids on the specimens
(Fig. 1{d)) prior to the load maximum. The strain-
rate sensitivity parameters, m, are determined from
changes in crosshead speed during a test. The stress
differential, Ac, from strain rates of €, to &, is used

METALLURGICAL TRANSACTIONS A
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Fig. 9—Percent elongation over 50,8 mm gage length beyond
maximum load, {or postuniform elongation)} is plotted as a
function of m for three different values of # = 0,05, 6.1 and
0.2. Elongations up to the point of the open circle {as in Figs.
7 and 8) are considered only.

to calculate m, using the relationship: m = Ac/In{e./¢)

Figures 11{a) to (¢) compare the experimental engi-
neering stress-strain curves with calculated ones
for the various materials. For both aluminum-killed
and rimmed steels, the agreement is excellent.
Analysis does not simulate the behavior at low strain
levels very closely since the actual n-values for
these materials are lower at these strain levels. In
case of brass (Fig. 11(c)}, the best {it value of n
{= 0.54) over the entire strain range produces reason-
able agreement of most of the curve, however, calcu-
lated uniform and total strains are much larger than
the observed values. If is well known that brass and
certain aluminum alloys have a significantly lower
value of » near the maximum load.' Based on the
measured terminal value of n (= 0.46), the calculated
curve matches the experimental results quite well
near the maximum load. As expected, however, this
worsens the fit for the lower strain region on the
curve. The input of a strain-dependence of » into the
analysis will be required therefore for a closer fit
over the entire strain range.

Figure 11{d) shows a similar result for 2036-T4
aluminum, using the terminal value of # (= 0.18).
Again a larger value of » can best describe the early
part of the curve, while a lower » describes the last
part better, It is interesting to note that the serra-
tions in the engineering stress-strain plot around and
beyond the maximum load have been appropriately
predicted from the negative value of m (= —0.0025).
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This effect was found to result from periodic increase
and decrease in strain rates in the elements of the
specimen. The amplitude and frequency of these
serrations are, however, different from those ob-
served, probably because the strain increments used
in computation were much too coarse to resolve such
details.

While the uniform strain is not influenced by m
= —0.0025 in the case of 2036-T4 aluminum, a larger
negative m of —0.007 in the case of 5182-0 aluminum
{Fig. 11(e)) not only reduced the uniform and total
strains from their expected values, but shifted the
onset of serrations to much smaller strains. This
agrees with the observed behavior, except for the
amplitude and frequency of serrations. Like the pre-
vious two materials, a smaller value of terminal n
also exists for this material, The important con-
clusion here is that a sufficiently negative m can
actually reduce the uniform strain to a value lower
than n.

SUMMARY AND CONCLUSIONS

A rigid/ plastic constitutive relation including
power law strain hardening and strain-rate harden~
ing has been used to model the deformation in a sheet
tensile specimen. A finite difference computation pro-
cedure simulates the progressive cessation of defor-
mation starting from elements in the fillet region
toward the minimum section (in the center) of the
specimen, thereby generating a strain peak. This
gradual strain localization is more realistic than
the abrupt mode change in the bifurcation theory,
and explains large postuniform extensions. Good
agreement has been obtained between experimental
and calculated engineering stress-strain curves for
a variety of materials, particular emphasis having
been given to the extension beyond maximum load.
Some general conclusions regarding the deformation
process and influences of various material and
geometric parameters are listed below:

1) The strain-rate in the minimum section increases
from the onset of deformation in two stages. It
reaches an extremely rapid rate of increase near
€, = n {for materials with m = 0}, which coincides
with the discontinuance of deformation in all fillet
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0 v T T T T -
A-K Steer
ol o
2
E Tatculates
»
oo 4
g ! AN
3 X
- P I\
= / A
& oop, Eorrimental 4
E
S
2
K &5 Py
o n oo h
~ oot
¢ 15t
=1 004
o 3 i i i i 2
4 i % £l 3
EARPIEERING STRAT L
fa)
Y T * ~r ¥ T
P Siget
w03 4
g
% !
R NS e Wulateg
g ! = 1
hdd N
o AN\
z o Ay
& ALY
w200 R
E
=
& Y51 e
1 0R
100 nonoe R
f1n2
fome
0 A L A, 1 i L i 1 A
[} 10 2 n a0 EY
INGIEERING SIRAIN ™+
¥ L T ¥ T T ¥ T
Caleuiaeg
T
‘ ag
4N oy

s WIx Ve ¥ Wl M
o s <

N i !

ENGINEERING STRESS imPat

@ k i ) 3 ] 3 £

(¢}
elements. The second stage consists of strain locali-
zation within the gage length with another rapid rise
in strain rate, up to nearly two orders of magnitude.
The presence of 2 small positive m (~0.01) reduces
the rafe of increase, and thereby shifts the transi-
tion strain (from first to the second stage of rate
increase) to a larger value.

2) The stress-ratio (03,/ o,) developed in a sheet
tensile specimen is generally very small {~10™*) and
increases only slightly with deformation. The great-
est increase, however, is near the minimum section
where it reaches about 107" before failure.

3) A cosine-shaped imperfection in the width
dimension (to simulate specimen taper) was studied.
Imperfections of small size (Au/w, ~ 0.004) reduce
uniform strains unless m is positive. However, a
larger drop oceurs in postuniform strain: for ex-
ample, in the case of » = 0.20 and m = 0.01, post-
uniform strain drops by 7 pct when imperfection
size reaches ~0.004. Localized imperfection is sub-
stantially more detrimental than a gradual tapering
imperfection of the same size.

4) Both uniform and postuniform strains increase
with increasing », the increase in postuniform strain
being within 1.5 to >4 pct upon an increase in » from
0.05 to 0.40.

5) The most dramatic effect comes from the pres-
ence of small positive m. Uniform strain increases
slightly (~1 pct) from the presence of a positive m,
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Fig. 11-Comparison of experimental and ealculated engineer-
ing stress-strain cuves for @) aluminum-killed steel, &)
rimmed steel, {£) 70-30 bhrass—two calculations were carried
out, one on the basis of n = 0.54 for low strains, and the
other on the basis of n = 0.46 for strains near maximum load,
@) 2036-T4 aluminum-the calculation is based on the value
of n that best fits near the maximum load, (¢) 5182-0 alumi-
num—the calculation is based on the value of n that best fits
the near maximum load.

however, postuniform strain increases from 3 pet to
43 pct due to an increase of m from 0 to 0.05. The
combined influence of » and m is substantially larger
than those of » or m alone. For example, an m = 0.02
can produce 27 pet postuniform strain whenn = 0.2,
as against only 15 pet when n = 0.05. A sufficiently
negative m can reduce both uniform and total strains
significantly and produce serrations in engineering
stress-strain plot. The strain for the onset of ser-
rations decreases with more negative values of m.

6) An increase in # increases postuniform strain
slightly. This increase is somewhat enhanced by the
presence of a positive m. A change of » from 1 to 2
in the case of » = 0.20 and m = 0.01 increases post~
uniform strain by ~3 pet.
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