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300M s t e e l  was sub jec t ed  to a wide r ange  of quenched and t e m p e r e d  hea t  t r e a t m e n t s .  
The p l a n e - s t r a i n  f r a c t u r e  toughness  and the t e n s i l e  u l t i m a t e  and y ie ld  s t r e n g t h s  were  
eva lua ted .  Resu l t s  ind ica te  that  subs t an t i a l  i m p r o v e m e n t  in toughness  with no los s  in 
s t r e n g t h  can be a c c o m p l i s h e d  in quenched and t e m p e r e d  s t e e l  by aus t en i t i z ing  at  1255 K 
(1800~ o r  h ighe r .  Low f r a c t u r e  toughness  in convent iona l ly  a u s t e n i t i z e d  300M s t e e l  
(1144 K (1600~ a p p e a r s  to be caused  by und i s so lved  p r e c i p i t a t e s  seen  both in the sub-  
m i c r o s t r u c t u r e  and on the f r a c t u r e  s u r f a c e  which p r o m o t e  f a i l u r e  by q u a s i - c l e a v a g e .  
T h e s e  p r e c i p i t a t e s  a p p e a r e d  to d i s s o l v e  in the  r ange  1200 to 1255 K (1700 to 1800~ 

T H E  c o r r e l a t i o n  of m i c r o s t r u c t u r e  with m e c h a n i c a l  
p r o p e r t i e s  of s t r u c t u r a l  m a t e r i a l s  has  been  a topic  
of i n t e r e s t  for  many y e a r s  a t t r a c t i n g  the a t ten t ion  of 
n u m e r o u s  w o r k e r s ,  x-~l Mos t  of t he se  s tud ies  have 
been  p r i m a r i l y  focused  e i t h e r  on m e c h a n i c a l  p r o p e r -  
t i e s  o r  on m i c r o s t r u c t u r a l  d e t a i l s ,  and a s  a r e s u l t ,  
many a m b i g u i t i e s  and u n r e s o l v e d  ques t ions  r e m a i n .  
I t  i s  be l i eved  to be of u tmos t  i m p o r t a n c e  that  equal  
e m p h a s i s  be p l aced  on both m i c r o s t r u c t u r e  and m e -  
chan ica l  behav io r ,  and the p r e s e n t  i nves t iga t ion  was 
under t aken  with th is  dual  e m p h a s i s  a s  i t s  c o r n e r -  
s tone .  

300M s t e e l  i s  a widely  used  u l t r ah igh  s t r e n g t h  
s t ee l ,  and c o n s i d e r a b l e  r e s e a r c h  has  been conducted  
into i t s  m e c h a n i c a l  p r o p e r t i e s .  I~ The p r e s e n t  
r e s e a r c h  a t t e m p t s  to add to t h e s e  e a r l i e r  s tud ies  
by e x p l o r i n g  in depth the inf luence of convent iona l  
quenching and t e m p e r i n g  t r e a t m e n t s  ove r  a s  wide a 
t e m p e r a t u r e  r a n g e  as  i s  p r a c t i c a l  for  s t e e l s .  The  
t e n s i l e  s t r e n g t h  and f r a c t u r e  toughness  a s  wel l  as  
the m i c r o s t r u c t u r e  and f r a c t u r e  s u r f a c e  morpho logy  
w e r e  eva lua ted  fo r  each  hea t  t r e a t m e n t .  

Exp lana t ions  a r e  o f fe red  as  to the  m e c h a n i s m s  
r e s p o n s i b l e  for  the  o b s e r v e d  m e c h a n i c a l  b e h a v i o r .  
Heat  t r e a t m e n t s  a r e  a l so  r e c o m m e n d e d  which should 
give an op t imum combina t ion  of s t r eng th  and tough-  
n e s s  in p r a c t i c a l  app l i ca t i ons .  

EXPERIMENTAL PROCEDURE 

M a t e r i a l s  and Heat  T r e a t m e n t  

The 300M s t e e l  used  in the  p r e s e n t  s tudy was ob-  
t a i ned  f r o m  L a t r o b e  Stee l  Company* and met  the 

*Latrobe Steel Company, Latrobe, Pa. 15650. 

s p e c i f i c a t i o n s  of AMS-6416.  It was vacuum a r c  
me l t ed  with a c h e m i c a l  compos i t ion  given by the 
m a n u f a c t u r e r  a s  0.41 C, 1.65 Si, 0.65 Mn, 0.002 S, 
0.008 P,  0.78 Cr ,  0.10 V, 1.77 Ni, 0.42 Mo. About  2.3 
• 105 g (500 lb) of s t e e l  was ob ta ined  in two d i f fe ren t  
f o r m s :  1) 0.0762 m • 0.0127 m (3 in.  • 1//2 in.) s e c t i on  
b a r  s tock  and 2) 0.0762 m • 0.0254 m (3 in.  • 1 in.) 
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s e c t i on  b a r  s tock .  A l l  m a t e r i a l  had been  n o r m a l i z e d  
at  1183 K (1670~ fo r  1 h p r i o r  to d e l i v e r y .  

S p e c i m e n s  w e r e  a u s t e n i t i z e d  for  1 h in a v e r t i c a l  
tube fu rnace  having a un i fo rm heat  zone of 0.30 m 
(12 in.) in a cont inuous ly  f lowing he l ium a t m o s p h e r e ,  
d i r e c t l y  quenched in oi l  at  r o o m  t e m p e r a t u r e ,  and 
double  t e m p e r e d  (2 + 2 h) in a s a l t  bath (oil  quenched 
a f t e r  each  t e m p e r i n g  t r e a t m e n t ) .  T e m p e r a t u r e s  e m -  
p loyed  were  a s  fo l lows:  

Austemtizing Temperatures 
Tempering Temperatures 

for Each Austemtizmg Temperature 

K (OF) K (~ 

1144 (1600) Untempered 
1255 (1800) 477 (400) 
1366 (2000) 589 (600) 
1477 (2200) 700 (800) 

811 (1000) 

T e s t  Spec imens  and T e s t  P r o c e d u r e s  

Compac t  t ens ion  f r a c t u r e  toughness  s p e c i m e n s  us ing  
a c r a c k - o p e n i n g  d i s p l a c e m e n t  gage we re  employed  
fol lowing the p r o c e d u r e  out l ined  in ASTM E399-72 
( r ev i sed ) .  Spec imens  we re  machined  f r o m  both s i z e s  
of b a r  s tock  in the long t r a n s v e r s e  o r i en t a t i on .  

Longi tud ina l  t ens ion  s p e c i m e n s  with s q u a r e  gage 
s e c t i o n s  were  mach ined  f r o m  the s a m e  m a t e r i a l s .  
A 0.025 m (! in.) e x t e n s o m e t e r  (10 pc t  s t r a i n  c a l i -  
b r a t ed )  a n d / o r  s t r a i n  gage p rov ided  s t r a i n  dur ing  the 
t e s t s .  0.2 pc t  offse t  y ie ld  s t r e n g t h  and u l t i m a t e  t en s i l e  
s t r e n g t h  were  d e t e r m i n e d .  

M e t a l l o g r a p h y  and E l e c t r o n  M i c r o s c o p y  

Spec imens  for  op t ica l  and t r a n s m i s s i o n  e l e c t r o n  
m i c r o s c o p y  were  ob ta ined  f r o m  the g r ip  s ec t ion  of 
the t e s t e d  t e n s i l e  s p e c i m e n s .  Spec imens  for  t r a n s -  
m i s s i o n  e l e c t r o n  m i c r o s c o p y  were  p r e p a r e d  by th in-  
ning s p e c i m e n s  c h e m i c a l l y  and je t  po l i sh ing  to p e r -  
f o r m a t i o n f  6 T h e s e  s p e c i m e n s  w e r e  e x a m i n e d  in a 
J E M  7 e l e c t r o n  m i c r o s c o p e  us ing  100 KV po ten t i a l .  
F r a c t u r e  toughness  f a i l u r e  s u r f a c e s  w e r e  examined  
d i r e c t l y  in a C a m b r i d g e  S t e r o s c a n  $4 scanning  e l e c -  
t r on  m i c r o s c o p e  us ing  30 KV po ten t i a l .  High r e s o l u -  
t ion f r a c t u r e  s u r f a c e s  we re  p r e p a r e d  by coat ing 
them with about 300/~ of gold and o b s e r v e d  us ing  20 KV 
po ten t i a l .  
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RESULTS 

Mechanical  P rope r t i e s  

Quenched and Tempered  Steels .  F igures  1 to 3 
show the effect of temper ing on the s t rength and tough- 
ness  of the s tee l .  Pla in  s t r a in  f r ac tu re  toughness, 
KIt and the ult imate s t rength were observed to be 
independent of thickness over the s ize  range tes ted 
so that F igs .  1 and 3 r ep resen t  the response  of 
both sample groups.  Normal ly  only one data point 
was taken for  each heat t rea tment .  Numer ica l  data 
f rom which these curves were der ived  have been p re -  
sented e lsewhere  2~ One can read i ly  see  f rom Fig.  1 
that it  is  poss ible  to sepa ra te  the spec imens  into 
two groups based on the temper ing response  of the 
s tee l .  Fo r  convenience, specimens  quenched f rom 
1144 K (1600~ will be r e f e r r e d  to as Class  A speci -  
mens and al l  those quenched from higher t empera -  
tu res  will  be r e f e r r e d  to as Class  B spec imens .  
The curves  indicate the following: f r ac tu re  toughness 
of the Class  A specimens  inc reases  a lmost  monotoni- 
cal ly with temper ing  t empera tu re ,  this inc rease  being 
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Fig. 1--Effect  of temper ing tempera ture  on the p lane-s t ra in  
fracture toughness of 300M steel; long transverse orienta- 
tion; single data points for each thickness. 

very  gradual  below 700 K (800~ In contrast ,  f rac -  
ture  toughness of the Class  B specimens  i n c r e a s e s  
rapid ly  with temper ing  t empera tu re  up to 589 K 
(600~ but then decl ines  sharply  reaching a minimum 
in toughness at about 700 K (800~ and finally in- 
c r e a s e s  again with higher temper ing  t empera tu re  up 
to 811 K (1000~ No p a r a l l e l  d i f ferences  between 
these two c l a s se s  of specimens  were observed in the 
tens i le  p roper t i e s  shown in F igs .  2 and 3. 

Effect oI austeni t izing t empera tu re  on the f rac tu re  
toughness of the s tee l  for se lec ted  temper ing  t e m p e r a -  
tures  is  shown in Fig .  4. F r a c t u r e  toughness of as -  
quenched spec imens  and specimens  t empered  at 700 K 
(800~ were re la t ive ly  unaffected by austeni t izing 
t empera tu re .  Toughness of the specimens  t empered  
at 477 K (400~ and 589 K (600~ inc reased  with 
austeni t iz ing t empera tu re  while temper ing at 811 K 
(1000~ showed a dec rease  in toughness with in- 
c reas ing  austeni t iz ing t empera tu re .  This suggests  
that the efIects of austenit izing t empera tu re  and 
t e m pe r i ng t e m pe r a t u r e  ontoughaess are  in te r re la ted .  
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Fig. 3--Effect of tempering and austenitizing temperatures on 
the ultimate tensile strength of 300M steel; single data points 
for each thickness .  
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Fig, 2--Effect  of temper ing tempera ture  on the 0.2 pet  tensile 
yield s t rength  of 300M steel ;  single data points as shown. 
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M i c r o s c o p y  

S t r u c t u r e  and S u b s t r u c t u r e .  The aus t en i t i c  g r a i n  
s i z e  p r o g r e s s i v e l y  i n c r e a s e d  with aus t en i t i z i ng  t e m -  
p e r a t u r e  a s  i nd i ca t ed  in Tab le  I .  Op t i c a l  m e t a l l o -  
g raphy  a l so  r e v e a l e d  that  the m a r t e n s i t i c  p la t e  s i z e  
i n c r e a s e d  with i n c r e a s i n g  aus t en i t i c  g r a i n  s i z e .  E l e c -  
t r on  m i c r o s c o p y  of the a s - q u e n c h e d  s p e c i m e n s  r e -  
v e a l e d  four  s ign i f i can t  f e a t u r e s :  a) A l l  C l a s s  A s p e c i -  
mens  but  no C l a s s  B s p e c i m e n s  conta ined  evenly  
d i s t r i b u t e d  und i s so lved  p a r t i c l e s ,  b) The  m a r t e n s i t i c  
s u b s t r u c t u r e  in a l l  s p e c i m e n s  cons i s t ed  of l a ths  and 
p l a t e s ,  and v e r y  few of the p l a t e s  exh ib i t ed  m i d r i b  
twinning,  c) A u t o - t e m p e r i n g  was p r e v a l e n t  in the 
m a r t e n s i t i c  s u b s t r u c t u r e ,  d) U n t r a n s f o r m e d  aus t en i t e  
was  found at  the  la th  and p la te  b o u n d a r i e s .  T h e s e  
s t r u c t u r a l  f e a t u r e s  sha l l  be d i s c u s s e d  in o r d e r .  

The und i s so lved  p a r t i c l e s ,  o b s e r v e d  only in C l a s s  
A s p e c i m e n s ,  v a r i e d  in s i z e  with d i a m e t e r s  r ang ing  
f r o m  1000 to 2000/~. T h e i r  s t r u c t u r e  was iden t i f i ed  
by e l e c t r o n  d i f f r ac t ion  as  fcc  with l a t t i ce  p a r a m e t e r  
of 10.5.~. F i g u r e  5 i s  a b r i gh t  f i e ld  i m a g e  of a 
C l a s s  A s p e c i m e n  in the  u n t e m p e r e d  condi t ion show-  
ing these  u n d i s s o l v e d  p a r t i c l e s .  They  were  found 
ins ide  the la ths  and p la t e s  and a l so  at  t h e i r  b o u n d a r i e s .  
Spec imens  a u s t e n i t i z e d  at  1255 K (1800~ and above 
d id  not conta in  such p a r t i c l e s .  

TableI. Effe~ of Aus~nitizing Treatmenton Austenitic G~in Size 

1144 1255 1366 1477 
Austenitlzing Temperature, K (~ (1600) (1800) (2000) (2200) 

ASTM GrmnS~e 8 5 3�89 1 

In a l l  the a s - q u e n c h e d  s a m p l e s  the m a r t e n s i t i c  
s u b s t r u c t u r e  cons i s t ed  main ly  of p l a t e s  and la ths  and 
v e r y  few p a r t i a l l y  twinned p l a t e s .  The m o r p h o l o g i c a l  
c l a s s i f i c a t i o n s  of m a r t e n s i t e  have a l r e a d y  been  e s -  
t a b l i s h e d  by p r e v i o u s  w o r k e r s  8'2s'29 and need no a m p l i -  
f i ca t ion  h e r e .  The extent  of twinning was low ( l e s s  
than 5 pc t  of the  m a r t e n s i t i c  p l a t e s  w e r e  twinned) in 
both C l a s s e s  A and B s p e c i m e n s .  The  d i s so lu t i on  of 
the above  p a r t i c l e s  in  C l a s s  B s p e c i m e n s  was not a c -  
compan ied  by any o b s e r v a b l e  change in m a r t e n s i t i c  
s u b s t r u c t u r e .  

A u t o - t e m p e r i n g  was ex t ens ive  in C l a s s e s  A and B 
s p e c i m e n s  and a l m o s t  e v e r y  p l a t e  and la th  exh ib i ted  
a u t o - t e m p e r e d  E - c a r b i d e s .  They  were  v e r y  fine and 
m a y  be s een  in F ig .  6. 

The p r e s e n c e  of r e t a i n e d  aus t en i t e  in the a s -  
quenched m a r t e n s i t e  has  been  r e p o r t e d  by e a r l i e r  
workers .3~ In the p r e s e n t  s tudy  th is  r e t a i n e d  a u s -  
t en i t e  o c c u r r e d  in such  low amounts  that  convent ional  
X - r a y  d i f f r ac t ion  techniques  b a r e l y  r e v e a l e d  i t s  
p r e s e n c e .  The aus ten i t e ,  in mos t  c a s e s ,  out l ined  the 
la th  and p la te  b o u n d a r i e s  and in some  i n s t a n c e s  oc -  
c u r r e d  in thin p l a t e l e t s .  F i g u r e  7 shows b r igh t  
and d a r k  f ie ld  i m a g e s  of a s p e c i m e n  quenched f rom 
1144 K (1600~ It was found by ex t ens ive  o b s e r v a -  
t ion that  the extent  of the i n t e r l a t h  and p la te  aus t en i t e  
was qui te  c o m p a r a b l e  in C l a s s e s  A and B s p e c i m e n s ,  
and no s ign i f i can t  d i f f e r e n c e s  in the quant i ty  of r e -  
t a ined  aus t en i t e  could be de t ec t ed .  

T e m p e r i n g  of the s t e e l  p roduced  ana logous  changes  
in m i c r o s t r u e t u r e  in C l a s s  A and C l a s s  B s p e c i m e n s .  
A l l  the s p e c i m e n s  t e m p e r e d  at  477 K (400~ and 
589 K (600~ conta ined ~ - c a r b i d e  p r e c i p i t a t e s  that  
we re  c o a r s e r  than the s i ze  o b s e r v e d  in the a s -  
quenched s t r u c t u r e .  Re ta ined  aus t en i t e  was s t i l l  

Fig. 5--300M steel specimen 
austenitized at 1144 K 
(1600~ and quenched to 
room temperature.  Bright 
field image showing the 
presence of undissolved 
part icles  (indicated by a r -  
rows). 
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present at the boundaries and could be readily ob- 
served in the structure.  Tempering at 700 K (800~ 
partially spheroidized the cementite part icles.  Re- 
tained austenite at the lath boundaries decomposed to 
cementite and, presumably, ferr i te  leaving a network 
of lath boundary carbides. Figure 8 shows the bright 
and dark field images of a Class A specimen tem- 
pered at 700 K (800~ showing discrete cementite 
precipitates at the lath boundaries. Isolated instances 
of retained austenite could also be found. 

Tempering at 811 K (1000~ also spheroidized the 
cementite, and those spheroids were observed in the 
matrix and the boundaries as shown in Fig. 9. The 
retained austenite was totally absent. 

Fractography~ Figure 10 shows a ser ies  of fracto-  
graphs of the tested fracture toughness specimens 
quenched from 1144, 1255, and 1477 K (1600, 1800, 
and 2200~ The fracture  morphology is radically 
different between Class A and Class B specimens. 
Class A specimens showed a mixture of quasi- 
cleavage and dimpled rupture in proportions depend- 
ing on the tempering temperature.  No intergranular  
failure was observed at any tempering temperature.  
Class B specimens also failed by a mixture of quasi- 
cleavage and dimpled rupture in the tempering range 
of 477 to 589 K (400 to 600~ but with somewhat less 
quasicleavage than Class A specimens. In sharp con- 
t ras t  tempering at and above 700 K (800~ caused 
the Class B specimens to fail by an intergranular 
mode. In each case, the fractographs were compared 
with the optical micrographs to verify that inter- 
granular failure was indeed along the pr ior  austenite 
grain boundaries. 

A limited number of high resolution fractographs 
were prepared by gold coating the fracture surfaces 
in an attempt to locate the particles which had been 

observed in Class A samples by t ransmission elec- 
tron microscopy.  Par t ic les  of the proper size were 
found concentrated only on the quasicleavage regions 
of Class A specimens, a typical example of which is 
shown in Fig. 11. Smaller (500,~ particles were found 
localized on the quasicleavage fracture region of 
specimens tempered at 1200 K (1700~ and at 1255 K 
(1800~ However, only one quasicleavage region 
was observed in the latter specimen. 

DISCUSSION 

Significant Observations 

The most significant observations from the present 
r e sea rch  are the following: 

A) Tempering in the range of 477 to 589 K (400 to 
600~ produced substantially higher toughness in 
Class B specimens than in Class A specimens. On the 
other hand, tempering at 700 to 811 K (800 to 1000~ 
reversed the above trend. Tempering at 700 K (800~ 
produced a minimum in the toughness vs tempering 
temperature  curves for Class B specimens. 

B) The microst ructure  of both classes as deter-  
mined by transmission electron microscopy was quali- 
tatively alike. After tempering at temperatures  below 
700 K (800~ the s tructure consisted of a uniform 
dispersion of e-carbide in lightly twinned martensite 
with small amounts of austenite in the lath and plate 
boundaries. After tempering at or above 700 K 
(800~ the c-carbide transformed to cementite and 
the retained austenite decomposed to ferr i te  and 
cementite. However the following differences were 
noted between Classes A and B specimens: 1) Class 
A samples were found to have undissolved part icles.  
These appeared to be completely dissolved in the 

. , ., , " 

. . 

i~"..  ~ . ~ _"~ , ,  . . . . . . .  : 

Fig. 6--300M s tee l  spec imen  
aus ten i t ized  at 1144 K 
(1600~ and quenched to 
room t e m p e r a t u r e .  Br ight  
field image  shows auto-  
t e mpe re d  ~ -c a rb ide  in a 
m a r t e n s i t i c  plate.  
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Fig .  7 - -300M s t e e l  s p e c i m e n  
a u s t e n i t i z e d  and q u e n c h e d  
f r o m  1144 K (1600*F). B r i g h t  
f ie ld  i m a g e  (top) s h o w s  m a r -  
t e n s i t i c  s u b s t r u c t u r e .  A u t o -  
t e m p e r i n g  is  e v i d e n t  in the  
l a t h s .  The  d a r k  f ie ld  i m a g e  
of a (200) 31 r e f l e c t i o n  (bot-  
tom} r e v e r s e s  the  c o n t r a s t  of  
the  a u s t e n i t e  at the  i n t e r l a t h  
b o u n d a r i e s .  An u n d i s s o l v e d  
p a r t i c l e  i s  i nd i ca t ed  by an a r -  
row in the  top p h o t o g r a p h .  
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Class  B spec imens .  2) The quas ic leavage  reg ions  of 
f r ac tu r e  su r faces  of Class  A samples  contained high 
concen t ra t ions  of pa r t i c l e s  s i m i l a r  in appearance  
and s ize to the above undisso lved  p a r t i c l e s .  

C) F r a c t u r e  su r faces  were t r a n s g r a n u l a r  except 
for Class  B spec imens  t empered  at or above 700 K 
(800~ These  failed by i n t e r g r a n u l a r  c leavage,  

As-Quenched  S t ruc ture  

Some r ecen t  s tudies  32,33 indicate  that use  of a h igher  
aus ten i t i z ing  t e m p e r a t u r e  followed by oil quenching 

but no subsequent  t e mpe r i ng  provides  high toughness 
in some c o m m e r c i a l  s t ee l s .  The p r e se n t  work cannot 
conf i rm these r e s u l t s  for 300M steel .  Opt ical  and 
t r a n s m i s s i o n  e lec t ron  mic roscopy  r e s u l t s  have shown 
that the a s -quenched  s t r u c t u r e  is  un i fo rmly  m a r t e n -  
s i t ic  with s m a l l  amounts  of aus ten i te  at the lath and 
plate boundar i e s .  Since a l l  the as -quenched  f r ac tu r e  
spec imens  showed t r ansgTanu la r  fa i lu re ,  it follows 
that aus teni te  at the lath and plate boundar ies  does not 
mi t igate  b r i t t l e  fa i lu re  in the a s -quenched  condit ion.  
The t r a n s g r a n u l a r  na tu re  of the a s -quenched  f r ac tu r e  
toughness  spec imen  also r u l e s  out any poss ib i l i ty  of 

It  

1 r  . ~ IP" 

e~ 

Fig. 8--300M steel specimen 
austenitized and quenched 
from 1144 K (1600~ and 
double tempered at 700 K 
(800~ Bright field image 
shows martensitie substruc- 
ture. Precipitation of cemen- 
tite is not obvious in the 
bright field image, but the 
imaging of a cementite re-  
flection (bottom) reveals ce- 
mentite precipitates in the 
dark field image, 
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i m p u r i t y  s e g r e g a t i o n  at  the g r a i n  b o u n d a r i e s  a s  sug-  
ges t ed  by McMahon ~ who o b s e r v e d  i n t e r g r a n u l a r  
f a i l u r e  in a s - q u e n c h e d  s p e c i m e n s .  Thus the  aus t en i t e  
g r a i n  s i ze  has  no s ign i f i can t  ef fec t  on the toughness  
of the a s - q u e n c h e d  s tee l �9  

Quenched and T e m p e r e d  S t r u c t u r e s  

T e m p e r i n g  T e m p e r a t u r e  Below 700 K (800~ The 
effect  on toughness  of m i c r o s t r u c t u r a l  changes  ac -  
companying  aus t en i t i z i ng  t e m p e r a t u r e s  can be eva lu -  
a ted  f r o m  Table  I and F i g s .  1 and 4. I n c r e a s e  of a u s -  
t en i t i z ing  t e m p e r a t u r e  caused  an i n c r e a s e  in aus t en i -  
t i c  g r a i n  s i z e  and,  be tween  1144 K (1600~ and 1255 K 
(1800~ r e s u l t e d  in d i s so lu t ion  of the second  phase  
p a r t i c l e s  d i s c u s s e d  above .  Spec imens  t e m p e r e d  at  
477 K (400~ and 589 K (600~ e x p e r i e n c e d  i n c r e a s e s  
in toughness  with aus t en i t i z i ng  t e m p e r a t u r e  with the 
mos t  p ronounced  i m p r o v e m e n t  o c c u r r i n g  c o n c u r r e n t l y  
with the d i s so lu t ion  of the second  phase  p a r t i c l e s ,  
Thus i t  a p p e a r s  p o s s i b l e  that  the second  phase  p a r -  
t i c l e s  f a c i l i t a t e d  c r a c k  p ropaga t i on  in the t e m p e r e d  
C l a s s  A s p e c i m e n s ,  and t h e i r  r e m o v a l  r e s u l t e d  in 
h ighe r  toughness .  I m p r o v e m e n t  in toughness  with 
i n c r e a s i n g  aus t en i t e  g r a i n  s i z e  has  been  noted 
e a r l i e r ,  ~'"~ and some  of the  i n c r e a s e  in toughness  
with i n c r e a s i n g  ans t en i f i z ing  t e m p e r a t u r e  can be a t -  
t r i bu ted  to th is  effect �9 A s - q u e n c h e d  toughness  is  
r e l a t i v e l y  unaf fec ted  by  aus t en i t i z i ng  t e m p e r a t u r e .  

The p r e s e n t  r e s u l t s  show that  twins in m a r t e n s i t e  
a r e  not suf f ic ien t  to cause  low toughness .  Both C l a s s  
A and C l a s s  B s p e c i m e n s  p o s s e s s  c o m p a r a b l e  but 
low amounts  of twins and the toughness  r e s p o n s e s  
a r e  wide ly  d i f f e ren t .  The s t r u c t u r e  which p r o d u c e d  

the h ighes t  toughness  va lues  cons i s t ed  of un i fo rm e-  
c a r b i d e  p r e c i p i t a t e s  in a m a r t e n s i t i c  m a t r i x .  Re-  
p o r t s  by L i n d b o r g  and A v e r b a c h  ~ and Liu TM showed 
that  cohe rency  s t r a i n  a s s o c i a t e d  with e - c a r b i d e  i s  
f a i r l y  i s o t r o p i c  and hence does  not r e t a r d  the c r a c k  
growth  a s  much a s  the c e m e n t i t e  p r e c i p i t a t e  does  in 
a ba in i t i c  s t r u c t u r e .  The p r e s e n t  r e s u l t s  show that  
the toughness  of the m a r t e n s i t i c  s t r u c t u r e  with e-  
c a rb ide  p r e c i p i t a t e s  is  high in the absence  of und i s -  
so lved  p r e c i p i t a t e  p a r t i c l e s .  The  ques t ion  tha t  s t i l l  
r e m a i n s  unanswered  r e l a t e s  to the b r i t t l e n e s s  of the 
u n t e m p e r e d  m a r t e n s i t i c  s t r u c t u r e .  The a s - q u e n c h e d  
m i c r o s t r u c t u r e  cons i s t ed  of a f ine d i s p e r s i o n  of au to-  
t e m p e r e d  ~ - c a r b i d e  in a m a r t e n s i t i c  m a t r i x .  T e m -  
p e r i n g  at  477 K (400~ only caused  the e - c a r b i d e  
p r e c i p i t a t e s  to grow, but the toughness  of the s t e e l  
i m p r o v e d  a p p r e c i a b l y .  It can be specu l a t ed  that  the 
e - c a r b i d e  f o r m e d  dur ing  quenching d e p l e t e s  the c a r -  
bon loca l ly  and thus r e n d e r s  the c a r b i d e / m a t r i x  
i n t e r f ace  weak.  

T e m p e r i n g  T e m p e r a t u r e s  of 700 K (800~ and 
Above .  The low toughness  of C l a s s  B s p e c i m e n s  a f t e r  
t e m p e r i n g  at  700 K (800~ o r  h igher  can p o s s i b l y  
be exp la ined  in the s a m e  manne r  as  "350~ e m b r i t -  
t l e m e n t " .  ~ , ~ - ~  The o b s e r v e d  decohes ion  a long p r i o r  
aus t en i t e  g r a i n  bounda r i e s  c l e a r l y  sugges t s  that  the 
m i c r o m e c h a n i s m ( s )  p r o p a g a t i n g  the f a i l u r e  is  
de f in i t e ly  at  the  g r a i n  boundary  r a t h e r  than in the 
ma t r i x � 9  It has  been  r e p o r t e d  aT'~ that  the  s e v e r i t y  of 
e m b r i t t l e m e n t  is  accen tua t ed  by l a r g e  aus t en i t i c  
g r a i n s  which is  in a c c o r d a n c e  with the p r e s e n t  r e -  
su l t s .  The s t e e l  used  in the p r e s e n t  i nves t iga t ion  
has  a lower  phosphorous  content  than s t e e l s  e m -  
p loyed  e a r l i e r ,  ~ ' ~  and the C l a s s  A s p e c i m e n s  with 

Fig. 9--300M steel specimen 
austenitized at 1477 K 
(2200~ and double tem- 
pered at 811 K (1000~ 
Bright field image shows 
spheroidized cementite 
precipitates at the lath and 
plate boundaries. 

*.~  %, 

�9 ..iBm' ~b 

t , 

, , , . ,  0.} a 

METALLURGICAL TRANSACTIONS A VOLUME 8A, SEPTEMBER 1977-1445 



D 

: z ,  

u , J  

LJ  

~J  

~q OUF!ICFEB 

(OPTIC#L) 

QUENCI4E[~ 

587 ~qf;~ 

81! (lOOO) 

,~,~'~ ~ !L ~ . .  , ~ ' ~  ~ ~ i. ;-- -. i~# ~7,. : ~ . .  ,,, . , ~ ~ : , .  ~ & ~  ! . .  -, ~ " , : ~  

~, ~' '~r ~*.:'' ,.., 

"~-~ 

+ . t .  * ,  ~ .  ~ " ' *q - . 1P '~ *  - " -  .'to~, ~# ,~% " 

I 

J 

~N 

U 

1144 (1600) 1255 (1800) 1477 (2200) 

AUSTENITIZING TEMPERATURE, 'K ('F) 

Fig.  lO- -Ser ies  of optical  micrographs  and scanning fractographs i l lustrat ing the fracture morphology of heat treated and 
tested fracture  toughness s p e c i m e n s .  Opticat micrographs  are included for grain s i z e  re ference .  
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Fig. l l--High resolution fractograph showing concentration 
of undissolved particles on quasi-cleavage region of the 
fracture surface of a Class A specimen austenitized at 1144K 
(1600~ and double tempered at 587 K (600~ 

aus ten i te  g ra in  s ize  8 were  p rac t i ca l ly  f ree  f rom this 
e m b r i t t l e m e n t .  S imi l a r  obse rva t ions  were  made by 
Woodfine. 39 It thus appea r s  that a cutoff g ra in  s ize  
for e m b r i t t l e m e n t  exis t s  in  300M s tee l  somewhere  
between ASTM gra in  s i zes  5 and 8. 

SUPPLEMENTARY EXPERIMENTS 

Because  the second phase pa r t i c l e s  which seemed  
r e spons ib l e  for reduc ing  toughness  in  the Class  A 
heat t r e a t m e n t s  appeared  to be complete ly  d i sso lved  
af ter  1 h at 1255 K (1800~ addit ional  s tudies  were 
pe r fo rmed  in the aus ten i t i z ing  reg ion  between the 
Class  A and the Class  B t r e a t m e n t s .  Samples  were  
aus ten i t i zed  at a va r i e ty  of t imes  and t e m p e r a t u r e s  
and examined  by TEM to de t e rmine  the lowest  
aus ten i t i z ing  t e m p e r a t u r e  which would d i sso lve  the 
p a r t i c l e s .  Aus ten i t i z ing  t imes  up to 8 h at 1144 K 
(1600~ did not d i sso lve  the pa r t i c l e s ,  nor  did 1 h 
at 1172 K (1650~ However,  1 h at 1200 K (1700~ 
e l imina ted  mos t  of the p rec ip i t a t e s ,  and this  t ime  and 
t e m p e r a t u r e  were  se lec ted  for supp lemen ta ry  plane 
s t r a i n  f r ac tu r e  toughness  de t e rmina t ions .  KIC was 
evaluated as before us ing the 0.0127 m (0,5 in,) s a m -  
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Fig. 12-Effect of tempering temperature on plane-strain 
fracture toughness of 300M steel austenitized at 1200 K 
(1700~ Long transverse orientation and single data 
points used. 
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pie th ickness .  The r e su l t s  a re  shown in  Fig .  12 
where  it  can be seen  that this heat t r e a t m e n t  r e su l t ed  
in behavior  which was in t e rmed ia t e  between Class  A 
and Class  B m a t e r i a l .  The data s ca t t e r  was g r ea t e r  
than expected, and no r e a s o n  could be found to explain 
it  f rom ei ther  the tes t  p rocedures  or the heat t r e a t -  
ment .  

SUMMARY 

I m p r o v e m e n t  in  f r a c t u r e  toughness  of 300M s tee l  
can be effected by aus ten i t i z ing  at higher  t e m p e r a -  
tu res  than the convent ional ly  used t e m p e r a t u r e  of 
1144 K (1600~ This  enhancement  in toughness  
was a t t r ibuted  to d isso lu t ion  of second phase pa r t i -  
c les .  

For  opt imum s t reng th  and toughness  it  is r e c o m -  
mended that the s t ee l  be aus ten i t i zed  at 1255 K 
(1800~ and t empe red  in the range  477 K (400~ to 
589 K (600~ 

Retained aus ten i te  was observed  at the lath and 
plate boundar ies  in al l  the spec imens  t empered  at 
589 K (600~ and below. This  aus ten i te  decomposed 
to f e r r i t e  and cement i te  on t emper ing  at 700 K (800~ 
and above.  

T e m p e r i n g  at 700 K (800~ and above caused i n t e r -  
g ranu la r  e m b r i t t l e m e n t  in spec imens  aus ten i t ized  at 
and above 1255 K (1800~ 
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