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The in i t ia t ion  of a crack in a spec imen  under  t ens i l e  or  c o m p r e s s i v e  s t r e s s e s  is  t r ea t ed  
f rom the point of view of pe r tu rba t ion  a na l y s i s .  A su r face  d i s tor t ion  is  F o u r i e r  analyzed 
into a s e r i e s  of waves  and the ampl i tude  r e sponse  of a s ingle  component  of vary ing  f r e -  
quency is  t heo re t i ca l ly  inves t iga ted .  The r e sponse  of the individual  components  yie lds  a 
Gr i f f i th- type  c r i t e r i o n  for  wave ampl i tude  growth. The model is  applied to al loy sy s t e ms  
undergoing  s t r e s s  co r ros ion  c rack ing  via su r face  diffusion.  

T H E  p r e s e n t  sc ient i f ic  unders tand ing  of s t r e s s  c o r r o -  
s ion is  ve ry  f r agmen ta ry  and the need for a m o r e  de-  
ta i led  mechan i s t i c  unders tand ing  of the overa l l  p r o c e s s  
has  been evident  for some t ime .  1-3 The lack of g e n e r -  
al i ty  or  comprehens ive  foundat ions in the exis t ing  de-  
s c r ip t ions  has led to a ve ry  emp i r i c a l  a s s e s s m e n t  of 
the s t r e s s  co r ros ion  phenomena  and has not provided 
the fundamenta l s  on which a bas ic  quant i ta t ive ly  p r e -  
dict ive theory  can be founded. 

In th is  s e r i e s  of pape r s ,  the theore t i ca l  approach is  
to t r ea t  the in te r face  between a m a t e r i a l  under  s t r e s s  
and i t s  env i ronmen t  as  a phase  f ront  that is  capable  of 
motion e i ther  as  a smooth r egu l a r  f ront  or as  a chaotic 
rumpled  front .  The f i r s t  case co r re sponds  to that of 
un i fo rm co r ro s ion ,  the second to that of c rack ing .  The 
phase f ront  changes posi t ion  and shape via both sur face  
and vo lume diffusion p r o c e s s e s  and is  analyzed via 
what is  e s sen t i a l l y  a pe r tu rba t ion  p rocedure  not too 
unl ike the p rob lem of Tay lo r  ins tab i l i ty  4 of a fluid with 
sur face  t ens ion .  All of the e l emen ta ry  p r o c e s s e s  a r e  
quite gene ra l  and the quest ion of which m e c h a n i s m  
leads  to c rack ing  in a p a r t i c u l a r  i n s t ance  is  pure ly  a 
m a t t e r  of k ine t i c s .  

At l eas t  four ca tegor ies  of choice appear  to be n e c -  
e s s a r y  for  an overa l l  ana ly s i s ;  these  a re :  17 e i ther  a 
pe r fec t  sol id plus  loading or  a he te rogeneous ly  i m p e r -  
fect sol id (grain bounda r i e s ,  two-phase  bounda r i e s ,  
and so forth) plus  loading; 2) e i ther  smal l  ampl i tude  or  
l a rge  ampl i tude  sur face  d i s to r t ion ;  3) shape change 
e i ther  by sur face  diffusion,  sur face  reac t ion ,  or volume 
diffusion,  and 47 p r e s e n c e  or absence  of a t a r n i s h  f i lm.  
A fifth ca tegory  would obviously d is t inguish  the envi -  
r onmen ta l  condi t ions .  In this  f i r s t  paper ,  we r e s t r i c t  
o u r s e l v e s  to the t r e a t m e n t  of a pe r fec t  sol id without 
su r face  f i lm in t ens i l e  and shear  modes  and d i scuss  
the growth of sma l l  ampl i tude  d i s to r t ions  via su r face  
diffusion.  

In the next  sec t ion,  we t r e a t  the n e c e s s a r y  and suff i -  
c ient  condit ions for c rack  growth. Section II deals  with 
a l i n e a r  s tabi l i ty  a n a l y s i s  of a smooth sol id su r face  
and Section III d i s c u s s e s  the r e su l t s  and impl i ca t ions  
of the t r e a t m e n t .  
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It NECESSARY AND SUFFICIENT CONDITIONS 
FOR CRACK GROWTH 

The second law of t h e r m o d y n a m i c s  na tu ra l l y  p r o -  
v ides  us with the n e c e s s a r y  condit ion for crack growth. 
This  one condit ion is that the entropy of an i so la ted  
sys t em (in this  case  the e las t ic  body plus  i ts  loading 
m e c h a n i s m s )  be max imized .  This  i s ,  of course ,  equiv-  
a lent  to specifying ex t r emum condit ions on the f ree  
energy of the e las t ic  body while imposing  cons t r a in t s  
on the loading m e c h a n i s m s .  A theorem of this  sor t  is  
well  known in the theory  of e las t ic i ty-- the  t heo rem of 
m i n i m u m  potent ia l  energy.  5 In Appendix I, a fo rma l  
development  p roduces  a r e su l t  in complete  ha rmony  
with c l a s s i c a l  t h e r m o d y n a m i c s ,  ~'8 name ly  that,  for a 
spec ies  r e s id ing  in the la t t ice ,  the chemica l  potent ia l  
defined only at the sur face  is  given by 

= ~o + V ~  V ~  [1] 

where  AF is  the s t r a i n  energy  densi ty  (Helmholtz f ree  
energy change), V ~ the a tomic  volume,  and P the n o r -  
real p r e s s u r e  at  that point on the sur face .  A somewhat  
s imple  heu r i s t i c  a rgumen t  can a l so  be used  to ca lcu la te  
the chemica l  potent ia l  at a f ree  su r face  as  well  as  at a 
su r face  where  a n o r m a l  t r ac t ion  T n ac t s .  It i s  that the 
two types  of work we must  cons ider  in adding an e le -  
ment  of m a s s ,  f rom an u n s t r a i n e d  r e f e r e n c e  s ta te ,  to 
the s t r e s s e d  body a r e  i) s t r a in  energy or work  n e c e s -  
sar__y to produce  a coherent  match  and ii) a P V  or  T n 
• V t e r m  which is  the work r equ i r ed  to "push  b a c k "  
the loading m e c h a n i s m .  This  leads  again to Eq. [1] or 
in the case of a f ree  su r face  to Eq. [12] in Appendix I. 

It should be r ea l i zed  at this  point just  how useful  is 
the concept of chemica l  potent ia l  in t r ea t ing  the e n e r -  
ge t ics  of c rack  growth s ince ,  in us ing  the commonly  
accepted  approach of m i n i m u m  potent ia l  energy as is  
commonly  done, the a n a l y s i s  is  l imi ted  to specif ic  ge-  
o m e t r i e s .  Indeed, au thors  ~ have found it difficult  to set  
" p r e c i s e  condi t ions  for  m o r e  genera l  con f igu ra t i ons" .  
These  p r o b l e m s  a r e  pure ly  computat ional  and a r e  e l i m -  
inated by the use  of the d i f ferent ia l  quant i ty  p.  It i s  i n -  
t e r e s t i ng  to note that the specula t ions  concern ing  gen-  
e r a l  conf igura t ions  of Rice and Drucker  6 seem to be in 
ha rmony  with the t he rmodynamic  fo rmula t ion .  

After  taking into account  the r e l e a se  of mechan ica l  
energy,  we mus t  cons ider  such p r o c e s s e s  as  su r face  
c rea t ion  p lus  the work r equ i r ed  to dr ive  other  p r o c -  
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Fig. 1--Schematic representation of a coupling equation for 
crack growth. 

e s ses ,  which will  provide  suff iciency,  such as  p las t i c  
deformat ion .  The ana lys i s  of these  p r o c e s s e s  is  r ea l ly  
what our  unders tand ing  of crack growth depends upon. 

In the full ana lys i s  of crack growth, the r e q u i r e m e n t  
of dec reas ing  f ree  energy (entropy production)  is  
r a r e l y  suff ic ient  to i n s u r e  crack growth. For  example ,  
the Griff i th c r i t e r ion  for inf ini te ly  sharp  b r i t t l e  c racks  
is  both n e c e s s a r y  and suff ic ient  for  crack growth if, and 
only if, we i n t e rp r e t  the meaning  of b r i t t l e  as  the com-  
plete  absence  of p las t ic  deformat ion  (which tends  to 
blunt  sharp  cracks) .  However,  for c racks  with a tip 
rad ius  of the o rde r  of a few a tomic  spacings  and l a r ge r ,  
the Griffi th c r i t e r i on  no longer  r e m a i n s  suff icient  s ince  
the Griffi th c r i t i ca l  s t r e s s  is  then lower  than that r e -  
qui red  to exceed the cohesive s t r e s s  at the crack tip. 
The effect of p las t ic  deformat ion is ,  in this  case ,  to 
dec rease  grea t ly  the concent ra ted  s t r e s s  at the t ip.  If, 
as  a r e su l t  of the in t roduct ion of even a mi ld ly  c o r r o -  
s ive  env i ronmen t ,  the region jus t  ahead of the crack i s  
embr i t t l ed ,  then,  at  that point,  we examine  poss ib le  
m e c h a n i s m s  by which the c rack  can e i ther  propagate  
or sharpen  to r e i n s t a l l  the Griff i th c r i t e r i on  as  a suff i -  
cient  condit ion.  Examples  of the f o r m e r  might  be m i -  
c rodisso lu t ion ,  su r face  diffusion, vapor diffusion or  
void format ion  while examples  of the l a t t e r  a re  a lso 
dissolut ion,  sur face  a n d / o r  volume diffusion.  Thus,  in 
addit ion to c rea t ing  sur face ,  the cracking  p r o c e s s  gen-  
e ra l ly  mus t  a lso  dr ive  such p r o c e s s e s  as  p las t ic  defor -  
mat ion and defect format ion  or  be k ine t ica l ly  l imi ted  
by a l t e rna t i ve  cracking  modes  such as  sur face  diffu- 
s ion.  This  can be d i ag rammed  by a coupling equation 
as  shown in Fig .  1. Here ,  in both cases  (a) and (b), the 
en t i re  r e v e r s i b l e  work (driving force)  is r ep r e se n t e d  
by ZxC. This  is  the amount  of energy r equ i r ed  to ac tu -  
a l ly  propagate  a c rack .  The va r ious  t e r m s  de t e rmined  
by the actual  mode of c racking  account  for sur face  c r e -  
at ion (ACE), p las t ic  deformat ion  (ACp) and also,  for 
example,  defect format ion  (ACD). If we do not supply the 

m e a n s  (applied s t r e s s  or chemica l  f ree  energy) to 
achieve  Ar where  Ar = Z,r + aCp + aCD, nO c rack ing  
is  observed.  However,  in env i ronmen ta l  phenomena 
the re  a r e  s eve ra l  a l t e r n a t i v e s  ava i lab le ,  namely  the 
e l imina t ion  of those p r o c e s s e s  co r respond ing  to ASp 
and ACD through sur face  e m b r i t t l e m e n t .  In addit ion,  
as  is  well  known, the n e c e s s a r y  condit ions for c rack  
growth a r e  a l so  a l t e r e d  so that in (b) we r e p r e s e n t  aCE 
AC~, where  a ~  < ACE. Changes in ACE wil l  be both 
rea l - - reduc t ion  in sur face  energy,  and appa ren t - - chem-  
ical  f ree  energy supplied by the co r ros ion  p rocess .*  

*By corrosion process we do not necessarily imply that the body is undergoing 
any massive weight loss through corrosion-we are thanking more in terms of a 
microdissolution process. 

Consequent ly ,  in the case at hand where we a re  e s s e n -  
t i a l ly  t ry ing  to ins t a l l  the Griffi th c r i t e r i on  as  both 
n e c e s s a r y  and suff icient ,  we a r e  led to a study of the 
morphology of growing c racks .  The re levance  of such 
an approach has a l r eady  been suggested by Hill ig and 
Char les  14 and Cr e a ge r  and P a r i s . '  The i r  approach ac -  
counting only for  d isso lu t ion  is  ident ica l  with the a n a l -  
y s i s  of dendr i t ic  g rowthJ  ~ They show that if the d i s so -  
lution ra te  is a s t r onge r  function of the applied s t r e s s ,  
a, then a 1/2 a parabo l ic  notch should tend to sharpen .  

II) AN INTERFACE INSTABILITY MODEL FOR 
STRESS CORROSION CRACKING 

Cracks  a r e  usua l ly  modeled as  e i ther  s i ngu l a r i t i e s  
or as  thin e l l ipt ical  notches  in an e las t ic  cont inuum.  In 
ce r ta in  r e s t r i c t e d  cases  these  shapes  lend t hemse lves  
to ana ly t ic  t r e a t m e n t .  However,  the amount  of f lex i -  
b i l i ty  in these  so lu t ions  is  insuff ic ient  to be compat ib le  
with our  gene ra l i zed  model .  On the other  hand, to con-  
s i de r  the complete ly  a r b i t r a r y  shape is  beyond the 
abi l i ty  of applied ma thema t i c s .  We a re  then forced by 
p rac t i ca l  ne c e s s i t y  to cons ider  something l e s s  than 
comple te ly  a r b i t r a r y  shapes  which, while pos se s s ing  
all  the co r rec t  qual i ta t ive  c h a r a c t e r i s t i c s ,  a r e  such as  
to allow thorough ma themat i ca l  a na l y s i s .  We can eas i ly  
imagine  such a shape if we cons ide r  any rea l  c rack (or 
notch) as being F o u r i e r  analyzed into ha rmon ic  compo-  
nen t s  and choosing any one of these  components  (fully 
specif ied by a wavelength hi and ampl i tude  a/) as  our  
model .  15 Under  sui table  condit ions the full r e sponse  of 
the crack can be calcula ted by l i nea r  superpos i t ion  of 
the r e sponse  of each wave. This  condition is  that,  for 
al l  those waves where  ai is nonzero  but in f in i t e s ima l ,  
a / /~  i << 1. To be m o r e  p r e c i s e ,  we can state  the p rop-  
osi t ion as  follows. Phys ica l  s y s t e m s  a r e  desc r ibed  by 
the i r  spat ia l  domain and the va r ious  f ields in this  r e -  
gion, D, and on the boundary ,  Fig.  1. These  f ields a r e  
usua l ly  coupled e i ther  in the domain or on the bound-  
a r y  or  both. This  coupling (aside f rom the pu re ly  s ta t ic  
case) i mpa r t s  a t ime  dependence to the va r ious  quant i -  
t i es  a ssoc ia ted  with these  f ie lds .  The changes in t ime  
can be i) monotonic  or  ii) osc i l l a to ry .  In addit ion,  in 
the case of osc i l l a to ry  behavior ,  the osc i l l a t ions  may 
be l inea r  or non l inea r .  In the physica l  theor ies  in -  
volved with f r a c t u r e  mechan ics ,  we a r e  ma in ly  con-  
ce rned  with those cases  involving monotonic changes 
in say i) the boundary  ~ of D (crack propagat ion) ,  
ii) the e l a s to - s t a t i c  field, iii) t h e r ma l  f ields,  
iv) coupled e l a s to - s t a t i c  f ie lds  re la ted  to moving 
defects ,  and so forth.  

In our  case ,  the way in which l i nea r  f ields change 

1790-VOLUME 3, JULY 1972 METALLURGICAL TRANSACTIONS 



rn 

Fig. 2--Elastic solid containing a sinusoidal surface profile. 
Note that the wave grows by surface diffusion which is driven 
by the applied stress. 
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Fig. 3--Schematic representation of metal-environment field 
governed by differential operators L and boundary conditions 
L p" 

through coupling is  typica l ly  n o n l i n e a r  even though the 
f ie lds  t hemse lves  a r e  desc r ibed  by l i nea r  d i f ferent ia l  
equat ions.  Monotonic changes a r e  produced by the 
t he rmodynamic  dr iv ing  forces  d i s cus sed  in the p r e -  
vious sec t ion.  Thus,  in combinat ion ,  t h e r m o d y n a m i c s  
and k ine t ic  phenomenology provide  the coupling laws.  

We a r e  studying he re  the s i tuat ion of the r e sponse  
of an e las t ic  cont inuum to applied s t r e s s .  We impose  
the condit ion that our  e las t ic  body, being a m a t e r i a l  
one, be subject  to the usual  phenomenologica l  laws 
such a s  m a s s  t r a n s p o r t ,  heat t r a n s f e r ,  and so for th .  
The impor t an t  equat ions a r e  those governing the e las to -  
s ta t ic  field, the total  potent ia l  field, the t r a n s p o r t  field 
and the coupling between them.  Since we a r e  deal ing 
only with a l i nea r i zed  ve r s i on  of this  p rob l em,  we shal l  
not be able  to r e p r e s e n t  the coupling exact ly.  In th is  
way, the ana ly s i s  is  l ike those used  in the theory of 
hydrodynamic  s tabi l i ty .  However,  t he re  a r e  impor tan t  
d i f fe rences  that a r e  explained in Appendix II. The r e  it 
i s  shown that ,  without los ing any genera l i ty ,  we may 
confine our  cons ide ra t ions  to su r face  shapes r e p r e -  
sented by only even h a r m o n i c s ;  v i z . ,  y = a cos ~ x. 

Cons ider  a s inuso id  of the form y = a cos~0x, where  
the sol id  in the region a coscox - y < oo and inf in i te  in 
the x -d i r ec t ion ,  Fig.  3. In addit ion,  we cons ider  two 
types  of loading; Mode I or  t ens i l e  and Mode III or  shear  
loading.  The solut ions  for Mode I with applied s t r e s s  
axx  = ~o a r e  

~xx  = r - a~o(~o2y - 2~) e -wy coswx  [2a] 

~yy = -w~  aaoy e -c~ cos~0x [2b] 

Zxy = -Wa~o(1 - coy) e - ~ Y  sincox [2c] 

and for  Mode III with applied shea r  s t r e s s  ~'xz = "r~ 

= o T~162 COSt0X e -wy  T x z  T x z  + [3a] 

7y z = - a ~  "rxz SinCoX e - ~ y  [3b] 

It is  eas i ly  ve r i f i ed  that the form of Eqs.  [2] and [3] 
is  cons i s ten t  with the asympto t ic  scheme outl ined in 
Appendix II. 

To study the dynamics  of this  wave, we need the 
chemica l  potent ia l  exp re s s ions  and the ra te  laws.  As 
d i s cus sed  e a r l i e r  the chemica l  potent ia l  is  given by 

= o + A W V  o + 7 K V  o 

where  AW is the s t r a in  energy,  y is the sur face  f ree  
energy ,  and K is  the mean  cu rva tu re .  F o r  our  gove rn -  
ing equat ions we wil l  r e s t r i c t  ou r se l ve s  he re  to s u r -  
face diffusion.  We f i r s t  note that the s t r a in  energy is  
given to f i r s t  o r de r  in a~o, for Mode I as  

A W ( x )  = (rg(1 + 4aw c o s w x ) / 2 E  (a) [4] 

and for Mode III as  

A W ( x )  = (1 + (r) 02 r x z ( 1  + 2a~o COSCOX)/E (b) [5] 

The mean  cu rva tu re  is  given by 

K = -aco 2 cos ~ox [6] 

The boundary  value p rob lem assoc ia ted  with the 
growth of the c rack  can be developed along the s a m e  
l ines  as  those used by Mul l ins  16 to de sc r ibe  g ra in  
boundary  grooving.  The flux of m a t t e r  along the s u r -  
face of the wave can be wr i t ten  in the f ami l i a r  phenom-  
enological  form 

J : - v D / k T  Vl~ [71 

where ,  for s impl ic i ty ,  we a s s u m e  the ex is tence  of a 
s ingle  diffusion constant  ( i . e . ,  D is i sot ropic) ,  and 
where  v is  the sur face  dens i ty .  The gradient  opera to r  
is  one, in p r inc ip le ,  that opera tes  over  the su r face  but 
to r e m a i n  cons i s ten t  with our f i r s t  o rde r  t r e a t m e n t  we 
may a s s u m e  V ~ O/ax .  If we mul t ip ly  the d ivergence  
of Eq. [7] by +V ~ the a tomic  volume,  d imens iona l  
a n a l y s i s  p roves  the r e su l t  to be the ra te  of n o r m a l  mo-  
t ion of the sur face ,  

r n - D v / k T .  o 2 = v V x .  [8] 

Geomet ry  suggests  that ~6 

r n : (1 + y,)-1/2 8 y  [9] 
at 

Equating Eqs. [8] and [9] the d i f fe rent ia l  equation is ,  
for y ( x ,  t ) ,  

= D v V  ~ 2 [10] 
at k T  V x  

where  again we have neglec ted  t e r m s  of ~(a2r 2) and 
g r ea t e r .  Subst i tut ing into Eq. [10] f rom Eqs. [6] and 
[4] or [5], evaIuat ing the restfl t  at x = 0 (the tip) and 
cal l ing the resu l t  V, the in i t ia l  c rack  veloci ty ,*  we 

*Solutions of Eq. [ 10] are of the form a(t) = a(0) e vt where V is actually an 
exponential amplification factor. By forming a'(t) = a(O)Ve vt we mean by V [or 
a(0)V] the initial velocity. 

obtain for Mode I loading, 

V = B(-Tco 4 + ~o3~/E) [11] 

where  B = a V ~  For  ins tab i l i ty  we mus t  have 
V > 0. This  will  be  t rue  if 

Eq. [12] is by i ts  na tu re  both a n e c e s s a r y  and suff icient  
condition for growth ( ini t ia l  ins tabi l i ty)  of the h a r -  
monic  component  of wavelength X. However,  it is  not 
n e c e s s a r i l y  suff icient  for ins tab i l i ty  of the c rack  s ince  
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V ~  
AMPLIFICATION FACTOR 

Fig. 4--AmpIi.fication factor, V (velocity), as a function of fre-  
quency, co. Plots are for various values of applied stress,  a: 
(a) (r = 10,000 psi, (b) o- - 50,000 psi, (c) ~ = 75,000 psi, (d) o" 
= 87,500 psi, and (e) cr = 100,000 psi. Physical constants used 
are listed in Table L 

one of two p o s s i b i l i t i e s  is  p r e s e n t :  i) the ve loc i ty  of 
the wave is  neg l ig ib le ,  or  ii) ha rmon ic  degenera t ion  
t akes  p l ace  such that the resu l t ing  waves  a r e  s tab le .  
The l a t t e r  poss ib i l i ty  is  not cons ide red  in the theory  
of in i t ia l  ins tab i l i ty  s ince  a l l  the t i m e  dependence  is  
contained in the ampl i tudes .  We adopt the log ica l  point 
of view that  the wave leng ths  involved  in breakdown 
(crack  growth) a r e  those  that  grow with app rec i ab l e  
v e l o c i t i e s .  With this  in mind,  we examine  the m a x i -  
mum ve loc i ty  wave;  i . e . ,  we examine  the condit ions 

aV a2V 
- -  = 0 and - -  < 0 
~co ~o 2 

which yie ld  

3 a~ 
~ *  - [13] 4 E v  

The s tab i l i ty  equation,  Eq. [12], then b e c o m e s ,  us ing  
Eq. [13], an identi ty whi le  the equation for the ve loc i ty  
b e c o m e s  for  Mode I loading,  

V I = 0.1 Ba~/v3E ' [14] 

F o r  Mode III loading the r e s u l t  is  
08 3 4 v,~  = B~x~ /~  E [15] 

One can r e p r e s e n t  th is  in format ion  in two ways.  One 
can plot the ampl i f i ca t ion  fac to r ,  V, as  a function of 
wave  number ,  F ig .  4, t r e a t i ng  ~o (or rxz)~ as  a p a r a m -  
e t e r .  The r e s u l t  i s  that as  no, the appl ied s t r e s s ,  is  
i n c r e a s e d ,  h ighe r  f r equency  waves  fal l  to the r ight  of 
V = 0. In addit ion,  ~* m o v e s  downward ( i n c r e a s e s  as 
~0 i n c r e a s e s ) .  It should be noted that  h ighe r  f r equen -  
c i e s  c o r r e s p o n d  to s m a l l e r  wave lengths  o r  s h a r p e r  
g e o m e t r i e s .  Th is  is the or ig in  of c rack  sharpening .  
The v e l o c i t i e s  given by Eqs .  [14] and [15] should not 
be d i r ec t l y  a s s o c i a t e d  with the c rack  r a t e  a p r i o r i .  
These  quant i t i es  r e l a t e  to the o v e r a l l  s tab i l i ty  of the 
p lana r  su r f ace  in that  they indica te  that  while  s o m e  
waves  van i sh  o t h e r s  a r e  growing.  Th is  means  that ,  in 
t i m e ,  the s u r f a c e  wil i  take on the morphology  of those  
waves  that grow the f a s t e s t  and thus in i t ia te  or  r e -  
sha rpen  a c r a c k .  Only in the event  that  the d i s t r ibu t ion  
of growing waves  i s  sha rp ly  peaked about the c r i t i c a l  
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Fig. 5--Amplification factor, V, normalized to Vma x, as a func- 
tion of frequency, 9, normalized to 9". 

wave  n u m b e r  ~* would we be able  to p r ed i c t  quant i ta -  
t ive ly  the ac tua l  su r f ace  morphology and growth law 
for these  sma l l  c r acks .  Th is  is  ac tua l ly  the case  for  
the above s y s t e m  as  depic ted  in Fig.  5. H e r e  waves  
with app rec i ab l e  v e l o c i t i e s  have wave n u m b e r s  n e a r  
r F u r t h e r m o r e ,  Fig .  4 shows how the ampl i f i ca t ion  
fac to r ,  Eq.  [11], v a r i e s  with appl ied s t r e s s .  Note that  
the peak va lue  is  c o r r e c t l y  going as  ~o ~ and that ,  for  
app rec i ab l e  s t r e s s e s ,  the c u r v e s  begin to f lat ten about 
the s u m m i t  at w*. This  is en t i r e ly  cons i s ten t  with the 
p r e c e d i n g  d i scuss ion  concern ing  Fig.  5. In o the r  
words ,  V ~  Vma x for  a l l  waves  that  grow.  A l i s t ing  of 
phys ica l  cons tants  used  to ca lcu la te  Fig.  4 is  p r e -  
sen ted  in Table  I; the r e a d e r  wil l  unders tand  that  Fig .  
5 depends  only upon the funct ional  f o r m  of the growth 
law (or ampl i f i ca t ion  fac tor ) .  Note that the va lue  of 
D s = 10 -1~ used in ca lcu la t ing  V is not to be cons ide r ed  
high fo r  the v e r y  rough s u r f a c e s  n o r m a l l y  encounte red  
in s t r e s s  c o r r o s i o n .  

IV) DISCUSSION 

Although the very strong dependence of interface 
stability on applied stress  seems rather startling at 
first, it has a relatively simple physical explanation. 
At first glance, one might have expected a dependence 

2 like ~o since increases in strain energy are expected 
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Table I. Physical Constants Used to Evaluate Wave Velocities in Eq. [11] 

a = 10-4 cm 
V ~ 10 "23cm 3 
~, = 3 • 10 ~s per/cm 2 
D = 10 "m cma/sec 
E= 1.2 • l0 n dynes/cm 2 
3' = 1500 ergs/cm ' 

to i n c r e a s e  the r a t e  of s t r e s s  c o r r o s i o n .  However ,  
h e r e ,  we a r e  i n t e r e s t e d  in the g rad i en t s  of the s t r a in  
energy  r a t h e r  than in jus t  the magni tude  of the quan-  
t i ty .  F o r  the case  of a wave ,  the g rad ien t s  in s t r a in  
energy  a r e  magni f ied  by a f ac to r  of co and the r a t e  of 
change,  i .e . ,  the d i v e r g e n c e ,  in t roduces  an addi t ional  
f ac to r  of ~ .  This ,  combined  with ano the r  f ac to r  of co, 
a s s o c i a t e d  with s t r e s s  concen t ra t ion ,  y i e lds  an o v e r a l l  
dependence  of r 2 as  given in Eq.  [11]. The  c o r r e -  
spondence  be tween ~ and ~0 is  made  by looking at the 
s e l e c t i v e  ampl i f i ca t ion  of individual  waves ;  i .e . ,  by 
looking at  Vma x by Eq. [13]. Thus,  in combinat ion ,  
e l a s t i c i t y ,  morpho logy ,  and k ine t i c s  combine  to p r o -  
duce a much m o r e  profound effect  than might  o rd ina r i l y  
be expected .  

The fo rego ing  t r e a t m e n t  can be appl ied equal ly  wel l  
to pu re  m e t a l s  in a vacuum as  to a l loyed  s y s t e m s  in 
fluid e n v i r o n m e n t s .  In the f o r m e r  case ,  F ig .  4 shows 
us that  the k ine t i c s  of notch fo rma t ion  would be qui te  
neg l ig ib le ;  i .e . ,  an in i t ia l  ve loc i ty  of 10 -8 cm pe r  s ec  
would p roduce  a pene t r a t ion  of 10 -2 cm in 10 3 y e a r s  
a s suming  an in i t ia l  ampl i tude  of 10 -4 cm.  However ,  in 
the l a t t e r  case ,  the k ine t i c s  can be apprec iab ly  a l t e r e d  
by the changes  in m a t e r i a l  cons tants  as  a r e su l t  of the 
a d v e r s e  env i ronmen t .  F o r  example ,  the su r f ace  diffu-  
sion coef f ic ien t  could be expec ted  to i n c r e a s e  by s e v -  
e r a l  o r d e r s  of magni tude  as  a r e s u l t  of a) the rough 
(porous)  na tu re  of the s e l e c t i v e l y  co r rod ing  a l loy s u r -  
face ,  and b) the p r e s e n c e  of a f luid med ium at the s u r -  
face .  In fact ,  us ing a s imp le  model  for  su r f ace  diffu-  
s ion,  11 the ac t iva t ion  energy  for  a rough su r f ace  which 
has a high populat ion of ada toms  is  about o n e - q u a r t e r  
of that  fo r  a n o r m a l  s u r f a c e .  This  can lead to va lues  
of D s ~ 10 -s sq cm p e r  s ee .  One might  a l so  expect  
su r f ace  energy  changes  as  a r e s u l t  of env i ronm en ta l  
changes  to be s igni f icant .  Reduct ions  in su r f ace  en-  
e rgy ,  y, can be both r e a l  (adsorpt ion  induced) and ap-  
pa ren t  (due to c h e m i c a l  f r e e  energy  supplied by the 
env i ronmen t ) .  If the e f fec t ive  s u r f a c e  ene rgy  w e r e  
somehow reduced  by a f ac to r  of 3, notch pene t r a t i ons  
of 10 -2 cm could occu r  in a m a t t e r  of 1 to 2 h r .  Thus,  
in a d v e r s e  env i ronmen t s ,  V ~ 10 -5 cm pe r  see  can be 
a t ta ined  and rapid  notch growth fo l lows.  

The bas i c  ob j ec t i ve s  of the approach  set  for th  h e r e  
a r e  to gain insight  into the poss ib l e  and p robab le  
m e c h a n i s m s  o p e r a t i v e  in s t r e s s  c o r r o s i o n  and to focus 
a t tent ion  on those  m a t e r i a l  p a r a m e t e r s  that could s ig -  
n i f icant ly  inf luence the k ine t i c s  of the p r o c e s s .  This  
i s  done, not so much to p r e s c r i b e  a gene ra l  m e c h a -  
n i sm ,  but r a t h e r  to s ing le  out common denomina to r s  
and d e s c r i b e  the c rack ing  c h a r a c t e r i s t i c s  in l imi t ing  
c a s e s .  In th i s  way, one can hope to p rov ide  a t h e o r e t i -  
cal  f r a m e w o r k  where in  any p a r t i c u l a r  set  of s t r e s s  
c o r r o s i o n  condi t ions  can be eva lua ted  in t e r m s  of 
c rack ing  suscep t ib i l i ty  u t i l iz ing  unders tanding  gained 
f r o m  cons ide ra t ion  of a set  of fa i r ly  s imp le  p r o c e s s e s  

l ike  the one p r e s e n t e d  h e r e .  To f i l l  out the p i c t u r e ,  
one mus t  eva lua te  the p r o c e s s e s  of m i c r o d i s s o l u t i o n  
and v o l u m e  diffusion on in i t ia l  ins tabi l i ty  of the s u r -  
face .  L ikewise ,  a l l  t h r e e  p r o c e s s e s  mus t  be evalua ted  
for  the case  of a sharp  notch in r e l a t i v e l y  p e r f e c t  m a -  
t e r i a l  and a notch loca ted  at  a gra in  boundary o r  two-  
phase  boundary.  T h e s e  addi t ional  s tud ies  wi l l  be p r e -  
sented  in subsequent  p a p e r s .  

As  a f inal  comment  on the m e r i t s  of the p r e s e n t  ap-  
p roach ,  it should be noted that an expe r im en t a l  t e c h -  
nique ex i s t s  for  cont inuously moni to r ing  the ampl i tude  
of su r f ace  waves  of any given f requency .  12'13 Thus,  ex-  
p e r i m e n t a l  va lues  of D s in the u n s t r e s s e d  condit ion can 
be obtained and the change in wave  ampl i tude  as  a func-  
t ion of s t r e s s  d e t e r m i n e d  and c o m p a r e d  with t h e o r e t i c a l  
p r ed i c t i ons .  This  compar i son  of theory  and e x p e r i m e n t  
should be of g r ea t  va lue  in i so la t ing  the key p r o c e s s e s  
involved  in morphology  changes  in spec i f i c  e n v i r o n -  
m e n t s .  E x p e r i m e n t s  of th is  kind a r e  now in p r o g r e s s .  

NOTATION 

A i Surface  a r e a  of body in s ta te  i 

a Ampl i tude  of h a r m o n i c  wave 

B N u m e r i c a l  constant  in ra te  equat ions  

D Surface  diffusion coef f ic ien t  

E Young 's  Modulus 

y~ ith component  of the body f o r c e  v e c t o r  

G Gibbs f r e e  energy  

J Surface  flux of a toms  

K Mean c u r v a t u r e  

L Di f fe ren t ia l  o p e r a t o r  

rn Rate of advance  of a su r f ace  n o r m a l  to i t se l f  

s Sur face  a r e a  

T i ith component  of the t r ac t ion  v e c t o r  

u/ ith component  of the d i sp l acemen t  v e c t o r  

V Mechanica l  potent ia l  energy  and ampl i f i ca t ion  
fac to r  

Vma x L a r g e s t  va lue  of ampl i f i ca t ion  fac to r  

W Strain energy  densi ty  

;~ Sur face  f r e e  ene rgy  

cij E la s t i c  s t r a in  t e n s o r  

aij Elas t i c  s t r e s s  t enso r  

v Volume e l emen t  

~o Wave n u m b e r  of h a r m o n i c  wave  (= 2k/) t)  

APPENDIX I 

FORMAL D E V E L O P M E N T  OF CHEMICAL 
POTENTIAL IN STRESSED SYSTEMS 

C l a s s i c a l  e l a s t i c i t y  s'7 r e q u i r e s  that  the equ i l i b r ium 
s ta te  of a body is  the one in which the quant i ty ,  V, de -  
f ined as  

V= f W d z -  ( f i ' l e i d 7 -  f T i ' u i d s  [1-11 
v v A 
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/~o 

(a) (b) 

Fig. I- i--Linear elastic body under surface tractions T i . 
States a and b correspond to before and after crack extension 
by mass removal. 

is  m i n i m i z e d  with respec t  to a l l  k inemat i ca l ly  accep t -  
able  d i sp lacement  f ie lds ,  u/,  to find the equ i l ib r ium 
d i sp lacement  f ield as  a function of the funct ionals  
f W d r ,  the in tegra ted  s t r a in  energy,  f T i . u  i ds,  the s u r -  
face t r ac t ion  work,  and f f i  "ui dr, the body force  work.  
In Eq. [I-1] v and A a r e  the volume and boundary  of the 
body, respec t ive ly ,  while f i  and T i a r e  the components  
of the body force  and sur face  t r ac t i ons ,  r espec t ive ly .  
The quant i t i es  dr  and ds  a r e  volume and sur face  e le -  
men t s ,  r espec t ive ly .  It may be eas i ly  seen f rom f i r s t  
p r i nc ip l e s  that ,  if the loading i s  p e r f o r m e d  slowly 
enough to p r e s e r v e  constancy of t e m p e r a t u r e ,  V = G 
+ C, where  G is  the Gibbs f ree  energy and C is  a r e -  
v e r s i b l e  work due to effects other  than mechan ica l  
loading. This  being the case ,  what needs  to be shown 
is  that V is  reduced upon c rack  opening. Consider  the 
two s ta tes  a and b of a l i nea r ly  e las t ic  body shown in 
Fig.  I - l .  We wil l  neglect  body forces  for  the t ime  
being s ince  they typical ly  a r e  not s ignif icant .  The po- 
ten t ia l  energy for s tate  a is  

v~ = f w(qp~ - f r~ .,,~ ds [I-2a] 
~a Aa 

while for state b it is 

,~ = f w(~j)dT - f r g u~ d~ [1-2b] 
v b Ab  

Examining  the second in tegra l  in both these  potent ia l  
expres s ions ,  we note that (i) on that par t  of the sur face  
of b common to a, T a = T/b, while on the newly c rea ted  
sur face  in the notch,  T b = 0, so that 

A a A b A~ 

Eqs.  [I-2a] and [I-2b] may be combined and rewr i t t en  
as  

v b va 

• (u b - u a )  ds 

= v bfv. w ( e b j ) d r + { v !  w ( ~ b ) d r - ~ a  T a  

[1-3] 

Now both T a, u a and T -bz, u/b a r e  s ta t ionary  (equi l ib-  

~ -ZZ. / 
L 

i. : a ,b  
y" 

Fig. I-2--Regions v~(i = a, b) in the immediate vicinity of the 
point of mass removal. 

r ium) s ta tes  for the functional  V[Ti ,  ~h'], i . e . ,  they m i n -  
�9 . 6 �9 imize  it .  Thus,  following Rice and Drucker ,  if we r e -  

place u b and thus E b in the f i r s t  t e r m  and f i r s t  b racke t  
of Eq. [I-3] and note that Vb[T a, u a] >- Vb[Tbi , ub], then 
Eq. [1-3] becomes  the inequal i ty  

V b - V a <- f w(Eaj)dr [I-4] 
Vb-V a 

Eqs. [I-3] and [I-4] lead to the following two impor tan t  
r e s u l t s .  The f i r s t  is  that,  dur ing crack growth, exten-  
sion by remova l  of m a t e r i a l  f rom the f ree  su r face  of 
the crack reduces  the potent ia l  energy.  The second 
prov ides  an impor tan t  l ink with c l a s s i ca l  t he rmody-  
n a m i c s .  We focus our a t tent ion on a region in the i m -  
media te  v ic in i ty  of the crack tip,  Fig.  I-2,  bounded by 
the sur face  ~ and rea l i ze  that this  is  where  both vo l -  
ume and sur face  a r e a  a r e  c rea ted  a n d / o r  des t royed .  
Rewri t ing  Eq. [I-3] we obtain 

v b - v a  = w(Eb)f  aT + f W(r  ~ 
% %-v~ A, 

x ur ~ - w(s f aT - f w (~ )aT  
4 % 4 

+ ( T a . u  a d s  [I-5] 
.4 a 

where v~ denotes that por t ion of volume v i cons idered  
as  the immedia t e  neighborhood of the tip. Our a im is 
to make v b - Va ~ O, i . e . ,  we wish to ca lcula te  the 
d i f ferent ia l  change in f ree  energy as  we remove  m a -  
t e r i a l .  Eq. [I-5] can be wr i t ten  as  

a P 

% Vb 

- ; "r 4j)d~ - ; ~j Cj aT + f ~j 4j aT 
Va-V a v b Va 

[1-61 

Th i s  may a lso  be wr i t ten  as  

v b 

b a - ~ j ~ i j  + 4 j ~ }  dT - f {w(s b )  - w(~g)}d~ 
4 [i-7] 

The above is  equivalent ,  a f ter  combining  t e r m s ,  to 

V b -  V a = w(Eaj)(V~--U'a) + f f (o~i j - a i j ) d Q }  d 
v b C~, 

[I-S] 
or,  a f te r  applying the d ivergence  theo rem,  to 
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Vb -- Ira : w(eaj)(u~ -U'a)  + f f (T  a - T i ) d u i d A  

[ i - 9 ]  

Since AA may be made  closed with no fu r the r  con t r i bu -  
t ion to the in t eg ra l  in [I-9], we obtain 

v b  - = - + ( - 

- 4 
[ i - 1 0 ]  

Dividing by (v~ - v~), we obtain the impor tan t  r e su l t  
that 

(Vb - Va) _ 6V ~ 
: + f 

-- § [ I - n ]  

where  n > 0. In the l imi t  where  5 v ~ 0 ,  Eq. [I-11] 
reads  

aV 
a-'~ = W(eaj) [I-12] 

APPENDIX II 

RESOLUTION OF THE COUPLED FIELD PROBLEM 

Our e las t ic  field is  r e p r e s e n t e d  by the l i nea r  ope ra -  
to r  L1 in D opera t ing on a su i table  s t r e s s  funct ion,  u. 
Since the de r iva t ives  of u a r e  r e l a t ed  to s t r e s s ,  the 
boundary  condi t ions  can be expressed  by the opera t ion 
of another  l i n e a r  opera to r  L{ on E as  suggested in Fig .  
1. The phenomenon of f r a c t u r e  can be r ep r e se n t e d  by 
a densi ty  field in D + Z + D' such that the densi ty ,  
given by p(x ,  y, z), van i shes  outside D. The actual  ra te  
of change in densi ty ,  co r respond ing  to a change in the 
s ize  and shape of D, cons t i tu tes  the Cauchy p rob lem 
involving the l i n e a r  parabo l ic  opera to r  L2, where  
L2[qS] = 0 and ~(t = 0) = f (x ,  y, z). In the above,  q~ 
r e p r e s e n t s  the posi t ion of Z and changes in 4) with 
t ime  ( i .e . ,  Cauchy solution) r e p r e s e n t  boundary  
changes .  

To solve th i s  coupled field p rob lem,  we propose  the 
following l i n e a r i z e d  s e l f - cons i s t en t  scheme.  Suppose 
that the e igenfunct ions  of L2 can be expressed  as  a 
l i nea r  combinat ion of momen tum eigenfunct ions ;  i . e . ,  

u = f f  a(w) ei~162 [II-1] 
o 

where  the in tegra l  is  of the R iemann-S t i e l t j e s  type.  In 
addit ion,  let  the in tegrand ,  I, i t se l f  sa t i s fy  LI[I] = 0 and 
a lso  sa t is fy  the boundary  condit ions 

= 0 } z  

This  is  not the same s i tuat ion that a r i s e s  in the typ i -  
cal homogeneous eigenvalue p rob lem s ince ,  in the 
p r e s e n t  case ,  the boundary  E is  not coincident  with 
any na tu ra l  coordinate  in D and the re fo re ,  sa t i s fy ing 
the boundary  condit ions in th is  fashion is  imposs ib l e .  
In other  words ,  the equat ions {LI[I] = 0}z a r e  only 
approx imate ly  sa t i s f ied  and, for the cases  we a r e  d i s -  
cuss ing ,  th is  approximat ion  cons i s t s  of re ta in ing  only 
t e r m s  l i nea r  in aco and an approximat ion  to be d i s -  
cussed  shor t ly .  It should be noted that this  type of l i n -  

ea r i za t ion  is  s epa ra t e  f rom the l i nea r i za t ion  scheme 
we shal l  adopt in coupling the f ield L~ to Lz. Fo r  
r e a s o n s  to be made  c l ea r  shor t ly ,  Eqs.  [II-1] and [II-2] 
we can rewr i t e  [II-1] in the fo rm 

u = f f  g(y)  a(6o) ei~ [II-2] 
O 

where  we have i) a s s u m e d  a two d imens iona l i ty  for the 
sys t em and ii) ex t rac ted  the y dependence in th is  p a r -  
t i c u l a r  way.* Now for the boundary  4) we suppose the 

*This presupposes that La is separable. 

fo rm 

49(- Y s E ) =  ~ 6(w, t)ei~ [II-3] 
0 

where  the en t i r e  t ime  dependence is conta ined in the 
ampl i tudes  5(a~, t). If we now rewr i t e  the ope ra to r  L2 
as  L2t + L2x where  L2t i s  the t ime  pa r t  and Lzx the 
spat ia l  pa r t ,  and subs t i tu te  the r ight  s ide of [II-3], we 
obtain 

= .?  5(~o, t ) L  2 eiC~ 
o 

[II-4] 

The or thogonal i ty  of the F o u r i e r  components  a l lows us  
to r ewr i t e  [II-4] as  

L2t 5(co, t) e i wx = 6(co, t) L2x e iwx  [II-5] 

F u r t h e r m o r e ,  if we subs t i tu te  the form [II-2] into the 
equation {Li[u] = 0}Z, we find that ,  

leads  to, if we re ta in  only t e r m s  l inea r  in a~0 and 6w, 
r e l a t ions  of the form a(c0) = d6(co), where  d is  a func-  
tion that may depend upon a0. This  r e su l t  i s  common 
to pe r tu rba t ion  methods 4 and is  imposs ib le  to show in 
genera l .  The val id i ty  of the p rocedure  depends upon 
the di f ferent ia l  ope ra to r s  LI and Lz and the boundary  
condi t ions .  The p rocedure  is  now outl ined but without 
losing any genera l i ty  we shall  confine cons ide ra t ions  
to only the even h a r m o n i c s ;  v i z . ,  a coscox. 
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