Interface Morphology Development During

Stress Corrosion Cracking:

Part I. Via Surface Diffusion

R.J. ASARO AND W. A, TILLER

The initiation of a crack in a specimen under tensile or compressive stresses is treated
from the point of view of perturbation analysis. A surface distortion is Fourier analyzed
into a series of waves and the amplitude response of a single component of varying fre-
quency is theoretically investigated. The response of the individual components yields a
Griffith-type criterion for wave amplitude growth. The model is applied to alloy systems
undergoing stress corrosion cracking via surface diffusion.

THE present scientific understanding of stress corro-
sion is very fragmentary and the need for a more de-
tailed mechanistic understanding of the overall process
has been evident for some time.'™ The lack of gener-
ality or comprehensive foundations in the existing de-
scriptions has led to a very empirical assessment of
the stress corrosion phenomena and has not provided
the fundamentals on which a basic quantitatively pre-
dictive theory can be founded.

In this series of papers, the theoretical approach is
to treat the interface between a material under stress
and its environment as a phase front that is capable of
motion either as a smooth regular front or as a chaotic
rumpled front. The first case corresponds to that of
uniform corrosion, the second to that of cracking. The
phase front changes position and shape via both surface
and volume diffusion processes and is analyzed via
what is essentially a perturbation procedure not too
unlike the problem of Taylor instability* of a fluid with
surface tension. All of the elementary processes are
quite general and the question of which mechanism
leads to cracking in a particular instance is purely a
matter of kinetics.

At least four categories of choice appear to be nec-
essary for an overall analysis; these are: 1) either a
perfect solid plus loading or a heterogeneously imper-
fect solid (grain boundaries, two-phase boundaries,
and so forth) plus loading; 2) either small amplitude or
large amplitude surface distortion; 3) shape change
either by surface diffusion, surface reaction, or volume
diffusion, and 4) presence or absence of a tarnish film.
A fifth category would obviously distinguish the envi-
ronmental conditions. In this first paper, we restrict
ourselves to the treatment of a perfect solid without
surface film in tensile and shear modes and discuss
the growth of small amplitude distortions via surface
diffusion.

In the next section, we treat the necessary and suffi-
cient conditions for crack growth. Section II deals with
a linear stability analysis of a smooth solid surface
and Section III discusses the results and implications
of the treatment.
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METALLURGICAL TRANSACTIONS

1) NECESSARY AND SUFFICIENT CONDITIONS
FOR CRACK GROWTH

The second law of thermodynamics naturally pro-
vides us with the necessary condition for crack growth.
This one condition is that the entropy of an isolated
system (in this case the elastic body plus its loading
mechanisms) be maximized. This is, of course, equiv-
alent to specifying extremum conditions on the free
energy of the elastic body while imposing constraints
on the loading mechanisms. A theorem of this sort is
well known in the theory of elasticity—the theorem of
minimum potential energy.” In Appendix I, a formal
development produces a result in complete harmony
with classical thermodynamics,”’® namely that, for a
species residing in the lattice, the chemical potential
defined only at the surface is given by

L= o+ VAF+ V°P (1]

where AF is the strain energy density (Helmholtz free
energy change), V° the atomic volume, and P the nor-
mal pressure at that point on the surface. A somewhat
simple heuristic argument can also be used to calculate
the chemical potential at a free surface as well as at a
surface where a normal traction T, acts. It is that the
two types of work we must consider in adding an ele-
ment of mass, from an unstrained reference state, to
the stressed body are i) strain energy or work neces-
sary to produce a coherent match and ii) a PV or Ty,
X V term which is the work required to ‘‘push back”’
the loading mechanism. This leads again to Eq. (1] or
in the case of a free surface to Eq. [12] in Appendix I.

It should be realized at this point just how useful is
the concept of chemical potential in treating the ener-
getics of crack growth since, in using the commonly
accepted approach of minimum potential energy as is
commonly done, the analysis is limited to specific ge-
ometries. Indeed, authors® have found it difficult to set
‘‘precise conditions for more general configurations’’.
These problems are purely computational and are elim-
inated by the use of the differential quantity p. It is in-
teresting to note that the speculations concerning gen-
eral configurations of Rice and Drucker® seem o be in
harmony with the thermodynamic formulation.

After taking into account the release of mechanical
energy, we must consider such processes as surface
creation plus the work required to drive other proc-
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Fig. 1-Schematic representation of a coupling equation for
crack growth.

esses, which will provide sufficiency, such as plastic
deformation. The analysis of these processes is really
what our understanding of crack growth depends upon.
In the full analysis of crack growth, the requirement
of decreasing free energy (entropy production) is
rarely sufficient to insure crack growth. For example,
the Griffith criterion for infinitely sharp brittle cracks
is both necessary and sufficient for crack growth if, and
only if, we interpret the meaning of brittle as the com-
plete absence of plastic deformation (which tends to
blunt sharp cracks). However, for cracks with a tip
radius of the order of a few atomic spacings and larger,
the Griffith criterion no longer remains sufficient since
the Griffith critical stress is then lower than that re-
quired to exceed the cohesive stress at the crack tip.
The effect of plastic deformation is, in this case, to
decrease greatly the concentrated stress at the tip. If,
as a result of the introduction of even a mildly corro-
sive environment, the region just ahead of the crack is
embrittled, then, at that point, we examine possible
mechanisms by which the crack can either propagate
or sharpen to reinstall the Griffith criterion as a suffi-
cient condition. Examples of the former might be mi-
crodissolution, surface diffusion, vapor diffusion or
void formation while examples of the latter are also
dissolution, surface and/ or volume diffusion. Thus, in
addition to creating surface, the cracking process gen-
erally must also drive such processes as plastic defor-
mation and defect formation or be kinetically limited
by alternative cracking modes such as surface diffu-
sion. This can be diagrammed by a coupling equation
as shown in Fig. 1. Here, in both cases {a) and (&), the
entire reversible work (driving force) is represented
by Ay. This is the amount of energy required to actu-
ally propagate a crack. The various terms determined
by the actual mode of cracking account for surface cre-
ation (AyE), plastic deformation (A¢p) and also, for
example, defect formation (Ayp). If we do not supply the
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means (applied stress or chemical free energy) to
achieve Ay, where Ay = AYg + AYp + A¢p, no cracking
is observed. However, in environmental phenomena
there are several alternatives available, namely the
elimination of those processes corresponding to AYp
and Aypp through surface embrittlement. In addition,
as is well known, the necessary conditions for crack
growth are also altered so that in () we represent Ayg
AYE, where AYE < AYg. Changes in AYg will be both
real—reduction in surface energy, and apparent—chem-
ical free energy supplied by the corrosion process.*

*By corrosion process we do not necessarily imply that the body is undergoing
any massive weight loss through corrosion-we are thinking more in terms of a
microdissolution process.

Consequently, in the case at hand where we are essen-
tially trying to install the Griffith criterion as both
necessary and sufficient, we are led to a study of the
morphology of growing cracks. The relevance of such
an approach has already been suggested by Hillig and
Charles and Creager and Paris.’ Their approach ac-
counting only for dissolution is identical with the anal-
ysis of dendritic growth.'® They show that if the disso-
lution rate is a stronger function of the applied stress,
o, then ¢"'% a parabolic notch should tend to sharpen.

II) AN INTERFACE INSTABILITY MODEL FOR
STRESS CORROSION CRACKING

Cracks are usually modeled as either singularities
or as thin elliptical notches in an elastic continuum. In
certain restricted cases these shapes lend themselves
to analytic treatment. However, the amount of flexi-
bility in these solutions is insufficient to be compatible
with our generalized model. On the other hand, to con-
sider the completely arbitrary shape is beyond the
ability of applied mathematics. We are then forced by
practical necessity to consider something less than
completely arbitrary shapes which, while possessing
all the correct qualitative characteristics, are such as
to allow thorough mathematical analysis. We can easily
imagine such a shape if we consider any real crack (or
notch) as being Fourier analyzed into harmonic compo-
nents and choosing any one of these components (fully
specified by a wavelength X; and amplitude @;) as our
model."* Under suitable conditions the full response of
the crack can be calculated by linear superposition of
the response of each wave. This condition is that, for
all those waves where ¢; is nonzero but infinitesimal,
a,-/xz- <« 1. To be more precise, we can state the prop-
osition as follows. Physical systems are described by
their spatial domain and the various fields in this re-
gion, D, and on the boundary, Fig. 1. These fields are
usually coupled either in the domain or on the bound-
ary or both. This coupling (aside from the purely static
case) imparts a time dependence to the various quanti-
ties associated with these fields. The changes in time
can be i) monotonic or ii) oscillatory. In addition, in
the case of oscillatory behavior, the oscillations may
be linear or nonlinear. In the physical theories in-
volved with fracture mechanics, we are mainly con-
cerned with those cases involving monotonic changes
in say i) the boundary = of D (crack propagation),

ii) the elasto-static field, iii) thermal fields,
iv) coupled elasto-static fields related to moving
defects, and so forth.

In our case, the way in which linear fields change
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Fig. 2—Elastic solid containing a sinusoidal surface profile.
Note that the wave grows by surface diffusion which is driven
by the applied stress.
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Fig. 3—Schematic representation of metal-environment field

governed by differential operators L and boundary conditions
L',

through coupling is typically nonlinear even though the
fields themselves are described by linear differential
equations. Monotonic changes are produced by the
thermodynamic driving forces discussed in the pre-
vious section. Thus, in combination, thermodynamics
and Kinetic phenomenology provide the coupling laws.
We are studying here the situation of the response
of an elastic continuum to applied stress. We impose
the condition that our elastic body, being a material
one, be subject to the usual phenomenological laws
such as mass transport, heat transfer, and so forth.
The important equations are those governing the elasto-
static field, the total potential field, the transport field
and the coupling between them. Since we are dealing
only with a linearized version of this problem, we shall
not be able to represent the coupling exactly. In this
way, the analysis is like those used in the theory of
hydrodynamic stability. However, there are important
differences that are explained in Appendix II. There it
is shown that, without losing any generality, we may
confine our considerations to surface shapes repre-
sented by only even harmonics; viz., y = a coswx.
Consider a sinusoid of the form vy = a coswx, where
the solid in the region a coswx < y < «© and infinite in
the x-direction, Fig. 3. In addition, we consider two
types of loading; Mode I or tensile and Mode III or shear
loading. The solutions for Mode I with applied stress
Oxx = Op are

Oxx = 0o — aoo(w®y —2w) e @Y coswx [2a]
Oyy = —w’ aoy € “Y coswx (2b]
Ty = ~waoo(l —wy) @Y sinwx [2¢]
and for Mode III with applied shear stress T,, = Ty,
Tyz = Tyz + Typ a0 COSWx € ¥y [3a]
Tyz = —0W Ty, Sinwx @Y [3b]

It is easily verified that the form of Eqs. [2] and [3]
is consistent with the asymptotic scheme outlined in
Appendix II.

METALLURGICAL TRANSACTIONS

To study the dynamics of this wave, we need the
chemical potential expressions and the rate laws. As
discussed earlier the chemical potential is given by

w=p’ + AWY? + yKV°

where AW is the strain energy, v is the surface free
energy, and K is the mean curvature. For our govern-
ing equations we will restrict ourselves here to sur-
face diffusion. We first note that the strain energy is
given to first order in aw, for Mode I as

AW(x) = 05(1 + 4aw coswx)/2E (a) [4]
and for Mode IIl as
AW(x) = (1 + ¢) T%,(1 + 2aw coswx)/E (b) (5]

The mean curvature is given by

K = —aw? coswx

[6]

The boundary value problem associated with the
growth of the crack can be developed along the same
lines as those used by Mullins®® to describe grain
boundary grooving. The flux of matter along the sur-
face of the wave can be written in the familiar phenom-
enological form

J=-vD/kT Vu

(7]

where, for simplicity, we assume the existence of a
single diffusion constant (i.e., D is isotropic), and
where v is the surface density. The gradient operator
is one, in principle, that operates over the surface but
to remain consistent with our first order treatment we
may assume V = a/ax. 1f we multiply the divergence
of Eq. [7] by +V°, the atomic volume, dimensional
analysis proves the result to be the rate of normal mo-
tion of the surface,

r, = —Dv/kT-V°Viu

(8]
Geometry suggests that'®

By

rn - (1 + yl)‘l/z 5

9]
Equating Egs. [8] and [9] the differential equation is,
for y(x, ¥),

3y _ _ DvV°

at BT
where again we have neglected terms of o(d’w?) and
greater. Substituting into Eq. [10] from Eqgs. [6] and
[4] or [5], evaluating the result at x = O (the tip) and
calling the result V, the initial crack velocity,* we

Vi b (10]

*Solutions of Eq. [10] are of the form a() = a(0) e¥* where V is actually an
exponential amplification factor. By forming a’(z) = a(0)V e ¥ we mean by V [or
a(0)V] the initial velocity.

obtain for Mode I loading,
V = B~yw* + w*03/E)

[11]
where B = aV®yD/kT. For instability we must have
V > 0. This will be true if

1/2
o - (225) "

A
Eq. [12] is by its nature both a necessary and sufficient
condition for growth (initial instability) of the har-
monic component of wavelength x. However, it is not
necessarily sufficient for instability of the crack since
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AMPLIFICATION FACTOR

Fig. 4—Amplification factor, V (velocity), as a function of fre-
quency, w. Plots are for various values of applied stress, o:
(a) o = 10,000 psi, () o = 50,000 psi, (c) ¢ = 75,000 psi, (d) ¢
= 87,500 psi, and (e) o0 = 100,000 psi. Physical constants used
are listed in Table I.

one of two possibilities is present: i) the velocity of
the wave is negligible, or ii) harmonic degeneration
takes place such that the resulting waves are stable.
The latter possibility is not considered in the theory
of initial instability since all the time dependence is
contained in the amplitudes. We adopt the logical point
of view that the wavelengths involved in breakdown
(crack growth) are those that grow with appreciable
velocities. With this in mind, we examine the maxi-
mum velocity wave; i.e., we examine the conditions
v _ v

™ 0 and P <0

which yield

2
x_ 3 0o

=15 [13]

The stability equation, Eq. [12], then becomes, using
Eq. [13], an identity while the equation for the velocity
becomes for Mode I loading,

V; = 0.1 Boo/y°E* [14]
For Mode III loading the result is
Viir = B13%/v°E? (15]

One can represent this information in two ways. One
can plot the amplification factor, V, as a function of
wave number, Fig. 4, treating oo (or 7%,) as a param-
eter. The result is that as oo, the applied stress, is
increased, higher frequency waves fall to the right of
V = 0. In addition, @* moves downward (increases as
0 inereases). It should be noted that higher frequen-
cies correspond to smaller wavelengths or sharper
geometries. This is the origin of crack sharpening.
The velocities given by Eqs. [14] and [15] should not
be directly associated with the crack rate a priori.
These quantities relate to the overall stability of the
planar surface in that they indicate that while some
waves vanish others are growing. This means that, in
time, the surface will take on the morphology of those
waves that grow the fastest and thus initiate or re-
sharpen a crack. Only in the event that the distribution
of growing waves is sharply peaked about the critical
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Fig. 5—Amplification factor, V, normalized to V,,, as a func-
tion of frequency, w, normalized to w*.

wave number w* would we be able to predict quantiia-
tively the actual surface morphology and growth law
for these small cracks. This is actually the case for
the above system as depicted in Fig. 5. Here waves
with appreciable velocities have wave numbers near
w*. Furthermore, Fig. 4 shows how the amplification
factor, Eq. [11], varies with applied stress. Note that
the peak value is correctly going as o5 and that, for
appreciable stresses, the curves begin to flatten about
the summit at w™*. This is entirely consistent with the
preceding discussion concerning Fig. 5. In other
words, V= V.. for all waves that grow. A listing of
physical constants used to calculate Fig. 4 is pre-
sented in Table I; the reader will understand that Fig.
5 depends only upon the functional form of the growth
law (or amplification factor). Note that the value of

D = 107"° used in calculating V is not to be considered
high for the very rough surfaces normally encountered
in stress corrosion.

IV) DISCUSSION

Although the very strong dependence of interface
stability on applied stress seems rather startling at
first, it has a relatively simple physical explanation.
At first glance, one might have expected a dependence
like ¢ since increases in strain energy are expected

METALLURGICAL TRANSACTIONS



Table I. Physical Constants Used to Evaluate Wave Velocities in Eq. [11]

a=10"cm
Ve=2Xx10% cm?

v =3 X 10" per/cm?
D=10"" ¢cm?/sec
E=1.2X 10" dynes/cm®
v = 1500 ergs/cm®

to increase the rate of stress corrosion. However,
here, we are interested in the gradients of the strain
energy rather than in just the magnitude of the quan-
tity. For the case of a wave, the gradients in strain
energy are magnified by a factor of w and the rate of
change, i.e., the divergence, introduces an additional
factor of w. This, combined with another factor of w,
associated with stress concentration, yields an overall
dependence of w05 as given in Eq. [11]. The corre-
spondence between w and o, is made by looking at the
selective amplification of individual waves; i.e., by
looking at Vi, by Eq. [13]. Thus, in combination,
elasticity, morphology, and kinetics combine to pro-
duce a much more profound effect than might ordinarily
be expected.

The foregoing treatment can be applied equally well
to pure metals in a vacuum as to alloyed systems in
fluid environments. In the former case, Fig. 4 shows
us that the kinetics of notch formation would be quite
negligible; 7.¢., an initial velocity of 10°% ¢m per sec
would produce a penetration of 10 ¢cm in 10° years
assuming an initial amplitude of 10™* c¢m. However, in
the latter case, the kinetics can be appreciably altered
by the changes in material constants as a result of the
adverse environment. For example, the surface diffu-
sion coefficient could be expected to increase by sev-
eral orders of magnitude as a result of a) the rough
(porous) nature of the selectively corroding alloy sur-
face, and b) the presence of a fluid medium at the sur-
face. In fact, using a simple model for surface diffu-
sion,'* the activation energy for a rough surface which
has a high population of adatoms is about one-quarter
of that for a normal surface. This can lead to values
of Dg ~ 107 sq cm per sec. One might also expect
surface energy changes as a result of environmental
changes to be significant. Reductions in surface en-
ergy, v, can be both real (adsorption induced) and ap-
parent (due to chemical free energy supplied by the
environment). If the effective surface energy were
somehow reduced by a factor of 3, notch penetrations
of 107® cm could occur in a matter of 1 to 2 hr. Thus,
in adverse environments, V ~ 10”° cm per sec can be
attained and rapid notch growth follows.

The basic objectives of the approach set forth here
are to gain insight into the possible and probable
mechanisms operative in stress corrosion and to focus
attention on those material parameters that could sig-
nificantly influence the kinetics of the process. This
is done, not so much to prescribe a general mecha-
nism, but rather to single out common denominators
and describe the cracking characteristics in limiting
cases. In this way, one can hope to provide a theoreti-
cal framework wherein any particular set of stress
corrosion conditions can be evaluated in terms of
cracking susceptibility utilizing understanding gained
from consideration of a set of fairly simple processes
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like the one presented here. To fill out the picture,
one must evaluate the processes of microdissolution
and volume diffusion on initial instability of the sur-
face. Likewise, all three processes must be evaluated
for the case of a sharp notch in relatively perfect ma-
terial and a notch located at a grain boundary or two-
phase boundary. These additional studies will be pre-
sented in subsequent papers.

As a final comment on the merits of the present ap-
proach, it should be noted that an experimental tech-
nique exists for continuously monitoring the amplitude
of surface waves of any given frequency.m’13 Thus, ex-
perimental values of Dy in the unstressed condition can
be obtained and the change in wave amplitude as a func-
tion of stress determined and compared with theoretical
predictions. This comparison of theory and experiment
should be of great value in isolating the key processes
involved in morphology changes in specific environ-
ments. Experiments of this kind are now in progress.

NOTATION

Surface area of body in state

>

a Amplitude of harmonic wave
B Numerical constant in rate equations
D Surface diffusion coefficient
E Young’s Modulus

fi ith component of the body force vector
G Gibbs free energy

J Surface flux of atoms

Mean curvature

h

Differential operator

Iy Rate of advance of a surface normal to itself

s Surface area

T; ith component of the traction vector

125 ith component of the displacement vector

Vv Mechanical potential energy and amplification

factor
Vmax Largest value of amplification factor
w Strain energy density
Y Surface free energy
€;;  Elastic strain tensor

0ij Elastic stress tensor

v Volume element
w  Wave number of harmonic wave (= 2k/))
APPENDIX I

FORMAL DEVELOPMENT OF CHEMICAL
POTENTIAL IN STRESSED SYSTEMS

Classical elasticity®” requires that the equilibrium

state of a body is the one in which the quantity, V, de-
fined as

ve [ wiar— [ firwdr— [ Ti-wds [1-1]
v v A
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Fig. I-1—Linear elastic body under surface tractions 7;.
States @ and b correspond to before and after crack extensmn
by mass removal.

is minimized with respect to all kinematically accept-
able displacement fields, #;, to find the equilibrium
displacement field as a function of the functionals
[wdr, the integrated strain energy, [T - ; ds, the sur-
face traction work, and [f; -u; d7, the body force work.
In Eq. [I-1] v and A are the volume and boundary of the
body, respectively, while f; and T; are the components
of the body force and surface tractions, respectively.
The quantities d7 and ds are volume and surface ele-
ments, respectively. It may be easily seen from first
principles that, if the loading is performed slowly
enough to preserve constancy of temperature, V=G

+ C, where G is the Gibbs free energy and C is a re-
versible work due to effects other than mechanical
loading. This being the case, what needs to be shown
is that V is reduced upon crack opening. Consider the
two states @ and b of a linearly elastic body shown in
Fig. I-1. We will neglect body forces for the time
being since they typically are not significant. The po-
tential energy for state a is

f W(e? ])dT - f T¢-uf ds [1-2a]
while for state b it is
Vp = [ W(el;)dr — [ 7Y uf ds [1-2b]
b

Examining the second integral in both these potential
expressions, we note that (z) on that part of the surface
of b common to a, T¢ = Tz , while on the newly created
surface in the notch T =0, so that

A{ T¢ . lds— [ T}

) ul ds = —Af TE - (uf —u$)ds
a« b a

Egs. [I-2a] and [I-2b] may be combined and rewritten
as
Vp— Vg

fW(EzJ)dT—f W(e“)d‘r—f T¢

X (uz —uf)ds

f W(e )d7+{f W(e )d‘r—j T¢

Vp—Va

Xu,’-’ds} {f W(ef)dr — f T¢. u‘-’ds}

d
[1-3]
Now both T, »¢ and Tb u? are stationary (equilib-
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i=a,b

z

Fig. I-2—Regions v{(i =a, b) in the immediate vicinity of the
point of mass removal.

rium) states for the functional V[7T;, u;], i.e., they min-
imize it. Thus, following Rice and Drucker,’ if we re-
place uf’ and thus elb- in the first term and first bracket
of Eq. [I-3] and note that V[T ¢, uf]= Vu[T?, u?], then
Eq. [I-3] becomes the inequality

Vp =V, = f w(es )d'r

Yp—Va

[1-4]

Egs. [I-3] and [I-4] lead to the following two important
results. The first is that, during crack growth, exten-
sion by removal of material from the free surface of
the crack reduces the potential energy. The second
provides an important link with classical thermody-
namics. We focus our attention on a region in the im-
mediate vicinity of the crack tip, Fig. I-2, bounded by
the surface £ and realize that this is where both vol-
ume and surface area are created and/ or destroyed.
Rewriting Eq. [[-3] we obtain

Vy — V, = W(eb; )fd-r+ f W(el]d-r—f T?
Vb Vb Vb
xubds—W(e de— [ w(eg)ar
Yp— v
+ f T? -uf ds
4

(1-5]

a

where v} denotes that portion of volume v; considered
as the immediate neighborhood of the tip. Our aim is
to make vy —v, — 0, i.e., we wish to calculate the
differential change in free energy as we remove ma-
terial. Eq. [I-5] can be written as

Ve~ Vg, -W(eb)ub+ f W(el;)dr — W(e? )va
)
f w(eZ;)dr - f of; ,]d7'+ f o;?je?jdr
V—V Vb H

(1-6]

This may also be written as

Vi — Vg = W(el Wwh — W(el g + f {W(e ) — W(e)

. Gll)] 1] 1]} dr — [ {W(e )— w(ef )}dT
[1-7]

The above is equivalent, after combining terms, to
- O'ij)dqj dar

[1-8]

Ea
i

Vi ~ Vo = WG wh = vp) + [ {bf (o
fu‘

Vb
or, after applying the divergence theorem, to
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vy -V, W(e“)(w,—va>+f f(T" T;) du; dA

(1~9]

Since AA may be made closed with no further contribu-
tion to the integral in [1-9], we obtain

ea

= W(ef)wh —vg) + [, f(

V Vb

Vy — Uij)deij dar
&

[1-10]
Dividing by (v} — v,), we obtain the important result
that

€

(Vb - a) _ 5V K

Whvy) T T M | o)y
4

I

W(E?j) + o 5v™) [1-11]

where 7 > 0. In the limit where 6 v — 0, Eq. [I-11]
reads

v _

v W( )

f1-12]

APPENDIX II
RESOLUTION OF THE COUPLED FIELD PROBLEM

Our elastic field is represented by the linear opera-
tor L, in D operating on a suitable stress function, u.
Since the derivatives of u are related to stress, the
boundary conditions can be expressed by the operation
of another linear operator L{ on ¥ as suggested in Fig.
1. The phenomenon of fracture can be represented by
a density field in D + £ + D’ such that the density,
given by p(x, v, z), vanishes outside D. The actual rate
of change in density, corresponding to a change in the
size and shape of D, constitutes the Cauchy problem
involving the linear parabolic operator L,, where
Ly[¢] = 0 and ¢(t = 0) = f(x, y, 2). In the above, ¢
represents the position of £ and changes in ¢ with
time (i.e., Cauchy solution) represent boundary
changes.

To solve this coupled field problem, we propose the
following linearized self-consistent scheme. Suppose
that the eigenfunctions of L, can be expressed as a
linear combination of momentum eigenfunctions;i.e.,

u= [ alw) " @3n(w) f11-1]

0\8

where the integral is of the Riemann-Stieltjes type. In
addition, let the integrand, I, itself satisfy L.[/] = 0 and
also satisfy the boundary conditions

{L,1] = o}=

This is not the same situation that arises in the typi-
cal homogeneous eigenvalue problem since, in the
present case, the boundary = is not coincident with
any natural coordinate in D and therefore, satisfying
the boundary conditions in this fashion is impossible.
In other words, the equations {Li[I] = 0} are only
approximately sat1sf1ed and, for the cases we are dis-
cussing, this approximation consists of retaining only
terms linear in aw and an approximation to be dis-
cussed shortly. It should be noted that this type of lin-
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earization is separate from the linearization scheme
we shall adopt in coupling the field L, to L,. For
reasons to be made clear shortly, Egs. [II-1] and [II-2]
we can rewrite [II-1] in the form

= [ g a@) % an @) [11-2]

where we have i) assumed a two dimensionality for the
system and ii) extracted the y dependence in this par-
ticular way.* Now for the boundary ¢ we suppose the

*This presupposes that L, is separable.

form

d(=y32)= fm 8(w, ) €' X dn" (w ) (11-3]

where the entire time dependence is contained in the
amplitudes 6(w, #). If we now rewrite the operator L.
as Lyt + Lpx where Lyt is the time part and Lax the
spatial part, and substitute the right side of [II-3], we
obtain

i}

La|f a(wt)eiwxdh"(w)] [ Lott,n dxai )
(4 0

[ 8w, L, et “%an" ()
o]

[11-4]

The orthogonality of the Fourier components allows us
to rewrite [1I-4] as

Lot 8(w, 8) et @ = 8(w, #) Loy e'“¥ [11-5]

Furthermore, if we substitute the form [II-2] into the
equation {Li[«] = 0}s, we find that,

Li[fg(y)a(w)ei“’xdh’(w)]

y:fé(w,t) ewxdh(w) =0
0

leads to, if we retain only terms linear in aw and dw,
relations of the form a(w) = d6(w), where d is a func-
tion that may depend upon w. This result is common
to perturbation methods® and is impossible to show in
zeneral. The validity of the procedure depends upon
the differential operators L; and L, and the boundary
conditions. The procedure is now outlined but without
losing any generality we shall confine considerations
to only the even harmonics; viz., @ coswx.
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