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The diffusion r a t e s  of c h r o m i u m ,  vanad ium,  and hafnium in a -  and v - F e  have been  d e t e r m i n e d  
by r a d i o t r a c e r  t echn iques .  The r e s u l t s  a r e  (in sq cm sec-~):  
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The d i f f e r ences  in diffusion r a t e s  a r e  d i s c u s s e d  in t e r m s  of the c o m p r e s s i b i l i t y  of the diffusing 
atom. Diffusion of ch romium in y - F e  was a lso  m e a s u r e d  by a m i c r o p r o b e  ana lys i s  technique.  
The r e s u l t  i s :  

(-68,500~ 
D = 4.08 exp \ ~ ]  

Compar i son  is made  between diffusion ana ly s i s  by t r a c e r  t echn iques  and by e l e c t r o n  probe  
m i e r o a n a l y s i s .  

BECAUSE of i ts  t echno log ica l  impor t ance ,  i t  is  n e c -  
e s s a r y  that the diffusion r a t e s  of a l l  poss ib le  a l loying 
e l e m e n t s  in i ron  be known. This  paper  is a r e p o r t  on 
the diffusion r a t e s  of c h r o m i u m ,  vanadium,  and haf-  
nium in c~- and v - F e .  The  study was par t  of a l a r g e r  
p r o g r a m ,  involving the inves t iga t ion  of diffusion in 
bcc  i ron  al loys.  ~ In o r d e r  to study diffusion in a - F e  
over  as l a rge  a t e m p e r a t u r e  range as  poss ib l e ,  r e s u l t s  
w e r e  a lso  obtained on an a l loy ,  F e - 2  pct V; La i  and 
B o r g  2 have a l r eady  shown that the re  is no s y s t e m a t i c  
d i f fe rence  be tween diffusion in pure i ron  and in an al-  
loy of  s i m i l a r  compos i t ion  to the one used  in the p r e s -  
ent  inves t iga t ion .  T h e r e f o r e ,  the r e s u l t s  for impur i t y  
diffusion in F e - 2  pct V should be synonymous with 
diffusion in pure a - F e ,  within e x p e r i m e n t a l  e r r o r .  
Most  m e a s u r e m e n t s  w e r e  made us ing  t r a c e r  t ech -  
n iques ;  addit ional  m e a s u r e m e n t s  used  the e l e c t r o n  
probe m i c r o a n a l y z e r  for c h r o m i u m  diffusion.  

E X P E R I M E N T A L  PROCEDURE 

High pur i ty  i ron  and an F e - 2  pct V a l loy were  sup- 
p l ied  by the Br i t i sh  Iron and Steel  R e s e a r c h  A s s o c i a -  
tion. The ana lyses  of these  m a t e r i a l s  a r e  given in 
Tab le  I. F u r t h e r  pur i f ica t ion  was c a r r i e d  out by an-  
neal ing 8 cm long sec t ions  in flowing dry  hydrogen  for  
2 days at 1000~ fol lowed by deca rbu r i za t i on  at 890~ 
in f lowing mois t  hydrogen  fo r  7 days.  S p e c i m e n s ,  
mach ined  f rom these  sec t ions  (5.50 by 8.0 mm)  were  
po l i shed  by holding them in a b lock s i m i l a r  to that  of 
E i s en  and B i r chena l l .  s They  were  then fu r t he r  an-  

nealed  (at 1000~ for a - F e  s tudies  and at 890~ for 
v - F e  s tud ies )  for 7 days in flowing dry hydrogen in 
o rde r  to e l imina t e  machining s t r a i n s  and to give a 
g ra in  s ize  of be tween 2 and 3 ram.  P r i o r  to the depos i -  
t ion of the isotope each s p e c i m e n  was  given a final  
pol ish on a 1 ~m diamond wheel .  I m m e d i a t e l y  p r io r  
to p la t ing each spec imen  was e tched  in 2 pet ni ta l  to 
r e m o v e  any de fo rmed  l aye r  which may  have been in- 
t roduced  dur ing f inal  pol ishing.  

The c h a r a c t e r i s t i c s  of the i so topes  Cr  51, V 48, and 
Hf 181 a re  given in Table  II. The i so topes  were  suppl ied 
by Uni ted Kingdom Atomic E n e r g y  Author i ty ,  A m e r s -  
ham.  Cr  51 was supplied as sodium c h r o m a t e ;  V 4s and 
Hf 1B1 as  the ch lor ide  in HC1. All  so lu t ions  were  c a r -  
r i e r  f r ee .  Ch romium is depos i ted  only f rom ch r omic  
acid;  sodium ch roma te  was t h e r e f o r e  conve r t ed  into 
c h r o m i c  ac id  by the addition of concen t r a t ed  H2SO4. 
The other  i so topes  were  depos i t ed  f r o m  the solut ion 
as  supplied.  The t ime of deposi t ion  was approx ima te ly  

Table I. Composition of Pure Iron and Fe - 2 Pct V 

Wt Pct V C N2 02 AI Si S 

Pure iron - 0.003 0.0014 0.0014 0.003 0.001 0.005 
Fe.2 pct V 2.15 0.003 0.0014 0.0014 0.003 0.001 0.005 

Table II. Characteristics of the Isotopes Cr s,, V 4s, and Hf ,St 

Energy Levels of Emitted 
Isotope Half Life  Radiation Emitted Rays, MeV 
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42.5 days ~ and 7 rays ~ - 0.41 
7- 0.13, 0 35, 0.48 
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20 min  for V 48 and C r  51 and 2 to 3 hr for Hf TM. The 
th ickness  of the deposi ted isotopes was <0.1 ~m. 

Diffusion annea l s  were c a r r i e d  out in a p la t inum 
wound furnace under  an a tmosphere  of f lowing dry  
pure  hydrogen. All s a m p l e s  were encapsu la ted  in foils  
of pure i ron and in the case  of hafnium diffusion,  the 
spec imens  were annea led  in pa i r s  with a thin (500 pm) 
i ron  washer  s epa ra t ing  the two plated faces ,  m i n i m i z -  
ing evaporat ion of the isotope.  T e m p e r a t u r e s  were  
m e a s u r e d  with P t - P t  13 pct Rh the rmocoup les  to be t -  
ter  than +2 ~ at 1450~ and • ~ at 1000~ No heat ing 
or  cooling co r r ec t i ons  were n e c e s s a r y .  Diffusion 
runs  were c a r r i e d  out over the following t e m p e r a t u r e  
r a n g e s :  Cr--797 ~ to 877~ and 960 ~ to 1396~ V - -  
1004 ~ to 1447~ and 1102 ~ to 1356~ and Hf--1098 ~ to 
1384~ and 1098 ~ to 1353~ 

P r i o r  to sect ioning and ana lys i s  each spec imen  was 
tu rned  in a lathe to r emove  500 ~m from the i r  d i ame-  
t e r s .  This  e l imina ted  any t r a c e r  which had been  t r a n s -  
por ted  by surface diffusion around the edge of the 
spec imen .  

Pene t r a t ion  curves  were obtained using the r e s idua l  
ac t iv i ty  technique.  In this  method success ive  pa ra l l e l  
l a y e r s  of meta l  a re  p r o g r e s s i v e l y  ground off. The 
ac t iv i ty  of each new sur face  is  then measu red .  Stand- 
a rd  equipment  was used  to measu re  the rad ioac t iv i ty .  
A pa r t i cu la r  rad ia t ion  of each isotope was i so la ted  
us ing  a pulse height ana lyze r  and ampli tude d i s c r i m i n a -  
tor .  The absorp t ion  coeff ic ient  for that p a r t i c u l a r  r a -  
diat ion was ca lcula ted  f rom published data. C o r r e c -  
t ions  for isotope decay were u n n e c e s s a r y .  All  spec i -  
m e n s  were counted for 10,000 counts.  Th i s  e n s u r e d  
that the count ra te  was r ep re sen t a t i ve  of the sur face  
under  examinat ion.  Weighings were c a r r i e d  out in a 
m ic roba l ance ,  capable of m e a s u r i n g  to 0.01 ~kg. The 
dens i t i e s  of i ron and F e - 2  pct V were d e t e r m i n e d  us -  
ing Arch imedes  p r inc ip le ,  with ethylene d ibromide  as 
a r e fe rence  liquid, aga ins t  pure tin s tandards .  

P rocedure  for P robe  Mic roana lys i s  

Specimen p repa ra t ion  and annea l ing  were iden t ica l  
with those for t r a c e r  ana lys i s .  The th ickness  of the 
ch romium deposit  was e s t ima ted  as <0.5 ~m. 

After  anneal ing each spec imen  was sect ioned at 90 
deg to the plated face. Th i s  cut face was then pol ished 
and examined in the e l ec t ron  probe m i c r o a n a l y z e r .  A 
concent ra t ion  curve was de t e rmined  by taking point 
counts at r egu la r  i n t e rva l s  away from the plated s u r -  
face unti l  the count ra te  was only three t imes  the back-  
ground rate .  The diffusion profile thus d e t e r m i n e d  is 
exact ly  comparable  to the t r a c e r  technique and can be 
solved by using Eq. [2]. 

TREATMENT OF RESULTS 

Residual  act ivi ty m e a s u r e m e n t s  involve sur face  
counting.  It is  therefore  n e c e s s a r y  to cons ide r  con t r i -  
but ions  to the m e a s u r e d  act ivi ty  from a toms below the 
surface.  Gruzin  ~ has der ived  the following equat ion,  
which is  applicable to th is  technique 

i l a I - K  [ xz ] 
Ox ~ exp -~-~ [1] 

whe re 

I i s  the m e a s u r e d  ac t iv i ty  

is  the l i nea r  absorpt ion  coeff ic ient  

x is  the dis tance f rom the in te r face  

K is  a cons tant  

D is  the diffusion coeff ic ient ,  and 

t is  the t ime of the anneal .  

If ~ is  v e r y  large and pene t ra t ion  is  deep, Eq. [ I] 
be c ome s  

2 
I n / = -  x 4Ot + C1 [2] 

where C1 is  a constant .  Eq. [2] is  ident ica l  to the thin 
f i lm solut ion of F i c k ' s  second law. s The re fo re ,  for low 
energy  r ad ia t ion ,  Eq. [2] is appl icable  (e.g., Ni 63) with- 
out it be ing  n e c e s s a r y  to c o r r e c t  for absorpt ion.  If /~ 
is  ve ry  s m a l l ,  Eq. [1] becomes  

~ I  _ x 2 

In Ox 4Dt + C2 [3] 

where C2 is  a lso a constant .  Absorp t ion  co r r ec t i ons  
a re  also there fore  u n n e c e s s a r y  when Eq. [3] is  used 
for high ene rgy  radia t ion (e.g., Co6~ However,  in 
many c a se s  Eq. [2] is  appl icable ,  but (1/iz)(aI/~x) 
should not be neglected if an accu ra t e  value of D is  to 
be quoted. Since in these c i r c u m s t a n c e s  Eq. [2] is  
obeyed, and penet ra t ion  is  deep, d i f ferent ia t ion  of this 
equation gives  

~I xl  
- [ 4 ]  ax 2D't 

where D' is  the approximate  diffusion coefficient  
f rom Eq. [2]. Subst i tut ing Eq. [4] in Eq. [1] gives 

[I In + p2D't_] 4Dt +C [5] 

This  p r o c e s s  may be repeated  for i n c r e a s e d  accuracy  
if n e c e s s a r y .  All act ivi ty r ead ings  were co r rec t ed  in 
this m a n n e r .  A plot of I n [ / +  (1/iz)(xl/2D't)] vs x z will  
yield a s t r a igh t  l ine,  the slope of which is -1~4Dr. Dif-  
fusion obeys the A r r he n i u s  r e l a t ionsh ip  

The quan t i t i es  Q (activation energy)  and Do (frequency 
factor)  can therefore  be obtained by plotting In D vs 
1/T. Eqs.  [6] to [23] are  of th is  fo rm.  

Table III. Experimental Values of Activation Energy and Frequency Factor 
for Solute Diffusion in cz- and 7-Fe 

Q, cal per mole Do, sq cm per sec Equation 

(Chromium m paramagnetic 

l =-Fe 

Fig. t~Vanadium in Fe-2 pct V 
/ 
~tafnium in Fe-2 pct V 

Chromium in 7-Fe 

Fig. 2iVanadium in 7-Fe 
/ 
LHafnium in 7-Fe 

/+3.2o~ 
59900(-+ 16o0) 8.52k_2.33 } [61 

/+0.82~ 
57600(-+ 13oo) 3.92 k_0.6s ] [71 

{+0.94~ 
69300(_+ 3700) 1.31 \-o.55/ [8] 

/+3.35~ 
69700(- + 17oo) lO.8o~_2.56 ] [9] 

Ao.m\ 
693100(-+2200) o.28k_o.o8 J [lO] 

/ + 16oo~ 
97300(-+2600) 36ook_1 lOO ] [11] 
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RESULTS 

The r e s u l t s  of the  p r e s e n t  work  a r e  p r e s e n t e d  in 
F i g s .  1, 2, and 3. Q and Do va lue s ,  Eqs .  [6] to [11], 
a r e  given in Table  III. 

The r e s u l t  c a l c u l a t e d  f rom e l e c t r o n  probe  m i c r o -  
a n a l y s i s  i s  

C h r o m i u m  in y - F e  

+1.89 68,500 �9 2500) 
D = 4.08(_1.29 ) e x p ( -  R T  [121 

A c o m p a r i s o n  of the t r a c e r  and probe  r e s u l t s  i s  shown 
in F ig .  3. The ac t iva t ion  e n e r g y  and f r equency  f ac to r  
and the e r r o r s  in t hese  v a l u e s  were  c a l c u l a t e d  by  the 
method  of l e a s t  s q u a r e s .  

La i  and Borg  2 have shown that  i ron  dif fus ion in F e -  
2 pct  V is  synonymous  with se l f  diffusion.  T i m e  con-  
s i d e r a t i o n s  p r e c l u d e d  a s tudy of vanadium di f fus ion 
in ~ - F e  in o r d e r  to v e r i f y  th is  hypo thes i s  for  i m p u r i t y  
di f fus ion.  However ,  f u r t h e r  di f fus ion da ta ,  ob ta ined  in 
the F e - V  s y s t e m ,  c o n f i r m s  the va l id i ty  of th is  a s -  
sumpt ion .  1 

DISCUSSION 

Although these  a p p e a r  to be the f i r s t  r e s u l t s  to be 
pub l i shed  of diffusion of these  e l e m e n t s  in i r o n ,  (with 
the except ion  of c h r o m i u m  diffusion in ~ - F e  8 and haf -  
n ium diffusion in y-FeT) ,  i t  i s  pos s ib l e  to c o m p a r e  
t hese  r e s u l t s  with those  for  diffusion of t r a n s i t i o n a l  
e l e m e n t s  in a -  and y - F e ,  a s  given in Tab le  IV, Eqs.  
[13] to [23]. The e a r l i e r  work  of Sparke  el al .  ~ for  
hafnium diffus ion in y - F e ,  Eq. [23], was c a l c u l a t e d  
f rom only th ree  poin ts .  I t  was  t h e r e f o r e  fe l t  that  a r e -  
d e t e r m i n a t i o n  of th is  equat ion would be d e s i r a b l e .  A l -  
though Eqs .  [11] and  [23] d i f fe r  m a r k e d l y ,  they  both 
ind ica te  that  d i f fus ion of hafnium in y - F e  i s  e x t r e m e l y  
s low by c o m p a r i s o n  with o ther  t r a n s i t i o n a l  m e t a l s .  

TOC 
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Fig. 1--Log D plotted as a function of T -I for Cr, V, Hf, and 
Fe diffusion in c~-Fe. (Chromium and iron diffusion in pure 
iron; vanadium and hafnium diffusion in Fe-2 pet V). 
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Fig. 2--Log D plotted as a function of T -1 for Cr, V, Hf, and 
Fe diffusion in ~/-Fe. 

An explana t ion  for th is  i s  o f fe red  l a t e r .  The a g r e e -  
ment  be tween  Eqs .  [6] and [14] i s  e x t r e m e l y  good even 
a l lowing for  the Cur ie  point  e f fec t .  

A c o m p a r i s o n  of Eqs.  [6] to [12] with Eqs.  [13] to 
[23] shows that  the p r e s e n t  r e s u l t s  a r e  well  in a c c o r d  
with p r e v i o u s  work  (excluding hafnium diffusion in 
y - F e ) .  Eqs .  [6] to [12] and [14], [22], and [23] d e s c r i b e  
the di f fus ion of e l e c t r o n e g a t i v e  e l e m e n t s  while Eqs.  
[13] to [21] d e s c r i b e  the di f fus ion of e l e c t r o p o s i t i v e  
e l e m e n t s .  No s y s t e m a t i c  d i f f e r e n c e s  in behav io r  a r e  
no t i ceab le .  A d i scon t inu i ty  in d i f fus ion r a t e s  at  the 

~ Y  t r a n s f o r m a t i o n  was ob ta ined  only for  c h r o m i u m .  
Diffusion r a t e s  d e c r e a s e d  a p p r o x i m a t e l y  2 o r d e r s  of 
magni tude .  S i m i l a r  changes  have been  o b s e r v e d  p r e -  
viou sly.7-  9,13 

C a l c u l a t i o n s  of the changes  in ac t iva t ion  e n e r g y  for  
i m p u r i t y  di f fus ion have been  p r e s e n t e d  by Swalin 14 and 
L a z a r u s .  Is A p p r o x i m a t i o n s  a r e  involved  in both ap-  
p r o a c h e s .  Swalin 14 c o n s i d e r s  the change in ac t iva t ion  
e n e r g y  to be due to d i f f e r e n c e s  in a t o m i c  s ize  and 
e l a s t i c  p r o p e r t i e s  of the so lu te  and so lvent  a toms .  
L a z a r u s  15 i g n o r e s  these d i f f e r e n c e s  in s i z e ,  a rgu ing  
that  a t o m s  a r e  e l e c t r o n i c  con f igu ra t i ons  and that  
changes  in di f fus ion r a t e s  a r e  due to changes  in e l e c -  
t ron ic  conf igura t ions .  Both t h e o r i e s  have been  found 
to be too s i m p l e  to expla in  d i f fus ion in t r a n s i t i o n a l  
m e t a l s  on many  o c c a s i o n s ,  16-18 Eqs .  [6] to [23] con-  
f i r m  these  conc lus ions .  Ca l c u l a t i ons  on L a z a r u s '  
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pr inc ip les  immedia t e ly  run  into difficulty because  the t.~ 
F e r m i - T h o m a s  equation cannot be de t e rmined  with ~'~ 
any accuracy .  Nei ther  can the sc reen ing  p a r a m e t e r  t8 
be calcula ted accura te ly .  In the absence of data to fit ,E ~.~ 
Swal in ' s  theory,  the change in act ivat ion ene rgy  can be o 
explained qual i ta t ive ly  as  be ing due to the va r i a t i ons  
in compress ib i l i t y  between the diffusing atom and the 
solvent  atom (in this  c a se - - i r on ) .  Gibbs and Aski l l  ~9 "- 
have i l lus t ra ted  this  dependence of Q on c o m p r e s s i -  'o__ ~.~ 
b i l i ty  for se l f -d i f fus ion.  The p resen t  r e s u l t s  al low -I'~ 
this  idea to be extended to solute diffusion. Fig.  4 i l -  t-o 
l u s t r a t e s  the plot of i nve r s e  compres s ib i l i t y  and o.~ 
Qimpurity vs t r ans i t i ona l  e l emen t  for diffusion in a -  
and 7 -Fe  (the value for i ron  being the se l f -d i f fus ion  

T ~  
1400 1300 IZ00 IIO0 IOOO 

Key 
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x �9 

- I Z  I I I I I 

5'5 8"0 "7.0 8'0 B'4 

I__ ( X I 0 4 )  oK 
T 

Fig. 3--Log D plotted as a function of T -1 for chromium dif- 
fusion in ~-Fe  (O--tracer diffusion; x--probe diffusion). 

Table IV. Previous Results for Diffusion in a -  and 3'-Fe 

Q, cal per mole Do, sq cm per sec Ref. Eq. 

Self-diffusion in 
paramagnetic cr 57,300 2.0 8 [13] 
Chrommm diffusion in 
ferromagnetic cc-Fe 57,500 2.53 6 [14] 
Cobalt diffusion m 
paramagnetic =-Fe 61,400 6.4 9 [ 15 ] 
Nmkel diffusion in 
paramagnehc cc-Fe 61,900 9.9 10 [16] 
Copper diffusion m 
paramagnetic =-Fe 57,000 0.57 11 [17] 
Gold diffusion in 
paramagnetic cc-Fe 62,400 31 10 [ 18 ] 

Self-diffusion in 7-Fe 64,000 0.2 8 [ 19] 
Cobalt diffusion in 7.Fe 72,900 1.25 12 [20] 
Nickel diffusion in ~,.Fe 67,000 0.77 13 [21] 
Nmbium diffusion in 7-Fe 82,300 530 7 [22] 
Hafnium diffusion in "y-Fe 113,000 9 X 104 7 [23] 
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Fig. 4--u of activation energy and compressibility 
with atomic number. [• in ~-Fe; I--diffusion in 

-Fe; �9 compressibility (I/x)] (compressibility 
data from Refs. 30 and 31). 
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Q). Th i s  f igure therefore  schemat i ca l ly  pred ic t s  Q 
va lues  on the bas i s  of the c o m p r e s s i b i l i t y  of the dif-  
fus ing  atom. The r e  is  no value for  manganese  or t i -  
t an ium t r a c e r  diffusion in c~-Fe ava i lab le  at p re sen t ,  
but Fig.  4 p red ic t s  that Q should be approximate ly  
50 to 53 kcal  per  mole .  Diffusion s tudies  on F e - T i  
a l loys 1 sugges t  that QTi is  in this  range ,  i.e., ap- 
p rox imate ly  50 kcal per mole .  The curve for diffusion 
in 7 -Fe  i s  not so dependent on 1/• Fig.  4 may the re -  
fore only be applicable to bcc m e t a l s ,  the looser  
packing of the bcc latt ice al lowing the compres s ib i l i t y  
of the diffusion atom dur ing  v ib ra t ion  to dominate 
other effects.  No such re l a t ionsh ip  ex is t s  between Do 
and 1/• 

Resu l t s  a r e  avai lable  for diffusion in /3-Ti 19 but 
s ince the compres s ib i l i t y  change of the solvent (titan- 
ium) is g rea t e r  than that of the solute e l emen t s ,  see 
Fig.  4, it is  unl ikely  that c o m p r e s s i b i l i t y  of the dif- 
fusing solute atom will be a ma jo r  factor  in de t e r -  
min ing  Q. Data a re  also ava i lab le  for diffusion in 
c h r o m i u m  2~ but since two s lopes a re  obtained for 
i ron  diffusion in ch romium and s ince  i t  is now known 
that ch romium self  diffusion is  de sc r ibed  by a single 
Q,21 doubt is  cast  on the equation for i ron  diffusion in 
c h r omi um.  These  data a re  the re fore  unusable .  The 
only other bcc  meta l  in this  pe r iod  is  vanadium.  Self- 
diffusion and the diffusion of i r o n  have been  m e a s u r e d  
in this e lement .  ~2 The va lues  of Q (V-74 kcal per  
mole;  F e - 70  kcal per  mole) and 1/• (V--1.66 • 10 -12 
dyne per sq cm,  F e - - l . 6 9  • 10 -12 dyne per sq cm) a re  
so s i m i l a r  that again it may be c l a imed  that 1/• pre -  
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diets  the value of Q. The lack of other diffusion data 
in the meta l  preclude any f i rm  conc lus ions  r e ga r d i ng  
the impor tance  of the c o m p r e s s i b i l i t y  of the diffusing 
a tom.  Tenta t ive ly ,  it may be said that c o m p r e s s i b i l i t y  
p red ic t s  Q for impur i ty  diffusion in i ron  to within • 
to 3 kcal  per  mole ,  (which may be a suff ic ient ly  accu-  
r a t e  predic t ion in many  cases ) ,  and poss ib ly  for dif-  
fus ion in the other t r a n s i t i o n a l  me t a l s .  

Close ag reemen t  be tween t r a c e r  and probe ana lyze r  
r e s u l t s  has  beert obse rved  in the p r e s e n t  work,  Fig.  3; 
Eqs .  [9] and [12]. Th i s  s ingle  r e su l t  may be for tui tous  
at  p re sen t ,  although the data of Hannemann  et al.23 on 
the ana lys i s  of i n c r e m e n t a l  diffusion couples  tend to 
conf i rm the s i m i l a r i t y  of the two techniques .  The i r  r e -  
sul t  for an Fe -0 .5  pet V alloy is 

63,800~ [24] 
/ 9 = 0 . 6 e x p ( -  R T  / 

Thi s  is  in exce l len t  a g r e e m e n t  with Eq. [10]. The i r  
va lue ,  /), can be equated to the t r a c e r  diffusion coeffi- 
c ient  Dv by 

(1 d In 7Fe ~ 
1) = (NvOFe + g f e D v )  + d In NFe / 

for NFe >> N v (e .g . ,  F e - 0 . h p c t  V) In ~ e  - - 0 ;  
= N F e D  v and there fore  D = Dr .  A g r e e m e n t  has  also 

been  observed  be tween the t r a c e r  r e s u l t s  of Rothman 
et al. 24 and the mic rop robe  data of Speich et al .  25 for 
copper diffusion in i ron .  

Thus  it would seem that compat ib i l i ty  between probe 
ana ly s i s  and t r a c e r  r e s u l t s  can be c l a imed  provided 
that : 

i) i n c r emen ta l  diffusion couples a re  used,  23'25 or ,  
ii) the same condi t ions  a re  used as for t r a c e r  analy-  

s i s  (present  work). 

A fur ther  conf i rmat ion  of this  ag reemen t  has also been  
observed.  1 This  compat ib i l i ty  between the two tech-  
n iques  can be of impor t ance  when no sui table  isotopes 
a re  avai lable  for t r a c e r  s tudies .  

The act ivat ion energy  for impur i ty  diffusion by a 
vacancy  mechan i sm can be exp re s sed  as TM 

Q = AHrn + A H f  - C [25] 

where AHm is  the enthalpy of motion of a vacancy .  
(This is  a lso  made up of two other t e r m s  but  these 
may be neglected;  see Ref. 18, for a deta i led d i s c us -  
s ion of Eq. [25].) A H f  is  the enthalpy of fo rma t ion  of 
a vacancy ,  and 

[ d ln(fa~voll 

where 

f is  a co r r e l a t i on  factor  (~0.7) 

a is  the lat t ice p a r a m e t e r ,  and 

Uo is  the Debye f requency  (~10 "13 s e e ' l ) .  

C desc r ibed  the t e m p e r a t u r e  dependence of f ,  a 2, and 
vo and can lead to non l inea r i t y  in the A r r h e n i u s  plots.  
I t s  effect on the c u r r e n t  A r r h e n i u s  equat ions  was not 
m e a s u r a b l e  in  t e r m s  of non l inea r i ty .  I ts  va lue  is  
the re fore  probably l e s s  than the e x p e r i m e n t a l  e r r o r  
of ~1 kcal per  mole .  Values  of AHm,  AHf ,  and pa r -  
t i cu la r ly  C (since it is  so smal l )  cannot be accu ra t e ly  

Table V. Values of Activation Energy, Positive and Negative Entropy Terms, 
and a Comparison of Calculated and Experimental Values of Entropy for 

Solute Diffusion in 0~- and ~,-Fe 

Q (AS)ex p -AS o txQ AScale 
kcal per mote cat per mole, deg K "l 

Chromium in a-Fe 59.9 14.6 9.4 24.0 11,6 
Vanadium in c~-Fe 57.5 13.0 10.6 23.6 11.1 
Hafnium in ct-Fe 69.3 10.8 16.9 27.7 8.3 

Chronnum in 7-Fe 69.7 14.2 13.7 27.9 10.6 
Vanadium in ~/-Fe 63.1 6.9 18.3 25.2 7.6 
Hafnium in ),-Fe 97.3 25.7 13.2 38.9 18.6 

d e t e r m i n e d  without in fo rmat ion  on impur i ty  a tom- 
vacancy  in te rac t ions  in t r a n s i t i o n a l  me ta l s .  No such 
in fo rmat ion  is  avai lable .  Consequent ly ,  a meaningful  
d i s cus s ion  of these va lues  is  not poss ib le  at p resen t .  

A number  of explanat ions  can account  for  the slow 
diffusion of hafnium,  e .g . ,  i) a high enthalpy of mot ion ,  
in view of i ts  large atomic d i a m e t e r ,  ii) a marked  
c o r r e l a t i on  of i ron atom jumps .  However,  this  is  not  
l ikely to have a major  effect as it has a l r eady  been  
s ta ted that  co r re l a t ion  of jumps  had no observable  ef-  
fect on the r e s u l t s ,  or i i i )  a hafnium a tom-vacancy  
r e pu l s i on  may occur .  The mos t  probable  explanat ion  
is  that  slow diffusion r a t e s  a re  due to the hafnium 
atom having a low probabi l i ty ,  due to i ts  la rge  s ize ,  
in o v e r c o m i n g  the energy b a r r i e r  between adjacent  
la t t ice  s i tes .  F u r t h e r  study is r e q u i r e d  before  a more  
conclus ive  answer  can be stated.  In the case of chro-  
mium and vanadium diffusion,  va lues  of Q are  so n e a r  
to the self  diffusion act ivat ion energy  that it  i s  not 
poss ib le  to d i scuss  them without more  knowledge of 
the behavior  of t r ans i t iona l  a toms dur ing  a tomic jumps .  

Values for the entropy of diffusion may be der ived  
f rom the equat ion 18 

= R [ l n  Do7 
ASexp L ~ - J  

and a re  given in Table  V. 
The entropy factor is  made up of two t e r m s ,  1 one 

posi t ive  and the other negat ive ,  

(AS)ex p = ASo + 0/Q 

The negat ive  t e r m ,  AS0, iS equated to - [ aQ  - (AS)exp]. 
It may  be de t e rmined  using a value of 0.4 • 10 -3 per 
deg for 0/~ see Ref. 1. These  r e s u l t s  conf i rm the work 
of Dienes  6 who postulated that the entropy of diffusion 
is made up of a number  of t e r m s ,  one of which is  nega-  

lot t ive.  In the p r e se n t  work ASo = -~ Q. For  the anom-  
alous m e t a l s ,  where the total  en t ropy is  sma l l ,  Gibbs ~7 
has shown that AS0 can exceed O/Q, r e su l t i ng  in  the 
low obse rved  va lues  of Do. 28 The o r e t i c a l  va lues  of AS 
may be de t e rmined  from the equat ion 29 

AScalc = 2Q'c(7 - ~ ) [26] 

where ~- is  the volume t h e r m a l  expansion coeff icient ,  
and ), is  G r u n e i s e n ' s  cons tant  (2 for fcc and 3 for bcc  
meta l s ) .  Theore t i ca l  and e x p e r i m e n t a l  va lues  a re  
compared  in Table  V. 

A g r e e m e n t  is  r easonab le  and although the di f fer-  
ence i s  approximate ly  3 cal  per  mole per  deg K in 
many in s t ances ,  Eq. [26] will  p red ic t  va lues  of AS of 
the c o r r e c t  o rder  of naagnitude. Cons ide r ing  the 
rapid i ty  with which Do can change (due to the exponen-  
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t i a l  d e p e n d e n c e  o f  D o n  t e m p e r a t u r e )  t h i s  m e t h o d  o f -  
f e r s  a r e a s o n a b l y  a c c u r a t e  m e a n s  o f  c a l c u l a t i n g  Do 

i n  t h e  a b s e n c e  of  e x p e r i m e n t a l  d a t a .  V a l u e s  o f  Q f o r  
E q .  [26 ]  c a n  b e  d e t e r m i n e d  a s  in  F i g .  4.  

E n t r o p y  i s  a l s o  m a d e  u p  o f  t h e  e n t r o p y  o f  f o r m a t i o n  
(Z~Sf) a n d  m o t i o n  ( ~ S m )  o f  a v a c a n c y .  A g a i n ,  a c c u r a t e  
v a l u e s  c a n n o t  b e  c a l c u l a t e d  s i n c e  i m p u r i t y  a t o m -  

v a c a n c y  i n t e r a c t i o n s  h a v e  n o t  b e e n  d e t e r m i n e d .  
T h e  s i m i l a r i t y  b e t w e e n  h a f n i u m  a n d  o t h e r  t r a n s i -  

t i o n a l  m e t a l  d i f f u s i o n  ( fo r  t h e  Do a n d  Q v a l u e s )  f o r  
d i f f u s i o n  in  ~ - F e ,  b u t  n o t  in  ~ - F e ,  w o u l d  i n d i c a t e  t h a t  

t h e r e  i s  a c r i t i c a l  s p a c e  f o r  h a f n i u m  a t o m s  to  m o v e  
r e l a t i v e l y  f r e e l y  w h i c h  e x i s t s  in  a - F e  b u t  n o t  in  ~ - F e .  
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