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Room t empe ra tu r e  fatigue c rack  in i t ia t ion  and propagat ion in the wrought n i c ke l - ba se  s u p e r -  
alloy Udimet 700 were inves t iga ted  with e lec t ropo l i shed  and g lass  bead b las ted  m a t e r i a l .  
Cracks  were found to ini t ia te  at the sur face  along coherent  annea l ing  twin boundar ies  o r ien ted  
for max imum in -p lane  shear  s t r e s s  in both the e lec t ropol i shed  and g lass  bead b las t ed  condi-  
t ions even though bead b las t ing  more  than doubled the fatigue s t rength .  This  i nc r ea se  was 
found to r e su l t  f rom an enhanced crack in i t ia t ion  r e s i s t a n c e ,  but  even more  impor tan t ly  f rom 
a ve ry  pronounced re ta rda t ion  of ea r ly  Stage I c rack  propagat ion by the res idua l  c o m p r e s s i v e  
surface s t r e s s  induced in g lass  bead b las t ing .  

T H I S  inves t igat ion was under taken  to evaluate  the 
r e l a t ive  and combined effects  of g lass  bead b l a s t  in -  
duced res idua l  s t r e s s  and surface  cold work on the 
high cycle (10 s to l0 T cycle)  fatigue s t rength  of the 
wrought  n icke l -base  supe ra l loy  Udimet  700. Room 
t e m p e r a t u r e  fatigue c rack  in i t ia t ion  and propagat ion 
were  thus studied in e lec t ropo l i shed  and in g lass  bead  
b las t ed  ma te r i a l .  

EXPERIMENTAL PROCEDURE 

All tes t  spec imens ,  except  the cold swaged samples  
to be desc r ibed  below, were  machined  from wrought 
Udimet  700* in e i ther  the fully heat t r ea t ed t  or solu-  

*Nominal composition: Co, 18.5 pct; Cr, 15.0 pct; Mo, 5.0 pct; A1, 4.3 pct; 
Ti, 3.3 pct; C, 0.07 pct, B, 0.03 pct; N1, balance. 

tFull heat treat: 2140~ hr + 1975~ hr + 1550~ hr + 1400~ hr, 
forced air cool after each step. 

t ionized* condition. The gra in  size af ter  heat  t r e a t -  

*Solutlomze: 2140~ hr, oil quench. 

men t  averaged 0.009 in. d iam.  Tes t  spec imens  were 
of three  types:  fiat c an t i l eve r  r e v e r s e d  bending,  axial  
t ens ion ,  and constant  moment  ro ta t ing  beam,  Fig.  1. 
In addit ion,  one spec imen  with gage sect ion d imens ions  
of 0.375 in. diam by 1.00 in. long was tes ted  in axia l  
compres s ion  in order  to de te rmine  the effect of a 
compres s ive  mean  s t r e s s  on fatigue c rack  in i t i a t ion  
and propagation.  All t es t ing  was conducted at  room 
t e m p e r a t u r e .  

In order  to obtain a cold worked s t ruc tu re  without 
the high res idua l  s t r e s s  which accompanies  g lass  bead 
b las t ing ,  a bar  of Udimet  700 was swaged at room 
t empe ra tu r e  to 47 pct reduct ion  in a r ea  af ter  being 
solut ionized and aged at 1975~ for 4 hr ,  as  th is  was 
the condit ion cons idered  bes t  sui ted for room t e m -  
pe ra tu re  swaging. Rotat ing beam fatigue spec imens  
and one tens i le  spec imen  were then machined  f rom 
this  m a t e r i a l .  

All spec imens  were mechan ica l ly  polished through 
600 gr i t  paper ,  e lec t ropol i shed ,  and e i ther  t e s t ed  in 
that condition or glass  bead  b las ted ,  Fig.  2. To r e c o r d  
m i c r o s t r u c t u r a l  changes in sur face  detai l  dur ing  each 
tes t ,  cel lulose acetate  sur face  rep l i cas  were taken at 
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5 • 105 cycle i n t e rva l s  dur ing  tes t ing ;  if no fatigue 
damage was noted af ter  s e ve r a l  mi l l i on  cyc les ,  the 
s t r e s s  level  was increased .  When an act ive fatigue 
m i c r o c r a c k  could be posi t ively ident i f ied ,  usual ly  by 
noting a change in length when compared  with p reced -  
ing or subsequent  surface r e p l i c a s ,  fa i lu re  was con- 
s ide red  to have occur red ,  and the spec imen  was usual ly  
run  to complete  f r ac tu re .  In s eve ra l  ca ses  the average  
c rack  propagat ion ra tes  were noted. Fat igue s t rength 
of electropolished mate r i a l  was taken as  the s t r e s s  r e -  
qu i red  to ini t ia te  a propagat ing c rack  at  approximate ly  
two mi l l ion  cycles .  In addition to de t e r mi n i ng  fatigue 
s t r eng ths ,  some samples  were cycled at  higher s t r e s s  
leve ls  to de te rmine  c rack  propagat ion ra te  as a function 
of s t r e s s  ampli tude 
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Fig. 1--Designs of (a) cantilever bending, (b) axial stress, 
and (c) rotating beam bending fatigue specimens. 
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(a) 

deformat ion  assoc ia ted  with the g lass  bead b las ted  
layer .  These  methods yielded cons i s t en t  r e su l t s  which 
gave an ave rage  depth of about 0.002 in. for an in ten-  
s i ty of 15 N, Fig.  3. 

The r e s i d u a l  s t r e s s  d i s t r i bu t ion  below the surface  of 
a g lass  bead  b las ted  s t r ip  (15 N in tens i ty)  of Udimet  
700 was d e t e r m i n e d  by e l ec t ro ly t i ca l ly  r emoving  
success ive  l aye r s  of s t r a ined  m a t e r i a l  and not ing the 
change in cu rva tu re  of the s t r ip ,  5 Fig.  4. 

EXPERIMENTAL RESULTS 

Elec t ropo l i shed  

The e lec t ropo l i shed  spec imens  displayed a fatigue 
s t rength  of f rom +30 to +35 ks i  in bending.  The one 
axia l  s p e c i m e n  tes ted showed comple te  f rac ture  af ter  
0.8 • 106 cyc les  at 5 to 65 ksi  t ens ion  which is  cons i s t en t  
with the o ther  r e su l t s .  No s igni f icant  difference in 
fatigue s t r eng th  was found between ful ly heat t rea ted  
and so lu t ionized  m a t e r i a l ,  ind ica t ing  that in these t e s t s  
fatigue s t reng th  was independent  of heat  t r ea tment .  

In many  ca se s ,  m i c r o c r a c k s  were  observed to in i t i -  
ate at the sur face  along coherent  annea l ing  twin bound-  

(b) 
Fig. 2--Surface appearance of (a) fully heat treated wrought 
Udimet 700 and (b) glass bead blasted wrought Udimet 700. 

As will be d i scussed  l a t e r ,  fatigue fa i lu re  in g lass  
bead b las ted  m a t e r i a l  o c c u r r e d  in two d is t inc t  phases :  
1) c rack  ini t ia t ion and e a r l y  propagat ion,  and 2) much 
fa s t e r  propagation as the c racks  grew out of the inf lu-  
ence of the surface r e s i d u a l  s t r e s s  field produced by 
the blas t ing.  Although the t r ans i t i on  f rom slow to fast  
propagat ion occur red  at sur face  crack lengths of l e s s  
than 0.010 in. ,  the acce l e r a t i on  in propagat ion ra te  was 
so great  that this  t r ans i t i on  marked  90 to 99 pct of the 
tota l  spec imen life. The fatigue s t reng ths  of g lass  
bead b las ted  m a t e r i a l  r epor t ed  here  r e p r e s e n t  th is  
t r ans i t i on  in propagat ion ra te  s ince this c r i t e r i o n  is  
mos t  analogous to that taken for nonblas ted  m a t e r i a l .  

The glass  bead b las t ed  samples  were wet b la s t ed  
with a s l u r r y  of g lass  beads  (0.007 to 0.011 in . .d iam) .  
B las t ing  in t ens i t i e s  1 ranged  from 15 to 22 N Almen in-  
t ens i ty  with the s t andard  to le rance  in this  range being 

( ; 0 ) N .  Specimens  were tes ted  both as bead b l a s t ed  

and bead b las ted  with a light (~0.0001 in.) e lec t ropo l i sh  
to faci l i ta te  meta l lograph ic  examina t ion  dur ing  the 
test .  There  was no apparen t  effect of this e l e c t r o -  
pol ishing on the fatigue behav ior .  

Slip band etching 2 and ce l lu la r  r e c r y s t a l l i z a t i o n  3'~ 
were  both employed to de t e rmine  the extent  of p las t ic  

(a) 

(b) 

Fig. 3--Cross sections (normal to surface) of glass bead 
blasted samples (15 N intensity) showing plastic deforma- 
tion revealed by: (a) slip band etching and (b) cellular re- 
crystallization. 
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Fig. 4--Residual stress distribution resulting from glass 
bead blasting to 15 N intensity. 

the en t i r e  length of the in i t i a t ing  twin boundar ies  unt i l  
encoun te r ing  a gra in  boundary  at which point they grew 
into adjacent  g ra ins  in a sawtooth m a n n e r ,  propagat ing 
on s e v e r a l  p lanes  within each g ra in ,  Fig.  5. In al l  
cases  the c rack ing  was comple te ly  t r a n s g r a n u l a r .  

Surface c rack  length was a l i nea r  function of the 
n u m b e r  of cyc les  dur ing  the Stage I por t ions  of prop-  
agation.  A r ep re sen t a t i ve  plot of c r a c k  length vs num-  
be r  of cycles  for a can t i l ever  bending  spec imen  is 
given as  Fig.  6, and Stage I propagat ion rate  as  a 
function of a l t e rna t ing  s t r e s s  (zero mean  s t r e s s )  is 
p re sen ted  in Fig.  7. The sample  tes ted  in compres s ion  
showed a constant  half c rack  propagat ion  ra te  of 3.8 
x 10 - I~  in. per  cycle when cycled  at - 40  ksi  mean  
s t r e s s  (-40 + 35 ksi)  but when the mean  s t r e s s  on this 
same sample  was inc reased  to ze ro ,  the propagat ion 
ra te  i n c r e a s e d  to 1.0 x 10 -8 in.  per  cycle .  

The fatigue zones  of the f r ac tu r e  su r faces  were 
quite c rys t a l log raph ic  with Stage I face ts  read i ly  ob- 
se rved .  An unusual ly  large facet  often marked  the site 
of c rack  in i t ia t ion  and was usua l ly  o r i en ted  for maxi -  
mum in -p l ane  shear  s t r e s s  over i ts  face. The face ts  

a r i e s  inheren t  in the wrought ma t e r i a l .  In each in-  
s t ance ,  the cracked twin boundary  t race  was o r ien ted  
for max imum shear  s t r e s s  in the surface  p lane ,  Fig.  5. 
In genera l ,  no unusual  m i c r o s t r u c t u r a l  f ea tu res  de-  
tec table  by light m i c r o s c o p y  were assoc ia ted  with 
these  boundar ies .  

It was observed that fatigue c racks  could not be 
t r aced  back to unique points  of in i t ia t ion.  Surface 
r e p l i c a s  taken p r io r  to the appearance  of f inite length 
m i c r o c r a c k s  showed no indica t ion  of c rack ing  even 
though ext rapola t ions  of the subsequent  propagat ion 
data indicated that the c r a c k s  should a lso  have appeared  
on these rep l i cas  at lengths  eas i ly  reso lvab le  in the op- 
t i ca l  microscope .  In addi t ion,  ex t rapola t ions  of the 
l i nea r  crack length vs  n u m b e r  of cycles  c u r v e s ,  in 
some ins t ances ,  indica ted  posi t ive (and reso lvab le )  
c r ack  lengths at ze ro  cyc les ,  thus implying that the 
c racks  e i ther  in i t ia ted  in f inite lengths or that they 
in i t ia l ly  grew at a ra te  much fa s t e r  than in subsequent  
propagat ion.  As these c r a c k s  a lways in i t ia ted  a long 
twin boundar ies  with no d i s ce rn ib l e  defects ,  p r e e x i s t -  
ing flaws are  not be l ieved  re spons ib le  for th is  phe-  
nomenon.  With spec imens  cycled in bending at  +40 
ks i ,  for example ,  the s m a l l e s t  detectable c r acks  were 
about 0.002 in. long. 

The one axial  spec imen  cycled comple te ly  in com-  
p r e s s i o n  was found to conta in  a m i c r o c r a c k  a long a 
twin boundary  af ter  1.0 • 108 cycles  at -35  + 30 ks i ,  or 
approx imate ly  the number  of cycles  needed to in i t ia te  
a Stage I m i c r o c r a c k  at +35 + 30 ksi .  

As has been observed  in other n i cke l -base  supe ra l -  
loys ,  v'8 room t e m p e r a t u r e  h igh-cycle  c rack  propaga-  
t ion in e lec t ropol i shed  Udimet  700 occu r r ed  l a rge ly  in 
the Stage I mode. Stage I c r a c k s  genera l ly  grew along 

Fig. 5--Example of a twin boundary fatigue crack on the 
surface of electropolished wrought Udimet 700. Stress axis 
horizontal. 
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Fig. 6--Propagation of a Stage I fatigue crack in electro- 
polished material cycled at :L35 ksi in cantilever bending. 
Crack propagation rate is independent of crack length. 
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s e c t i o n s  r e v e a l e d  the p r e s e n c e  of f r a c t u r e d  c a r b i d e s  
in the b e a d  b l a s t e d  l a y e r ,  F ig .  8(b). However ,  a s  in the 
ca se  of c r a c k s  a s s o c i a t e d  with gouge m a r k s ,  t he re  was 
no ev idence  that  m a t r i x  fa t igue  c r a c k s  in i t i a t ed  at  
these  p r e v i o u s l y  f r a c t u r e d  c a r b i d e s .  

C r a c k  in i t i a t ion  in the g l a s s  bead  b l a s t e d  m a t e r i a l ,  
a l though d e f e r r e d  to somewhat  h ighe r  s t r e s s  l eve l s  
than in the e l e c t r o p o l i s h e d  cond i t ion ,  was qui te  s i m i -  
l a r  to that  d e s c r i b e d  for  the e l e c t r o p o l i s h e d  c a s e ,  i .e . ,  
c r a c k s  f i r s t  a p p e a r e d  a s  f ini te  s i z e d  s e g m e n t s  a long 
twin b o u n d a r i e s  o r i en ted  for m a x i m u m  in -p lane  s h e a r  
s t r e s s .  Once p r e s e n t ,  h o w e v e r ,  t he se  s m a l l  c r a c k s  
p r o p a g a t e d  at  cons tant  r a t e s  which were  e x t r e m e l y  
s low when c o m p a r e d  to s i m i l a r  c r a c k s  in e l e c t r o -  
p o l i s h e d  m a t e r i a l ,  F ig .  7. As  these  c r a c k s  g rew 
l a r g e r ,  howeve r ,  the p ropaga t ion  r a t e s  quickly  ap -  
p r o a c h e d  those  o b s e r v e d  in e l e c t r o p o l i s h e d  m a t e r i a l ,  
F ig .  9. 

The s p e c i m e n s  mach ined  f r o m  the cold  swaged m a -  
t e r i a l  showed no s ign i f i can t  i m p r o v e m e n t  in fat igue 
s t r eng th  o r  c r a c k  p ropaga t ion  behav io r  over  e l e c t r o -  
p o l i s h e d  m a t e r i a l  even though the 0.2 pct  y ie ld  s t r e s s  
was i n c r e a s e d  f rom about 130 k s i  b e f o r e  swaging to 

10 -12 
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Fig. 7--Stage I ha l f  c r a c k  fatigue propagat ion r a t e s  at  v a r i -  
ous a l te rna t ing  s t r e s s e s  in e lec t ropol i shed  and g las s  bead 
b las t ed  m a t e r i a l  t e s t ed  in bending. Note the l a rge  d e c r e a s e  
in c r a c k  propagat ion r a t e  due to g lass  bead blas t ing.  

often conta ined r i v e r  l i ne s  and " c l e a v a g e "  s t e p s  s i m i -  
l a r  to those r e p o r t e d  for  ano the r  n i c k e l - b a s e  a l loy  7 
and,  in addi t ion ,  s t r i a t i o n  m a r k i n g s  were  o c c a s i o n a l l y  
de t ec t ed  on f ace t s  somewha t  r e m o v e d  f rom the i n i t i a -  
t ion s i te .  

G l a s s  Bead  B l a s t e d  

The max imum 2 • 106 cyc l e  fat igue s t r eng th  obta ined  
with a g l a s s  bead  b l a s t e d  s p e c i m e n  was +75 ks i  in r e -  
v e r s e d  bending.  The m i n i m u m  s t reng th  v a r i e d  g r e a t l y  
with b l a s t i ng  c o v e r a g e  and  wil l  be d i s c u s s e d  in m o r e  
de t a i l  l a t e r .  An ax i a l  s p e c i m e n  bead  b l a s t e d  to 22 N 
wi ths tood 1.0 • 106 c y c l e s  at  50 + 45 ks i  without damage  
and fa i l ed  a f t e r  4.0 • l0  s c y c l e s  at  52.5 + 47.5 ks i .  

When v iewed at  200X magn i f i ca t ion ,  the s u r f a c e s  of 
the g l a s s  bead  b l a s t e d  s p e c i m e n s  a p p e a r e d  qui te  i r r e g u -  
l a r  conta ining many  gouges  as  well  a s  the e x p e c t e d  
h e m i s p h e r i c a l  d e p r e s s i o n s ,  F ig .  2(b). Many e x t r e m e l y  
s m a l l  m i c r o c r a c k s  induced  by g l a s s  bead  b l a s t i n g  
we re  a l so  noted,  often o c c u r r i n g  along the edges  of 
t h e s e  gouge m a r k s ,  F ig .  8(a). It i s  i m p o r t a n t  to note 
tha t  none of the fa t igue  c r a c k s  a p p e a r e d  to be a s s o c i -  
a t ed  with any of these  p r e e x i s t i n g  m i c r o c r a c k s ,  hence 
they  a r e  not of c o n c e r n  in d e t e r m i n i n g  the l ife of a 
g l a s s  bead  b l a s t e d  s p e c i m e n .  

Ca re fu l  po l i sh ing  of the s p e c i m e n  s u r f a c e s  and c r o s s  

(a) 

(b) 

Fig. 8--(a) Po l i shed  sur face  of bead b las t ed  sample  showing 
a b las t ing  induced mie roc rack ,  (b) c r o s s  sect ion of sample  
showing a ca rb ide  par t ic le  f r a c t u r e d  by g lass  bead blast ing.  
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260 ks i  a f te rwards  and the ha rdnes s  was i n c r e a s e d  
f rom R c 35 to R C 48. 

DISCUSSION 

Elec t ropo l i shed  

The ini t ia t ion of fatigue c r acks  along twin bound-  
a r i e s  has been repor ted  for other fcc me t a l s ,  8 and a 
s i m i l a r  effect has been  obse rved  in wrought Udimet  
700 subjected to low-cycle  fatigue at  t e m p e r a t u r e s  up 
to 1000~ 9 It has been  sugges ted  that noncoheren t  
s teps  in the twin bounda r i e s  of OFHC copper ac t  as  
d is loca t ion  sources  dur ing  fatigue cycl ing and that 
when twin boundar ies  a re  pa ra l l e l  to the opera t ing  
s l ip  p lanes ,  these s teps  produce suff icient  s t r e s s  con-  
cen t r a t ion  to ini t iate  fatigue c racks .  8 In the case  of 
n i cke l -ba se  supera l loys ,  a lack of prec ip i ta te  along 
the coherent  twin bounda r i e s  may r e su l t  in a lower 
c r i t i c a l  r eso lved  shea r  s t r e s s  at these loca t ions .  1~ 

As previous ly  noted,  a l l  spec imens  showed constant  
c r ack  growth ra tes  at a given s t r e s s  range dur ing  the 
Stage I por t ions  of propagat ion.  Since c racks  a lways 
in i t i a ted  p re fe ren t i a l ly  on p lanes  of max imum in -p lane  
shear  s t r e s s ,  it is r e a soned  that they propagate more  
r ead i ly  in mode II ( in-plane shear )  than in mode III 
(antiplane shear) .  C racks  o r ien ted  for m a x i m u m  shear  
s t r e s s  in the surface plane would then grow fas te r  
a long the surface than into the spec imen  and would a s -  
sume semie l l ip t i ca l  p rof i l es ,  as  repor ted  for a l u m i -  
num single  c ry s t a l s  which a l so  showed constant  Stage 
I propagat ion r a t e s .  ~ The propagat ion r a t e s  of such 
c r a c k s ,  as  m e a s u r e d  on the spec imen  sur face ,  is  then 
dependent  on the range of s t r e s s  in tens i ty  factor  LkKII 
which, in tu rn ,  is a function ma in ly  of c rack  depth, not 
length,  for e l l ip t ica l  c r acks .  12 Since the propagat ion 
r a t e s  of through th ickness  c racks  in this  m a t e r i a l  
have been  shown ~3 to be propor t iona l  to ~ } } 4 ,  the con- 
s tan t  propagat ion r a t e s  observed  here  imply that  AKII 
at  the crack tip (major semiax i s )  r e m a i n s  constant  as 
the surface  length of the c rack  i nc r ea se s .  One would 
then expect,  as observed ,  that the ra te  of c rack  propa-  
gat ion would be approx imate ly  propor t ional  to the 3.4 
power of the s t r e s s  range ,  Fig.  7. 

It should be noted that,  in some cases ,  average  
c r ack  propagation r a t e s  a re  l e s s  than one B u r g e r s  
vec tor  (b = 1.2 • 10 -8 in.) per  cycle.  This  fact,  to- 
gether  with the sudden appearance  of c rack  s egmen t s  
at in i t ia t ion ,  and the fourth power dependence of prop-  
agat ion rate on s t r e s s  range  tend to support  a model  
of cumula t ive  damage.~4'ls 

Glass  Bead Blas ted  

I n c r e a s e s  in fatigue s t r eng th  with g lass  bead b l a s t -  
ing a re  genera l ly  a t t r ibu ted  to the p resence  of: 1) a 
r e s i d u a l  compress ive  s t r e s s  at the surface  16-'9 and 
2) a cold worked surface  layer .  ~8-2~ It has been  dem-  
ons t r a t ed  that a tens i le  mean  s t r e s s  lowers  the fatigue 
s t reng th  of most  m a t e r i a l s  and that a compres s ive  
mean  s t r e s s  r a i s e s  i t ,  2~,22 while cold working may 
e i ther  lower ~3 or r a i s e  ~8 the s t rength  depending on the 
m a t e r i a l ,  the degree of working,  and the f r ac tu r e  
mode.  The re la t ive  effects  of r e s idua l  s t r e s s  and  s u r -  
face working and the r e s u l t i n g  net  effect of g lass  bead 
b l a s t ing  then depend on the m a t e r i a l ,  the b l a s t ing  
p a r a m e t e r s ,  and the t e s t  condi t ions .  

0 0010 
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Fig. 9--Propagation of a small crack in glass bead blasted 
material (15 N) cycled in bending at ~=50, ~=60, and e70 ksi. 
The nearly vertical segment in the ~70 ksi range indicates 
a propagation rate which approaches that of electropolished 
material. 

The r e s u l t s  p resen ted  here show that while cold 
working of Udimet  700 may have a la rge  effect on i ts  
t ens i le  p r ope r t i e s ,  it has l i t t le effect on e i ther  fatigue 
c rack  in i t ia t ion  or the ea r ly  s tages  of propagat ion at 
room t e m p e r a t u r e .  

Mean s t r e s s ,  however ,  does have a s ignif icant  ef- 
fect of Stage I propagation.  A c o m p r e s s i v e  mean  s t r e s s  
i n c r e a s e s  the f r i c t ion  force be tween the c rack  faces ,  
and the r e su l t i ng  inhibi t ion of r e l a t ive  shear  d isp lace-  
ment  may thereby  affect Stage I propagat ion.  P r e l i m -  
ina ry  ca lcu la t ions  24 have subs tan t ia ted  this  point.  

It appears  then that much of the benef ic ia l  effect of 
g lass  bead b l a s t ing  on the fatigue p rope r t i e s  of Udimet  
700 is de r ived  f rom a ve ry  low ra te  of ea r ly  c rack  
propagat ion under  the high c o m p r e s s i v e  r e s idua l  
s t r e s s  in the sur face  layer .  A ve ry  impor tan t  p a r a m e -  
ter  in the case of Udimet 700 was the degree of b l a s t -  
ing coverage.  Although all  spe c i me ns  were bead b las ted  
to Almen sa tu ra t ion ,  i . e . ,  unt i l  addi t ional  b las t ing  t ime 
had l i t t le  effect  on m e a s u r e d  Almen in tens i ty ,  s amples  
which were al lowed addit ional  b las t ing  t ime appar -  
ently a t ta ined  a more  uniform s t r e s s  d i s t r ibu t ion  and 
showed a marked ly  improved  fatigue s t rength .  It 
should be noted,  however,  that excess ive  bead b l a s t -  
ing may cause  the fatigue s t r eng ths  of some m a t e r i a l s  
to dec rease  18'25 and thus each m a t e r i a l  should be 
evaluated individual ly .  

The r e s idua l  compress ive  s t r e s s  apparen t ly  also 
prevented  bead b las t  m i c r o c r a c k s  and carbide  c racks  
in this m a t e r i a l  f rom propagat ing in fatigue. 

CONCLUSIONS 

I) High-cycle fatigue cracks initiated at the surface 
along coherent annealing twin boundaries which were 
oriented for maximum in-plane shear stress in both 
electropolished and glass bead blasted wrought Udi- 
met 700. 

2) Stage I crack propagation was independent of 
crack length but was approximately proportional to 
the fourth power of the stress range. 

3) A fatigue test run with a compressive mean stress 
showed that the Stage I crack propagation rate was 
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g r e a t l y  r e t a r d e d  c o m p a r e d  t o  t e s t s  r u n  a t  z e r o  o r  t e n -  

s i l e  m e a n  s t r e s s .  
4)  T h e  o b s e r v e d  i n c r e a s e  i n  f a t i g u e  s t r e n g t h  w i t h  

g l a s s  b e a d  b l a s t i n g  w a s  d u e  in  l a r g e  p a r t  t o  a n  i n h i b i -  
t i o n  o f  e a r l y  S t a g e  I c r a c k  p r o p a g a t i o n  b y  t h e  l a r g e  

c o m p r e s s i v e  r e s i d u a l  s t r e s s  a t  t h e  s u r f a c e .  C o l d  
w o r k i n g  d u e  to  b e a d  b l a s t i n g  d i d  n o t  s e e m  to  b e  a n  

i m p o r t a n t  f a c t o r .  
5)  T h e  m a j o r  f a c t o r  i n  o b t a i n i n g  t h e  m a x i m u m  

f a t i g u e  i m p r o v e m e n t  t h r o u g h  g l a s s  b e a d  b l a s t i n g  i n  

t h e  p r e s e n t  f a t i g u e  t e s t s  w a s  t h o r o u g h  c o v e r a g e .  A1-  

m e n  i n t e n s i t y  s a t u r a t i o n  d i d  n o t  n e c e s s a r i l y  i n d i c a t e  
t h a t  t h e  p r o p e r  c o v e r a g e  f o r  m a x i m u m  b l a s t i n g  b e n e -  
f i t  h a d  b e e n  a c h i e v e d .  

A C K N O W L E D G M E N T S  

T h e  a u t h o r s  a r e  g r a t e f u l  to  S .  W .  H o p k i n s  a n d  J .  J .  

N o l a n  f o r  t h e i r  a s s i s t a n c e  in  t h e  m e c h a n i c a l  t e s t i n g ~  
a n d  to  T .  T .  F i e l d  w h o  a s s i s t e d  i n  t h e  m e t a l l o g r a p h y .  
T h e y  w o u l d  a l s o  l i k e  to  t h a n k  D r .  M .  G e l l  f o r  h e l p f u l  
d i s c u s s i o n s  a n d  s u g g e s t i o n s .  
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