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Abstract: A new agglomerative method is proposed for the simultaneous 
hierarchical clustering of row and column elements of a two-mode data matrix. 
The procedure yields a nested sequence of partitions of the union of two sets of 
entities (modes). A two-mode cluster is defined as the union of subsets of the 
respective modes. At each step of the agglomerative process, the algorithm merges 
those clusters whose fusion results in the smallest possible increase in an internal 
heterogeneity measure. This measure takes into account both the variance within 
the respective cluster and its centroid effect defined as the squared deviation of its 
mean from the maximum entry in the input matrix. The procedure optionally 
yields an overlapping cluster solution by assigning further row and/or column ele- 
ments to clusters existing at a preselected hierarchical level. Applications to real 
data sets drawn from consumer research concerning brand-switching behavior and 
from personality research concerning the interaction of behaviors and situations 
demonstrate the efficacy of the method at revealing the underlying two-mode simi- 
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1. Introduction 

Data indicating the relationships between two modes (Tucker 1964) or 
sets of  entities (e.g., objects and features, stimuli and responses) are quite fre- 
quently collected in the behavioral and social sciences. The study of  such 
data is usually restricted to the analysis of  a single mode. For instance, some 
hierarchical clustering or multidimensional scaling model is employed to 
reveal the object-to-object similarity structure. But in many empirical stu- 
dies, objects and features (or variables) can be considered entities with equal 
structural status; that is the similarity structure within one mode (e.g., objects 
judged) is of the same interest as the similarity structure within the other 
mode (e.g., judgment scales). Whenever there is no obvious a priori basis for 
prefering the analysis of  one mode to the analysis of  the other, it may be more 
useful to look for a common representation for both modes. Furthermore, a 
two-mode representation showing simultaneously the structure of  two sets of  
entities and of  their interrelationships may help in finding an adequate 
interpretation for some dimension or cluster. 

Spatial or continuous representations of two-mode data, especially 
preference or dominance data, have been available since Coombs' (1950) ori- 
ginal formulation o f t  h e  unfolding model and its multidimensional generaliza- 
tion by Bennett and Hays (1960; for an excellent review of these and related 
models, see Carroll and Arabie 1980). More recently, DeSarbo and Ra t  
(1984) presented a general set of multidimensional unfolding models and 
corresponding algorithms. Another prominent example of continuous models 
for two-mode data is correspondence analysis. This technique represents the 
rows and columns of  a contingency table as points in high-dimensional space 
and then projects them onto a best-fitting subspace of  lower dimensionality 
for ease of interpretation (see, e.g., Greenacre 1984; Greenacre and Hastie 
1987). In contrast, until recently, there have been few nonspatial models 
allowing the simultaneous discrete representation of  two modes (see Coppi 
and Bolasco 1989; Law, Snyder, Hattie, and McDonald 1984). Such discrete 
representations are the focus of the present paper. After a short review of 
existing two-mode clustering procedures, we propose a new agglomerative 
algorithm for constructing a two-mode hierarchical classification. Having 
introduced some pertinent terminology, we describe the rationale and the for- 
mat properties of  this algorithm. Finally, we present two substantive applica- 
tions from marketing and personality research. 

2. Two-Mode Clustering Methods 

Approaches for jointly clustering n row and m column elements in a 
two-mode data matrix X fall roughly into three classes. The first class is 
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composed of "direct clustering methods." These methods do not refer expli- 
citly to the notion of distance or similarity. They perform a reordering of 
rows and columns of the data matrix and yield (possibly overlapping) clusters 
which are interpretable directly on the input data. Examples are the "bond 
energy algorithm" originally proposed by McCormick, Schweitzer, and 
White (1972), the "modal block method" for categorical data developed by 
Hartigan (1975, 1976), and the hierarchical classes model introduced by De 
Boeck and Rosenberg (1988). The bond energy algorithm alms specifically at 
permuting the rows and columns of an input data matrix in such a way as to 
push the numerically larger matrix elements together. This is accomplished 
by maximizing the summed "bond strengths" (or "bond energy")  over row 
and column permutations of the input matrix, where the "bond strength" 
between two nearest-neighbor elements is defined as their product. In recent 
years, the bond energy algorithm has been substantially improved (Arabie 
and Hubert 1990; Arable, Schleutermann, Daws, and Hubert 1988) and inves- 
tigated in the context of  simulated annealing (Schleutermann, Arabie, Hubert, 
and Bronsard 1990) and blockmodeling (Arabie, Hubert, and Schleutermann 
1990). In Hartigan's method, each block is described by a cluster of cases 
and a cluster of  variables such that each variable in the block is constant over 
the cases in the block, except for cases that also belong to other blocks. With 
real data sets, many blocks will conform to this definition. Hence, selection 
of just a few blocks to represent the data is performed by finding in succes- 
sion the patterns of variables which occur most frequently, ignoring those pat- 
terns found in previous steps (for a modification of Hartigan's 'algorithm, see 
Duffy and Quiroz 1991). De Boeck and Rosenberg's hierarchical classes 
model is restricted to object by attribute data matrices with binary entries of 
0, 1. In such a model, objects with identical sets of attributes are grouped into 
disjoint object classes, each defined by a different set of  attributes. These 
object classes are ordered hierarchically on the basis of their respective sets 
of  attributes to reflect the subset/superset relations among them. Analo- 
gously, attributes are grouped into hierarchically ordered attribute classes. 
The hierarchy of object classes is linked to the hierarchy of attribute classes 
by means of a (symmetric) association relation. An object class is said to be 
associated to an attribute class if and only if the attribute class is in the set of  
attribute classes possessed by the given object class. 

Methods belonging to the second class aim at fitting tree structures, that 
is ultrametric and/or additive trees, to two-mode data. Based on the pioneer- 
ing work by Furnas (1980), least-squares procedures for estimating 
ultrametric and additive trees from two-mode proximity data have been pro- 
posed by DeSarbo and De Soete (1984) and De Soete, DeSarbo, Furnas, and 
Carroll (1984). The algorithms utilize a penalty function to enforce the 
ultrametric inequality generalized for the case of nonsymmetric or two-mode 
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proximity matrices. More specifically, the algorithm for estimating an 
ultrametric tree consists of (a) transforming the n • m data matrix X into a 
matrix T best approximating X in a least-squares sense, where T satisfies the 
two-mode ultrametric inequality (defined below), (b) constructing a square 
(n + m) by (n + m) matrix D which satisfies the ordinary one-mode 
ultrametric inequality, and (c) using standard hierarchical clustering methods 
to obtain from D the ultrametric tree representation of both row and column 
elements. More recently, Espejo and Gaul (1986) developed a two-mode 
variant of  the classical average linkage clustering method that compared 
favorably with the computationally complex penalty function algorithms. 

The third class contains methods which are based on the ADCLUS 
(Shepard and Arabie 1979) model representing interobject proximities as 
combinations of  discrete and possibly overlapping properties. A generaliza- 
tion of the ADCLUS model to the case of nonsymmetric or two-mode prox- 
imity data is the GENNCLUS methodology developed by DeSarbo (1982). 
The GENNCLUS procedure for the simultaneous clustering of both row and 
column elements utilizes a series of gradient-based techniques and combina- 
torial optimization methods in an alternating least-squares framework. 
Another generalization of  the ADCLUS model is provided by PENCLUS (see 
Both and Gaul 1986). PENCLUS differs from GENNCLUS in implementing 
a penalty function approach to the construction of an overlapping or nonover- 
lapping two-mode classification. 

The two-mode clustering procedure proposed here combines the advan- 
tages of  the methods belonging to the first two classes outlined above. Simi- 
larly to the direct clustering methods, the procedure uses only that informa- 
tion contained within the input data matrix X for the simultaneous clustering 
of entities from both modes. It does not rely on the intervening construction 
of  an (n + m) by (n + m) matrix having T (or X) as the n • m submatrix con- 
sisting of  the last n rows and the first m columns. Stated differently, our pro- 
cedure yields two-mode clusters which can be interpreted directly on the 
input data. Like the tree-fitting methods, it constructs an ultrametric tree 
representation of  the two-mode data. It utilizes an agglomerative clustering 
criterion defining clusters with an average inter-mode relationship as strong 
as possible relative to a small within-cluster variance. In the following sec- 
tion some concepts relevant to our approach (called the "centroid effect 
method' ') are defined and details of the agglomerative process are presented. 
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3. The Centroid Effect Method 

3.1 Definitions 

Following Carroll and Arabie (1980) and Tucker (1964), a mode is 
defined as a particular set of  entities. Modes will be denoted by capital letters 
A and B. Entities (e.g., objects, variables, experimental  conditions) are 
denoted by subscripts; for example,  Ai, i = 1 . . . . .  n, could denote n objects 
(row elements), Bj, j = 1 . . . . .  m, could denote m variables (column ele- 
ments). 

A two-mode array is defined as the Cartesian product A • B o f  two 
different modes A and B with pairs (cells) (Ai,Bj). A two-mode data matrix 
X = (xij) is an assignment o f  numerical values xij (e.g., ratings, confusion fre- 
quencies, reaction times) to the elements (Ai,Bj) of  a two-mode array. X con- 
tains nm elements. The set of  row elements of  X is {Ai }; the corresponding 
set of  column elements is {13) }. 

Let A ' =  {Ai.} be a subset of  A, and B ' =  {Bj.} be a subset o r B .  A 
two-mode cluster Cr is defined as the union of  the two sets A" and B':  

C r = A ' u B ' =  { A i - } u { B j ' } .  (1) 

A two-mode submatrix is an assignment of  numerical values xi7" to ele- 
ments o f  A" • B" = {(Ai.,Bj.) } c A • B. The  two-mode submatrix 
corresponding to A ' x  B" is Xr = (xi7") with nrm r elements, where nr is the 
number  of  entities in A" and mr is the number o f  entities in B' .  

The  union o f  two clusters Cp = A" u B' ,  and Cq = A '"  u B " ,  where 
A "  c A, and B "" c B, A" c~ A "" = QS, B" n B '"  = QS, is a cluster Ct defined as 
follows: 

Ct = Cp u Cq = {A" u B ' }  u { A "  u B " }  . (2) 

Let  there be two clusters Cp and Cq at a particular hierarchical level. The  
assignment of  numerical values to the elements of  a two-mode array A * x B * 
with A * = A" u A "  and B * = B" ~ B '"  yields a submatrix Xt. This submatrix 
is decomposed  into four submatrices or blocks, two of  which correspond to 
the clusters Cp = A" u B" and Cq = A "" u B " :  X e = (xi-j-) and Xq = (xi.~..), 
respectively; the other two blocks correspond to the sets R a = A" u B " ,  and 
Rf~ = A "" u B':  Xa  = (xi~i..) containing npmq elements, and XI~ = (Xi--j-) con- 
t a l n i n g  nqrnp elements, respectively. The decomposit ion of  submatrix Xt into 
four blocks is illustrated in Figure 1. 
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Figure 1. Illustration of the Decomposition of Submatrix X,. 

Let M(A, B) be the set of all subsets of the union of set A and set B. A 
two-mode hierarchical clustering system is defined as a subset f2 of M(A, B), 
which satisfies the following conditions: 

(1) A u B e ~ 2 ,  O~f2;  
(2) {Ai},{Bj}e f2forallAie AandBj~ B; 
(3) if Cr, Cs ~ ~ with Cr n Cs ~ f~, then Cr c_ Cs or Cs c Cr. 

3.2 The Algori thm 

The centroid effect algorithm aims at constructing a two-mode 
hierarchical clustering system with clusters having minimal internal hetero- 
geneity. Specifically, a two-mode cluster is said to have low internal hetero- 
geneity to the extent that its elements show strong inter-mode relations with 
as small a variance of corresponding numerical values as possible. 

In the following, the input data are presumed to be carefully scored or 
normalized such that larger entries indicate a stronger relationship between 
the corresponding row and column elements; that is, the data are interpreted 
as "similarities." In line with the above notion of cluster heterogeneity, the 
internal heterogeneity measure of a two-mode cluster Cr is expressed as 
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M S D r  - 1 ~ (xi ' j" - It) 2 , (3) 
rlrmr A~.eA',Bj.eB" 

where ~t is the maximum entry in the input matrix X, that is ~t = m a x i , j ( x i j ) .  

Thus, M S D  r is the mean squared deviation of entries xiT" in the correspond- 
ing submatrix Xr from the maximum entry la in X. 

In the definition of the M S D  index, I-t is chosen to be the maximum 
entry since it has the advantage of providing an easy-to-interpret measure of 
the internal heterogeneity of a newly formed two-mode cluster. Specifically, 
the present choice ensures that the cluster elements will show relatively 
strong, homogeneous inter-mode relations. In addition, it is in accordance 
with the traditional error variance rationale in one-mode hierarchical cluster- 
ing; that is, the fusion value of the cluster formed at the lowest level, defined 
as the increase in the error variance within the cluster, is zero. Thus, our 
approach parallels Ward's (1963) one-mode agglomerative algorithm which 
starts with merging two entities whose fusion results in the minimum increase 
in the within-cluster error-sum-of-squares measure. Some issues concerning 
our choice of the maximum matrix entry will be dealt with in the final section. 

Since 

2 - 2  
1 Z x i j  = Sr + Xr '  

nrmr A~.~A',Bj,cB" 

- 2  
where s 2 is the variance of entries in Xr, and Xr is the corresponding squared 
mean, (3) can be written as 

M S D r  = s 2 + (Xr - ~t) 2 �9 (4) 

The squared difference between the mean entry in the submatrix 
corresponding to Cr and the maximum entry in the input matrix is called the 
"centroid effect" of this cluster. It can be seen that the problem of minimiz- 
ing M S D  r is equivalent to finding a cluster Cr for which the sum of the vari- 
ance of the corresponding numerical values and the centroid effect is 
minimum. Hence, the M S D  index may be interpreted as a two-mode error 
variance term, analogous to the variance criterion of traditional hierarchical 
or nonhierarchical (partitioning) one-mode clustering techniques. 

The fusion rule may now be specified as follows. At each step of the 
agglomerative algorithm, a particular subset of mode A is merged with a par- 
ticular subset of mode B such that the increase in the internal heterogeneity 
measure of  the resulting two-mode cluster is as small as possible. To accom- 
plish this objective, several heuristic criteria are employed that are closely 
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related to the M S D  index. Wlfich criterion will be used at any particular step 
in the agglomerative process depends on the subsets considered. Three gen- 
eral cases can be distinguished. In each case, those two subsets yielding the 
smallest criterion value will be merged. 

Case I. A single-element subset {A i. } iS tO be merged with another single- 
element subset {Bj.  }: 

M S D i  7, = ( x i . j . - I / )  2 �9 (5) 

Case l la .  A single-element subset {Bj .  } is to be merged with an existing 
two-mode cluster Cr: 

M S D a  - 1 ~ (xi.i._~t)2. (6) 
tlr Ai.~A" 

Case lib. A single-element subset {A i.} is to be merged with an existing 
two-mode cluster Cr: 

MSDf~ - 1 ~ ,  (xiT. - t.t) 2 . (7) 
mr Bj.e B" 

Consider now the case in which two existing two-mode clusters are to 
be merged. According to the definition of the union of two clusters given 
above and schematically illustrated in Figure 1, the squared deviations are to 
be computed only for those entities of mode A and only for those entities of 
mode B which belong to the sets R a and RI3, respectively. This case may be 
formally expressed as follows: 

Case III. A two-mode cluster Cp = A"  u B" is to be merged with a two-mode 
cluster Cq = A "" u B "  into a new cluster Ct: 

1 
M S D  ~ = • (8) 

Rpt'tlq + nqmp 

[A Z (Xi.j.,-~I,)2 + Z (xi..j.-p.)21 . 
i.~-A ",Bi..~ B "" Ai..~-A "',Bi.r B" 

As a conventional criterion for determining the number of two-mode 
clusters present in a given data matrix, a marked increase in fusion values can 
be considered indicative of the formation of a relatively heterogeneous dus-  
ter. Thus, a decision as to the number of clusters can be reached analogously 
to the fusion criterion in the one-mode error-sum-of-squares clustering 
method (Ward's [ 1963] method). 
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Since the number-of-clusters problem has no satisfactory solution 
based on a single criterion (see, e.g., Everitt 1979; Milligan and Cooper 
1985), one may find it helpful to use another criterion related to the MSD 
index above. For a given cluster Cr, this criterion, which we call the "cen- 
troid effect ratio" (CER), is: 

- 2  
Xr 

- --------7 �9 ( 9 )  CERr S2r + Xr 

The CER index measures the contribution of the mean "cluster effect 
- 2  

size," expressed as the squared mean Xr, to the total "cluster effect size," 
- 2  

expressed as the sum of the within-cluster variance s 2 and xr. CER is directly 
related to the well-known "coelF, cient of variation" (V): CER = 1/(1 + V). 
Thus, a cluster having a relatively low value of the CER index can be inter- 
preted as having a small average inter-mode relation between entities relative 
to a large within-cluster variability. Preliminary evidence suggests that a 
value of  the CER index smaller than 80% is indicative of a relatively low 
cohesiveness among the elements of the respective cluster. This cluster may 
then be excluded from further consideration. 

As a final option, the algorithm allows constructing overlapping clus- 
ters to circumvent the problem characterizing hierarchical clustering methods 
in general: Once an element of the set or sets to be classified is a member of a 
cluster at some hierarchical level it can no longer be merged with any other 
duster at the same level of the agglomerative process. The procedure is as 
follows: Having reached a decision as to the number of (disjoint) clusters, 
each row and column element of the input data matrix not already belonging 
to a given cluster is considered in turn a possible candidate for joining it. An 
element may be added if the corresponding criterion value (see Formulae (6) 
and (7) above) does not show a marked increase and/or the centroid effect 
ratio of the resulting cluster remains sufficiently high. Once again, values of 
the CER index above 80% may be considered a lower limit for including the 
respective element into the cluster. In any case, the decision as to the inclu- 
sion of a given row or column element into some cluster is left to the user. 
Although of an ad hoc nature, the present option may prove to be a useful 
adjunct to a disjoint two-mode hierarchical classification. An illustration of 
this procedure is given for the second empirical data set analyzed below. 

To demonstrate the basic features of the algorithm, consider an exam- 
ple with row elements A 1, A2, A 3, A4, and column elements B 1, B2, B3. The 
artificial input data are shown in Table 1. 

Presupposing that larger entries indicate stronger inter-mode relation- 
ships, elements A 2 and B 1 are joined together first. In the next step, elements 
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Table i 

Example Data 

Mode B 

Mode A B 1 B 2 B 3 

A I 4.1 1.9 3.1 

A 2 6.8 2.3 2.4 

A 3 1.7 3.6 6.1 

A 4 3.0 5.8 3.2 

Note. The higher the score, the st ronger 

the r e l a t i o n s h i p .  

Table 2 

Results fo r  Example Data 

Hierarchy Increase in Two-mode 
Level MSD Index CER Index Cluster  

1 0.00 a 1.00 {A 2, B I}  

2 0.49 a 1.00 {A 3, B 3} 

3 1.00 a 1.00 {A 4, B 2} 

4 7.29 b 0.94 {A I ,  A 2, 

5 11.60 c 0.93 {A 3, A 4, 

6 19.63 c 0.83 {A I ,  A 2, 

B I } 

B 2, B 3 } 

A 3, A 4, B I ,  B 2, B 3} 

Note. asee Formula (5).  bsee Formula (6b). CSee Formula (7).  
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Figure 2. Tree Representation for the Example Data. 

A 3 and B 3 are merged etc. The complete listing of the fusion process is given 
in Table 2. A graphical display of the two-mode hierarchical clustering sys- 
tem is provided by Figure 2. 

4. Applications 

In this section we present two applications of our approach to real data 
sets drawn from consumer research concerning brand-switching behavior and 
from personality research concerning the interrelationship between behaviors 
and situations. These applications are only suggestive of a range of substan- 
tive applications where a two-mode hierarchical clustering analysis seems to 
be the method of choice. Some further applications are discussed in Eckes 
(1991) and Eckes and Orlik (1991). 

4.1 Soft Drinks Brand-Switching Data 

The first application is concerned with a study from consumer research 
addressing the question of which brands of soft drinks chosen at one point in 
time will also be chosen at some later point in time (i.e., brand-switching pro- 
babilities). Since these data have been repeatedly analyzed in the two-mode 
clustering literature (see, e.g., Arabie, Schleutermann, Daws and Hubert 
1988; DeSarbo 1982; De Soete and DeSarbo 1984), they lend themselves 
readily to evaluating the efficacy of our approach. 
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In a study by Bass, Pessemier and Lehmann (1972), 280 subjects were 
required to select a 12-ounce can of soft drink four days a week for three 
weeks from among eight brands. Table 3 presents the 8 x 8 nonsymmetric 
brand-switching matrix containing the observed probabilities of  switching 
from one brand of  soft drinks in period t to another brand in period t + 1. 
Prior to analysis, the matrix was normalized by dividing each cell by the pro- 
duct of  the respective row and column arithmetic mean - -  a preprocessing 
step recommended in DeSarbo (1982) to dampen the effects of differences in 
market share. 

Figure 3 displays the laierarchical tree structure and the corresponding 
sequence of  fusion values derived from a centroid effect analysis of  the nor- 
malized nonsymmetric proximity data. 

The brands in capital letters represent the row items (in period t) and 
the other brands represent the column items (in period t + 1). Two major 
clusters emerge: one with non-diet items Pepsi, Coke, 7-Up, and Sprite, and 
the other with diet items Diet Pepsi, Tab, Like, and Fresca. The cluster of 
non-diet drinks is split into a cluster consisting of the market leaders, Coke 
and Pepsi, and a cluster containing the leading non-cola, lemon-lime drinks, 
Sprite and 7-Up. As can be seen, the diet drinks form a fairly compact group, 
the only exception being Fresca, which is identified as a cluster of its own (in 
each case, these cluster descriptions refer to both period t and period t + 1). 
Our results indicate that consumers are most likely to switch between Coke 
and Pepsi, between 7-Up and Sprite, and among the four diet drinks, Diet 
Pepsi, Tab, Like, and Fresca. 

As noted above, there is some tradition of using the brand-switching 
data of  Bass et al. to illustrate new methods of data analysis. Thus, it seems 
appropriate to compare the structural representation in Figure 3 with the 
results of  previous studies. Using his GENNCLUS model, which requires the 
same number of  clusters for both modes, DeSarbo (1982) identified three 
clusters. The only difference between the row clusters and the column clus- 
ters was that Fresca moved from a cluster containing 7-Up and Sprite (period 
t) to one containing Tab, Like, and Diet Pepsi (period t + 1). A high 
correspondence between DeSarbo's results and ours exists for his second row 
cluster comprising Tab, Like, and Diet Pepsi and our cluster of  diet drinks 
(excluding Fresca). Since GENNCLUS allows for overlapping clusters, it is 
difficult to find any other simple correspondences. DeSarbo and De Soete 
(1984) fitted an ultrametric tree to the brand-switching data using a penalty 
function approach. Their tree representation and ours are in perfect agree- 
ment. This relationship even holds for the fusion levels at which the same 
row and column brands are joined. According to DeSarbo and De Soete 
(1984), these fusion levels may be considered inversely related to brand loy- 
alty. For example, in both ultranletric trees the loyalty for Coke and Sprite 
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Figure 3. Tree Representation for the Brand-Switching Data. 
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seems to be much greater than that for Fresca and Tab. Finally, our results 
may be compared to Arable, Schleutermann, Daws, and Hubert 's (1988) 
application of  an improved version of the bond energy algorithm. Although 
Arabie et al. did not use the normalization of  brand-switching probabilities 
described in DeSarbo (1982), the three row clusters and the four column clus- 
ters they obtained reveal some marked similarities to our solution. The first 
row cluster containing Diet Pepsi, Tab, and Like can easily be identified with 
our first sub-cluster of  diet drinks; the second row cluster agrees well with our 
non-diet coke cluster; the third row cluster consisting of 7-Up and Sprite 
corresponds to our non-diet non-cola cluster. The correspondences between 
the column clusters and our solution are less pronounced. 

4.2 Behavior-Situation Congruence 

The second application deals with a long-standing issue from personal- 
ity and social psychology concerning the interrelationship between behaviors 
and situations. Viewed from an interactionist perspective (see Endler and 
Magnusson 1976), what is important in predicting social behavior is neither 
the determination of  stable dispositions underlying the behavior nor the 
identification of  salient properties of the situation in which the behavior 
occurs, but the analysis of the mutual relation between behavior and situation. 
In line with this reasoning, two-mode clustering seems to be the model of  
choice for depicting the structure of behavior-situation interactions. In the 
present case, the input matrix consists of mean ratings of the appropriateness 
of  behaviors in everyday situations. Since these data are of some interest in 
their own right and since they are particularly well suited to illustrating the 
various facets of a centroid effect analysis, the theoretical and empirical con- 
text of  this application is discussed in more detail. 

Price (1974) addressed the question of whether classes of  behaviors can 
be discovered which are uniquely appropriate in certain classes of  situations. 
Fifty-two subjects were asked to rate, on a scale from 0 through 9, the 
appropriateness of  15 behaviors in each of  15 common situations (e.g., "sleep 
on a bus", "laugh at the movies", "eat  at a job interview"). Behaviors and 
situations had been abstracted beforehand from detailed diaries kept by an 
independent sample of  subjects for one entire day, recording each situation 
they found themselves in and what behavior they engaged in for each situa- 
tion. The appropriateness ratings were averaged across all 52 subjects for 
each of the 225 behavior-situation items. Behaviors and situations were then 
arranged in a 15 x 15 matrix (see Table 4). 

Before presenting the results of  our analysis, we will give a short out- 
line of  how Price went about answering the above question. First, he per- 
formed two separate hierarchical cluster an',dyses (using Carlson's [1972] 
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algorithm), one of  situations based on intercorrelations of situations across 
behaviors resulting in four situation clusters, and the other of  behaviors based 
on intercorrelations of  behaviors across situations resulting in four behavior 
clusters. Then he computed the mean appropriateness rating for the members 
of  each behavior cluster with respect to those of  each situation cluster. By 
plotting the cluster profiles for each of  the situation clusters in terms of  the 
behavior clusters, Price was able to demonstrate that each of  the situation 
profiles had a distinctly different form and that there were some clusters of  
behaviors judged to be highly appropriate for some situations clustered 
together but not for others. For example, in his portrayal, the behaviors 
"eat '  ', "laugh' ', "kiss'  ', and "fight" appeared to be especially appropriate in 
the situations "date",  ' 'family dinner' ', and "movies".  

Price's approach, based on techniques available at the time, is flawed 
for several reasons. First, similarity between behaviors is operationally 
defined according to similarity in the pattern of appropriateness ratings across 
situations. Hence, differences in the mean level of behavioral appropriateness 
are neglected, giving rise to some rather peculiar behavior clusters. For 
instance, "fight" and "kiss"  belong to the same cluster; the corresponding 
mean ratings across situations are highly correlated (i.e., r = .  87; see Price 
1974, p. 576). However, the mean rating Ibr "fight" is 1.96 (with a standard 
deviation of  0.95), the one for "kiss"  is 5.00 (with a standard deviation of  
2.22; see Price and Bouffard 1974, p. 582). This shows that "fight" is con- 
sidered inappropriate in almost all situations studied, whereas "kiss"  is con- 
sidered appropriate in at least some situations - -  an information not retained 
in Price's representation of  the data. Of  course, the same reasoning applies to 
situational similarity using intercorrelations of situations across behaviors. 

More importantly, the question Price tried to answer is of an inherently 
two-mode nature. Separate classifications of the set of behaviors and of the 
set of situations with post hoc efforts to relate the results of  both 
classifications to each other cannot faithfully represent the intricate interrela- 
tionships between the entities of  both modes. The latter goal can be better 
accomplished by a simultaneous hierarchic (and/or nonhierarchic) 
classification of  behaviors and situations, as shown below. 

Finally, Price's approach does not allow for a detailed consideration of  
particular behavior-situation relations. The congruence between behaviors 
and situations is only represented at the abstract level of clusters of behaviors 
or clusters of  situations. Which behaviors of a given behavior cluster are 
judged to be highly appropriate (or highly inappropriate) in a specified situa- 
tion remains an open question. In the following we show how a centroid 
effect analysis deals with these issues. 

As a preliminary step, the data in Table 4 were centered by subtracting 
the midpoint of  the rating scale (i.e., 4.50) from each entry; then each column 
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(representing an element of  the behavior mode) was reflected; that is entries 
were first duplicated in a columnwise fashion, and then the duplicated entries 
were rescored by multiplying with - 1. This reflection of column elements 
ensured that behaviors highly appropriate in a given situation could be 
clustered separately from the same behaviors being highly inappropriate in 
some other situations. Put differently, in the final hierarchical solution each 
behavior is made to appear two times, once clustering with situations in 
which it is considered appropriate, and a second time clustering with situa- 
tions in which it is considered inappropriate. The reason for this preparatory 
step is that exceptions to the rules of  normal conduct for a particular situation 
(i.e., inappropriate behavior) may be at least as revealing about the underly- 
ing structure of  consensual perceptions of the situation as is the most com- 
mordy exhibited behavior. 

Figure 4 displays the hierarchical clustering solution constructed by the 
centroid effect analysis of  the augmented 15 • 30 input matrix. 

Situation labels are put in capital letters, and a minus sign in front of  
the label of  a behavior indicates that the behavior is judged to be inappropri- 
ate in the situation(s) with which it is clustered. The succession of  fusion 
values suggests the selection of  four two-mode clusters, leaving four entities 
unclassified (i.e., "-talk",  "-laugh", "fight", and "-write").  Two clusters 
comprise situations characterized exclusively by highly inappropriate 
behaviors (Clusters A and B), whereas the two other clusters consist of situa- 
tions characterized exclusively by highly appropriate behaviors (Clusters C 
and D). Thus, in a job interview it is highly inappropriate to sleep, kiss, or 
belch (see Cluster B); in contrast, in one's own room he or she can feel free to 
sleep, talk, or read (see Cluster D). Our results show that situations like " job  
interview" have a fairly high degree of structure and definition, allowing for 
only a very small range in behavioral choices; situations like "own  room" 
have substantially less structure and definition, allowing for a substantially 
greater range in behavioral choices (see Snyder and Ickes 1985). 

In addition to visually representing the interrelationships between 
behaviors and situations, the hierarchical level at which a given behavior is 
for the first time joined together with a situation indicates the degree of 
judged (in)appropriateness of the behavior in that situation. For instance, as 
can be seen from the fusion values included in Figure 4, "s leep"  is con- 
sidered more inappropriate in a job interview than "cry" ,  " jump",  or 
"shout" .  Conversely, " talk" and " read"  are considered more appropriate 
behaviors in one's own room than "cry" ,  "mumble'  ', or "argue".  

As a final step, an overlapping cluster solution was constructed. Each 
row and column element of the input matrix was added to one or more of  the 
four disjoint clusters if the resulting increase in fusion values was relatively 
low and the CER index did not fall below 80%. Table 5 gives a summary pre- 



An Error Variance Approach 69 

A L 
B 

- f ight  

CHURCH 

CLASS 

SIDEWALK 

ELEVATOR 

RESTROOM 

-run 

BUS 

-sleep 

JOB INTERVIEW 

-kiss 

-belch 

-mumble 

-cry 

-jump 

-shout 

-eat 

-argue 

-read 

-write 

laugh 

BAR 

MOV I ES 

DORM LOUNGE 

eat 

FAMILY DINNER 

PARK 

FOOTBALL GAME 

kiss 

DATE ---7 
sleep 

OWN ROC~I 

talk 

read 

write 

cry 

mumble 

argue 

belch 

jump 

shout 

run 

f ight 

-laugh 

-talk 

I:IIII!I!:IIII~I~II~IIIIIII!:;:~::I:I:I~I~ 

I I 

I 

J 

Figure 4. Tree Representation for the Behavior x Situation-Appropriateness Rating Data. 
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Table 5 

Four Cluster Nonoverlapping and Overlapping Solution for 

Behavior x Situation-Appropriateness Rating Data 

Original elements 

Behaviors Situations 

Added elements 

Behaviors Situations 

- f igh t ,  -run church, 
class, 
sidewalk, 
elevator, 
restroom, 
bus 

Cluster A 

job in t . ,  
bar, 
movies, 
family d. 

-sleep, -kiss, 
-belch, -mumble, 
-cry, -jump, 
-shout, -eat, 
-argue, -read 

job int .  

Cluster B 

talk,  - f i gh t ,  
-run 

church 

laugh, eat, 
kiss 

bar, 
movies, 
dorm lou.,  
family d., 
park, 
footba l l ,  
date 

Cluster C 

talk,  - f i gh t  own room, 
sidewalk, 
bus, 
elevator 

sleep, ta lk ,  
read, write, 
cry, mumble, 
argue, belch, 
jump, shout, 
run 

Cluster D 

own room kiss, laugh, park 
eat 

Note. Behaviors with a minus sign are considered inappropriate in the 

respective s i tuat ion(s) .  
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presentation of  the original four-cluster nonoverlapping solution and the 
corresponding overlapping solution. 

Most interestingly, " talk" is now also contained within Cluster B, 
showing that this is the only behavior judged (highly) appropriate in a job 
interview. Furthermore, this behavior is joined with primarily social situa- 
tions like "date" ,  "family dinner", and "ba r"  (see Cluster C). Considering 
Cluster D, note that all the behaviors judged to be appropriate in one's own 
room are also judged to be appropriate in a park. Thus, "own room" and 
"park"  seem to be situations highly similar to each other with respect to the 
behaviors they tend to elicit (see Frederiksen 1972). Taken together, the 
overlapping cluster solution provides a more complete and differentiated 
representation of  the complex structural relationships between behaviors and 
situations, thereby leading to a deeper understanding of  the behavior-situation 
congruence issue. 

5. Limitations and Further Directions for Development 

At the present stage of its development, certain limitations of  our 
approach to two-mode hierarchical clustering should be noted. First, the 
MSD index and the fusion criteria are basically defined as (mean) squared 
differences between la, the maximum entry in the input matrix, and entries 
corresponding to elements that are going to be merged when the new cluster 
is formed. We have chosen ~t to be the maximum entry for pragmatic reasons, 
that is, the MSD index and the closely related fusion criteria have the advan- 
tage of  being easy to interpret. However, since the internal heterogeneity 
measure depends on a single numerical value, it is prone to error to some 
extent, To examine what this dependence implies for the robustness of  our 
algorithm, more detailed investigations using a large number of artificially 
created data sets have to be made. At a minimum, in the majority of applica- 
tions the approach proposed here will necessitate some kind of normalization 
or standardization (Milligan and Cooper 1988) of  the raw input data. 

The present approach allows constructing overlapping clusters after a 
decision as to the number of  disjoint clusters has been made. Each row and 
column element of  the input matrix that has not already been classified is ten- 
tatively assigned to each cluster and retained only if the internal hetero- 
geneity measure of  the augmented cluster does not show a marked increase, 
or, alternatively, if the CER index does not fall below a predetermined thres- 
hold value. This procedure is limited insofar as overlapping clusters are con- 
structed only after the number of disjoint clusters has been decided on. In 
addition, the criterion for determining whether a given row or column ele- 
ment is to be assigned to some existing cluster lacks objectivity. Future 
developments may improve the currently sequential, ad hoc procedure by 
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incorporating the option for overlapping clusters at the very start of  cluster 
formation. 

These limitations notwithstanding, the approach presented here seems 
to be well suited to elucidating the two-mode similarity structure inherent in a 
data matrix. Applications of  this method to two real data sets drawn from 
marketing research and from interactionist personality research revealed the 
interrelationships between the respective sets of entities. When theoretical 
considerations or hypotheses about the empirical data structure hint at the 
existence of  strong unique associations between the elements of two different 
modes such as in the behavior-situation example, two-mode hierarchical clus- 
tering will prove a particularly useful tool of  research. 
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