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Abstract: Recent research into graphical association models has focussed interest 
on the conditional Gaussian distribution for analyzing mixtures of categorical and 
continuous variables. A special case of such models, utilizing the homogeneous 
conditional Gaussian distribution, has in fact been known since 1961 as the loca- 
tion model, and for the past 30 years has provided a basis for the multivariate 
analysis of mixed categorical and continuous variables. Extensive development of 
this model took place throughout the 1970's and 1980's in the context of discrimi- 
nation and classification, and comprehensive methodology is now available for 
such analysis of mixed variables. This paper surveys these developments and sum- 
marizes current capabilities in the area. Topics include distances between groups, 
discriminant analysis, error rates and their estimation, model and feature selection, 
and the handling of missing data. 

Keywords: Classification; Discrimination; Distances; Error rates; Feature selec- 
tion. 

1. Introduction 

Multivariate data sets containing mixtures of categorical and continu- 
ous variables arise frequently in practice. Various simple approaches to the 
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analysis of such data sets are possible: arbitrary categorization of  all the con- 
tinuous variables followed by analysis using standard methods for multivari- 
ate categorical data, or arbitrarily scoring all the categorical variables and 
then using standard methods for multivariate continuous data, or analyzing 
the categorical variables and the continuous variables separately (each by 
standard methods) and then attempting to synthesize the two sets of results. 
None of these options seems satisfactory for comprehensive analysis of  the 
data, however. The first approach loses information in the categorization of  
continuous variables, the second introduces considerable subjectivity in the 
numerical scoring adopted, while the third ignores any associations existing 
between the categorical and the continuous variables. 

A much more satisfactory general approach is first to specify a 
parametric model for mixed variables, then to fit the model to the data at hand 
and finally to use the parameter estimates for drawing inferences. By 
parametric model here is meant a suitable joint probability distribution for a 
set of  q categorical variables and c continuous variables. Standard probabil- 
ity theory tells us that a joint distribution of p variables can be expressed as 
the conditional distribution of any subset of these variables given the values 
of  the remainder, times the marginal distribution of these remaining variables. 
Thus if we want to specify the joint distribution of q categorical and c con- 
tinuous variables then there appear to be two routes that we could take: as the 
conditional distribution of the categorical variables given the values of  the 
continuous variables, times the marginal distribution of the latter; or as the 
conditional distribution of  the continuous variables given the values of  the 
categorical variables, times the marginal distribution of  the latter. 

The first possibility was briefly raised by Cox (1972), who suggested 
that the joint distribution of  a mixture of  binary and continuous variables 
could be written as a logistic conditional distribution of  the binary variables 
for given values of  the continuous variables, times a marginal multivariate 
normal distribution for the latter. However, this idea appears not to have 
been pursued any further in the analysis of  mixed data sets, almost all work in 
the area focussing on the second route outlined above. Here it is assumed 
that the continuous variables have a different multivariate normal distribution 
for each possible setting of  categorical variable values, while the categorical 
variables have an arbitrary marginal multinomial distribution. This model 
has been termed the "conditional Gaussian distribution" (CGD), and it forms 
the central plank of  graphical association models for the analysis of mixed 
categorical and continuous variables. There has been a great deal of  interest 
recently in these models, and full details can be found in the work of  Lau- 
ritzen and Wermuth (1989), Edwards (1990), Wermuth and Lauritzen (1990) 
and Whittaker (1990, Chapter 11). We briefly summarize here the relevant 
technical results for our subsequent purposes. 



Location Model for Mixtures 27 

Suppose that the q categorical variables and c continuous variables are 
denoted X = (X1,X2 . . . . .  Xq) r and Y = ( Y 1 , Y  2 . . . . .  Yc) r. Furthermore, 
assume that the i-th variable Xi has si possible categories so that overall there 

q 
are s = I-I si possible states, i.e., patterns, of  discrete-variable values. The 

i=1 
above model thus implies that if X falls in state j then Y - N ( B j ,  Zj) while the 

$ 

probability that X falls in state j is p j  ( j  = 1 . . . . .  s; Z p j  = 1). Hence the 
j=l  

joint probability density of observing state j of X and value y of Y is 

1 T 
f ( j ,y )  = pj(2r~) -c/2 I Y,j I -~ exp { - 2 (y -Bj) Ey I (Y -Bj) }. (1) 

By collecting terms and redefining parameters, this density can be rewritten 
in the form 

1 yr  
f ( j , y ) = e x p { o t j + 1 3 T y -  ~- ~ j y } .  (2) 

The parameters in (1) are called the "moment"  parameters of the CGD, the 
triple (p j ,B j ,Z j )  comprising, respectively, the cell probability, the cell mean 
and the cell dispersion matrix for the j-th state, while the parameters in (2) are 
the "canonical"  parameters of the CGD. Here c~j are scalars (the discrete 
canonical parameters), the 13j are c-element vectors (the linear canonical 
parameters) and the f~j are (c • c) positive-definite symmetric matrices (the 
cell precision matrices). Expanding (2) in terms of vector and matrix ele- 
ments yields the form 

1 ~ ~ ~[jk, YkYl }- f (j,y) = exp {0~j "l- k=l ~ •jkYk -- 2 k=l /=1 (3) 

Since the values of ct), 13jk and ~'jkt depend on the state j of  the discrete vari- 
ables, and the latter can be viewed as "factors" in the terminology of design 
of experiments, then each of ocj, [3jk and "fjkt can be expressed as a sum of 
main effects of  the relevant individual discrete variables and interactions of 
all orders between them. This yields an expansion into terms resembling 
ANOVA or log-linear models. 

A graphical association model is a model with density of the form (3), 
containing expansions in terms of main effects and interactions, in which all 
pairs of  variables in a specified set are conditionally independent given the 
remaining variables. (This model is "graphical" because it is a model for 
multivariate random observations whose independence structure is character- 
ized by a graph, so the word "graphical" should here be interpreted in the 
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context of  mathematical graph theory; for full background details see Whit- 
taker, 1990). Lauritzen and Wermuth (1989) established that two variables 
are conditionally independent given the rest if and only if  all interaction 
terms involving the two variables are zero. Edwards (1990) defined hierarch- 
ical interaction models as the most general densities of  form (3) in which the 
marginality principle is still respected (i.e., if a particular interaction term is 
set to zero then all interaction terms that "include" it are also set to zero). 
The goal of  graphical modeling is then to determine the most parsimonious 
such model for a given set of  data; the technical aspects concerned with 
fitting these models (maximum likelihood estimation of  parameters with and 
without constraints, likelihood ratio tests, distributional results) are covered 
in the references cited earlier. 

Although we will not be concerned specifically with graphical model- 
ing here, it is pertinent to note that the full CGD model has appeared occa- 
sionally in other contexts. One such previous occurrence was in the calcula- 
tion of  distance between two populations (Krzanowski, 1983a). If we sup- 
pose that there are g populations, denoted rc i (i = 1 . . . . .  g), and that a 
different CGD is permitted in each population, then we must introduce an 
extra subscript into the model parameters to allow for the different popula- 
tions. Thus Pij now denotes the probability of  cell j in population Iti, while 
t.tij and Z/j respectively denote the mean vector and dispersion matrix of Y in 
cell j of  population rq. The density (1) then generalizes to: 

1 
f ( j , y ;  7ti) = pi)(2n) ~ I Zij I -~ exp { - ~- (y -I.ti)) T E~ 1 (y - t.tij)} (4) 

Krzanowski (1983a) surveyed the various possible general definitions of the 
distance Aab between ~a and rob, and chose to work with the Matusita (1956) 
definition, also known as the Hellinger distance. This definition involves cal- 
culation of  the affinity 9ab between ~,~ and r~b, and Krzanowski (1983a) 
showed that for the case z = (j,y) and densities in (4), 

s 

Pab = j~=l (PaJPbJ)l/Z2c/2 I Zaj 11/4 I Zbj 1-1/4 I I + Y'aj Y~'b) I-1/2 

1 -Vbjk) + Xkj)]} exp { - ~ - k  =1 [(Vajk 

• 

(5) 

where ~ij,lij are solutions of  (Zbj -~,ij Y'aj) lij = 0 and Vajk = I~j l.ta). 
Since "affinity" is the converse of  "distance", possible measures of  

distance between 1~, a and "l~ b are Z~ab {2(1 "'~ _ = - Pab)l , Aab = --log Pab or 
Aab = COS-I Pab. The first of  these measures was used. 
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For practical applications, the parameters in (5) may be estimated from 
data by maximum likelihood, yielding intuitively reasonable estimates. Pij is 
given by^the proportion of individuals falling in state j of population hi, while 
~tij and Eij are given by the mean vector Yij and covariance matrix Sij of the 
continuous variable values for these individuals. However, if s is at all large 
or if sample sizes are small, many of  the states will have few observations 
and some Zij will be poorly estimated. In this case it is possible to constrain 
the model, which will lead to pooled estimates. Various levels of  pooling are 
possible: 

(i) pool within states for each population (equivalent to assuming that 
the dispersion matrix is constant over cells in each population 
separately, i.e., that Eij - Ei for i = 1 . . . . .  g); 

(ii) pool within populations for each state (equivalent to assuming that 
the dispersion matrix is constant over populations in each cell 
separately, i.e., that Eij --Ej fo r j  = 1 . . . . .  s); 

(iii) pool within populations and states (equivalent to assuming that the 
dispersion matrix is constant over cells and populations, i.e., that 
Zij ~ Z for all i,j). 

Krzanowski (1984) provided a Monte Carlo estimation scheme for the null 
distribution of  distance between ~a and ~b in case (iii), a result which enables 
some inferential procedures to be applied to the analyses of data sets in prac- 
tice. 

Case (iii) above, where the same dispersion matrix Z is assumed for 
each combination of categorical variable values (i.e., at each discrete "loca- 
t ion") is known as the homogeneous CGD case (in which the mixed interac- 
tion components of the canonical parameters ctj, ~jk and ~jkl are all set to 
zero). This case was first inlroduced by Olkin and Tate (1961) under the 
name "location model"  for analysis of  mixed binary and continuous vari- 
ables. These authors looked at canonical correlations between binary and 
continuous variables for various possibilities involving c and q, established 
population results connecting these canonical correlations and the continuous 
variable means Ix,i, and investigated the distribution theory for their esti- 
mates. Afifi and Elashoff(1969) extended the study of  the model to the two- 
sample case. They investigated the effect of ignoring the binary nature of  the 
xi in calculating the usual two-sample Hotelling's T a, and showed that the 
test was not consistent but that the distribution of T 2 depended on nuisance 
parameters. They then went on to derive an information-theoretic test of  
difference between groups and established the null distribution of  the test 
statistic. In this work, they assumed that the parameter estimates Pij, ~ij and 
Eij given above would be available for all binary-variable locations; other- 
wise the test could not be done. 
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The major practical developments of the location model that have 
taken place since these two pioneering papers have been almost exclusively 
in the context of discriminant analysis, and it is with this aspect that the 
current survey is concerned. In Section 2 we set up the basic location model 
formulation and summarize the different approaches adopted in practice, 
while in Section 3 we consider possible extensions of the basic ideas. Section 
4 is concerned with model and feature selection aspects and problems, while 
Section 5 surveys alternative ways of tackling mixed-variable discrimination. 
In Section 6 we indicate how the graphical modeling ideas considered at the 
start can point the way to future developments. 

2. Discriminant Analysis Methodology 

2.1 Bayes Rule 

We assume that there are two populations n I and n2, discrimination 
between which is required. Historically, the location model methodology was 
developed from the starting point of a mixture of c continuous and q binary 
variables, and it is convenient to follow this line of development here. In this 
case we have si = 2 discrete variable categories for each i, and hence s = 2 q 
states, or cells, altogether. If we denote the two possible 'values' of each 
binary variable as 0 and 1, then the s cells can be logically arranged in the 

q 
order j iZ=l x i 2 i-1 where xi is the value of the i-th binary variable. The 

location model thus specifies: 

P r ( X  = j Ixi) = Pij and (Y I X = j ,rti) - N(Bi  j , Z) 

for i = 1,2 and j = 1 . . . . .  s .  (6) 

By forming the ratio of the joint probability densities in the two populations, 
it readily follows (see, e.g. Krzanowski 1975) that for equal costs due to the 
two types of misclassification and equal prior probabilities of group member- 
ship the Bayes classification rule is to allocate an individual with X = j and 
Y = y t o  7tl if 

1 
(~lj  -- ~12j) T x - I  {Y -- 2 (]s + ~12j)} > log (P2j/Plj) (7) 

and to rt 2 otherwise. This allocation rule is, in effect, a different linear 
discriminant function for each discrete variable location. It is clear that the 
misallocation probabilities with this rule will therefore be the weighted sums 
of the misallocation probabilities at each location, these misallocation 
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probabilities being obtainable from standard linear discriminant theory and 
the weights being the location probabilities Pij. Denoting by p( l t i l l t j )  the 
probability of  allocating to ni an individual that came from rcj, we have 

" 1 D~)/Dm} for i ~ j  p(r~i Ircj) = E P j m ~  {(log [Pim/Pjm] - ~ 
m=l 

(8) 

where DZm = (111,,- ~tZrn) T Z-1 (!11,,- tXZ,n) is the squared Mahalanobis dis- 
tance between nl and n2 in location m. 

If there are differential costs c 12,c21 due to misclassification of an indi- 
vidual, and differential prior probabilities q l ,q2 of observing an individual 
from the two populations, the net effect is to add k = log ( c l 2 q 2 / c z l q l )  to 
log (Pim/Pjm) in both (7) and (8). We will assume c 12 = c21 and ql = q2 for 
simplicity throughout. 

In practice, of  course, the population parameters will be unknown but 
random samples ("training sets") are generally available from nl and n2. The 
simplest approach that has been adopted in such cases is to estimate the popu- 
lation parameters from the training sets, and to replace the parameters in (7) 
and (8) by these estimates. Chang and Afifi (1974) considered the special 
case of q = 1, i.e., one binary variable, and assumed that there was at least 
one observation in each of the two binary variable locations in each popula- 
tion. Let there be nij observations in the j-th location of the training set from 
hi, and let Yijk be the k-th continuous variable vector in this location. The 
situation then corresponds exactly to a 2 •  (location • population) 
MANOVA, whence estimators of the population parameters are 

and 

- -  1 ?li 

hij  = Yij - tliJ k~=l Yijk 

2 2 ni 
= S - 1 Z Z Z (Yijk - Yij) (Y/jk - Yij) r 

n - 4  i=l j : l  k=l 

Pij = no ~hi 

2 

where n i = ]E n i j  and n = n 1 + n 2. Chang and Afifi called the resulting allo- 
j = l  

cation rule the "double discriminant function"; Tu and Han (1982) studied 
this rule further, in particular discussing an "inverse sampling" procedure to 
ensure non-singularity of matrices. 

As Chang and Afifi pointed out, there is no bar in principle to extension 
of  the above approach for the case q > 1. However, it is evident that if 
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sample sizes are small, or if q (and hence s) is at all large, then there are 
bound to be locations for which no data are present in the training sets. What 
strategy is then to be followed when this location occurs in an individual to 
be classified? Also, there will be some locations with only one or two indivi- 
duals present in the training sets, so the parameters for these locations will be 
very poorly estimated. It is therefore clear that an alternative to the naive 
estimation method given above is needed if this model is to have widespread 
practical utility. A second problem is that the misclassification probabilities 
(8) are derived under the assumption of conditional normality on the continu- 
ous variables. How can the performance of an allocation rule derived from 
(7) be assessed if this assumption is not satisfied? 

Krzanowski (1975) tackled both of these problems, proposing a scheme 
for obtaining smoothed parameter estimates and outlining steps to make 
data-based error rate estimation feasible. For the parameter estimation we 
first note that the binary variables can be treated as if they were factors in a 
MANOVA context, the 2 q locations being the possible categories of a q- 
factor experiment where each factor has two possible levels and the mul- 
tivariate response is y. Then if we denote by vi the overall mean of y in 
population "/~i, by (Zij the main effect of Xj, by fSi,jk the interaction between X j  

and Xk, and so on for interactions between the Xj of all orders, then we can 
express the B~j as the linear model: 

q 

Bij = V i  + • O~iuX u + ~ . , ~ i ,  uvXuXv + " - + ' ~ / i , l  . . . . .  q X  1 "" " Xq 
u = l  u<v 

(9) 

where xu is the observed value of X,, in location j. 
The above provides a MANOVA structure for the conditional means of 

the continuous variables. Moving on to the marginal distributions of the 
binary variables, we now have contingency tables of numbers of occurrences 
in each of the 2 q locations for the two populations. Thus we again have a 2 q 

factorial structure defined by the levels of the Xi, but now the responses at 
each location are incidences rather than realizations of a continuous vector y. 
A standard approach for the analysis of such data is by formulating an analo- 
gous log-linear model for the expected values riij = niPij in each location, so 
in our case we have the model 

q 

log rl0 = a)i + E 8iu x, + EE ~i, uvxuxv +.. .+ Illi, l . . . . .  qX 1 . . . X q  
u =1 u <v 

(10) 

where xu is as before. 
Such expansions in terms of the main effects of the individual xi and 

the interactions of  all orders between them link up with the expansions 
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discussed in the introduction to graphical modeling above. A current concern 
of  graphical modeling would be to determine which terms of  (9) and (10) to 
retain and which to delete in forming the most parsimonious model that fitted 
a given set of  data. Krzanowski (1975), however, adopted the pragmatic 
approach of  retaining only (and all) main effects and first-order interactions in 
both (9) and (10); he proposed fitting the resulting second-order models to the 
continuous variable parameters by multivariate regression and to the discrete 
variable parameters by iterative proportional fitting. This scheme involves 
2q(q + 1) + 4 parameters altogether. If the data are too sparse to admit such 
second-order models, then it should be possible to fit first-order models in 
which just the main effects are retained (giving 4q + 4 parameters to be 
estimated); a possible intermediate stage is one in which separate main effects 
are fitted in the two populations, but the interactions are constrained to be 
equal across populations (i.e., ~l.,~ = []2,uv and 01,,v = q~2,uv for all u,v with 
q 2 + 3q + 4 parameters to be estimated). 

This approach ensures that estimates l~ij and Pij are available even for 
those discrete-variable locations that have no observations in the training 
sets, so that the classification rule (7) can be estimated in all eventualities. 
What of  the estimation of  error rates induced by this rule? As mentioned 
above, using parameter estimates obtained from the second-order models in 
equation (8) will not give accurate assessment if the continuous variables are 
not normally distributed at each location, so a data-based method was sought. 
A suitable such method had earlier been proposed by Lachenbruch and 
Mickey (1968) in the now familiar leave-one-out method, for which each data 
point is omitted from the training sets in turn and classified on the basis of  the 
allocation rule computed from the remaining observations; the proportion of  
individuals misallocated in each of the two training samples gives the two 
estimated error rates. Naive application of  this procedure to large data sets 
may be feasible with modem computers, but at the time would have been 
computationany prohibitive with the location model. However, Krzanowski 
(1975) showed that various matrix identities could be employed advanta- 
geously in the multivariate regression, and that the iterative scaling computa- 
tions could be arranged in sufficiently effective manner for the whole process 
to be carried out relatively simply and quickly. Various examples, both real 
and simulated, demonstrated both the efficiency and efficacy of the methodol- 
ogy. 

Once a methodology was available for mixtures of  binary and continu- 
ous variables, extension to general mixtures of  categorical and continuous 
variables was extremely simple and was effected essentially by replacing an 
m-state categorical variable with ( m -  l) dummy binary variables and 
proceeding as before. Suppose the categorical variable with m states is 
replaced by the (m - l) dummy variables X1 . . . . .  Xm-1. Then state j of the 
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categorical variable can be indicated by setting Xj = 1 and Xi = 0 for all 
i , j  (j = 1 . . . . .  m - 1), in which case state m would be indicated by setting 
all X i to zero. Note, however, that no more than one such dummy binary vari- 
able can have value 1 at any location so models (9) and (10) will be over- 
parameterized. Two extra features therefore had to be incorporated into the 
estimation scheme: (i) all interaction terms within each group of  dummy 
binary variables had to be excluded from the linear model (9) for the ktij (to 
avoid break-down of the multivariate regression estimation procedure), and 
(ii) all multinominal states corresponding to joint incidences xu = 1, xv = 1 
within each group of dummy binary variables had to be fixed at zero (to 
ensure correct iterative scaling estimates in the log-linear model (10)). Full 
details of  this generalization were provided by Krzanowski (1980). 

The Bayes allocation procedure (7) derives from the ratio of  the two 
probability densities in the two populations, i.e. the ratio of the likelihoods for 
the observation to be classified. The problem in practice is to est imate  this 
ratio, and the replacing of parameters of  (7) by their estimates from the train- 
ing data is the simplest and most commonly used way of  doing so. However, 
two other general procedures have also been proposed: the hypothesis-testing 
method and the Bayesian predictive method. These approaches have been 
discussed in the context of  multivariate normal data, and compared with the 
parameter-replacement approach for such data by Han (1979). We outline 
their implementation with the location model in the two following sections. 

2.2 Hypothesis-testing Rule 

Let us suppose that the training sets consist of n l ,n2 individuals from 
nl, n2, respectively and denote the i-th individual in the training set from nj 
by  v~  ) (i = 1 . . . . .  n j ; j  = 1,2). Then the hypothesis-testing approach says 
that to allocate an individual z r = (xr, yT), we use the test statistic for the null 
hypothesis that all the v~ l) and z belong to nl while all the v! 2) belong to 7~ 2 
versus the alternative that all the v! 0 belong to n2 while all the v! 2) and z 
belong to x2. 

sup (Llm X L) 
Now the likelihood-ratio test statistic in this case is T = 

sup (L2m • L )  ' 
where L is the joint likelihood for all the v~ ) and Ljm is the likelihood for z in 
xj given x = m. Using the joint density from model (6), it is easy to show (see 
Krzanowski 1982) that 

= (P lm/P2m)  {,Pim /Pim ) [ .^(2) .^(2) \  
J Li =lm=l 

(11) 
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#.(j) ^(j) 
where 2., ,Pim are the estimates of  •,Pim respectively when z has been 
included with the training set from nj (j = 1,2). For stability, smoothed 
parameter estimates using second-order linear and log-linear models are 
again recommended. Krzanowski (1982) showed that simplified estimation 
of  the parameters is obtained if all parameters are estimated for the training 
set data only, and then some simple algebraic identities are used to update 
inverses and determinants on including z successively with the two training 
sets. The final allocation rule is to classify z to nl if T > 1 and otherwise to 

7C 2 . 

Error rates can again be estimated using the leave-one-out procedure, 
and this requires one initial estimation of  all parameters using the training 
data only together with a re-estimation of all parameters when each indivi- 
dual is removed from its own training set and placed in the other one. Once 
again, some useful matrix and vector identities are available to enable the 
latter estimates to be obtained easily from the former ones; full details are 
given by Krzanowski (1982). 

2.3 Bayesian Predictive Rule 

The Bayesian approach to the problem is to postulate prior distributions 
for all the unknown parameters (I.tij,Z and Pij for all i,j), use the likelihood of 
the training data under the location model to obtain posterior distributions of  
these parameters, multiply the joint density of z in each population by these 
posterior distributions and then integrate the resulting products with respect 
to the unknown parameters to obtain predictive densities of z in nl and n2. 
The allocation of  z is to the population in which it has the higher predictive 
density. 

Vlachonikolis (1990) adopted the vague prior density 
g({~tij},E)o~ I E I -~(c§  for the continuous variable parameters, and prior 

s 

densities for the pij of the Dirichlet form h ( { P i j } l r c ) ~  FI p~,j-i where the 
j = l  

ctij are positive constants reflecting prior knowledge about the discrete vari- 
able locations. When no such prior information exists, he suggested setting 
aij = oti for all j = 1 . . . . .  s and i = 1,2. He then obtained expressions for the 
predictive densities of  z in rq and r~2, both when the parameters I-qj, Z, and p~j 
are estimated by the "naive"  quantifies Yij, S and no~n, and also when the 
second-order models (9) and (10) are employed. As all the resulting expres- 
sions are rather complicated they are not given here; for full details the reader 
is referred to Vlachonikolis (1990). 
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2.4 Assessment and Comparison of the Rules 

Various studies, both empirical and theoretical, have been conducted to 
establish the features of  these three allocation rules and to compare their per- 
formances. Here we summarize the main findings. 

Average optimal error rates incurred by the Bayes rule (7) (i.e. error 
rates assuming all population parameters to be known) have been tabulated 
for the cases c = 1 continuous variable and q = 2, 3,4 binary variables over a 
range of  parameter values in the relatively simple case of  independent 
binaries by Krzanowski (1975) and Knoke (1982). More general situations 
(correlated binaries and c > 1) were considered by Krzanowski (1977). 
Asymptotic expansions of  the parameter-replacement classification rule 
(using "naive"  estimators of  parameters) and corresponding expected actual 
error rates were obtained for the case of  one binary variable by Tu and Han 
(1982) and for the general case of mixed binary and continuous variables by 
Vlachonikolis (1985), who also provided tabulations for various sample sizes 
and parameter combinations. These asymptotic expansions depend heavily 
on the normal-case expansions derived by Okamoto (1963). 

For small-sample behavior, only Monte Carlo simulation results are so 
far available. Krzanowski (1975) conducted a very small and limited study to 
check on the performance of  the location model. Much more extensive inves- 
tigations were conducted by Vlachonikolis (1986), who obtained estimates of  
the expected actual error rates for which he had previously derived asymp- 
totic expansions, and by Vlachonikolis (1990) to investigate performance of  
the Bayesian predictive rule. The parameter ranges and combinations in 
these two studies were the same as in Vlachonikolis (1985) but this time both 
"naive"  and "smoothed"  estimators of parameters were investigated. 
Finally, empirical assessment of performance of the various allocation rules 
(by either leave-one-out, resubstitution or test-set estimation of  error rates on 
various real data sets) can be found in Chang and Afifi (1974), Krzanowski 
(1975, 1980, 1982), Knoke (1982), Tu and Han (1982), Vlachonikolis and 
Marriott (1982) and Leung (1989). It should be noted that the majority of  
tabulations, such as those cited above, have various practical drawbacks. 
They only cater for known population parameters, so can only be used as a 
general guide on the performance of  an allocation rule or to set baselines for 
the expected level of  error rates, and they are very dependent on the situa- 
tions considered. Later authors very often follow the precedent set by previ- 
ous ones in terms of situation, parameter settings and combinations, etc., and 
important cases can be easily missed. 

Nonetheless, such tabulations do provide useful information, and the 
above studies seem to point up the following conclusions. Average expected 
error rates with the parameter-replacement Bayes allocation rule: (a) increase 
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as the number of  continuous variables increases; (b) decrease in large sam- 
pies as the number of  binary (categorical) variables increases; (c) decrease as 
the within-location Mahalanobis distances D~ between nl and rr increase; 
(d) decrease as the difference in binary incidence probabilities between nl 
and n2 increases; and (e) increase as the correlation between binary variables 
increases. 

Generally, expected actual error rates are slightly higher than the 
corresponding optimal error rates (approximately 5% - 30% in magnitude), 
but the estimated actual error rates in the Monte Carlo studies were nearly 
always smaller than their asymptotic expansion counterparts. However, the 
difference between the two was rarely significant and the asymptotic expan- 
sion seems to be a good approximation even for sample sizes as small as 50 
per group. Virtually no difference was detected between the parameter- 
replacement Bayes procedure and each of  the hypothesis-testing and Baye- 
sian predictive rules respectively. 

3. Useful Practical Extensions 

In addition to the basic allocation rules and their error rates, described 
in the previous section, various extra features of  the location model have been 
developed and are now available for use by the practitioner. 

Krzanowski (1976) proposed a simple graphical procedure for investi- 
gating the worth of  the location model discrimination procedure over and 
above the use of  a simple linear discriminant function between two popula- 
tions. The parameter-replacement version of  Bayes rule (7) requires esti- 
mates of the continuous variable means ~t 0 and dispersion matrix E. If ~lij 
and E are the estimates obtained in a particular application (whether by using 
the naive estimators Yij,S or the smoothed second-order ones), then it is a 
simple matter to obtain the matrix of  Mahalanobis D 2 values between every 
pair of  states in the two populations. This (2s • 2s symmetric) matrix has 
entries (~ij -- ~tkl) T ~ - 1  (~ti j _ Okl) where j,l take all values from 1 to s and i,k 
take values 1 or 2. Use of  (metric) scaling on this matrix thus produces a 
low-dimensional representation of  the 2s states which (through the ordering 
of  the principal axes) gives an impression of  the relative importance of  
differences between states and between populations. The more compactly 
clustered are the states within populations, the less difference is there 
between them in respect of  the continuous variable parameters and hence the 
less benefit will be derived from use of the location model in preference to a 
simple linear discriminant function. A detailed illustrative example in this 
paper showed that the major axis of  the two-dimensional metric scaling 
configuration split off all the even-numbered states from the odd-numbered 
ones, while the minor axis split the populations. Since the even-numbered 
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states were those for which the first binary variable X1 took the value zero 
while the odd-numbered ones were those for which it took the value one, this 
demonstration showed that the main effect of  XI was the biggest source of  
differences in the data. Use of  the location model will allow different linear 
discriminant functions for the two values of X~, but a simple linear discrim- 
inant function will involve averaging over this difference and so will not give 
as good a final result in this particular example. 

This graphical idea was taken one step further and formalized into a 
hypothesis-testing procedure by Krzanowski (1979). Since the location 
model methodology will show greatest improvement over a simple linear 
discriminant function when there is large variability among the cells in 
respect of  the continuous variable means ~tij, a first stage is to look for linear 
transformations of  the continuous variables such that there is as little varia- 
tion as possible among the cell means in each population for the transformed 
data. Krzanowski (1979) gave several alternative ways of  deriving such 
linear transformations, and then went on to derive a likelihood-ratio test for 
equality of  the (true) cell means in each population. This procedure is thus a 
likelihood-ratio test for the adequacy of  a simple linear discriminant function 
in place of  the Bayes rule (7) based on the location model (but note that con- 
ditional normality of the continuous variables is now a critical assumption). 
There is also the possibility of  using fewer transformed variables than there 
are original variables in future applications, and this aspect was investigated 
further by Krusinska (1988b). 

One annoying feature of  many practical applications of discriminant 
analysis is the presence of missing values in the data. In a comprehensive 
and important contribution, Little and Schluchter (1985) provided maximum 
likelihood estimation schemes for parameters of  the location model when 
some data are missing. Their procedure uses the EM algorithm, embraces 
both the "naive"  and "smoothed"  approaches to parameter estimation, and 
allows constraints to be imposed on some of the parameters if so desired. The 
authors also discussed general aspects of  imputation and discrimination as 
applications of the technique. 

Up to this point all developments had been in terms of two-group 
discriminant analysis but Krzanowski (1986) extended the location model to 
multiple-group discrimination. The connection here was made by noting that, 
in general, the Bayes classification rule with equal costs and equal prior pro- 
babilities is identical to the maximum likelihood classification rule while for 
the continuous-variable-only case where z -  N ( ~  i , Y.) in nl, the maximum 
likelihood rule is identical to the minimum distance rule (i.e., allocating z to 
that population ni for which (z - ~ti) 7" E -1 (z - ~ti) is smallest). For the special 
case of  homogeneous CGD's,  and treating zT= (x T, yT) as a degenerate 
"population" in which unit probability is ascribed to the categorical state 
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defined by x and zero probability to all other states, and whose continuous 
component has probability mass unity at the observed value y and zero else- 
where, Krzanowski (1986) showed that the affinity (5) between z and ~1 
reduced to 

1 
Pi = { (2rt )  c I Z I )-l/4p~rn e x p  { - - 7  (Y - -~ t im)T~- l (Y  -- ['tim)} i f x  = m . ( 1 2 )  

~ 4  

Since alfinity is the converse of distance, a "minimum distance" rule is the 
same as a "maximum alfinity" rule. The multiple-group allocation rule is 
thus to allocate z to the population rcj for which pj is greatest; with two 
groups some simple algebraic manipulation shows that this rule reduces to 
(7). All the usual features (smoothed parameter estimates, leave-one-out 
error rates, etc.) are easily implemented. For details, see Krzanowsld (1986). 

One aspect of the location model that has been tacitly accepted without 
question in all the developments is the conditional normality of the continu- 
ous variables, but what can we do if this assumption is not warranted? A start 
on answering this question was made by Balakrishnan and Tiku (1988), who 
developed robust classification procedures for the special cases of  one binary 
and either one or two continuous variables. They used Tiku's modified max- 
imum likelihood estimators (Tiku and Balakrishnan 1984) in which the r 
smallest and r largest observations are censored and the resulting (normal) 
likelihood is approximated in a simple fashion, obtained asymptotic error 
rates for various symmetric non-normal populations and conducted Monte 
Carlo studies for small nij. In general, the error rates were shown to be 
equivalent to the usual ones if normality is appropriate, but they are better 
and more stable under non-normality of  y. 

Finally, Leung (1989) has provided an asymptotic expansion of  the stu- 
dentized parameter-replacement Bayes allocation rule (7). The asymptotic 
expansions provided by Vlachonikolis (1985) require knowledge of  the true 
values of Pij and D2m = (lal,,, -~t2m)rZ-l(I-tlm -~2m), so that the only use that 
could be made of them was in the tabulations already described in Section 2. 
Leung, however, used Anderson's (1973) approach to generalize these expan- 
sions by accommodating estimates ofpij and D~. Thus, it is now possible to 
calculate an asymptotic expected actual error rate in any practical applica- 
tion. Leung illustrated the calculation by obtaining this expected actual error 
rate for Chang and Afifi's (1974) example, and comparing the result with their 
empirical estimate. Note, however, that this expansion assumes large sam- 
ples and normality of  y. 



40 W.J. Krzanowski 

4. Feature Selection 

One major shortcoming of the location model methodology is that the 
training data becomes very sparsely distributed among the categorical states 
when the total number of  such states s becomes large (either because q is 
large or because each si is large). With sparse data, low-order models have to 
be fitted in order to obtain smoothed parameter estimates and this might not 
be satisfactory. It seems better to restrict the number of  categorical variables 
and to fit higher-order models. This point was first made by Krzanowski 
(1983b), who provided a mechanism for selecting the "most  effective" subset 
of  categorical variables for the model. For a given number  of categorical 
variables, he argued that the "most  effective" choice comprises those 
categorical variables that yield the largest estimated distance A~2 between n 1 
and x2 (according to the special case (ifi) of Equation (5)). Ideally one would 
conduct an "all subsets" search with A12 as the objective function but this 
might not be computationally feasible, so a backward elimination procedure 
was described instead. Also, since selection is based just on the training data, 
"naive"  estimators can be used instead of "smoothed"  ones. Overall the 
procedure is very fast and easily implemented. 

The idea was taken up and extended to more general situations, involv- 
ing selection of  models as well as of features, by a number of  authors. The 
first was Daudin (1986), who extended the conditional distribution of Y to 
include "populations" as an extra categorical variable, Z say. Thus if we 
treat nl as the "base-line" population, then all individuals in rh are assigned 
the value z = 0 while all individuals in x 2 are assigned the value z = 1. The 
linear and log-linear models (9) and (10) are then extended by including 
terms such as txz, f3xiz, yxixjz,  and so on. Daudin kept to the second-order res- 
triction previously suggested for these models, and hence included only main 
effects (terms x 1,x2 . . . . .  Xq,Z) and first-order interactions (terms 
XlZ,X2Z . . . . .  XqZ,XlXz,XlX3 . . . . .  Xq-lXq). He distinguished two types of 
model parameters in the linear model (9) for the ~tij, namely those terms that 
involved the variable Z (cz 1 ) and those that involved only the xi (cz2), and his 
aim was to discard in turn the discrete variables, the continuous variables, and 
the model parameters, that contribute least to discrimination. Selection was 
to be made on the basis of  the Akaike information criterion (AIC: log- 
likelihood minus the number of  independent parameters, Akaike (1973)) 
thereby making the assumption of normality of Y an important requirement. 
He proposed a three-step selection procedure: (i) selection among the con- 
tinuous variables and oq terms, (ii) selection among the cz 2 terms, (iii) selec- 
tion among log-linear terms. 

Maximization of  AIC was the objective, but there is a problem in step 
0) because deleting continuous variables implies non-compatibility of  I Z I's 
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and hence of  corresponding likelihoods. For this step, therefore, Daudin pro- 
posed the maximization of  a modified AIC which, in effect, is the increase in 
AIC for a given number of  continuous variables due to the presence of the 
population factor Z. Backward elimination or forward selection was advo- 
cated in place of  a global search, and an illustrative example was considered 
in some detail. 

Further selection strategies were advocated in a series of  papers by 
Krusinska (1988a, 1989a, 1989b). The first of these papers focussed on the 
two-group case and discussed the selection of those features (i.e. those vari- 
ables from the complete set of  categorical and continuous) that minimize an 
estimate o fp (n l  In2) + p(n2 In1). Various different estimates of this quantity 
were considered: replacement of  parameters in expressions (8) using either 
naive estimates, smoothed estimates or the U-method (Lachenbruch and 
Mickey 1968); or empirical estimates via either resubstitution or leave-one- 
out (again encompassing either naive or smoothed estimation). The second 
paper allowed multiple-group situations and considered selection of  the 
(minimum number) of  features that give significant discriminatory measure 
T2= Trace (HG -1) where H is the between-states-and-populations sum of 
squares and products (SSP) matrix while G is the within-states-and- 
populations SSP matrix. Some distributional results were provided to check 
on significance of  T 2 and thereby to provide a stopping rule. In both papers, 
backward elimination was advocated, and both approaches require at least 
one continuous variable to be present at each stage of the process. Note that 
both of these approaches involve strictly "discriminatory" criteria, by con- 
trast with Daudin's "adequacy of model" criterion, but normality still plays 
an important role in definitions (8) and in the T 2 distribution results. (How- 
ever, the latter may be slightly questionable as the appropriate distribution 
should be that of the maximum T 2 among g > 1 values at each step.) The 
third paper of  the set provided a two-step (sub-optimal) branch-and-bound 
algorithm in place of the backward-elimination process using T 2. 

Although each of the papers cited above provided at least one illustra- 
tive practical example of the relevant technique, no comparisons have yet 
been made among the competing proposals, so it is not possible to make 
recommendations. This is clearly an area that needs further research, but see 
also the remarks in section 5.3 below. 

5. Other Possible Approaches with Mixed Variables 

5.1 Linear Discriminant Analysis 

The simplest possible practical approach is to ignore the categorical 
nature of  some of the variables by replacing all m(> 2)-state categorical 
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variables by ( m -  1) dummy binary variables, scoring all binary variables 
zero and one and using the ordinary linear discriminant function (LDF) as if  
all the variables were continuous. This procedure was investigated by Krza- 
nowski (1977), who showed that often it will give satisfactory results but 
clearly will become poorer the more diversity there is among the separate 
location LDF's  (7). Worst results will occur when individual LDF's become 
'reversed' between locations. In addition to the techniques already men- 
tioned in section 3 above, changes in binary/continuous correlations between 
populations provides a useful diagnostic of potentially poor performance with 
a simple LDF. Knoke (1982) and Vlachonikolis and Marriott (1982) indepen- 
dently showed that considerable improvement could be achieved by including 
squares of  variables and cross-products between them (particularly those 
involving mixtures xiy/) in the LDF. With the widespread availability of  the 
LDF and associated variable selection procedures in standard statistical 
software, these "modified linear discriminant functions" obviously carry 
considerable practical appeal. 

5.2 Distance-based Discrimination 

For this section it will be convenient to change notation from that used 
hitherto. Let us suppose that v is the individual to be allocated, and that in 
the two-group case the training sets consist of a sample xl,x2 . . . . .  xn from nl 
and a sample Yl,Y2 . . . . .  Ym from n2. Write D(n 1,n2), D(v,ni), D(xi,xj) for 
the distances (however defined) between groups, between an element and a 
group, and between elements respectively. 

One of  the oldest distance-based allocation rules can be formally attri- 
buted to Matusita (1956), but has been used both formally and informally by 
many others. This is the intuitively reasonable rule that allocates v to the 
"nearer" of  the two populations: 

allocate v to nj if D(v,nj) = min [D(v,nl),D(v, n2)]. (13) 

If populations are multivariate normal with common dispersion matrices and 
Mahalanobis distances are used, then (13) reduces to the usual simple linear 
discriminant function. In the mixed-variable case using the location model, 
Krzanowski (1986) showed that D ( v , ; z i )  = {2(1 - pi)}~ with Pi given by (12) 
and that (13) then reduced to (7) with this distance function. (Note that in this 
case, D(nl,rc2) is given by A12 from case (iii) after Equation (5), with all 
population parameters replaced by their estimates from the training sets.) 

A problem arises with use of  (13) on multinomial data, since in this 
case the maximum likelihood rule is again recovered but this rule does not 
work well with sparse data. In an attempt to overcome the problem, Dillon 
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and Goldstein (1978) introduced a new distance-based discrimination pro- 
cedure. If we let D(i)(I~ 1 ,rt2) denote the distance between nl and rt 2 when v is 
included with the sample from rti, then this new procedure is to allocate v to 
that group which yields the greatest separation between rrl and nz: 

allocate v to rcj i fD0)(TCl , / t2)  = max [D(I)(/II,~2),D(2)(/tl,/t2)]. (14) 

Krzanowski (1987) studied this procedure theoretically with the help of 
influence functions, and showed that for mixed variables with the location 
model and distance A12 (14) produced an equivalent rule to (7). Thus neither 
of these two distance-based approaches seems to offer anything more than the 
Bayes classification rule for mixed variables with the location model, at least 
when (5) is used as the basis for distance calculation. 

Takane, Bozdogan and Shibayama (1987) adopted a different approach, 
which they called "ideal point discriminant analysis." They allowed g > 2 
groups, and assumed that the complete set of training data was contained in 
the (n •  matrix X (where n is the total number of individuals and p is the 
total number of variables measured on each individual). The starting point is 
to suppose that the n individuals can be represented as n points in k- 
dimensional space, and that the (n • k) matrix Y of coordinates in this space 
is connected to X by the linear relationship Y = X B for parameters B. Let M 
be a (g x k) matrix of "group ideal points" (typically the group centroids 
obtained from Y). Then Takane et al. defined the distance from subject s to 

k 
group t by dst = { Z (Ysj - mtj) 2 }'/2 and postulated the model 

j = l  

wt exp ( - dZt) 
p r { s  ~ xtlx} = (15) 

g 

Z Wh exp ( - d~h) 
h = l  

g 

where w 1,w2 . . . . .  Wg are weights satisfying E wi = 1. 
i=1 

Given the known group membership of individuals in the training data, 
the (conditional) likelihood of the training data is multinomial with probabili- 
ties (15) and observed group frequencies, so iterative approximation methods 
(e.g. Fisher's scoring) can be used to provide maximum likelihood estimates 
of all the unknown parameters (B and the wi) and hence an individual can be 
classified to the group for which it has highest estimated probability. Takane 
et al. advocated model evaluation via AIC, and showed how such additional 
features as subset selection could be incorporated easily. Note the resem- 
blance of  the methodology to logistic discrimination (Anderson 1982), and 
indeed many of the computational and sampling concerns are the same with 
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both approaches. However, the authors highlighted what they considered to 
be the main distinguishing features of  ideal point discrimination, namely the 
multidimensional scaling connection, the more natural parameterization, and 
the possibility of dimension reduction. 

The most recent distance-based discrimination approach is that due to 
Cuadras (1989, 1991), who builds on Rat 's  (1982) diversity indices. Cuadras 
defines (for the two-group case) the two discriminant functions 

l y .  D 2 ( v , x i ) _  1 Z Z D 2 ( x i , x j ) ;  
F l  = n i 2n 2 ' j 

F2 1 y~ D2 (v,yi) 1 = - -  - Z. E D 2 ( y i , Y j )  
m i 2 m  2 i j 

and allocates v to rtj i f R j  = min ( F 1 , F 2 ) .  
The benefit of  this approach is that it operates exclusively with dis- 

tances between e l e m e n t s  rather than groups, so in the mixed-variable case we 
can use any of  the standard distance measures from cluster analysis that will 
cope not only with mixtures of  variables but also with obstacles such as miss- 
ing values. A good choice of distance would be the one derived from 
Gower's (1971) general coefficient of similarity (see also Lerman 1987). 

5.3 Empirical Comparison of Results 

A limited number of  empirical comparisons of  different approaches to 
mixed-variable discrimination has been reported in the literature, and these 
are first briefly summarized before conclusions are drawn. 

Chang and Afifi (1974) reported a study of 43 suicide attempts with 
q = 1 and c = 2. They quoted parameter-replacement error rates from (8) for 
the location model (using naive estimators with both separate and pooled 
covariance matrices in cells) and corresponding parameter-replacement error 
rates for the simple LDF. Leung (1989) re-estimated the location model error 
rates for this data set by means of  the asymptotic studentized expansion. 

Krzanowski (1975) gave five data sets, all with a medical background, 
ranging over various values of  c and q. He quoted leave-one-out error rates 
for the location model Bayes rule (7) (with smoothed parameter estimates), 
the simple LDF, logistic discrimination, and a classification rule based on 
dichotomized variables. 

Knoke (1982) reported a data set comprising 137 patients who had pre- 
viously recovered from myocardial infarction, with c = 2 and q = 3. He gave 
resubstitution, leave-one-out and test set (105 extra patients) error rates for 
the usual location model rule, the simple LDF, the augmented LDF, and the 
quadratic discriminant function. Vlachonikolis and Marriott (1982) re- 



Location Model for Mixtures 45 

analyzed Krzanowski's Data Set 4 and also considered a data set comprising 
386 medical consultations with c = 9 and q = 5. Those authors first selected 
a subset of  variables using standard stepwise selection on the simple LDF, the 
augmented LDF, and the logistic discriminant function, and then they 
obtained leave-one-out error rates for the chosen subsets. 

All the above were two-group problems. Daudin (1986) provided a 
three-group problem in discriminating between the categories "bad" ,  
"acceptable" and "good"  for 632 melons with c = 6 and q = 5. He quoted 
both resubstitution and leave-one-out error rates for the location model, the 
simple LDF and the augmented LDF, both with and without prior selection of  
variables. 

Krusinska (1988a, 1989a) used a data set consisting of 164 bronchial 
asthma sufferers with c = 6, q = 8 and she reported leave-one-out error rates 
and T 2 values for various selected subsets and selection strategies based on 
the location model. Finally, Takane et al. (1987) re-analyzed Krzanowski's 
Data Set 4 by ideal point discriminant analysis, with and without prior selec- 
tion of variables. 

Nearly all the above comparisons were ones contrasting the location 
model with some variant of  the LDF. In the majority of cases, the location 
model (without prior variable selection) did as well as or better than the sim- 
ple LDF (also without prior variable selection). Where the simple LDF did 
badly compared to the location model, the augmented LDF (including squares 
and cross-products of variables) had a performance much closer to that of  the 
location model. Prior selection of  variables generally improved perfor- 
mances. Daudin's results are the only ones where all methods underwent 
prior selection of variables, and here the location model still performed much 
better than the other methods (41.9% misclassification as against 44.6% with 
the augmented LDF and 49.9% with the simple LDF; 7.1% of the " b a d "  
melons allocated to the "good"  group as against 8.5% with the augmented 
LDF and 10.5% with the simple LDF). Thus the above results suggest that 
the location model is, in general, the best method for mixed variables fol- 
lowed by the augmented LDF and then the simple LDF. Where such com- 
parisons were made, logistic discrimination seemed to be comparable to the 
simple LDF on mixed data and no particular benefit was derived from a qua- 
dratic discriminant function as against the simple LDF. 

However, some contradictory results were obtained in those comparis- 
ons where some methods had prior selection of variables while other methods 
did not. For example, the performance of ideal point discriminant analysis 
was no better than that of  the location model in the data set on which they 
were compared if the full set of variables was used in both methods, but it did 
do better if prior selection was made before ideal point analysis and not 
before location model analysis. It is the present author's view that all results 
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involving prior variable selection must be treated with caution for several rea- 
sons. Although the leave-one-out procedure guards against bias in the error- 
rate estimation process, additional bias is being introduced by the variable 
selection since by definition it is those variables that are "bes t "  for the train- 
ing data which are being selected. Thus comparison of  a method that has not 
had selection with one that has had prior selection is unfair. Also different 
methods may react differently to the selection process (for example in 
Daudin's data, prior selection reduced the error rate for the simple LDF only 
from 50.3% to 49.9% but for the augmented LDF from 50.0% to 44.6%). 
Thus unfair comparisons may result even when all methods have undergone 
prior selection. The whole area of assessing performances of  allocation rules 
with and without variable selection has received very little attention to date, 
and considerably more needs to be done. A start has been made in the simple 
LDF context (see Ganeshanandam and Krzanowski 1989), and work on the 
mixed-variable case is currently in progress. 

6. Future Prospects 

In addition to the variable selection problem outlined above, where else 
should effort be concentrated in the mixed-variable discrimination area? It is 
evident that there is considerable scope for investigating the effect of  relaxing 
assumptions inherent in the location model, and developing suitable 
modifications of  the model in such circumstances. For instance, much 
remains to be done on the robustness of  allocation rule (7) to departures from 
normality and constant within-cell dispersions. If departures do cause poor 
performance, then development of robust discriminant functions for the 
mixed-variable case would be essential. Similarly, is there a call for location 
quadratic discriminant functions to cater for various types of  dispersion inho- 
mogeneity? 

A second possible direction of progress brings us back to our starting 
point, the use of  graphical modeling. The whole development of location 
model methodology to date has assumed a fairly rigid second-order structure 
for obtaining smoothed parameter estimates via (9) and (10), but now a much 
wider horizon has opened up with the advent of graphical modeling tech- 
niques. The possibility of tailoring best models to each data set is clearly the 
next step, with development of  appropriate software also a top priority. 
Krusinska (1990) seems to be pointing the way in this direction, but there is 
clearly still much to be achieved. 

Finally we consider the question of  availability of  software for carrying 
out the techniques discussed in this paper. Unfortunately, despite the time 
that has now elapsed since the methods were first proposed, none of the pro- 
cedures based on the location model has yet found its way into any of  the 
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widely available general statistical software packages. Attempts are being 
made to interest at least one of  the producers in adding suitable routines to a 
future release, but until such efforts bear fruit potential users will have to be 
content with acquiring private software. The author has a number of  Fortran 
routines for carrying out many of the location-model-based techniques 
described above. Although these are not in the most tidy or efficient form 
(and some are still in a developmental state), he will be happy to send them 
by e-mail to anyone on request. 
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