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The relative volume growth of minimal submanifolds

By

STEEN MARKVORSEN and VICENTE PALMER1)

Abstract. The volume growth of certain well-defined subsets of minimal submanifolds
in riemannian spaces are compared with the volume growth of balls and spheres in space
forms of constant curvature.

1. Introduction. Suppose we intersect a minimal submanifold Pm with a metric r−ball
in a given ambient space Nn . Suppose further that the center of the cutting ball is a point
p on P and that r � min{iN(p), π

2
√

b
}, where b is the supremum of the sectional curvatures

of N , and iN(p) is the injectivity radius of N from p. Then the connected component of the
intersection which contains p is called an extrinsic m−dimensional minimal r−ball in Nn ,
and we denote it by Dr .

The quotient between the volume of Dr in N and the volume of any metric r−ball Bb,m
r

in the m−dimensional space form of constant curvature b is known to be a monotone non-
decreasing function of r in case b � 0. This monotonicity was first observed by Anderson
in [1].

In the present note we apply the co-area formula (as previously considered and used in [11])
to present an alternative proof of this result.

We also use the same technique to obtain a similar monotonicity result in the case of
ambient spaces with a positive upper bound on their sectional curvatures. In that case, the
quotient considered is expressed as the difference in the volumes of Dr and Bb,m

r divided by the
volume of the m−dimensional sphere Sb,m

r in the (m + 1)−dimensional space form K
m+1(b)

of constant curvature b.

In both cases, when b �= 0, we also obtain a corresponding rigidity result to the effect that
the derivative of any of the quotients considered can only vanish for a given value of the
radius if it vanishes everywhere and Pm is a minimal radial cone in Nn .

Specifically we show the following theorem:
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Theorem 1. Let Pm be a minimally immersed submanifold of Nn and let us suppose that
the sectional curvatures K N of N satisfy K N � b, (b ∈ R), then:

(i) If b � 0, the function f(r) = vol(Dr )

vol
(

Bb,m
r

) is monotone non-decreasing in r.

(ii) If b > 0, the function g(r) = vol(Dr )−vol
(

Bb,m
r

)
vol
(

Sb,m
r

) is monotone non-decreasing in r.

When b �= 0 we get the following associated rigidity result:
If there exists an r0 > 0 such that f ′(r0) = 0, (respectively, g′(r0) = 0), then the extrinsic

ball Dr0 is a minimal cone in Nn . Thus, if furthermore Nn = Kn(b), the space form of constant
curvature b, then Pm is a totally geodesic submanifold of Nn .

The proof of this theorem is based on the co-area formula and on isoperimetric inequalities
which have been established by the authors in [10] and [11].

As a consequence of Theorem 1, we have the following

Corollary 2. Let Pm be a minimally immersed submanifold of Nn and suppose that the
sectional curvatures K N of N satisfy K N � b, (b � 0). Then, for every extrinsic ball in Nn we
have

vol(Dr) �
Γ
(

m+1
2

)
m
√
πΓ

(
m
2

)vol
(
Sb,m

r

)
.

If the equality is attained for some extrinsic ball Dr0 , then Dr0 is a minimal cone in Nn and
K N � 0. In fact, therefore, if equality is attained and if Nn is assumed to be a simply connected
manifold with sectional curvatures satisfying 0 � K N � b then Nn is the n−dimensional
Euclidean space Rn , and Pm is an m−dimensional plane in Rn.

The outline of the paper is as follows: we shall prove Theorem 1 and Corollary 2 in
Sections 5 and 6. Sections 2, 3 and 4 are devoted to describe some previous results, to show
an application of co-area formula and to show some relevant inequalities relating the volumes
of balls and spheres in space forms of constant curvature.

2. Preliminaries. Given an immersed submanifold Pm of a complete riemannian mani-
fold Nn , the distance function on the ambient space Nn will be denoted by d, so, if p ∈ P,
we define r(q) := d(p,q) for every q ∈ N . We also denote by r the restriction r|P : P −→ R.
This restriction is called the extrinsic distance to p in P.

The extrinsic ball of radius r and center p ∈ P, Dr(p) � P, can be viewed as the connected
component of the restriction Bn

r (p)∩ P = {q ∈ P/rp(q)� r}which contains p. It is a compact
domain in P with boundary ∂Dr(p). When we consider the totally geodesic submanifold
K

m(b) � K
n(b), then the corresponding extrinsic r-ball centered at p̃ ∈ Km(b), Db

r ( p̃) will
be the geodesic r-ball Bb,m

r centered at p̃ in this submanifold, and its boundary will be the
geodesic sphere Sb,m−1

r . We shall refer to this setting as a standard setting.
We also recall that when we take the normal to the geodesic sphere in Kn(b), pointing

inward, the constant mean curvature of any geodesic sphere of radius r in a space form of
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constant curvature b is given by the function

hb(r) =



√

b cot
√

br, if b > 0
1
r , if b = 0√−b coth

√−br, if b < 0.

Further we shall denote by gradNr and gradPr the corresponding gradients of r in N and
P respectively. Note that gradPr(q) is just the tangential component in P of gradNr(q), for all
q ∈ P. Then we have the following basic relation on ∂DR(p), for all R: (see [6, eq. (2.1)])

gradNr = gradPr + (gradPr)⊥

where (gradPr)⊥(q) is perpendicular to Tq P for all q ∈ ∂DR(p).
As mentioned in the introduction, the proof of Theorem 1 is based on the following

isoperimetric inequalities:

Theorem A ([10]). Let Pm be a minimally immersed submanifold of Nn and let Dr(p) be
an extrinsic r-ball in Pm.

If the sectional curvatures K N of N satisfy K N � b, (b > 0), then:

vol(∂Dr)− vol
(
Sb,m−1

r

)
vol(Dr)− vol

(
Bb,m

r

) � mhb(r) ∀r.(2.1)

Equality in (2.1) (for some r0), implies that Dr0 is a minimal radial cone in Nn. In particular,
if Nn = Sn(b), the sphere of constant curvature b > 0, then Pm is a totally geodesic submanifold
of Nn.

Theorem B ([11]). Let Pm be a minimally immersed submanifold of Nn and let Dr(p) be
an extrinsic r-ball in Pm.

If the sectional curvatures K N of N satisfy K N � b � 0, then

vol(∂Dr)

vol(Dr)
�

vol
(
Sb,m−1

r

)
vol

(
Bb,m

r

) .(2.2)

When b < 0, equality in (2.2), (for some r0), implies that Dr0 is a minimal radial cone
in Nn. In particular, if Nn = Hn(b), the hyperbolic space of constant curvature b < 0, then
Pm is a totally geodesic submanifold of Nn.

An important tool for the proof of Theorem 1 is the co-area formula, see e.g. [2, p. 85].

Theorem C (co-area formula). Let Mq be a q-dimensional riemannian manifold. LetΩ be
a connected domain in M, with smooth boundary ∂Ω and compact closure Ω̄. Let h :Ω −→ R

be a function such that h ∈ C∞(Ω) ∩ C0(Ω̄), and h|∂Ω = 0.
We now let:

Ω(t) = {p ∈ M/|h(p)| > t},
V(t) = vol(Ω(t)),

Σ(t) = {p ∈ M/|h(p)| = t}.
When t is a regular value of |h|, we let dσt denote the riemannian (q − 1)-density on Σ(t).
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Then the function V(t) is smooth on the set of regular values of |h|, and its derivative is
given by

V ′(t) = − ∫
Σ(t)

‖gradMh‖−1dσt .(2.3)

3. An application of the co-area formula. In this section we are going to relate the first
derivative of the volume of the extrinsic balls with the volume of its boundary, using the
co-area formula.

Proposition 3.1. Let Pm be an immersed submanifold in a riemannian manifold Nn, and
let Dr(p) be an extrinsic ball in Pm. Then

d

dr
vol(Dr) � vol(∂Dr) ∀r > 0

P r o o f. Given any fixed radius r0 > 0, let us consider the extrinsic r0-ball Dr0 (p) as the
domain Ω in Theorem C. Then, defining h : D̄r0 −→ R as

h(q) := r0
2 − r2(q)

where r denotes the extrinsic distance to p in P, we have that h ∈ C0(D̄r0) ∩ C∞(Dr0 ).
It is easy to check that, with the notation in Theorem C,

Ω(t) = D√
r0

2−t
(p),

V(t) = vol
(

D√
r0

2−t
(p)
)

and Σ(t) = ∂D√
r0

2−t
(p) ∀t ∈ ]0, r0

2
]
.

Then, applying the co-area formula, we have that

V ′(t) = − ∫
∂D√

r0
2−t

(p)

‖gradPh‖−1dσt(3.1)

where dσt is the (m − 1)-density of ∂D√
r0

2−t
(p) in P.

A straightforward computation gives that

gradPh = −2rgradPr on Dr0(3.2)

so we have, as ‖gradPr‖ � 1,

−‖gradPh‖−1 � − 1

2r
on Dr0(3.3)

and, therefore,

V ′(t) � − 1

2
√

r0
2 − t

vol
(
∂D√

r0
2−t

)
∀t ∈ [0, r0

2
]
.(3.4)

Now let us define W(r) := vol(Dr), r ∈ [0, r0] and

V(t) = vol
(

D√
r0

2−t

)
= W ◦ ψ(t)
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where ψ : [0, r0
2] −→ [0, r0] is defined as ψ(t) := √r0

2 − t. We can then write (3.4) as

(W ◦ ψ)′(t) � − 1

2
√

r0
2 − t

vol
(
∂D√

r0
2−t

)
∀t ∈ [0, r0

2
]

(3.5)

and, hence,

W ′(ψ(t)) � vol
(
∂D√

r0
2−t

)
∀t ∈ [0, r0

2
]
.(3.6)

Changing the variable from t ∈ [0, r0
2] to r = ψ(t) ∈ [0, r0], we obtain

W ′(r) � vol(∂Dr) ∀r ∈ [0, r0] ∀r0 > 0. ��(3.7)

4. The volume growth of Bb,m versus Sb,m . We show that the derivative of the func-

tion vol(Bb,m
r )

vol(Sb,m
r )

, depends on b in the following way:

Proposition 4.1. Let Bb,m
r and Sb,m−1

r be any geodesic r-ball and geodesic r-sphere re-
spectively in the real space form K

m(b), and correspondingly, let Sb,m
r denote any geodesic

r−sphere in Km+1(b). Then, for all r, (r ∈]0, π/2√b[ if b > 0),

d

dr

{
vol

(
Bb,m

r

)
vol

(
Sb,m

r
)
}

> 0, if b > 0

= 0, if b = 0

< 0, if b < 0.

(4.1)

And, equivalently we have:

If b > 0 vol
(
Sb,m−1

r

)
> mhb(r)vol

(
Bb,m

r

)
.(4.2)

If b = 0 vol
(
S0,m−1

r

) = mh0(r)vol
(
B0,m

r

)
.(4.3)

If b < 0 vol
(
Sb,m−1

r

)
< mhb(r)vol

(
Bb,m

r

)
.(4.4)

P r o o f. We first recall the following well known volume formulae for geodesic balls and
spheres in space forms of constant curvature b, (see e.g. [5]).

d

dr
vol

(
Bb,m

r

) = vol
(
Sb,m−1

r

)
(4.5)

vol
(
Bb,m

r

) = vol
(
S0,m−1

1

) r∫
0
(Qb(t))m−1dt.(4.6)

In (4.6), the function Qb(r) denotes the unique solution to the differential equation

Q′b(r) = hb(r)Qb(r) , Qb(0) = 0(4.7)

such that e.g. for b > 0 we have Qb(r) = sin
√

br/
√

b
Now for short-hand we let �b denote the inequality > if b > 0 , the inequality < if b < 0,

and equality if b = 0.
It is straightforward to check that, using (4.7), the inequalities in (4.1) are equivalent to

(Qb(r))
m �b mQ′b(r)

r∫
0
(Qb(t))m−1dt,(4.8)

(In the limiting case of r = 0 we get equality for all b ∈ R). To check (4.8) for r> 0 a division
on both sides by mQ′b(r) followed by a differentiation gives the following inequality, (which
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is easily verified using (4.7) and the fact that Q′b(r) � 0 for all r ∈]0, π/2√b[ and thus proves
(4.8))

−m(Qb(r))
m Q′′b(r) �b 0.

Using the volume formulae (4.5) and (4.6) it is easy to show that the inequalities (4.2),
(4.3) and (4.4) are also equivalent to inequalities in (4.1), and the Proposition is proved. ��

5. Proof of Theorem 1. We show the assertions (i) and (ii) separately.
To prove (i), let G(r) be the function defined as

G(r) = ln ( f(r)) = ln

(
vol(Dr)

vol
(
Bb,m

r
)
)
.

Using Proposition 3.1, equations (4.6), and Theorem B, we have that

G ′(r) =
d
dr vol(Dr)

vol(Dr)
− vol

(
Sb,m−1

r

)
vol

(
Bb,m

r
) �

vol(∂Dr)

vol(Dr)
− vol

(
Sb,m−1

r

)
vol

(
Bb,m

r
) � 0(5.1)

for all r ∈]0, r0], and hence also f ′(r) � 0 for all r ∈]0, r0]
If there exists an r0 > 0 such that f ′(r0) = 0, then G ′(r0) = 0, so inequalities in (5.1)

become equalities, and hence the equality assertion in Theorem B applies.

Now for the proof of (ii):
Let H(r) be the function defined as

H(r) = ln (g(r)) = ln

(
vol(Dr)− vol

(
Bb,m

r

)
vol

(
Sb,m

r

)
)
.

With the same arguments as before, using equations (4.5), (4.6), Proposition 3.1 and
Theorem A, we have that

H ′(r) =
d
dr

(
vol(Dr)− vol

(
Bb,m

r

))
vol(Dr)− vol

(
Bb,m

r

) −mhb(r)

�
vol(∂Dr)− vol

(
Sb,m−1

r

)
vol(Dr)− vol

(
Bb,m

r

) −mhb(r) � 0

(5.2)

for all r, and hence, applying Proposition 4.1,

d

dr

(
vol(Dr)

vol
(
Sb,m

r
)
)

�
d

dr

(
vol

(
Bb,m

r

)
vol

(
Sb,m

r
)
)
> 0 ∀r.(5.3)

If there exists r0 such that g′(r0) = 0, then the first inequality in (5.3) becomes an equality
at r = r0, so H ′(r0) = 0 and both the inequalities in (5.2) become equalities and therefore
finally the equality assertion in Theorem A applies and proves the theorem. ��

R e m a r k. We observe that when b � 0, the function vol(Dr )

vol(Sb,m
r )

is non-decreasing function

of r. Indeed, if b > 0, this follows directly from equation (5.3), and if b = 0, it follows from

assertion (i) in Theorem 1 when taking into account that vol(Bb,m
r )

vol(Sb,m
r )

is constant for b = 0.
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In contrast, when b < 0, it is not in general true, that vol(Dr )

vol(Sb,m
r )

is non-decreasing. In fact,

every geodesic ball Bb,m
r considered as an extrinsic ball in the submanifold Km(b) � K

n(b),
gives a sharp counterexample (by virtue of Proposition 4.1) for every b < 0:

d

dr

{
vol

(
Bb,m

r

)
vol

(
Sb,m

r
)
}
< 0.

6. Proof of Corollary 2. When b � 0, the functions vol(Dr )

vol(Sb,m
r )

and vol(Bb,m
r )

vol(Sb,m
r )

are both non-

decreasing as we have just remarked above.
On the other hand, it was proved in [9] that (under the assumptions in Theorem 1) the

volume of any extrinsic minimal ball satisfies the inequality

vol(Dr) � vol
(
Bb,m

r

)
.(6.1)

Hence, using equations (4.5), (4.6) and (4.7), we have for b � 0:

vol(Dr)

vol
(
Sb,m

r
) �

vol
(
Bb,m

r

)
vol

(
Sb,m

r
) � lim

r→0

vol
(
Bb,m

r

)
vol

(
Sb,m

r
) = Γ

(
m+1

2

)
m
√
πΓ

(
m
2

)
and therefore

vol(Dr) � vol
(
Bb,m

r

)
�

Γ
(

m+1
2

)
m
√
πΓ

(
m
2

)vol
(
Sb,m

r

)
.(6.2)

In Corollary 2 we assume the equality

vol
(
Dr0

) = Γ
(

m+1
2

)
m
√
πΓ

(
m
2

)vol
(

Sb,m
r0

)
for some fixed extrinsic ball Dr0 in P with r0 > 0.

In view of (6.2) it is natural to expect strong consequences from this assumption. The
inequalities in (6.2) both become equalities:

vol(Dr0 ) = vol
(

Bb,m
r0

)
(6.3)

vol
(

Bb,m
r0

)
vol

(
Sb,m

r0

) = Γ
(

m+1
2

)
m
√
πΓ

(
m
2

) .(6.4)

Since vol(Bb,m
r )

vol(Sb,m
r )

is a strictly increasing function of r if b is strictly positive (cf. Proposition 4.1),

then this quotient cannot be equal to the limit at r = 0 as in (6.4) unless b = 0.
On the other hand, the equality (6.3) already has as a consequence that Dr0 is a minimal

radial cone in N . This follows directly from [10], Theorem 2. For the sake of completeness
we include below an alternative proof of this fact based on the proof of the co-area formula:

Consider the function G(r) = ln( f(r)) which we defined in the proof of Theorem 1.
Then G(r) has a continuous extension to r = 0, namely G(0) = 0. (This follows from the
asymptotic expansion of the volume of an extrinsic ball in a submanifold of an arbitrary
riemannian manifold as considered e.g. in [7].)

Applying Theorem B, equations (4.5) and (4.6) and Proposition 3.1, we then get

G ′(r) =
d
dr vol (Dr)

vol(Dr)
− vol

(
Sb,m−1

r

)
vol

(
Bb,m

r
) �

vol(∂Dr)

vol(Dr)
− vol

(
Sb,m−1

r

)
vol

(
Bb,m

r
) � 0.(6.5)

Archiv der Mathematik 79 33



S. MARKVORSEN and V. PALMER514 ARCH. MATH.

From equality (6.3), we have G(0) = G(r0) = 0. Since G(r) is non decreasing, we thus
have G(r) = 0 for all r ∈ [0, r0]. Then the inequalities in (6.5) all become equalities. In
particular d

dr vol(Dr) = vol(∂Dr) for all r, and therefore ‖gradPr‖ = 1 on ∂Dr for all r ∈ [0, r0]
(cf. the proof of the co-area formula). Hence Dr0 is a minimal radial cone in Nn .

Moreover, if we suppose that the sectional curvatures of Nn satisfies 0 � K N � b, then we
have that K N = 0 and Nn is the euclidean space Rn .

In this case, it follows by analytic prolongation from Dr0 = B0,m
r0

, that all of Pm is a totally
geodesic submanifold of N , and this proves the corollary. ��
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