The relative volume growth of minimal submanifolds

By

STEEN MARKVORSEN and VICENTE PALMER¹)

Abstract. The volume growth of certain well-defined subsets of minimal submanifolds in riemannian spaces are compared with the volume growth of balls and spheres in space forms of constant curvature.

1. Introduction. Suppose we intersect a minimal submanifold *P^m* with a metric *r*−ball in a given ambient space $Nⁿ$. Suppose further that the center of the cutting ball is a point *p* on *P* and that $r \leq \min\{i_N(p), \frac{\pi}{2\sqrt{b}}\}$, where *b* is the supremum of the sectional curvatures of *N*, and $i_N(p)$ is the injectivity radius of *N* from *p*. Then the connected component of the intersection which contains *p* is called an extrinsic *m*−dimensional minimal *r*−ball in *Nⁿ* , and we denote it by *Dr* .

The quotient between the volume of D_r in N and the volume of any metric r -ball $B_r^{b,m}$ in the *m*−dimensional space form of constant curvature *b* is known to be a monotone nondecreasing function of *r* in case $b \le 0$. This monotonicity was first observed by Anderson in [1].

In the present note we apply the co-area formula (as previously considered and used in [11]) to present an alternative proof of this result.

We also use the same technique to obtain a similar monotonicity result in the case of ambient spaces with a positive upper bound on their sectional curvatures. In that case, the quotient considered is expressed as the *difference* in the volumes of D_r and $B_r^{b,m}$ divided by the volume of the *m*−dimensional sphere $S_r^{b,m}$ in the $(m + 1)$ −dimensional space form $\mathbb{K}^{m+1}(b)$ of constant curvature *b*.

In both cases, when $b \neq 0$, we also obtain a corresponding rigidity result to the effect that the derivative of any of the quotients considered can only vanish for a given value of the radius if it vanishes everywhere and P^m is a minimal radial cone in N^n .

Specifically we show the following theorem:

Mathematics Subject Classification (1991): 53C21; 58J65.

¹) Work partially supported by a DGICYT Grant No. PB97-1425 and Fundacio Caixa Castello Grant No. 0I027.

Theorem 1. *Let P^m be a minimally immersed submanifold of Nⁿ and let us suppose that the sectional curvatures* K_N *of* N *satisfy* $K_N \leq b$, $(b \in \mathbb{R})$, then:

(i) If
$$
b \le 0
$$
, the function $f(r) = \frac{\text{vol}(D_r)}{\text{vol}(B_r^{b,m})}$ is monotone non-decreasing in r.
\n(ii) If $b > 0$, the function $g(r) = \frac{\text{vol}(D_r) - \text{vol}(B_r^{b,m})}{\text{vol}(S_r^{b,m})}$ is monotone non-decreasing in r.

When $b \neq 0$ we get the following associated rigidity result:

If there exists an $r_0 > 0$ such that $f'(r_0) = 0$, (respectively, $g'(r_0) = 0$), then the extrinsic ball D_{r_0} is a minimal cone in N^n . Thus, if furthermore $N^n = \mathbb{K}^n(b)$, the space form of constant curvature *b*, then P^m is a totally geodesic submanifold of N^n .

The proof of this theorem is based on the co-area formula and on isoperimetric inequalities which have been established by the authors in [10] and [11].

As a consequence of Theorem 1, we have the following

Corollary 2. Let P^m be a minimally immersed submanifold of N^n and suppose that the *sectional curvatures* K_N *of N satisfy* $K_N \leq b$, ($b \geq 0$). Then, for every extrinsic ball in N^n we *have*

$$
\text{vol}(D_r) \geq \frac{\Gamma\left(\frac{m+1}{2}\right)}{m\sqrt{\pi}\Gamma\left(\frac{m}{2}\right)} \text{vol}\big(S_r^{b,m}\big).
$$

If the equality is attained for some extrinsic ball D_{r_0} , then D_{r_0} *is a minimal cone in* N^n *and* $K_N \leq 0$. In fact, therefore, if equality is attained and if N^n is assumed to be a simply connected *manifold with sectional curvatures satisfying* $0 \leq K_N \leq b$ *then* N^n *is the n*−*dimensional Euclidean space* \mathbb{R}^n *, and* P^m *is an m*−*dimensional plane in* \mathbb{R}^n *.*

The outline of the paper is as follows: we shall prove Theorem 1 and Corollary 2 in Sections 5 and 6. Sections 2, 3 and 4 are devoted to describe some previous results, to show an application of co-area formula and to show some relevant inequalities relating the volumes of balls and spheres in space forms of constant curvature.

2. Preliminaries. Given an immersed submanifold P^m of a complete riemannian manifold N^n , the distance function on the ambient space N^n will be denoted by *d*, so, if $p \in P$, we define $r(q) := d(p, q)$ for every $q \in N$. We also denote by *r* the restriction $r|_p : P \longrightarrow \mathbb{R}$. This restriction is called the extrinsic distance to *p* in *P*.

The extrinsic ball of radius *r* and center $p \in P$, $D_r(p) \subseteq P$, can be viewed as the connected component of the restriction $B_r^n(p) \cap P = \{q \in P/r_p(q) \leq r\}$ which contains *p*. It is a compact domain in *P* with boundary ∂*Dr*(*p*). When we consider the totally geodesic submanifold **K**^{*m*}(*b*) ⊆ **K**^{*n*}(*b*), then the corresponding extrinsic *r*-ball centered at $\tilde{p} \in \mathbb{K}^m(b)$, $D_r^b(\tilde{p})$ will be the geodesic *r*-ball $B_r^{b,m}$ centered at \tilde{p} in this submanifold, and its boundary will be the geodesic sphere $S_r^{b,m-1}$. We shall refer to this setting as a *standard setting*.

We also recall that when we take the normal to the geodesic sphere in $Kⁿ(b)$, pointing inward, the constant mean curvature of any geodesic sphere of radius *r* in a space form of constant curvature *b* is given by the function

$$
h_b(r) = \begin{cases} \sqrt{b} \cot \sqrt{b}r, & \text{if } b > 0\\ \frac{1}{r}, & \text{if } b = 0\\ \sqrt{-b} \coth \sqrt{-b}r, & \text{if } b < 0. \end{cases}
$$

Further we shall denote by grad^{N_r} and grad^{P_r} the corresponding gradients of *r* in *N* and *P* respectively. Note that grad^{*P*} $r(q)$ is just the tangential component in *P* of grad^{*N*} $r(q)$, for all *q* ∈ *P*. Then we have the following basic relation on $\partial D_R(p)$, for all *R*: (see [6, eq. (2.1)])

$$
\text{grad}^{N} r = \text{grad}^{P} r + (\text{grad}^{P} r)^{\perp}
$$

where (grad^{*P*}r)^{\perp}(*q*) is perpendicular to *T_q P* for all *q* ∈ $\partial D_R(p)$.

As mentioned in the introduction, the proof of Theorem 1 is based on the following isoperimetric inequalities:

Theorem A ([10]). Let P^m be a minimally immersed submanifold of N^n and let $D_r(p)$ be *an extrinsic r-ball in P^m .*

If the sectional curvatures K_N *of* N *satisfy* $K_N \leq b$, $(b > 0)$, then:

$$
(2.1) \qquad \frac{\text{vol}(\partial D_r) - \text{vol}\left(S_r^{b,m-1}\right)}{\text{vol}(D_r) - \text{vol}\left(B_r^{b,m}\right)} \geq m h_b(r) \ \forall r.
$$

Equality in (2.1) *(for some r₀), implies that* D_{r_0} *is a minimal radial cone in* N^n *. In particular, if* $N^n = S^n(b)$ *, the sphere of constant curvature* $b > 0$ *, then* P^m *is a totally geodesic submanifold of Nn.*

Theorem B ([11]). Let P^m be a minimally immersed submanifold of N^n and let $D_r(p)$ be *an extrinsic r-ball in P^m .*

If the sectional curvatures K_N *of* N *satisfy* $K_N \leq b \leq 0$ *, then*

$$
(2.2) \qquad \frac{\text{vol}(\partial D_r)}{\text{vol}(D_r)} \geq \frac{\text{vol}\left(S_r^{b,m-1}\right)}{\text{vol}\left(B_r^{b,m}\right)}.
$$

When $b < 0$ *, equality in* (2.2)*, (for some r₀), implies that* D_{r_0} *is a minimal radial cone in* N^n *. In particular, if* $N^n = \mathbb{H}^n(b)$ *, the hyperbolic space of constant curvature* $b < 0$ *, then P^m is a totally geodesic submanifold of Nn.*

An important tool for the proof of Theorem 1 is the co-area formula, see e.g. [2, p. 85].

Theorem C (co-area formula)**.** *Let M^q be a q-dimensional riemannian manifold. Let* Ω *be a connected domain in M, with smooth boundary* $\partial \Omega$ *and compact closure* $\overline{\Omega}$ *. Let h* : Ω → R *be a function such that* $h \in C^{\infty}(\Omega) \cap C^{0}(\overline{\Omega})$ *, and* $h|_{\partial\Omega} = 0$ *.*

We now let:

$$
\Omega(t) = \{p \in M/|h(p)| > t\},\
$$

$$
V(t) = \text{vol}(\Omega(t)),\
$$

$$
\Sigma(t) = \{p \in M/|h(p)| = t\}.
$$

When t is a regular value of $|h|$ *, we let* $d\sigma_t$ *denote the riemannian* $(q - 1)$ *-density on* $\Sigma(t)$ *.*

Then the function V(*t*) *is smooth on the set of regular values of* |*h*|*, and its derivative is given by*

(2.3)
$$
V'(t) = - \int\limits_{\Sigma(t)} ||\text{grad}^M h||^{-1} d\sigma_t.
$$

3. An application of the co-area formula. In this section we are going to relate the first derivative of the volume of the extrinsic balls with the volume of its boundary, using the co-area formula.

Proposition 3.1. *Let P^m be an immersed submanifold in a riemannian manifold Nn, and let* $D_r(p)$ *be an extrinsic ball in* P^m *. Then*

$$
\frac{d}{dr}\text{vol}(D_r) \ge \text{vol}(\partial D_r) \quad \forall r > 0
$$

P r o o f. Given any fixed radius $r_0 > 0$, let us consider the extrinsic r_0 -ball $D_{r_0}(p)$ as the domain Ω in Theorem C. Then, defining $h : \overline{D}_{r_0} \longrightarrow \mathbb{R}$ as

$$
h(q) := r_0^2 - r^2(q)
$$

where *r* denotes the extrinsic distance to *p* in *P*, we have that $h \in C^0(\overline{D}_{r_0}) \cap C^{\infty}(D_{r_0})$. It is easy to check that, with the notation in Theorem C,

$$
\Omega(t) = D_{\sqrt{r_0^2 - t}}(p),
$$

\n
$$
V(t) = \text{vol}\left(D_{\sqrt{r_0^2 - t}}(p)\right)
$$

\nand
$$
\Sigma(t) = \partial D_{\sqrt{r_0^2 - t}}(p) \quad \forall t \in [0, r_0^2].
$$

Then, applying the co-area formula, we have that

(3.1) $V'(t) = -\int_{\partial D \sqrt{r_0^2 - t}}^{\int} \|\text{grad}^P h\|^{-1} d\sigma_t$

where $d\sigma_t$ is the $(m-1)$ -density of $\partial D_{\sqrt{r_0^2-t}}(p)$ in *P*. A straightforward computation gives that

(3.2)
$$
\operatorname{grad}^P h = -2r \operatorname{grad}^P r \quad \text{on} \quad D_{r_0}
$$

so we have, as $\|\text{grad}^P r\| \leq 1$,

(3.3)
$$
-\|\text{grad}^P h\|^{-1} \leqq -\frac{1}{2r} \quad \text{on} \quad D_{r_0}
$$

and, therefore,

(3.4)
$$
V'(t) \leq -\frac{1}{2\sqrt{r_0^2 - t}} \text{vol}\left(\partial D_{\sqrt{r_0^2 - t}}\right) \quad \forall t \in [0, r_0^2].
$$

Now let us define $W(r) := \text{vol}(D_r)$, $r \in [0, r_0]$ and

$$
V(t) = \text{vol}\left(D_{\sqrt{r_0^2 - t}}\right) = W \circ \psi(t)
$$

Vol. 79, 2002 The relative volume growth of minimal submanifolds 511

where $\psi : [0, r_0^2] \longrightarrow [0, r_0]$ is defined as $\psi(t) := \sqrt{r_0^2 - t}$. We can then write (3.4) as

(3.5)
$$
(W \circ \psi)'(t) \leq -\frac{1}{2\sqrt{r_0^2 - t}} \text{vol}\left(\partial D_{\sqrt{r_0^2 - t}}\right) \quad \forall t \in [0, r_0^2]
$$

and, hence,

(3.6) $W'(\psi(t)) \ge \text{vol}\left(\partial D_{\sqrt{r_0^2 - t}}\right) \quad \forall t \in [0, r_0^2].$

Changing the variable from $t \in [0, r_0^2]$ to $r = \psi(t) \in [0, r_0]$, we obtain

$$
(3.7) \t W'(r) \ge \text{vol}(\partial D_r) \quad \forall r \in [0, r_0] \quad \forall r_0 > 0. \quad \Box
$$

4. The volume growth of $B^{b,m}$ **versus** $S^{b,m}$. We show that the derivative of the function $\frac{\text{vol}(B_r^{b,m})}{\text{vol}(S_r^{b,m})}$, depends on *b* in the following way:

Proposition 4.1. *Let* $B_r^{b,m}$ *and* $S_r^{b,m-1}$ *be any geodesic r*-ball and geodesic *r*-sphere re*spectively in the real space form* K*^m* (*b*)*, and correspondingly, let S^b*,*^m ^r denote any geodesic r*−*sphere in* K^{*m*+1}(*b*)*. Then, for all r, (r* ∈]0, π/2√*b*[*if b* > 0*),*

(4.1)
$$
\frac{d}{dr} \left\{ \frac{\text{vol}(B_r^{b,m})}{\text{vol}(S_r^{b,m})} \right\} \begin{cases} > 0, & \text{if } b > 0 \\ = 0, & \text{if } b = 0 \\ < 0, & \text{if } b < 0. \end{cases}
$$

And, equivalently we have:

(4.2) $\qquad \text{If } b > 0 \quad \text{vol}\left(S_r^{b,m-1}\right) > mh_b(r)\text{vol}\left(B_r^{b,m}\right).$

(4.3)
$$
If b = 0 \text{ vol}(S_r^{0,m-1}) = mh_0(r)\text{vol}(B_r^{0,m}).
$$

(4.4) *If* $b < 0$ vol $(S_r^{b,m-1}) < mh_b(r)$ vol $(B_r^{b,m})$.

P r o o f. We first recall the following well known volume formulae for geodesic balls and spheres in space forms of constant curvature *b*, (see e.g. [5]).

(4.5)
$$
\frac{d}{dr}\text{vol}\left(B_r^{b,m}\right) = \text{vol}\left(S_r^{b,m-1}\right)
$$

(4.6) vol
$$
(B_r^{b,m})
$$
 = vol $(S_1^{0,m-1}) \int_0^r (Q_b(t))^{m-1} dt$.

In (4.6), the function $Q_b(r)$ denotes the unique solution to the differential equation

(4.7)
$$
Q'_b(r) = h_b(r) Q_b(r), Q_b(0) = 0
$$

such that e.g. for *b* > 0 we have $Q_b(r) = \frac{\sin \sqrt{b}r}{\sqrt{b}}$

Now for short-hand we let \geq_b denote the inequality $>$ if $b > 0$, the inequality $<$ if $b < 0$, and equality if $b = 0$.

It is straightforward to check that, using (4.7) , the inequalities in (4.1) are equivalent to

(4.8)
$$
(Q_b(r))^m \geq_b m Q'_b(r) \int_0^r (Q_b(t))^{m-1} dt,
$$

(In the limiting case of $r = 0$ we get equality for all $b \in \mathbb{R}$). To check (4.8) for $r > 0$ a division on both sides by $mQ'_{b}(r)$ followed by a differentiation gives the following inequality, (which

is easily verified using (4.7) and the fact that $Q'_b(r) \ge 0$ for all $r \in]0, \pi/2\sqrt{b}[\]$ and thus proves (4.8))

$$
-m(Q_b(r))^m Q''_b(r) \geq_b 0.
$$

Using the volume formulae (4.5) and (4.6) it is easy to show that the inequalities (4.2) , (4.3) and (4.4) are also equivalent to inequalities in (4.1) , and the Proposition is proved. \Box

5. Proof of Theorem 1. We show the assertions (i) and (ii) separately.

To prove (i), let $G(r)$ be the function defined as

$$
G(r) = \ln(f(r)) = \ln\left(\frac{\text{vol}(D_r)}{\text{vol}(B_r^{b,m})}\right).
$$

Using Proposition 3.1, equations (4.6), and Theorem B, we have that

$$
(5.1) \tG'(r) = \frac{\frac{d}{dr}\text{vol}(D_r)}{\text{vol}(D_r)} - \frac{\text{vol}\left(S_r^{b,m-1}\right)}{\text{vol}\left(B_r^{b,m}\right)} \ge \frac{\text{vol}(\partial D_r)}{\text{vol}(D_r)} - \frac{\text{vol}\left(S_r^{b,m-1}\right)}{\text{vol}\left(B_r^{b,m}\right)} \ge 0
$$

for all $r \in]0, r_0]$, and hence also $f'(r) \ge 0$ for all $r \in]0, r_0]$

If there exists an $r_0 > 0$ such that $f'(r_0) = 0$, then $G'(r_0) = 0$, so inequalities in (5.1) become equalities, and hence the equality assertion in Theorem B applies.

Now for the proof of (ii):

Let $H(r)$ be the function defined as

$$
H(r) = \ln (g(r)) = \ln \left(\frac{\text{vol}(D_r) - \text{vol}\left(B_r^{b,m}\right)}{\text{vol}\left(S_r^{b,m}\right)} \right)
$$

With the same arguments as before, using equations (4.5), (4.6), Proposition 3.1 and Theorem A, we have that

.

$$
(5.2)
$$

$$
H'(r) = \frac{\frac{d}{dr} \left(\text{vol}(D_r) - \text{vol}\left(B_r^{b,m}\right) \right)}{\text{vol}(D_r) - \text{vol}\left(B_r^{b,m}\right)} - mh_b(r)
$$

$$
\geq \frac{\text{vol}(\partial D_r) - \text{vol}\left(S_r^{b,m-1}\right)}{\text{vol}(D_r) - \text{vol}\left(B_r^{b,m}\right)} - mh_b(r) \geq 0
$$

for all *r*, and hence, applying Proposition 4.1,

$$
(5.3) \qquad \qquad \frac{d}{dr}\left(\frac{\text{vol}(D_r)}{\text{vol}\left(S_r^{b,m}\right)}\right) \geq \frac{d}{dr}\left(\frac{\text{vol}\left(B_r^{b,m}\right)}{\text{vol}\left(S_r^{b,m}\right)}\right) > 0 \ \ \forall r.
$$

If there exists r_0 such that $g'(r_0) = 0$, then the first inequality in (5.3) becomes an equality at $r = r_0$, so $H'(r_0) = 0$ and both the inequalities in (5.2) become equalities and therefore finally the equality assertion in Theorem A applies and proves the theorem. \Box

R e m a r k. We observe that when $b \ge 0$, the function $\frac{\text{vol}(D_r)}{\text{vol}(S_r^{b,m})}$ is non-decreasing function of *r*. Indeed, if $b > 0$, this follows directly from equation (5.3), and if $b = 0$, it follows from assertion (i) in Theorem 1 when taking into account that $\frac{\text{vol}(B_r^{b,m})}{\text{vol}(S_r^{b,m})}$ is constant for $b = 0$.

In contrast, when $b < 0$, it is not in general true, that $\frac{\text{vol}(D_r)}{\text{vol}(S_r^{b,m})}$ is non-decreasing. In fact, every geodesic ball $B_r^{b,m}$ considered as an extrinsic ball in the submanifold $\mathbb{K}^m(b) \subseteq \mathbb{K}^n(b)$, gives a sharp counterexample (by virtue of Proposition 4.1) for every $b < 0$:

$$
\frac{d}{dr}\left\{\frac{\text{vol}\left(B_r^{b,m}\right)}{\text{vol}\left(S_r^{b,m}\right)}\right\} < 0.
$$

6. Proof of Corollary 2. When $b \ge 0$, the functions $\frac{\text{vol}(D_r)}{\text{vol}(S_r^{b,m})}$ and $\frac{\text{vol}(B_r^{b,m})}{\text{vol}(S_r^{b,m})}$ are both nondecreasing as we have just remarked above.

On the other hand, it was proved in [9] that (under the assumptions in Theorem 1) the volume of any extrinsic minimal ball satisfies the inequality

$$
(6.1) \t\t vol(D_r) \geq vol\left(B_r^{b,m}\right).
$$

Hence, using equations (4.5), (4.6) and (4.7), we have for $b \ge 0$:

$$
\frac{\text{vol}(D_r)}{\text{vol}(S_r^{b,m})} \geq \frac{\text{vol}(B_r^{b,m})}{\text{vol}(S_r^{b,m})} \geq \lim_{r \to 0} \frac{\text{vol}(B_r^{b,m})}{\text{vol}(S_r^{b,m})} = \frac{\Gamma\left(\frac{m+1}{2}\right)}{m\sqrt{\pi}\Gamma\left(\frac{m}{2}\right)}
$$

and therefore

(6.2) vol
$$
(D_r) \ge \text{vol}\left(B_r^{b,m}\right) \ge \frac{\Gamma\left(\frac{m+1}{2}\right)}{m\sqrt{\pi}\Gamma\left(\frac{m}{2}\right)} \text{vol}\left(S_r^{b,m}\right).
$$

In Corollary 2 we assume the equality

$$
\text{vol}\left(D_{r_0}\right) = \frac{\Gamma\left(\frac{m+1}{2}\right)}{m\sqrt{\pi}\Gamma\left(\frac{m}{2}\right)} \text{vol}\left(S_{r_0}^{b,m}\right)
$$

for some fixed extrinsic ball D_{r0} in *P* with $r_0 > 0$.

In view of (6.2) it is natural to expect strong consequences from this assumption. The inequalities in (6.2) both become equalities:

(6.3)
$$
\text{vol}(D_{r_0}) = \text{vol}\left(B_{r_0}^{b,m}\right)
$$

(6.4)
$$
\frac{\text{vol}\left(B_{r_0}^{b,m}\right)}{\text{vol}\left(S_{r_0}^{b,m}\right)} = \frac{\Gamma\left(\frac{m+1}{2}\right)}{m\sqrt{\pi}\Gamma\left(\frac{m}{2}\right)}.
$$

Since $\frac{\text{vol}(B_r^{b,m})}{\text{vol}(S_r^{b,m})}$ is a strictly increasing function of *r* if *b* is strictly positive (cf. Proposition 4.1), then this quotient cannot be equal to the limit at $r = 0$ as in (6.4) unless $b = 0$.

On the other hand, the equality (6.3) already has as a consequence that D_{r_0} is a minimal radial cone in *N*. This follows directly from [10], Theorem 2. For the sake of completeness we include below an alternative proof of this fact based on the proof of the co-area formula:

Consider the function $G(r) = \ln(f(r))$ which we defined in the proof of Theorem 1. Then $G(r)$ has a continuous extension to $r = 0$, namely $G(0) = 0$. (This follows from the asymptotic expansion of the volume of an extrinsic ball in a submanifold of an arbitrary riemannian manifold as considered e.g. in [7].)

Applying Theorem B, equations (4.5) and (4.6) and Proposition 3.1, we then get

$$
(6.5) \tG'(r) = \frac{\frac{d}{dr}\text{vol}(D_r)}{\text{vol}(D_r)} - \frac{\text{vol}\left(S_r^{b,m-1}\right)}{\text{vol}\left(B_r^{b,m}\right)} \ge \frac{\text{vol}(\partial D_r)}{\text{vol}(D_r)} - \frac{\text{vol}\left(S_r^{b,m-1}\right)}{\text{vol}\left(B_r^{b,m}\right)} \ge 0.
$$

Archiv der Mathematik 79

From equality (6.3), we have $G(0) = G(r_0) = 0$. Since $G(r)$ is non decreasing, we thus have $G(r) = 0$ for all $r \in [0, r_0]$. Then the inequalities in (6.5) all become equalities. In particular $\frac{d}{dr}$ vol (D_r) = vol (∂D_r) for all *r*, and therefore $\Vert \text{grad}^P r \Vert = 1$ on ∂D_r for all $r \in [0, r_0]$ (cf. the proof of the co-area formula). Hence D_{r_0} is a minimal radial cone in N^n .

Moreover, if we suppose that the sectional curvatures of N^n satisfies $0 \le K_N \le b$, then we have that $K_N = 0$ and N^n is the euclidean space \mathbb{R}^n .

In this case, it follows by analytic prolongation from $D_{r_0} = B_{r_0}^{0,m}$, that all of P^m is a totally geodesic submanifold of N , and this proves the corollary. \square

References

- [1] M. T. ANDERSON, Complete Minimal Varieties in Hyperbolic Space. Invent. Math. **69**, 477–494 (1982).
- [2] I. CHAVEL, Eigenvalues in Riemannian Geometry. New York 1984.
- [3] J. CHOE and R. GULLIVER, Isoperimetric Inequalities on minimal submanifolds. Manuscripta Math. **77**, 169–189 (1992).
- [4] J. CHOE, The isoperimetric inequality for minimal surfaces in a riemannian manifold. J. Reine Angew. Math. **506**, 205–214 (1999).
- [5] A. GRAY, Tubes. Redwood City, CA 1990.
- [6] L. P. JORGE and D. KOUTROUFIOTIS, An estimate for the curvature of bounded submanifolds. Amer. J. Math. **103**, 711–725 (1981).
- [7] L. KARP and M. PINSKY, Volume of a small extrinsic ball in a submanifold. Bull. London Math. Soc. **21**, 87–92 (1989).
- [8] S. MARKVORSEN, On the mean exit time from a minimal submanifold. J. Diff. Geom. **29**, 1–8 (1989).
- [9] S. MARKVORSEN, On the heat kernel comparison theorems for minimal submanifolds. Proc. Amer. Math. Soc. **97**, 479–482 (1986).
- [10] S. MARKVORSEN and V. PALMER, Generalized Isoperimetric Inequalities for extrinsic balls in minimal submanifolds. J. Reine Angew. Math. **551**, 101–121 (2002).
- [11] V. PALMER, Isoperimetric Inequalities for extrinsic balls in minimal submanifolds and their applications. J. London Math. Soc. (2) **60**, 607–616 (1999).

Eingegangen am 17. 2. 2001

Anschrift der Autoren:

Steen Markvorsen Department of Mathematics Technical University of Denmark DK-2800 Lyngby, Denmark S.Markvorsen@mat.dtu.dk

Vicente Palmer Departament de Matemàtiques Universitat Jaume I Castelló, 12071. Spain palmer@mat.uji.es