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DESCRIPTION OF PERIODIC EXTREME GIBBS MEASURES OF
SOME LATTICE MODELS ON THE CAYLEY TREE

N. N. Ganikhodzhaev! and U. A. Rozikov!

The uniqueness of the translation-invariant extreme Gibbs measure for the antiferromagnetic Potts model
with an external field and the existence of an uncountable number of extreme Gibbs measures for the Ising
model with an external field on the Cayley tree are proved. The classes of normal subgroups of finite index
of the Cavley tree group representation are constructed. The periodic extreme Gibbs measures, which are
invariant with respect to subgroups of index 2. are constructed for the Ising model with zero external field.
From these measures, the existence of an uncountable number of nonperiodic extreme Gibbs measures for
the antiferromagi. ic Ising model follows.

Introduction

Let the Cavlev tree T% (or. in other terms. a Bethe lattice, see [11) of order A > 1 be an infinite
tree graph. 1.e.. a graph with no cveles and with exactly £ + 1 edges imcident to each vertex of the graph.
The absence of ¢losed contours in the Cayley tree allows one to use the Markov random field theory and
recurrent equations of this theory. This permits some lattice models [2- 9] to be solved exactly.

In the present paper, we consider models on the Cayley tree for the purposes of

(1) proving the uniqueness of translation-invariant Gibbs measures in the antiferromagnetic Potts

model with an external field;

(2) proving the existence of an uncountable number of extreme Gibbs measures in the Ising model

with an external field:

(31 deseribing nornnal subgroups of Anite index in the eroup representation of the Cavley tree: this

enables one to consider periodic Gibbs measures for models derermined in the Cavley tree:

(41 deseribing periodic Gibbs measures in the Ising model:
t5) deseribing a new class of extreme Gibbs measures i the anriferromagnetic Ising model with zero

external field,

1. The construction of extreme Gibbs measures on the Cayley tree

Let 7% = (1" L) be a Bethe lattice of order & > 1. The distance d(r.y). .y € V in T is as follows:

dir.y) = min{d S = Ig.T. . Pqg_1.Ly =Y }
where the pairs (rgory). .o (rg_y.0g) are closest neighbors. The segnence
T=Ar=rhr L Pg—1.0g=1ny~=%4V}

thar corresponds 1o this shortest distanee 15 called the path frony o g
For an arbitrary point o 2 V0 we e

”'n - {l =1 r/(.l'..l'l’) = ”},A

L, = {/ dryae Loy e v, }
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The partial ordering relation r < y means that the path from z° to y passes through the vertex z. The
vertex y is called a “direct descendant™ of the vertex z if y > x and x,y are closest neighbors. Let S(z) be
the set of all “direct descendants™ of vertex r. Then, for any vertex x € V', which is not equal to x%, we
have [S(x)| = k. while |S(2”)] = k + 1 [6].

In the Cayley tree, the Hamiltonian of the Ising model with an cxternal field reads

Hy, (0)=-TJ Z ag(z)o(y) — a Z a(x), (1.1)
(z,y)ELn reV,

where a. J € R, o(z) € {~1.1}.and z € V"

Let ACV bea ﬁnlte subset and let 24 = {—1.1}" denote the space of configurations on the set 4.

Let h, € R be a rcal-valued function of r € V. For any n, consi ler the measure p,, on the space Qy .
which is determined as follows:

-1 -1 : :
/Ln(nn) = Z” QXP{T H\'n<f7) + Z h'fa’(‘r)}' (12)
el
Here T > 0. o, = {a(r) 0 e 1, } € Qv and Z,, is the normalizing factor. Consisteney conditions for the
measures j, (ad, ). n > 1. are

Z/ht(”u—l-ﬂ'”)) —‘/Ln—l( L~1) (1.3}

,7(11\
where "' = {g(r):r € W,}. In this case, the Gibbs measure ;. exists in the space €2y, This measure is
Markovian and it is called the Markov chain with interactions 7 and .

Theorem 1.1 [7, 8]. Measures (1.2) satisfy the consistency condition (1.3} iff Vr € V,

hy =a/T + Z arctanh(f tanh h, ), (1.4)
yeS(z)
where 6 = tanh(J/T).

In the Potts model with an external field in the Cavley tree. spin variables o(r). r € V. take the

vilues o 7a. .. 7, and the Hamiltonian reads
= -7 E Noir () — Y ; ‘sm.r)rn‘ (1.5
(r.yyelL, rel,

where @ is the Kronecker symbol. The dIltlfPl"r()Illa.gIlel( Potts model 15 determined by Hamiltonian (1.5)
for 7 < 0.
Assume that ¢, 00, .. .. o, € R971 are such that

Then. for any .y € V7. we obtain that

whence fHy (o) has the following form:

Hy (o) =-T Z alr)oty) — o Y‘ alryoy. (1.7)
(ranel, rel’y,
Let 4 C 17 be a finite subset. Denote by Q4 = {7... ., 47,[}‘4 the space of configurations on the set A,

A finite-dimensional distribution of a measure ¢ (g is a Gibbs measure) in a volume V7, is determined as

follows:
o Ty ) = Z,Tl (‘X]){T_IH\'”(U) -+ Z /‘I‘,-(T(.I‘)}. (1.8)

reity,

where Z,, is a normalizing factor and h, € R17L
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Theorem 1.2 (3. 4]. Measures (1.8) satisfy Eq. (1.3) iff Vx €V,

hy = Z Fily,. 0. ). (1.9)

yeS(r)

Here F is the transformation that maps R7' onto itself. It reads

e (¢, — 1)exph, + Zq;ll exph, +1 ,
W = =681, + log . i=1,9-1,
T Y‘q Zlexph, + 6,
where 81 = exp(J/T) and h = (hy. hy. .. hq-1) € R97'. A unique Gibbs measure p on Qy corresponds

to each set of vectors {h,.r € V'} satisfving (1.9).

2. Translation-invariant Gibbs measures in the antiferromagnetic
Potts model with an external field

In this section. we construct Gibbs measures that are invariant w.r.t. all spatial shifts of the lattice
T Tn 504 for the ferromagnetic Dotrs model with o zero external field. the existence of g translation-
invariant and of uncountably many translation-noninvariant Gibbs measures was proved. The construetive
description of these measures was also presented there.

Assume that }Z.r =h="{(hy. oo ... hy-y) for ¥ < 170 Then. from Theorem 1.2 making the substitution
2, = exp i, we obtain
g-1 k
(o708 (91_1)~1+v 1~j+1 . —_—
z; = exp f()“ = , 1=1,g- 1L (2.1)
Z -1 i 1

Note that for 0 < 6, <1 (J < 0), system (2.1) has a unique solution, z* = (z,,
the Gibbs measure corresponding to the set of vectors {hr = (logz,,0.0....,0)
Therefore, we have just proved the following theoremn.

1,. 1). Denote by p.

Theorem 2.2. Forg > 1. k> 1. 7 < 0. and o = Roa translacion-invariant measure in the Porr
maodel i nnique anmd equal to e,

3. Extreme Gibbs measures in the Ising model with an external field
g
[ model {1.1). the necessary condition for a measure to be translation-invariant is b, = h & R vr < 17
Then. from (1.4) we obtain
(%
h = T + karctanh(d tanh /). (3.1}
From the properties of the function a/T + k arctanh(6 tanh k). it follows that for a € (= (k= 1T (k-1)T).
J > 0. Eq. (3.1) has two stable solntions B < 1 and one instable solution A8, which lies between ALY
.
and AL

- . (R ooy (2 -1 .
Consider the sets $h, = b v < Viand by = b0 v 2 V) and, denote by ¢ and =) the
corresponding Gibbs tneasures.

Theorem 3.1 7. 9]. The measures g and =" are extreme Gibhs measures.

To any parlt 70 which s finite or dinite. we can put into correspondence. i a standard way, the
)

number £ 001 txee [2 4 One can casily show that for anv # = 0.1 the set of quantities /™ =
{h;m =L Ty s \'} satistving Foo (141 is nniquely determined.

Denote by ' the Gibbs measure correspouding to /7

Theorem 3.2. For anyv (< 0. 1] the Gibhs micasure p' s extrene,

Proof. The proof is analogous 1o the proof of Theorem 3.2 of [2].
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4. Group representation and automorphisms of the Cayley tree

Let G4y be a free product of k+ 1 cyelic groups of the second order with generators ay. as, ..., gy,
respectively.

Proposition 4.1 [10]. There exists a one-to-one correspondence between the set of vertices V' of the
Cayley tree Ty and the group Grq1.

In the group Giy1. let us consider the left (right) shift transformations defined as follows. For gg €
G, let us set
Ty, (h) = goh (Tgo(h) = hygo) VI € Gy (4.1)

The set of all left {right) shifts in G4 15 isomorphic to the group Gy1. By virtue of Proposition 4.1, any
transformation S of the group Gy, induces the transformation S of the set of vertices 17 of the Cayvley
tree. The following theorem obviously holds.

Theorem 4.1. The gr up of left (right) shifts on the right (left) representarion of the Cavlev tree is

the group of translations of the Cavley tree.

5. Normal subgroups of finite index for the group representation of
the Cayley tree

Any element r € Gy has the following form:
T =a;a,.. .q,, where 1<i,<k+1, m=1n.
The number n is called the length of the word z and is denoted by [(z). The number of letters a;,

1 =1,k + 1, that enter the noncontractible representation of the word x is denoted by w,(a;).

Proposition 5.1 (see [11. 12]). Let o be a homomorphism of the group Gy.y with the kernel H.
Then H s o normal subgroup of the vroup Gy and G0 = Gray: H (G Hods a facror-group).
Leo the index (G0 H coincides with the order 2(Gro1 of the eronp oGy

By virtue of Proposition 5.1, in order to construct a normal suberoup of a finite index of the group
Giv1. one should construct a homomorphism of the group Gy into some finite groun.

Definition 5.1. Let M. Af». ... My, be some sets and M, # M, for @ # j (i.) = 1L.m). We call
the intersection ('L, M, contractible if there exists iy (1 < iy < m) such that

m cip—1 m

(M. = < N Ml> ﬂ( M Ml>.

1=1 =1 t=u+ 1

Lot Ve = {120 k=11,

Theorem 5.1. For anv & = 4 T Ny there exists a suboronp H 2 Gy wich the following proper-

[BIERN
ta) oy s o normal subgroup and |Gy - Hy =2
(hy Hy= Hp forvyA = B2 N
(Y Hy"Hp =~ and Hy "~ Hyg Z Hy~p for 0B 2 N
(dy IF A s A Npand A, T, =0 foranvy = ) = 1., then

ﬂ H:L Z }[U:;l A,

=1



(e) Let Ay, Aa... .. A, C N, If ﬂ:’;l H4, is a noncontractible intersection, then it is a normal
subgroup of index 2™;
(f) For anyv m = 1,2k (where k is the order of the lattice). there exist noncontractible intersections
m

Hu = () Ha,

1=1
Proof. Let @ # 4 C Ni. Define the mapping as follows:

1. if 2164 wr(a,) is even,
falr) = . ' .
-1 if Y cqwe(a) is odd.

L

One can easily find that f4 is a homomorphism, i.e.. for any x.y € Giy1. the equality fa(zy) = fa(x)faly)

holds. By virtue of Proposition 5.1. H4 = {r € Gryr - Etel-\ wrl(a;) is ovon} iIs a normal subgroup of

index 2. One can easily check that H 4 satisfies all assertions of Theorein 5.1. The theorem is proved.

n}. we set

Let v = a,,a,, ..., . where 1 < 4, <k +1. m = 1.n. For r € {y € Geyr - ly) =
t 4.7} Let o)

vela,) = {m & Nyoy o0y, = )b Forinstance. if o = ayagugagayasay.

hen vplay) = {2
denote the number of coustituents of the element o

Theorem 5.2. Let ¢ # 1y € Gy Then there exists a normal finite-index subgroup H, . which does
not contain the element rg and for which the inequality
alrg) + 1 < {Gryy - Hey] < (U{rg) + 1)
holds.

Proof. Let o(z¢) = m. Denote by a}, a), ..., a},, 1 <m <k+1, the constituents a;, i =1,k + 1,

m?
in the noncontractible form of the element . Then, zg reads
ro=aja;,...a; . where 1<i,<k+1. s=1,n
In the svmmetric group S, 41 that acts on the symbols 1. 2. ... . n + 1. we choose the substitutions ,.
f=Tom as follows: if vy ta, b= {0 Jmy bowhere gpo= N and by = Tomg L then

ﬂ( lil /1_‘_1/.3 ,/2;1"'./7111 ,/711]*1-'-”%"1\)
T 1 .

, = . : J=1l.m.
oon+L oo+l g, + 1 Jig oo+ 1
Obviouslv. 77 = my. ) = L.m. where mq is the identical permtation. Let us define the wappings
w: {ay. ... g1t = {m T b and fro 0 Gy — S as follows:
T if # IL;. _
ulr) = ) : 7= 1l.m.
LR if = ay.

feolo) = frolay o, ooy ) = wlay Yulag, ).l ).
Since Trf = wy. the mapping fo, 15 @ homomorphism. The kernel H,,, of this homomorphism is a normal
finite-index suberoup. Obviously. the element . does not belong to this normal subgroup. Further. by
virtue of Proposition 5.1, (Gray © Hyo = fo (G andd from the procedure of constructing o if is
clear rhat
alrgl =1 Gy Hy o< thorgy =

The thearemn is [)1‘(»\‘(’(1.

Proposition 5.3. The following relations hold:
(Wy M, =H., . =1k 1

(2y ifatry > 20then Gyay s Hy 203

(3) WGrpy  Hyw =t lordi#= )2 Ny

Proof. The proof follows from Theoreins 5.1 and 5.2.
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Fig. 1

6. Periodic Gibbs measures of the Ising model on the Cayley tree

The notions of the periodic Gibbs measure. the Hamiltonian. configurations. ete.. are introduced in a
standard way (see [13. 14]). Let us consider the Ising model with a zero external field. e, with oo = 0. Let
Gr1/Ge = {0 G} be a factor-group. where

G. = Hy, = {I € Gy ) is even}
(see Sec. 5). Let us construct @‘-periodic Gibbs measures. To obtain the periodic measures. we put

hl, if IG@.,

hy = ~
hg, if re th
into (1.4). Then we obtain
hy=kfihy )
(.1}
o = kfihy #) '
where @ = tanh(7/T). =1 < 8 < 1. and f(r.8) = arctanh(f tanh r).

One may easily note that this system of equations has a unique solntion b, = (0.0) for —A=1 <4 < k71

three solutions hi'! = (—he.—hy). W = (0.0), and n = (he he) (he > 0) for &1 < 6 < 1. and three
solutions h¥ = (h,. —h.). K" =(0.0). and h¥ = (=h,. h,) for =1 < 8 < =k~

Theorem 6.1. For the ferromagnetic (7 > 0) (respectively, antiferromagnetic (J < (1)) Ising model,
there exist three (respectively, two) extreme periodic Gibhs measures o't 12 and i, (respectively, uF
-t
and g*).

Proof. The proof is analogous to the proof of Theorem 3.2 of [40.

Using ihe measures o7 and [11. we can construct an nncountable set of extreme Gibhs measures. One

may prove {cf. 2 1) that for =1 < —hk7 1 the following sers of quan -ities satisty Eq. 1.4
J -h.. it =y o, = W o0
1 /1‘. it =y e, €W 2o
L . | S A LY ORI £ YN re
{ . it o, =a. rer, e Woa.
ho 2 =ho bl i o=,
where 1= 0.1.2.. . (see Fig. 1). These sets of quantities are different for different ¢ 0,11

Let us denote by ! the Gibbs measure that corresponds to the set 7790 The following statement
holds.
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Theorem 6.2. For any t € [0, 1], the Gibbs measure pu' is extreme.
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