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ON THE INTEGRABILITY OF HYPERBOLIC SYSTEMS OF
RICCATI-TYPE EQUATIONS

A. A. Bormisov,' E. S. Gudkova,' and F. Kh. Mukminov!

We consider equations of the form Uzy = U + Uz, where U(z,y) is a function taking values in an arbitrary
finite-dimensional algebra T over the field C. We show that every such equation can be naturally associ-
ated with two characteristic Lie algebras, Ly and Ly. We define the notion of a Z-graded Lie algebra ®
corresponding to a given equation. We prove that for every equation under consideration, the correspond-
ing algebra & can be taken as a direct sum of the vector spaces Lz and Ly if we define the commutators
of the elements from Ly and Ly by means of the zero-curvature relations. Assuming that the algebra T
has no left ideals, we classify the equations of the specified type associated with the finite-dimensional
characteristic Lie algebras Lz and Ly. All of these equations are Darboux-integrable.

Introduction

In (1], the following nonlinear hyperbolic equation was considered:
UIy = [[U7 A]1 Ux]: (1)

where U is a function taking values in an arbitrary finite-dimensional Lie algebra % and A4 is a constant
element of A. Equation (1) is the compatibility condition of the over-determined linear system

L(V) =¥, - %UI\I/ =0, AW =¥, - (MU, 4])v =0 (2)

With the help of the (L, A)-pair (2), Eq. (1) can be integrated by the inverse scattering method. In [2-4],
the case A = sl(2) was considered in detail.
Equation (1) is a system of the form
u;y:C;kuju‘;, 1=1,...,N, (3)
where U = u'e;, e;,...,en is the basis of % and summation over repeated indices has to be performed.
The constants C7y. are defined by the coordinates of the element A and by the structure constants of the
Lie algebra 2.

In this paper, we consider a class of systems of form (3) with arbitrary coefficients C’y- Let us note
that, as a subclass, this class contains a system of ordinary differential equations of the form

ul, = afwdut + ffy),  i=1,...,N. (4)
Namely, if Ch = ',ij, then Eq. (3) can be integrated with respect to z and the result is a system of
form (4). Therefore, systems of form (3) are, in a certain sense, a two-dimensional generalization of the
Riccati equation.

Let us note that the class of systems (3) contains many integrable systems.
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As the first example, we consider the equation
Usy = (U, Uy, (5)

where {7 is a function taking values in an arbitrary finite-dimensional Lie algebra 2. Tt was shown in [5]
thiat this cquation is equivalent to the ordinary differential equation

Y, = yY A(x), Y(0,y) = a(y),

where ((z) and a(y) are arbitrary functions taking values in the Lie algebra 2 and in its Lie group,
respectively. The general solution of Eq. (5) can be expressed through Y by the formula

Ur,y) =Y, L

Class (3) also contains systems of the form

u;y = a;-uju;, (6)

where a;- are elements of the Cartan matrix of a simple Lie algebra or of a Ka¢-Moody algebra of rank N.
Any system (6) is related to the corresponding two-dimensional Toda chain (see, for example, [6]) by means
of a differential change of variables v* = log(u%) and, therefore, is exactly integrable. Both (5) and (6)
belong to the class of systems related to Z-graded Lie algebras.

Recall that a Lie algebra ® = B, O, is called Z-graded if ®; are finite-dimensional vector subspaces
for which (&, ®;] C &, ;. Obviously, & is a subalgebra of &.

Let U(z,y) be a function taking values in ®_; and A € ®; be a nonzero element. Let us consider
Eq. (1). It is obvious that both the left and right-hand sides of (1) are in &_;. Representing U as U = u't;,
where ty,...,tn is a basis in ®_;, we arrive at a system of form (3). We say, in this case, that the algebra
& gives rise to system (3). If, on the other hand, algebra ® and element A are such that the Lie algebra
®, is generated by [A,®_,], we say that the pair (&, A) corresponds to system (3). Clearly, the system
from [1] mentioned at the beginning of the paper is generated by the Lie algebra & consisting of Laurent
polynomials with coeflicients from 2% with the grading &; = A\'. Further, if one chooses ® to be polynomials
in non-negative powers of A, with coeflicients from 2 and the grading &_; = A\, ¢ = 0,1,2,.... and if one
also takes &; = {A}, A =03/0), and ®, =0, ¢ > 2, one obtains Eq. (5).

Interpreting the constants C;k as the structure constants of a finite-dimensional (in general, noncom-
mutative and nonassociative) algebra T with the multiplication * and, further, assuming U = v'e, (where
e; is a basis in T') to be an element of this algebra, one can rewrite system (3) in a compact form,

Upy = U % U, (7)

Formal manipulations pertaining to system (3) are often conveniently performed in terms of the algebra T'.

In the case where system (3) is generated by a Z-graded Lie algebra ®, the formula X Y = [[X, 4], Y]
endows the space ®_; with the structure of an algebra T'.

It is easy to verify that for any Z-graded algebra &, Eq. (1) admits a zero-curvature representation
L,— A; =L, A}, where L = 9/0z — Uy and A = 9/9y — (A + [U, A]). However, this equation appears to
be exactly integrable only in the case where & has a finite growth [7].

One of the main results of this work is the statement that every system of form (3) is generated by the
correspouding Z-graded Lie algebra.

Following Kac, we call a Z-graded Lie algebra & = EBIE:Z &, transitive if

for r € &,, 7> 0, the equation [z, ®_ ] = O implics ¢ = 0 or,
for o € &, 1~ 0, the equation [;r.@l] = 0 mphes z = ().
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Theorem 1. For any system (3), there exist a corresponding Z-graded Lic algebra & = @iez ®, and
an clement A € &,. This Lie algebra is transitive if T' is not a Lie algebra and does not contain left ideals.

In [8, 9], the notion of a characteristic Lie algebra was defined for systems like the two-dimensional
Toda chain. It was shown in [10] that hyperbolic-type systems possess two characteristic Lic algebras (one
for cach characteristic). It was also hypothesized in [10] that the Z-praded algebra corresponding to systems
of form (3) and more general ones can be obtained by “gluing” two characteristic Lie algebras with the help
of a zero-curvature representation. In such a case, the algebra is called complete.

Characteristic Lie algebras of vector fields are defined for the infinitely extended system (3). Let us
introduce the notation p; = D;U and g; = Di“U, t=0,1,2,..., where D, and D, are operators of the
full derivatives taken in accordance with Eq. (7). The variables p; and ¢; are elements of the algebra T and,
in the chosen basis, have some coordinates p; = (p!, ... ,p{v) and ¢; = (q}, ... ,q{v).

Rewritten in form (7), system (3) can be naturally extended to the variables p;,¢;,1 = 0,1,2,. .. as

(Po)z = 4o, (pl): = quo = Po * 4o,

(8)
(p2)z = Di‘]o =p1* 4o+ po* (Po*4qo)---;

(g0)y =Po* g0, (q1)y = Dz(po * q0) = qo * go + po * 1,

(9)
(g2)y = D2(po*qo) =q1*qo+2q0*q1 +Po*qa,-- - -

Let Afp] and A[g] be the algebras of smooth functions in a finite number of variables p} and ¢,

respectively, 7 = 0,1,2,... , j = 1,2,...,N. It follows from (8) and (9) that there are elements X; €
Der A{p] such that for any function v € A[p],

N
D (v) = ZqéXj('u). (10)

Similarly, we have

N
Dy(w) = Yo(w) + Y _p’Y;(w), Y; € Der Alg], (11)
=1

for any function w € A[g]. Therefore, the relation D (v) = 0 is equivalent to the over-determined system
Xi(v)=0, j=1,...,N, while the relation Dy(w) = 0 is equivalent to the system Y;(w) =0, 7=0,...,N.
The subalgebra L, C Der A[p], generated as a Lie algebra by Xj, 7 =1,...,N, is called the z-
characteristic Lie algebra of system (3). Similarly, the y-characteristic algebra L, C Der A[q] is generated
by the vector fields Y, 7 =0,...,N. )
The following theorem shows that the above-mentioned hypothesis is valid for system (3).

Theorem 2. Let L, and L, be the characteristic algebras of system (3). Then there exist a Z-graded
Lie algebra ®, an element A corresponding to system (3), and the isomorphisms ¢: P
¥ @5 B - L.

An important consequence of this theorem is the Darboux-integrability of systems corresponding to
the finite-dimensional Lie algebras &.

+o0c
i=1 Qﬁ_i — LI and

Let us consider the case where the Lie algebra & is finite-dimensional. This case comprises, for example,
systems (6) associated with the Cartan matrix of a simple Lie algebra &. Such systems correspond to
choosing the canonical Z-grading in ® [11]. In addition to the canonical one, simple Lic algebras also admit
other Z-gradings, which give rise, in general, to different systems. In what follows, we consider the case of
standard gradings [7].
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System (3) is called Darboux-integrable if there are functions v;(po,...,pn,) and wi(qo, ..., ¢k, ),

1= 1,..., N, that satisfy the essential independence condition
di Jdv ow Jdw
det, }l,.,.,fi}gé(), det,[, 1,..._—N}7$()
0]’11, OI)HN a(lkl ()qu

and such that

Dz(v,) =0, Dy(w,)=0, 2=1,...,N.

9

Theorem 3. Let the characteristic algebras L; and L, of system (3) be finite-dimensional. Then
system (3) is Darboux-integrable.

Proof. This is similar to the proof of the corresponding statement for the two-dimensional Toda
chain [9] and is therefore omitted.

It is known that finding the general solution of a Darboux-integrable system amounts to integrating a
system of ordinary differential equations possessing a large number of Lie symmetries.

Let us call the Z-graded Lie algebra ® = (P, ; ®; irreducible if the representation of &y in &_, is
irreducible.

In this paper, we restrict ourselves to those systems of form (3) that do not contain subsystems. It is
easy to see that the absence of subsystems in (3) is equivalent to the absence of left ideals in the algebra T
with the operation *. If onc imposes the more restricting condition that two-sided ideals be absent in T,
then, for the pair (&, A) corresponding to system (3), this condition can be easily seen to be equivalent to
the irreducibility of the representation of &g in &_;. In that case, Theorem 1 allows us to use the results
of {7] in the classification of transitive Z-graded irreducible Lie algebras.

It was stated in [7], in particular, that if a finite-dimensional transitive Z-graded algebra is irreducible,
it coincides with one of the finite-dimensional simple Lie algebras taken in one of the standard gradings. A
posteriori, it turns out that with the exception of systems related to the algebras G, and Fy in the standard
gradings, either the remaining systems have subsystems or the corresponding Lie algebra in the standard
grading has a height 1, i.e., ®; = 0 for |¢| > 1. In the latter case, the algebra T" is a Jordan algebra {12], while
the corresponding system is given by the z-derivative of the system of ordinary differential equations (4).

In the standard grading, the algebra G, corresponds to the system

ul, = 2u'tul — 3utul — utug,
ul, = ulul + vful - 4’ )
u, = vPul + uduf + utud, (12)
uj, = 2utul - 3utud — ulug,

with no subsystems. Interestingly, a different choice of element A in the same grading gives rise to a linearly
inequivalent system (see Sec. 4). For other standard gradings of G, the system consists of two equations
and possesses a subsystem.

We plan to consider the systems corresponding to Lie algebras of finite growth in another paper.

1. Constructing Z-graded Lie algebras associated with the system

In this section, we prove Theorem 1, but, first, we need the definition of a local Lie algebra and a
number of related statements from {7].

Let ® = B_1 & By d By be the direct sum of the finite-dimensional vector spaces. Let us assuine that
whenever i + j| < 1, there is an anti-commutative bilinear operation ®; x &; — &,,; ((x,y) — [ry]) such
that the Jacobi identity 1s fulfilled for every triple of vectors as soon as all of the cominutators involved
in that identity are defined. Then, ® is called a local Lie algebra. Transitivity, irreducibility, and the
homomorphisms of local algebras are defined in the same way as for graded Lic algebras.



To the graded algebra ® = @iez ®;, there corresponds the local Lie algebra & _; @ &, @ &, which we
call the local component. of the Lic algebra &.

A graded Lic algebra & = P,c5 ®, is called minimal if, for any other graded algebra G, every
isomorphism of the Jocal components of G and G’ can be extended to a homomorphisin of G7 onto G.

Proposition 1. Let & =2 & & O, @ O he a local Lic algebra. Then there exists a minimal graded
algebra & whose local component is isomorphic to &,

Proposition 2. The minimal graded Lic algebra with a transitive local component is transitive.

Let us proceed to the proof of Theorem 1.
Consider the following elements of the Lie algebra Der A[g]:

+oa P +oo 1 9
- ¢ K Y1t k
By :Zq;kaq , Bl = Z ZC’i ‘f’fn—l%—ma—q,-,
=0 i

1
L =1 m=1

where CI" are binomial coefficients, and let Ho = {BF} and H, = {Bfk} be the linear spaces spanned by the
corresponding sets. Obviously, all of the derivations B* and Bfk are linearly independent. Let ty,...,tn

be the basis of some linear space H_;. Consider the local Lie algebra H = H_; & Hy @ H; in which the
commutator operation is defined in the following way:

(BE.t;) = —6%t.,  (BI".t,) =8B,  [Bf,BR)=6Bh 65 B,
(B2, B2 = 67 Bl — 5, B1* ~ 84, BY

(the last two commutators are defined in the same way as in Der Alg]).
Let us verify that this definition of the local Lie algebra H is correct. In the case where the commutators
do not contain elements from H_;, the Jacobi identity is satisfied, since Der Alq] is a Lie algebra. If the

commutator contains more that one element from H_;, then, obviously, the Jacobi identity is not defined.
Let us consider the remaining cases:

(1) ([BE, BL) t5] = 67 [By, t5) = 65 [BY t;] = =07 85t + 85,801,

m’jru

BE, 51, BR] + (BY, [Bh, 1] = =65 [ts, Bh] = 87[BF tm] = —6765tm + 65,87t:;

m 2 1y
(2) [[B)*, BE), ti) = 6T[Bi¥, ti] — 63,[BF*, 1] — 6% [BI”, 1] = 676] BY, ~ 63,67 B — 687 BY,
[BI*. 15 ) + [(B]*, t1), BR) = —671B]" tu) + 6] [BY, BL) = 6763, B + 6167 BY, — 6165, B!
Thus, H is indeed a local Lie algebra.
Consider the local subalgebra ® C H generated by the elements £y,....ty and 4 = C;kak. Let
G, =6NH,, 1=0,£],then ® =&_, ¢ &g &;.
Denoting by 4 the Lie span of the set [&_;, A], we have

[®—]J@A,A”<:H@—1J5ALA}+[®A,®A]C:®A

and, thus, ®4 = 6(. Consider the minnnal Lie algebra & whose local part coincides with ®. Introducing
the notation s, = (A t;] = C;kBlk, we have [ty s;] = C}kti. Therefore, the algebra & corresponds to
system (3). The first assertion of the theorem is proved.

Let us show the transitivity of ®.

Let s € &y, with s = u’jkBl]k being the decomposition with respect to the basis, and let [s,&_,] = 0.
Then 0 = a;k[Bfk, ty] = u,;)ka. Further, since BF are linearly independent and the number p is arbitrary,
we can see that all aly vanish and that s = 0.
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Snmlarly, if s € ®g and [s,8_,] = 0, then s = al,BF, 0= a}|Bk t,] =
and s = 0.

Let K = {t € &_,|[t,®,] = 0}. Assume that K # {0}. If s € & and t € K, then [[t,s],®,] =
[t,[s, B+ [{t,®,], 5] = 0 and [K, 84} € K. Since the absence of left ideals in T is equivalent to the ahsence
i & _; of subspaces invariant under the action of By, we have K = &_ ;. Further, since A € 6, we see
from the definition of A that {A.® 1] = 0. As proved above, the last equality implies A = 0. which s
impossible. Therefore, A7 = {0}.

Let K = {s € &[5, ®;] = 0}. Assume that K # {0}. If s € K and s’ € &y, then [[s,s'],®,] =
[s,[s,®1)] + [[s,®1],8'] = 0 and [K,B,] C K. Setting P = [K,®_,], we can sce from the Jacobi identity
and the invariance of K under &g that

ayti; therefore, all aj, vanish

(B0, P] = &y, [K, 6 _4]] = [[B0, K], &_1]+ [K,&_,] C I
Therefore, subspace P is also invariant under the action of ®¢. Since K # {0}, we also have P # {0} in
accordance with the results proved above and, therefore, P = &_;. Using the definition of the set K and
its invariance under ®q, we find that

([©_1,6,] =[P, & =[[K,6_,],6,] C [K,[6_1,&,]] C K.

However, [6_1, ®,] generates Bg. Therefore, K = ®g and (by the definition of K) [®(, ®;] = 0. Given this,

we have &, = {A}, [s;, 4] = O and, then, 0 = (tk, [gj,A]] = —C}. 50— (55, k). We also have [s;, 5¢] = — S
and, similarly, [sk, 5;] = —Cj,si, whence (Cj; + C;)si = 0.

It has already been proved that [t,®;] = 0 implies t = 0, i.e., [t, A] = 0 implies ¢ = 0. Therefore,
0 = (C} +Cyj)si = [A, (C} + Cf)ti] implies (C k+C,'C )t = 0. Since ty,...,tn is a basis, the last equality
implies that C’Jk = C,CJ forall1,5,k=1,..., N Thus, the * operation is anti-commutative.

Taking U, V,W € ®_,, we can see from the definition of * that

U« (VW) =[U ALV, AL W] = [[[U, A [V, Al], W] + [[V, AL [[U, A], W]] =
= [[[[U, A), V], AL, W] + [[V,[[U, A}, A}, W]+ V « (U« W) =
(UV)«W +Vx(Ux*xW)+([V,[[U,A], A]}, W].

1

Since [®g, B1] = 0, the last commutator vanishes and the operation * satisfies the Jacobi identity. In view of
the condition of the theorem, T is not a Lie algebra. Therefore, our assumption is wrong and, thus, K = {0}
and the local algebra ® is transitive. As follows from Proposition 2, the algebra @ is also transitive. The
theorem 1s proved.

Let us note that the derivations BF and Bfk were introduced in such a way that the generating elements
of the characteristic algebra L, are expressed through B and B!* by the formulas

= CLBF=s;,  Yo=CyBF=4 (13)

2. Characteristic algebras

In the study of characteristic Lie algebras, it is inportant to know how their elements commute with
the operators of the derivatives D, and D,,. In the corresponding formulas, one uses the “derivations” fo,
fyvand g;, 7 = 1,..., N, of the characteristic Lie algebras L, and Ly, respectively. The terin “derivations”
is put in quotation marks since these mappings do not act on the characteristic Lie algebras themselves,
but, rather, on some formal objects. Let us give the precise definitions of these mappings.



On the set of formal commmutators of the elements Xy, k= 1,2,..., N, and their linear combinations,

we introduce the lincar mappings f;, 7 =0,1,..., N (where fo pertains to the set of commutators of length
not less than 2) according to the following rules:
(1) for 7 > 0, we have

[UNg) =~ X,
LN X)) = (GO0, X7 + (X, (),

where X’ and X' are some commutators;
(2) for j = 0,

folXi, X;] = fi(X;) — f;(Xy),
JolXi, X'] = fi(X') + [Xi, fo(X7)],
So([X', X)) = [fo(X"), X"} + [ X', fo(X")],

where X’ and X' are some commutators of length not less than 2.

Consider the set of formal commutators consisting of the elements Y;, 7 = 0,1,..., N, and of their
linear combinations. Let Y and Y’ be elements from this set. We introduce on this set the linear mappings
gk, k=1,..., N, according to the rules

gr(Yo) = —Yi,
gk([y YI] = [gk Y): YI] + [Yv gk(Yl)]’
9c([Y5,Y]) = Chg:(Y) + [Y5, 0(Y)], j#0.

If an element of the set under consideration is of the form [Y”,Y], where Y” is a commutator of length
greater than 1 and such that it does not contain Yy, then [Y" Y] = [[Y,Y],Y] = [V,[V,Y]] - [V, [V, Y]]
where Y and Y are commutators whose length is less than the length of Y. Continuing with this process,
we can transform the commutator [Y", Y] into a unique linear combination of commutators of the form
[Y;,Y']. We set g5 ([Y"”,Y]) equal to the image of this sum under the mapping gi.

In some of the lemmas in this section, we prove the desired relations only for individual commutators,

each time assuming that the statement is true for their linear combinations in view of the linearity of the
mappings f; and gx, and of the commutation operation.

Lemma 1. There is a relation [Dy, X] = fo(X) + péfj(X), where X is the commutator of elements
X; of length not less than 2 and the right-hand side is viewed as an element of Der A[p].

Proof. Let us first show that [D,, Xi] = — J‘:k;%Xi. Using (10), we obtain the following relations in
which we assume that the operators act on functions from A[p],

0 = [Dy, D] = [Dy, 5 X;] = Dy(gh) X + g[ Dy, Xy} =
= Cupyas Xi + a5[Dy, Xi) = g5 ( jkaJXt +[Dy, Xi]).
It follows that [Dy, X] = —(’;kp{, X

We now prove the desired relatlon by induction on the length d of the commutator X.

1. Case d = 2. Inserting pJ into (10), we can see that X, (p{) = ¢]. Let us note in passing that these
equalities imply the linear independence of X'y, Further, we have

[Dy. (X, Xo] = —[Chapg Xi, X)) = [Xp, Coph X)) =

JU’()[/\u i)+ Ch X, - '111’6[4\1»-7}"1] = Cr X

! |
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The right-hand side of the relation we have to prove can be represented as

fol Xe Xt + P f51 X0 X = fe(X0) = fu(Xk) + P (1F5(X0), Xl + [ X, £5(X0)]) =
= —Cu X + Clp s+ pp (- 30X X = GG [ X, X))
By comparing the vight-hand sides ol the formulas obtained, we verify that the relation is fulfilled.
2. Let the statement be true for d < m. Let us prove it for d = m+ 1. If X is a commutator of length

d, then X = [X’, X"}, wherc X’ and X" are commutators of lengths { and k, respectively, {, k < m.
First, take k,1 > 1. Then X'(p}) = X"(p}) = 0, whence we can see that

[Dy, (X', X"]] = [[D,,, X'], X" + (X', [Dy, X)) =
= [fo(X") + ph f5(X7), X"+ (X, fo(X") + Pl f5(X")] =
= [fol X’),X”} + X, fo(X )]+ p (Lf(X7), X" + (X, £(X")]) =
= fo([X', X"]) + P 5 ([ X", X")).

Now, let one of the numbers k, {, for instance k, be equal to 1. Then X” = X; for some ! = 1,..., N, which
allows us to write

[Dy, [X', X"]) = [[Dy, X'}, Xi] + X7, [Dy, Xi]) =
=(f < )+P6f;( ), X J— CulX', P Xi] =
= [fo(X"), X) + B3 £;(X"), Xi] = Cy[X", ph Xi] =
= [fo(X"), X\ + PY£5(X"), :]—fl(X')—C;imé[X’,X,-},

and then we transform the right-hand side of the relation to the same form,

S X' X" + o [, (X, X)) =

I

[fo( ") Xi) = (XY + pLf5(X), Xo) + PRI, £5(X)] =
= [fo(X"), X)) = fi(X") + B[ £5(X"), XJ] - Cyuop[ X', Xa).

The lemma is proved.

Lemma 2. There is the relation [D,,Y] = qggj(Y), where Y is a commutator of elements Y} involv-
ing Yy and the right-hand side is viewed as an element of Der Alg].

Proof. Let us prove the desired relation by induction on the length d of the commutator Y.
1. Case d = 1. Using (11), we obtain the following relations, where we assume the operators act on
functions from Alq]:

0 = Dz, Dy] = [Dz, Yy + pi Y] = [Dx, Yol + 5[ Dz, Yi) + Dz (pg)Ye = [Da, Yo] + ¢bY; + ph[ Dy, Vi)

Since [Dg, Yo] + g5Y:, Dz, Y:] € Der Alg, the last equality allows us to obtain [Dg, Y] + ¢3Y; = 0 and
EDIw };] = U 'l‘hus, {D'I, )’0] (1()} - g()gt(} ) }

2. Let the statement be true for < m and let us prove it for d = m + 1. Inserting ¢ into (11), we
have Yy(gh) = 0 and Y;(q¢)) — (.'J’kqg, t,) = 1,2,...,N. Obviously, if a commutator Y of the elements Y
contains Yy, then Y (gf) = 0. 1 Y is a commutator of length d. then Y = [Y' Y] where Y’ and Y are
commutators of lengths L and & respectively, LA < m.



First, let both clements Y’ and Y contain Y. Then Y’(qé) = Y"(qé) = 0, in which case we have
(DL, [Y,Y")]) = ([D, YY"+ [V, [D:, Y]] =
= {@g; (Y, Y+ Y, g9, (Y] =
oy Y)Y @Y g, O] = g (YY),

Now, let one of the commutators, for example Y, be equal to Y, for some { =1,2,... N. Then

(D2, [V, Y]] = (D, YL, Y] = [0, Vi) =
= @lg; (V") Yi] = Chaba;(Y') = —g5(Cl;9:(Y') + [Yi, g;(Y")]) =
= 00, (% Y']) = qdg; (1Y, Y1),
If Y does not contain Yy and is of a length greater than 1, we should consider the representation of Y’

as a sum of commutators of the form {Yj, 37] It is clear that whenever the relation holds for each of these
commutators, it is also true for their sum and, thus, for Y as well. The lemma is proved.

We say that elements T € @;of 6_;, X €L, (s€ @?:Og ®; and Y € L) are of the same form if
there are representations of these elements in terms of the linear combinations of commutators that can be
obtained from each other by replacing all of the t, symbols with X, symbols (A with Yy and s; with Y;,
j=1,2,...,N) and vice versa.

Lemma 3. If T € &_,, and X € L, are of the same form, then [s;,T| and f;(X) are of the same
form for m > 0. If, in addition, m > 1, then [A,T) and fo(X) are also of the same form.

Proof.

1. Let T = t, and X = Xj. Let us consider [s;,T] and f;(X):
(55, T) = [s5,ts] = =Clits,
f3(X) = fi;(Xy) = —C Xy

As can be seen, the assertion holds for m = 1.

2. Let the assertion hold for m < p and let us prove it for m = p. Let T and X be commutators of
length p of the same form. Then T = [T7,T"] and X = [X’, X"], where T’ and X' have length k, while T"
and X have length {, k,I < p, where, in addition, 7' and X', as well as T and X", are of the same form:

[S]aT] = [S]', [TI7 T”” = [[sj7 TI]’ T”] + [Tlv [3j1TH]]a
(XY = XX = £, X"+ (X, f(X7).
By the induction hypothesis, the right-hand sides of these equations are of the same form, whence we deduce

the first statement of the lemma.
The statement regarding {A,T] and fo(X) is proved in a similar way.

Lemma 4. Ifs € @] &; and Y € P} L}, are of the same form, then (ty, s] and gx(Y) also are of
the same form.

Proof. This follows the scheme of the proof of Lemma 3.

Introducing the corresponding weights of the variables z, y, and u', it is not difficult to check that

. wriat e aleelre ., ; . al o Mg _ +00 yq _ +o0
the characteristic algebras L, and L, admit the natural gradings L, = B/ L} and L, = @ L}, The
spaces L% are spanned by connnutators of length ¢ constructed from elements X;, j =1,..., N. The spaces
L}, are linear spans of the commutators of ¥;, 53 =0,..., N, that contain Yy precisely 7 times.

The next statement provides a sufficient. condition for a set of commutators in the characteristic algebra
L, to vanish.
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Lemma 5. Let ay,...,aq € LY, 1 > 2, be a set of elements such that [D,, ;) = fY(p)a; for every L.
Then o =0, [ =1,... k.

Proof. Since X, (p§) = &7, it follows from X € Lt, ¢ > 2, that X(p}) = 0. Let us prove by induction
on s that, under the conditions of the lemma, o (pl) = 0 for any { = 1,k, r = 1,n, and s € N. The casc of
s = 0 has already been considered. Let the stateiment be true for s — o, then

(P 41) = a(Dy () = Dy(clp})) = [y (ph) = 0.

The following lemma can be proved similarly.

Lemma 6. Let 31,...,0; € L;, 1 > 1, be a set of elements such that [D;, ;] = g‘j(q)ﬁ] for any .
Then 3y =0, l=1,... k.

3. Proof of the hypothesis regarding the existence of a complete
algebra.

In this section, we prove Theorem 2.

Let us consider the algebra & constructed in the proof of Theorem 1. We first show that there are
epimorphisms ¢ and 1, and then show that Ker ¢ = Kery = 0.

1. We specify a linear mapping p: EB:L:OT ®_, — L, in the following way: to every commutator ¢
consisting of elements t;, j = 1,..., N, we associate the commutator of elements X; that has the same
form. It is clear that this defines a surjective mapping.

For every k, the mapping ¢ induces a mapping ¢x: ®_; — LX. The necessary and sufficient condi-
tion for ¢ to be a homomorphism of the linear spaces @;of ®_; and L is that every mapping ¢ be a
homomorphism of the corresponding linear spaces. This is equivalent to the following condition: if a linear
combination of commutators of length k consisting of elements ¢; vanishes, its image under ¢y is zero as
well.

Let us show that yy is a homomorphism by induction on k:

(a) as noted above, the elements X;, 7 =1,..., N, form a basis of L}, therefore, ¢, is an isomorphism:

(b) let the mapping ¢., be a homomorphism.

Let t be a linear combination of commutators of length m +1 (t € &_,;, ), t =0, and X = ¢ 41(t).
Then {A,t], [4,[si,t]], and [Alsi [si, ... [si,,t]...]]] are linear combinations from &_,, which vanish for
every p € N and for every iy = 1,N. By Lemma 3, they are taken by ¢,, into fo(X), fo(fi(X)), and
fo(fi, (fiy - - (fi, (X)) ...)), respectively. These, therefore, also vanish by the induction hypothesis.

Let us consider the smallest set K C L7™~! defined by the conditions K C Ker fo, fi(K) C K for any
i=1,Nand X € K. In K, we choose a basis B*,i = 1,1. Since fo(B*') = 0, we can see from Lemma 1 that
(Dy, BY] = v f;(B'), where f;(B*) € K. According to Lemma 5, we have K = {0}, whence X = 0. Thus,
¥m41 18 a homomorphisim and, therefore, so is ¢. This last statement, taken together with the definition
of ¢, implies that the commutator operation is preserved. Further, since the mapping ¢: @:;Of ®G_, > L,
1s surjective, it is a Lie algebra epimorphism.

2. Let us consider the mapping : GB:;OS ®; — L, defined like the mapping ¢; it is surjective. For
every k € Ny, the mapping ¢ induces a mapping ¥ : & — L;. In order that ¢ be a homomorphism of the

linear spaces @;og ®; and L., it is necessary and sufficient that every mapping ¢, be a homomorphism
between & and L';. This is true if and only if every linear combination of commutators from &, that is
equal to zero is mapped into zero.

Let us show that iy is a homemorphisin by induction on :

(a) Iu view of Egs. (13). the spaces ®g and &, are, by definition, identical to Lg and Lzlz‘ respectively.
Therefore, ¥y and ¥ arc isomorpliusms;

(b) Let 9y, be a homomorphism.
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Let s € ®,,41 be an arbitrary linear combination of commutators, s = 0, and Y = ,,,,,(s). Then
(ti, 8] are lincar combinations of the commutators of clements s; and A lying in ®,,, and vanishing for any
i = 1,N. Under t,, according to Lemma 4, they are taken into g;(Y"), which vanishes, since ¥,, is a
homomorphism. From Lemma 2, we have [D,,Y] = p'g.(Y) = 0. Since Y € 8,1, m > 0, we can sce from
Lemma 6 that ¥ = 0 and 4,41 15 & homomorphism. Thus, ¥ 1s a homomorphism of @:;O(? ®, onto L,
This and the definition of 4 imply that the connnutator operation is preserved, whence, by surjectivity, we
obtain that v is a Lie algebra epimorphism.

We set K = Ker¢ @ Ker). Since Kery = jzog Ker ¢, and Kerp = @3;010 Ker @,, the factor algebra
®/K inherits the natural grading and there is a homomorphism x: & — ®&/K. Since ¢1, 99, and 1, are
isomorphisms, the local components of ® and & /K are isomorphic. Further, since ® is a minimal algebra,
it follows that y is an isomorphism. Therefore, Ker 1y = Ker ¢ = 0. The theorem is proved.

4. Systems corresponding to simple finite-dimensional Lie algebras in
the standard grading

As noted in the Introduction, a transitive irreducible Z-graded algebra that is also finite-dimensional
coincides with one of simple Lie algebras taken in one of the standard gradings. At the same time, the
requirement that the algebra generating system (3) be irreducible is too restrictive: systems of form (6)
correspond to simple Lie algebras with canonical Z-grading that are reducible, whereas system (6) itself does
not contain subsystems. In this paper, however, we restrict ourselves to considering only the irreducible
case.

A straightforward analysis of root systems of type A,, D, Es, E7, and FEg shows that any standard
grading of the corresponding simple Lie algebras has a height 1. Then the corresponding algebra T is a
Jordan algebra [12] and, therefore, its structure constants are symmetric, C; . = Ci ;- Thus, as was noted
in the Introduction, system (3) reduces after the integration to a system of ordinary differential equations
of form (4). In the case of the Lie algebras B;, Cy, Bj, and Cj3, some of the standard gradings may have a
height 2. In that case, however, inspection shows that subsystems are present in the corresponding systems
of form (3) as well. Moreover, the Lie algebras corresponding to the subsystems are of height 1. From our
point of view, such systems of equations are of little interest and this appears to be the case for all of the
Lie algebras B, and C,,, n > 2.

The simple Lie algebra of type Gy has two standard gradings of height 3 and 2, respectively. In the

first case, we obtain a system consisting of two equations that have subsystems. In the second case, we
have the following grading:

B_y = {es},

B_, = {e1,e3,¢4, 66},
Go = {h1, ha, ez, fo},
&1 = {f1, fa, f1. fe},
Gy = {fs}.

Choosing the element A = f; + fs/12 and performing the rescaling v* = 3u?, we arrive at the system of
equations (12). It is interesting that for A = f3 we have another system,

1 _9,1,2 | 9,21
Uz, = Su uz + 3uu,,
2 4,341 1,3 2,2
up, = dwtug +4uu; + 2utug,
2
T

w3 = 4ulu

2,3 4 .1 4
Ty + utuy + 3uu,,

4 3.3
ury_ oo,

Here, the set [&_y, A] is three-dimensional, i.c., the left multiplication operators in 7' constitute a three-
dimensional space, unlike the first case, where this space s four-dimensional. Therefore, these two systems
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arc linearly inequivalent. With a different choice of element A, either the system is linearly equivalent to
one we have considered or the set [&_y, A] does not generate .

Let us prove that ncither system contains subsystems. Since [&_y, A] generates &g in either case,
it suffices to prove, as we have already noted, that the representation of &g on &_; is irreducible. The
commutation table of the algebra Go looks as follows,

el “ 3 4 5 Cg Hh | f2 | f3 | f4 fs fo hy | ko
(3] 0 —3 0 0 0 —C5 ~h.1 0 —f2 0 —f6 0 261 —361
ez | e3 0 ey €6 0 0 0 —ho | 3f1 |4f3 0 3f4 —eg | 2e2
e3 0 —eyq 0 es 0 0 er |—-3e1| « 4fa | —3f4 0 e3 —e3
eq 0 —eg | —c5 0 0 0 0 —~4eg|—4deq | =0 |—12f1 |-12f2| O eq
€5 0 0 0 0 0 0 €6 0 3eq [12e3| -6 36e; es 0
€6 €5 0 0 0 0 0 0 —3eq| O 12e9|—36f1 107 —eg | 3eg
] M 0 —e2 | O —eg 0 0 {—-fz3| 0 0 0 —Jfs |=2fi | 3N
fa] O ha | 3er |des 0 deg [—-f3 | O fa | fe 0 0 fa |=2f2
fa| fa |-3fi| —a |dez | —3e4 0 0 |~fa| 0 [ f5 0 0 -fa | fa
fa | O |—4fz|-4f2| B |-12e3|-12e2| O |[—fo{—fs | O 0 0 0 | —fq
fol f6 | 0 [3fa 1275 6 {360 0 |0 |0 |0 ]| o 0 |-f 1 0
fe | 0 |=3fa| O |12fp |=36e1 | — fs 0 0 0 0 0 fe 1|-3fe
hi|-2¢1 | e2 |—-e3 | O —e5 €6 2fi |—f2 | f3 0 Js —fe 0 0
hz 361 —262 €3 —€yq 0 —366 —3f1 2f2 —f3 f4 0 3f5 0 0

Here, a = 3hy + hy, B = 12h; + 8hy, v = 36(hy + h2), and 8 = 72h; + 36h,. Let us consider an arbitrary
element s = ae; + fesz + veq + deg € & ;. Then

[e2, 5] = [e2, aey + Bes + veq + des) = —aez — PBeq — ves,
[f2,8] = [f2, €1 + PBes + yeq + beg] = —3Pe; — dvyez — 3dey.

Assume that ®_; contains a subspace H that is closed with respect to commutation with ;. Let us
show that either i/ = {0} or H = G_;.

Lemma 7.Ifeg € H, then H =G _;.

Proof. Assume that e € H. Then [f;,e6] = —3e4 € H and, thus, e4 € H. Also, [f2,e4] = —de3z € H,
es € H, and (fy,e3] = —3¢1 € H, ey € H; thus, H = G_.
The lemma 1s proved.

Assume that H contains a nonzero element s = ae; + ez + veq + des. If o # 0, then [eg, s] =
—aey — Peg —yeg = 51 € H, [eq,s1] = aeq + fleg = s2 € H, and [eq, 52) = —aeg € H, whence eg € H and
H =G_,. Similarly, H=G_y whenever a =0, g#0ora=0=0, y#0. Ifa=0=~v=0, then § £ 0,
es € H, and H = G_|. Thus, H # {0} implies H = G_;. Therefore, the representation of By on &_; is
irreducible and (12) does not contain any subsystems.

The algebra Fy admits three standard gradings of height 2 and one grading of height 4. In each of
these, the representation of ®g on ®_; is irreducible and there exists an element A € ®; such that [®&_,, 4]
generates ®g. Thus, the corresponding systems do not contain subsystems. They consist of fourteen, ten,
cight, and six equations, respectively, which will be given elsewhere.

The authors are gratefnl to V. V. Sokolov and 1. Z. Golubchik for the stimulating and helpful discussions
i the course of this work.

F. Kh. Mukminov wishes to thank the Russian Foundation for Basic Research for the financial support
{Grant 96-01-00382).



REFERENCES

1

2.
3.

[oe]

10.

11.

12

. H. Kakuhata and K. Konno, “A generalization of coupled integrable dispersionless system,” Preprint NUP A

95-12 (1995).
K. Konno and H. Kakuhata, J. Phys. Soc. Japan, 64, 2707 (1995).
K. Konno and H. Kakuhata, “Novel solitonic evolutions in a coupled integrable, dispersionless system” Preprint

NUP A 95 5 (1995).

. K. Konno and H. Oono, J. Phys. Soc. Japan., 63, 377 (1994).
. E. S. Gudkova, F. Kh. Mukminov, and V. V. Sokolov, “The Goursat problem for an integrable system of

the hyperbolic-type nonlinear equations,” in: Differential Equations. Integral Equations. Special Functions [in
Russian] (Theses of the Int. Conference on the 90th Anniversary of Prof. S.P. Pul’kin, Samara), Samara State
Univ., Samara (1997), p. 23.

- A.N. Leznov and M. V. Savel'ev, Group-Theory Methods for Integration of Nonlinear Dynamical Systems [in
Russian], Nauka, Moscow (1985); A. N. Leznov and M. V. Savel’ev, Group-Theoretical Methods for Integration
of Nonlinear Dynamical Systems, Birkhiuser, Basel (1992).

. V. G. Kats (Kac), Izvestiya AN SSSR, Ser. Mat., 32, 1323 (1968).

. A. N. Leznov, V. G. Smirnov, and A. B. Shabat, Theor. Math. Phys., 51, 10 (1982).

. A. B. Shabat and R. I. Yamilov, “Exponential systems of type 1 and Cartan matrices,” Preprint Bashk. Science
Center, Ural Branch of the USSR Acad. of Sciences, Mathematical Institute, Ufa, 1 (1981}.

A. V. Zhiber and F. Kh. Mukminov, “Quadratic systems, symmetry, and characteristic and complete algebras,”
in: Colection of Papers, Mathematical Inst., Bashk. Science Center, Ural Branch of the USSR Acad. of Sciences,
Mathematical Institute, Ufa (1991).

V. G. Kag, Infinite Dimensional Lie Algebras, Cambridge Univ., Cambridge-New York-Port Chester-Melbourne-
Sydney (1990).

- K. McCrimmon, Bull. Amer. Mathem. Soc., 84, 612 (1978).

1430



