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HIROTA’S DIFFERENCE EQUATIONS'

A. V. Zabrodin*

A review of sclected topics for Hirota’s bilinear difference equation (HBDE) is given. This famous three-
dimensional diflerence equation is known to provide a canonical integrable discretization for most of the
important types of soliton equations. Similar to continuous theory, HBDE is a member of an infinite
hierarchy. The central point of our paper is a discrete version of the zero curvature condition explic-
itly written in the form of discrete Zakharov-Shabat equations for M -operators realized as difference or
pseudo-difference operators. A unificd approach to various types of M-operators and zero curvature repre-
sentations is suggested. Different reductions of HBDE to two-dimensional equations are considered, with
discrete counterparts of the KdV, sine-Gordon, Toda chain, relativistic Toda chain, and other examples.
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1. Introduction

In 1981, Hirota published [1], which sunimarized his carlier studies of discretized nonlinear integrable
cquations [2-6). The main result was a compact bilinear equation which can be viewed as an integrable
discerete analogue of the two-dimensional Toda lattice. Tn Hirota's original notation, it has the form

[ZvexplDi) 4 Zaexp(D2) + Zyexp(Dy)]7 -7 = 0, (1.1)

where Z; arc arbitrary constants, T = 7(x,Z2, z3) is a function of three variables, D; = D; , and Hirota’s
D-operator is defined for the linear differential operator F(d,) by the formula

F(Dz)f(x) - g(x) = F(9y) f(z + y)g(z — y) o (1.2)
In more explicit notation, Eq. (1.1) looks as follows:
Zim(ry + 1,29, 23)7(21 — 1,72, 03) + Zo7(7y, 29 + 1, 23)7(21, 20 — 1,73)+
+ Z37(x1, 20,23 + )72y, 20,23 — 1) = 0. (1.3)

This equation is often called the Hirota bilinear difference equation (HBDE). Its simplicity is surprising and
elusive at the same time: each detail is controlled by the integrability and hides meaningful mathematical
structures, whereas some even simpler looking equations turn out to be intractable by analytical methods.

One of the most impressive outcomes of Hirota’s work is that HBDE unifies many, if not all, known
soliton equations. More precisely, it contains them in an encoded form. Performing a scaling continuum
limit for appropriate combinations of parameters and variables, one is able to obtain the Korteweg—de Vries
(KdV) equation, the Kadomtsev—Petviashvili (KP) equation, the modified KdV (MKdV) and the modified
KP (MKP) equations, the two-dimensional Toda lattice (2DTL) equation, the sine-Gordon (SG) equation,
the Benjamin-Ono equation, etc. Their discrete analogues are produced from HBDE by choosing suitable
dependent and independent variables. Furthermore, Eq. (1.1) was shown to possess soliton solutions and
Backlund transformations for arbitrary parameter values. These facts suggest that HBDE should be con-
sidered as a fundamental classical soliton equation, from which the typical examples can be obtained as
particular cases.

Recently, bilinear equations of this form emerged {7, 8] in the context of quantum integrable systems
as the model-independent functional relations [9, 10] for eigenvalues of quantum transfer matrices. This is
what motivated us to revisit the classical nonlinear difference equations.

These notes aim at reviewing selected topics of HBDE and clarifying the basic elements of the theory.
In our discussion, we deal solely with the equations themselves, saying almost nothing about their solu-
tions.* Likewise, their continuous counterparts, the completely discretized nonlinear integrable equations,
arc known to possess soliton and finite-gap solutions. However, a systematic treatment of these and other
particular classes of solutions would be a separate enterprise requiring much more space. We confine our-
selves to elaborating the discrete versions of commutation representations and auxiliary linear problems o
a formal algebraic level. At the same time, some important elements of our approach are motivated by the
finite-gap theory.

The difference soliton equatious are intimately connected with differential equations. We have already
mentioned that the latter are obtained from the former by a scaling limit. Tt would be better to say that
HBDE was designed to enjoy this property. The fact that such an equation exists is by no means trivial. A
fink in the opposite direction was established by Miwa [11], who noticed that discrete Hirota equations i
be obtained from the continuous KP hierarchy by choosing the time Hlows as certain infinite combinations
of standard Hows of the ierarchy. This 1dea was further developed in [12. 13} as a method of producing,

3Because of this, we do not draw any distinction hetween the discrete and difference equations. It is uswally tphiced in

the Tatter case that solutions are functions of a continnons variable with certain analytical propertios

1348



discrete soliton equations from continuous ones. The nter-relation between the discrete and continuous
integrable hierarchies looks like a kind of Fourner duality: they provide complementary descriptions of the
same object, namely, of the infinite-dimensional Grassimannian [14 17].

In this survey, we do not give a systematie treatment. of the connection between the diserete and
continuous herarchies. The problem of deseribing a miting, procedure that would be compatible with the
entire hierarchy s Lechnically mvolved. However, it s impossible 1o refrain fron referring to continuous
hicrarchnes. We agree to a compromise and restrict ourselves Lo a few typical examples.

It 1s assumed that the reader is familiar with the basic notions of continuous theory such as the Lax
and Zakharov-Shabat equations, zero curvature conditions in scalar and matrix forms, commuting flows,
infinite hierarchies, 7-functions, etc.

Let us outline the contents of the paper. (Detailed descriptions are given in the short introductions to
each section.)

Section 2 can be considered as a part of the Introduction. Here we tried to collect the different forms
of three-dimensional HBDE known in the literature. All of thein are equivalent and simple transformations
between them are listed.

Sections 3, 4, and 5 form the main body of the paper. As we need a number of definitions and axioms to
discover the key principles underlying the variety of integrable difference equations, these are given in Sec. 3.
All of the notions explained in Sec. 3 are used in what follows. In Sec. 4, the discrete version of the zero-
curvature representation is presented. Filling in some gaps in the existing literature, we give explicit forms
of the M-operators {realized as difference operators) for discrete Hows. Section 5 is devoted to various types
of redundant auxiliary linear problems. They provide a “linearization” of the original nonlinear equation.
The related notion of the Backlund transformation is also discussed and the Baker-Akhiezer functions are
introduced as special formal solutions to the linear problems.

Sections 6 and 7 are more technical and might be more interesting to experts. They can be skipped
without loss of understanding. In Sec. 6, we explain how to extend the M-operator approach to the
arbitrary discrete flows defined in Sec. 3. In the general case, the M-operators contain negative powers of
first-order difference operators. In Sec. 7, we dwell on hierarchies of bilinear discrete equations and suggest
the notion of “higher” discrete flows with the corresponding zero curvature representation. We postulate
that all “higher” (N-term) discrete Hirota equations known in the literature are consequences of the 3-term
equations. This assertion is proved for the first nontrivial example of a 4-term equation in four variables.

Section § deals with two-dimensional reductions of HBDE, the corresponding (L — M )-pairs, and
auxiliary huear problems. The list of reductions includes discrete analogues of the KdV equation, the 1D
Toda chain, the AKNS system, the relativistic Toda chain, the sine-Gordon equation, the Liouville equation,
and others.

In the Appendix, we present the main elements of a different approach to HBDE based on Miwa’s
transformation. This method was suggested in [12] for generating discrete soliton equations. We show how
it works for simple examples and comment on the continuum limit which is, in a sense, an “inverse” Miwa
transformation.

2. Equivalent forms of the bilinear equation

Hirota’s differenice equation exists in several forms. Historically, they emerged as integrable discretiza-
tions of particular continuous hicrarchies (e.g., KP, 2DTL). Iu this section, we give a list of most popular
forms of Hirota’s difference equation and explicitly demonstrate that they are equivalent. However, it is

useful to bear all of them in mind since one or another may be more convenient in a particular problen.
A. Hirota's original form:

Zir{ry + D)1 V) 4 Zor(a + V(s — ) 4 Zar(ag + )r(a3 —1) =0 (2.1)

(hereafter, we often skip the variables that do not undergo shifts). Note that the three variibles enter in a
symnnetric fashion and the equation is imvariant under their permutations and a simultancons permutation
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of the parameters Z;. The equation is also invariant under a sign change for any of the variables aud under
the transformation

(e, 03y = Yolry 4 ma +advilae + ooy — r)xe(r +ag — wa)as{oy + my — ag)r (e, a0 03). (2.2)

where y, are arbitrary functions.
AL Canonical form:

Tz + D1z, - 1)+ 7(z2+ D7z — 1)+ 7(z3 + I)7(z3 — 1) =0 (2.3)
does not. contain free parameters and is obtained from Eq. (1.3) by the transformation
—rie L —xi/2 - a2 .
T(7y, L0, 03) = 2, ‘/222 2/ 7y “/27(11,12,;53). (2.1)

A”. “Gauge invariant” form:

) (1+Y(x1,12,13+1))(1+Y(:n1,$2,$3—1))

Y(x,, 20+ 1, 73)Y (2, T —1,23) = _ ‘ 25
(zy, 22 3)Y (21, 72 3 (1+§ _1(171+ 1’12’1,3))(1 +Y*1(.T1 _ 1)I21$3)) (2.5)
where the new unknown function
; T(T1,Z2,23 + 1)7(Z1, 72,23 — 1 .
Y(z1,22,73) = (x1, 22,25 4 1)7{21, 72,23 ~ 1) (2.6)

T(IL‘] + 1,112,1L‘3)T(I1 — 1,172,1,‘3)

1s “gauge invariant” w.r.t. the “gauge” transformation (2.2). This form is a discrete counterpart of nonlinear
integrable equations written in terms of potentials and fields rather than r-functions. Some particular cases
of this equation emerge naturally in the thermodynamic Bethe ansatz [18, 19].

B. KP-like form:

(

ta

5 — ;3)Tzn+l,p:,ps FPrp2tlhpatl + (23 - Zl)Tm.pz+1,1>aTPx+1.ﬁ'z,p3+l+
4 (z; ~ 22)77’1.1!2.1’3+1Tm+1,p:+1.m = (. (2.7)
Here 770727 js a function of three variables p; and z; are arbitrary constants. This equation is invariant
i q
under cyclic permutations of the variables and simultaneous permutations of z;. Changing signs of all of

the variables also leaves it invariant. Invariance of Eq. (2.7} under transformation (2.2} is equivalent to the
fact that if 7P-P2P2 ig a solution of Eq. (2.7), then

xo(2p1 + 2p2 + 2p3)xa (2p1)x2(2p2)xa(2ps) 7P P20 (2.8)
is also a solution of [q. (2.7). Moreover, the coeflicients in (2.7) can be set equal to unity by mecans of the

transformation
'"1 — 23 pipe 2 23 p2ps
L e — 4
LAY VBT £ y Pa )
ThupLr >(7 ~> (,, ) TPIP??’ (29)
L1 T L9 29 — 23

bringing 15q. (2.7) to the canonical form.

B'. MKP-like forn:

- - . it Lpeps _poped Bpatd
(zo = =)l 2y)7)) Thd 1 i
s, - o4 Lps i+ lpepatl
1 (,.” A._z)(,.J .VI)T]‘“ Tp.,+l 4
o~ -l - PP padt ot lipe+lipy 9
+ (20 = 2)(z = 22)7)) Tond 1 = (). (2.10)
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Note that the combination of the arguments p; +po +p3 - pe 1s the same for all 7-functions in this equation.
Iu other words, the hyperplane py + p2 + p3 — po = const 1s ivariant. Thercfore, this equation actually
depends on three variables rather than four. Choose them to be py, pg, and py. Since, as in Eq. (2.7),
the sum of the coeflicients in Eq. (2.10) is zero, these equations differ only by a reparametrization of the
quantities z,.
C. 2DTL-Like form: 7 ] ) A
pridei bl L ;”z,u IRESR (2.11)

7 T n 'n n+1 ‘-1 >
where 74! is a function of three variables and p, v are arbitrary constants. The variables [,{ are called
light-cone coordinates. Note that, in this form, the permutation symmetry is lost. However, an analogue

of Eq. (2.2) holds: if 74! solves Eq. (2.11), then xo(2n + 20)x1(20)x2(20) x3(2n — 20) 75t is a solution as well.

The transformation i
i L ~1 oy /2 ' o
T — <; - 1) (_;) Ty (2]2)
allows one to hide the coefficients in (2.11),

Téj+1

L4112 LT 141,041 LI+ 1410
Tﬂ + Tn "rn + Tn+1 Tn—l - 0 (2]3)

By analogy with the previous cases, we call this form canonical.
For the reader’s convenience, we present below the lincar substitutions that make the canonical foris
of equations A, B, and C equivalent.

A o B: 7(zy,z9,x3) = TPVP2P3

1 1 1
Plzg(—I1+$2+$3), P2:§(Il-l‘2+I3), P3 = §(I1+I2—$3), (2.14)
T = p2 + ps3, T2 = p1 + p3, T3 = p1 + pg, (2.15)
B o C: 7PuP03 = Té‘f’

n=py+ps  L=p, L=po, (2.16)
D1 :lu D2 :71‘_27 p3:Z, (217)

A o C: 7(x),29,73) = Tij,

1 -1

n=uxp, 1:5(—$1+T2+I3)y 125( 1 — T2 + T3), (2.18)
xry = n, $2:71.+l—2, I3:l+z (219)

Clearly, these linear substitutions are not unique. All other possibilities can be obtained from the
ones given by applying a transformation of the forwn (21,19, 23) = (irp(l), +xp(2), £xp(3)), where Pis a
permutation. Using formulas (2.14)-(2.19), one can casily obtain gauge invariant forms of B and C.

3. Definitions. The nomenclature of flows

Here we introduce a practical set of definitions and axioms which helped us develop a systematic view-
point of the zoo of nonlincar integrable equations and their commutation representations. This viewpoint
15, in {act. more general than we need for the HBDE itself. Differential and “mixed” differential-difference
nonlinear equations also fit the scheme. Our approach is motivated by the algebro-geometric solutions |20]
Lo soliton equations expressed throngh Riemannian ¢-functions. However, since the goal is to elarify formal
algebraic structures, we do not refer to the solutions explicitly.

1351



3.1. Variables and kinematic constraints

The “unknown function” entering bilincar equations is always denoted by 7. This function depends
on an nfinite set of independent vanables, which are called flows or times. The last two words are used as
synonyms. For cach particular equation, ouly a finite mumnber of the time variables take nonzero values.

The flows are labeled by pomnts of the complex plane G Call the points A € C labels. We make a
distinction between discrete and continuous flows.!

Discrete flows: A discrete flow [ = 1y, 1s absocmtod with cach ordered pair of points A, p € C, A # 1.
To say it differently, the flows are attached to vectors /\p, 1.e., each discrete flow has two labels.

Continuous flows: An infinite sequence of times {t, 2,3, .. }(’\) is associated with each point A € C.
All of the (continuous) variables t; have the common label A.

In each particular equation we consider, only a finite number of labels are involved. Therefore, we
assume that for all but a finite number of labels A € C and for all but a finite number of ordered pairs of
labels, the corresponding variables are zero. This condition makes the definition very close to the adelic
ideology from algebraic number theory. A definition in such an abstract form may seem to be overcom-
plicated and too general. However, this standpoint is useful since it provides an adequate formalization of
the simple fact that the number of independent variables in the equations of an integrable hierarchy can be
arbitrary but also finite.

Sometimes it is convenient to say that those variables which are nonzero are switched on while all
others are switched off. According to the above definition, the set of labels corresponding to the switched
on variables is always finite.

Having this in mind, it is worthwhile to reformulate the definition, making it a little more concrete.5

Let {A«}, a € I, be a finite set of marked points in C. Here I is just the finite set of labels corresponding
to the variables that are switched on. By los5 (a # ) denote the “discrete” variable associated with )\—/\;

By t a), J = 1,2,... denote the “continuous” times associated with A\,. The 7-function is a function of
these variables,

= ({lag}; {t1}).

Let G be the graph whose vertices are the marked points (labels) A, « € I, and whose edges are the

vectors Ao Ag. The edges have an orientation that is indicated by an arrow looking from « to 3. This graph
is referred to as the graph of flows. It encodes the kinematic structure of the equation.

We stress that the only essential elements of the graph are the vertices and their ordered pairs. All
other graphic elements are introduced for convenience of the visualization. In particular, the vectors may
intersect on the complex plane, but the intersection points should not be considered as belonging to the
graph. It is also worth emphasizing that the vectors are just convenient names of flows. They should not
be confused with the “directions™ of the flows in any sense of this word.

The introduced variables are not independent. There are certain “kinematic” constraints nnposed on
them.

The first group of constraints involves the discrete variables only. The constraints arise when the graph
of flows G has cycles. It is sufficient to fix the constraints for the following two cases:

(i) The 2-cycle:

T(ltlﬂ + lalﬂu + ]) - T(l(xﬁyl/‘lu)v (‘51)
4These are not more than conventional names. In general, both time vanables may take complex valucs.
SFor each concrete ex: ample, this unified notation is still not very convenient to work with and will be simplified. However,
for the sake of clarity and definiteness, it is better to introduce general notions and definitions using the unified notation
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lap

Yo { IBRY

iﬁr:

Informally, this means that {g,, is identified with —l44.
(i) The 3-cycle:
T(lag + Ligy + Lo + 1) = 7(lag, lgy. Lya), (3.2)

Ap

A,

The corresponding rules for longer cycles follow from these two. According to these rules, one can
subsequently remove all of the cycles and reduce the graph to a tree. The tree graphs correspond to
kinematically independent flows. Formally, it is sufficient to consider graphs without cycles. However, the
introduction of cycles sometimes makes the set of variables more symmetrical, though nonminimal.

The last constraint describes the inter-relation between a discrete flow A, Ag and the “adjacent” con-
tinuous flows (i.e., the flows corresponding to the endpoints A, and Ag).

(111) Miwa’s rules [11, 12]:

T(lag + Lt t0) = 1 (Lo t1) — [Ag = Xa), t9)), (3.3)

T(lag — 1; 9 1P = 7 (1t P — (X, = Ag)). (3.4)
() Log ()

Ao @ —e /\g.

Here 7(t) = 7({t;}) and the short-hand notation

JICESE) Ef(tliz,tgi%zz,tgi%zs,...) (3.5)

is used for the function f of the infinite sequence of variables ¢t = {¢;,t2,...}. Relation (3.4) follows from
rule (3.1) and relation (3.3).

Relations (3.3), (3.4) should be understood as formal rules which allow one to translate the infinite
sequence of continuous time shifts into the shift of a single discrete variable and vice versa. We are not
concerned about the convergence of infinite substitutions, i.e., the 7-function is considered to be a formal
series in A (on the left-hand sides of equalities (3.3), (3.4), A, and Ag are implicitly present in the definition
of the discrete flows). In known examples of algebro-geometric solutions, the r-function is a true function,
not merely a formal series. In this case, there are some additional restrictions on the domains of all variables
and labels. These ensure the convergence of the infinite substitutions. Meanwhile, for algebro-geometric
solutions, the vertices and edges of the graph G can be presented as punctures and cuts on a Riemann
surface. Furthermore, the discrete time variables describe discontinuities of the Baker- Akhiezer function
on the cuts.



We refer to the discrete flows A\, Ag as elementary discrete flows. One may introduce more complicated
flows, which can be thought of as “superpositions” of the elementary ones. Specifically, fix several elementary
flows, say, {1,l,...,lp (here l; = 14, 5, for some ay, ;) and consider the 7-function as the function of a
new variable y as follows: 7[y] = 7(L; +y, l2 + ¥, - .- ,Iar + y). In the time evolution with respect to the
new variable v, the “elementary” variables [, are simultaneously shifted by y while the others are constants.
Let us call flows of this type composite discrete flows.

To say it differently, let 8; be the vector field corresponding to the flow {;. Then the vector field
corresponding to the composite flow y is

Oy = 0;,

-
I
—_

(R

therefore,
exp(3y)7 ({la.p. 1 = 7({la,p, + 1}) exp(9,).

However, one should be careful because this procedure does not necessarily generate a composite flow. For
example, due to (3.2), the simultaneous shift of l,5 and lg, is equivalent to an elementary flow.

The precise definition is as follows:

Composite discrete flows are labeled by finite sets of vectors {Ao,Ag.}, @ = 1,2,... M, such that

f: # o for any 1,3. Let y be the corresponding time variable. In this case, evolution along the direction of
the composite flow is defined by the formula

Tly] = T({la.ﬁ. + y}),

where [,,5, and other elementary variables are assumed to be constants.

The distinction between elementary and composite flows can be extended to continuous flows as well.
For reasons which are clarified later, it is natural to consider the continuous times tga) as elementary flows.
At this stage, we defend this definition by the fact that, due to Miwa’s rule (3.3), they can be obtained
as a result of the scaling limit from discrete elementary flows. Similarly, higher continuous times t ) with
7 > 2 are limits of composite discrete flows. Therefore, we call them composite times.

To summarize, we have introduced several notions and definitions which are extensively used through-
out the paper. First of all, a partial classification of flows and time variables in soliton equations has
been suggested. We have defined discrete and continuous flows, and distinguished between elementary and
composite flows. One may assign a graph to any particular equation, which explicitly shows the kinematic

structure of the equation and possible constraints imposed on the flows. In order to make this clear, we
give some examples below.

3.2. Examples

To make the graphs of flows more informative, let us add a new graphic element: fat dots mean that
the corresponding continuous times are nonzero.® ‘

In the KP hierarchy, the graph of flows consists of a single “fat” point with corresponding continuous
“times” {t;} (Fig. 1). The set of discrete flows is empty and the 7-function is 7(t) = 7(ty, to, ... }.

In the 2DTL hierarchy, the graph of flows consists of two “fat” points with corresponding times {t;}
and {f;} (Fig. 2). The discrete flow associated with the vector connecting the two points is the discrete

“time” n of the 2DTL 7-function 7,(t;?).

The graphs of flows for the discrete KP and the discrete 2DTL equations are as in Fig. 3 and Fig. 4,
respectively.
All continuous times are switched ofl. In both cases, only three independent discrete flows are switched on.
This agrees with the continuous case, where the first nontrivial equations of the KP and 2DTL hierarchies

O would be more precise to say that the continuous times cannot be set equal to zero by a transformation of

form (3.3}, (3.4)
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Fig. 1. Graph of lows for the KPP hierarchy. Fig. 2. Graph of flows for the 2DTL hicrarchy.

/N

Fig. 3. The discrete KP equation. Fig. 4. The discrete 2DTL equation.

/

A
A

e

Fig. 5. The discrete KP hierarchy. Fig. 6. The discrete 2DTL hierarchy.

have three independent variables, 1,82, t3 and ¢1, {1, n, respectively. In the continuum limit, all of the lines
except the vertical one in the 2DTL figures shrink to fat points.
Figures 5 and 6 represent the discretized KP and 2DTL hierarchies, respectively.

Higher equations of the hierarchics involve more than three elementary flows. The labels of these flows
are analogous to the number of the higher flow in the continuous hierarchies; these labels are complex
numbers. This scheme looks like a kind of Fourier duality between a parameter that numbers the equations
of the hierarchy and the time variable corresponding to a particular flow: continuous flows are marked by
a discrete “label.” whereas discrete flows are marked by a continuous label.

4. Discrete Zakharov-Shabat representation of the Hirota equation
The reformulation of classical nonlinear integrable equations as Hatness conditions for a two-dimensional

connection is the basic constituent of the theory. Flatness means that subsequent shifts along any pair of
time Hows commute. These conditions are known as the Zakharov-Shabat equations or the zero curvature



Fig. 7

representation. In 1], Hirota gave an example of the discretized zero curvature representation for Eq. (1.1).
In physical language, the discrete connection is a lattice gauge field. The approach emphasizing the rela-
tionship with gauge field theories on a lattice was developed by Saito and Saitoh [21]. We present these
results in a modified form, which makes the theory parallel to the 2DTL theory {22].

The discrete zero curvature condition is equivalent to the commutativity of certain multivariable dif-
ference operators. The existence of such a “commutation representation” is a hall-mark of integrability. At
the same time, if a commutation representation exists, it is not unique. In particular, there are different
(in fact, infinitely many) ways of representing the HBDE as a zero curvature condition.

The general scheme is as follows. Choose any time flow as the “reference” one, i.e., the one in which all
of the M-operators act as differential or difference operators. Commutativity of the flows means that any
pair of such M-operators obeys a compatibility condition, which turns out to be one of the Zakharov-Shabat.
equations. This fact allows one to relate the different hierarchies to each other. In general, M-operators
are pseudo-difference operators’ or difference operators with matrix coefficients. Here, we consider only the
case of difference operators. Examples that are more general are given later in Sec. 6.

When the reference flow is taken as an elementary one, the coefficients are scalar functions. Section 4.3
contains an example of the zero curvature condition for HBDE realized by 2 x 2 matrix difference operators.

4.1. Basic M-operators

Thus far, all elementary discrete flows have been treated on equal footing. None was any better than
another. Now, we are going to break this equal treatment and distinguish the reference flow. This may
be any flow, including composite and continuous flows. For simplicity, we start with the case where the
reference flow is discrete and elementary. Other cases are discussed later.

The idea is to assign difference operators to all of the flows. These operators act on functions of the
reference flow variable and we call them M -operators. In this section, we consider the simplest M-operators,
which are the basic blocks of more general operators.

Let us specify the notation and take the reference flow to be m. However, the double index notation
1s inconvenient for practical purposes. When dealing with a limited number of flows, it is worthwhile to
give them simpler though less systematic names. Unless otherwise stated, the letter « is reserved for the
reference variable corresponding to an elementary discrete flow. Therefore, we set

u = 101.

Let Az be any label different from A, Ay. In this situation, where the three elementary flows with these
labels are switched on while eﬂl_o)f the n_t,E}r flows are switched off, the graph of the flows is the triangle
depicted in Fig, 7. s sides AgAg zmdi/_\)«z define fows LM(‘ call adjacent to the reference flow u in
the obvious sense. In general, a How A, A, (respectively, AgAyr) is said to be left adjacent (respectively,
right adjacent) to the How m Coming back to the triangle graph of the fows, we set { =1 [, = .

i

We use this shorter name for what is usually called o “quantum pscudo-differential operator.”
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The 7-lunction is denoted by bt

connection

. There are only two independent flows. According to (ii), we have the

LS D S Y
7Vu+l - Tu . (41)

The coethcients of the AM-operators are expressed via 7.
Lot us take 0 as mdependent variables. By delimtion. the Al-operator assigned to the eft adjacent

flow [ 15

'TJT£+1

U 0w 401 Tuluyl
ML= e — 2§l (4.2)
Tu Tu+1

where the coeflicient /\(2“ 1s expressed through the three labels Ag, Ay, A2 as follows:

1 1 .
At = - . 9% = %L 4.
oA Ao ! 2 43

The shift operator e« has standard commutation relations with functions of u: e*% f(u) = f(u + 1)e*%.
Note that MY = e

In (4.2), 1t is implied that the 7-function depends on all of the other variables, which are switched off
in this particular case. When they are switched on, they enter Eq. (4.2} as parameters. Their values are
the same for each of the four 7-functions in the ratio. As a rule, we do not indicate them explicitly where
there is no confusion.

Once the M-operator for the left adjacent flow is written, it can be translated into the M-operator for
the right adjacent flow I’ by passing to the independent variables u,!’. On the right-hand side of Eq. (4.2),
the (implicit) argument !’ is the same in each 7-function. Using (4.1), we rewrite the right-hand side in such
a way that the argument [ is the same and implicit. Rule (ii) tells us that the shift I’ — I’ + 1 is equivalent
to the simultaneous shifts « — v+ 1 and [ = [ + 1. Considering M-operators as the generating shifts of
discrete variables by unity, it is natural to define the M-operator for the right adjacent flow I’ as follows:

}’l—{i =e pl

or, more explicitly,

v ALy .
a7l 01Tut+1'u—-1 _a, ,
Tu | Ty
It 1s also useful to introduce the operators
o — _ ‘_[’
My =ML ML ="M, (4.5)

which arce difference operators in two variables. It follows from the construction above that
vl o
(M, M, ] =0 (4.6)

We have defined the M-operators for elementary discrete flows adjacent to the reference one. In this
case, these operators have a simple form: they are first-order difference operators in w. The M-operators
corresponding to composite and nonadjacent fows have a more complicated structure, which is discussed
in the sections that follow.

Let us comment on continuous reference Hows. According to (3.3), in the continuum limit in u, we have
¢l 1= AT, + O(A™2), where ) is the first continuous time with the label A, while A = (A = Ag) L.
The limiting form of the AM-operator (1.2) as A = o0 18

7-1+I

AT =y g — (A - Ag) L

!



u

I~

Ao l A3

Fig. 8

This is a first-order differential operator in the reference continuous time variable t;. It generates shifts in
the discrete variable [. Since it is an operator of the first order, we call the continuous flow ¢, elementary
(see the end of Sec. 3.1).

4.2. Discrete Zakharov—Shabat equations

Two independent flows are not enough to derive bilinear equations, as nontrivial bilinear equations for
7 arise from three independent discrete flows. In this case, the graph of the flows should contain at least
four vertices. Therefore, let us fix four labels A,, a = 0,1,2,3, and consider a general graph with four
vertices (Fig. 8). The simplified notation for the flows is as in Fig. 8. As in {4.3), we set

1 1
/\7_)\(: Aﬁ*)‘a?

Aot — AGT = _xaP (4.7)

for all possible values of the pairwise distinct indices.

Let ApA; be the reference flow as above. The left (respectively, right) adjacent flows are X()T;. /\—OT;
(respectively, /\_17;, m) Each has its own M-operator of form (4.2) (respectively, (4.4)).

The key point is to extend the trivial commutation properties (4.6) to all of the flows in the graph
adjacent to u,

(ML MT) = [Mi/\?i} = [Miﬂﬂ =0. (4.8)

In contrast to Eq. (4.6), these are nontrivial requirements which give rise to the bilincar equations for 7.
Written in terms of M-operators, commutation relations (4.8) are discrete Zakharov-Shabat equations.

In the following proposition, we use the notation such as M{ = M!(w,(,1, .. ) to indicate that the
M-operators are variable dependent.

Proposition 4.1. The discrete Zakharov-Shabat equations

M L4+ DM (o, ) = MY+ 1,0 M™ (1), (4.9)
M) G4 DR Lm0y = Mo+ 1, DM (1), (4.10)
Mo+ LOMULT) = MU T+ 1)) (1.11)
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arc equivalent, respectively, to the following bilincar relations for 7

01 l+1,m tm+1 01 l m4 1 l+1 m [+1,m+1_Lm

/\" Tut1 /\ Tu+1 + [] ([ ™ “)T Tut1 = 0, (112)
01 l+l it lm+] 01 lm.41 l+17n Fp— iym 141,541 . )

Ay T, il A Tugr t Ho(lma)r, " =0, (1.13)
Gl _tdqy1 1+ ur _fd4t 41 . NI RN EE

Ay, A T Taly s L LT, SN (1.14)

where H; are arbitrary functions such that Hi(l,m;u+ 1) = H({,m; u).

Proof. The proof consists of the straightforward commutation of the M-operators. The M-operators
read as

7_I,I_H-l

I _ 0O 01 "u utl
Mu =€ ~)‘3 1 | ’ (415)
Tu Tu+1

m m+1

VAL 01 Tu—-1Tu+1  _g, X
M, =123 —m7 —¢ ™ (4.16)
Tu Tu

Operator M is given by (4.15) with the changes [ — m and 3 — 2, and Mi 1s given by (4.16) with the
changes m — [ and 3 — 2. For the case of Eq. (4.9), the equation is

m, 41, m+1,0+1 m,l_ml+1
_ /\017 ut1 e _ )01 To  Tutl .
mF+11+1_ml+1 3 mi+1_ml -
Tu Tyl Tu Tuil
m+1,t,_m+1i+1 m'; m+1,
— [ 0 _ y01Tu Tu+t1 /\01 Tutl 417
- 3 +1l+1 m+1,1 m+1l_ml |- (4.17)
u+1 Tu Tu+1

The terms e?? and those that do not contain the shift operator are automatically canceled. A comparison
of the coefficients in front of €%« yields

m ml+1 m+1,1 m+1,0+1 m41.l m,i+1
Tut1 [ yorTut2 /\01Tu+2 _ Tutl 017u 01Ty 418
m,l 3 m,l+1 m+1,1 T m+41l 41 3 m+1,l 2 m,i+1 ’ ( ’ )
u+2 Tu+1 u+1 Ty u+l Tu+1
or
/\ngm+1,le.l+l /\01 ml+1T"1+11 vanm+1l+1
+1 url  Tugd (4.19
/\01 m+1,0 _m,i+1 /\01 m+1_m+11 7 _ml _m+1l+1° : )
u+1 ut2 Tu+t1 Tu+2 Tut+2Tu+1

The denominators on both sides differ from the numerators by the shift u — w+ 1. Therefore, their ratio is
a “quasi-constant” in u with the unit period and, therefore, the equation is equivalent to Eq. (4.12). This
completes the proof.

Now we restore the “equality of treatment” for the elementary flows by imposing the requirement that
the Zakharov-Shabat equations hold for any choice of reference flow. For example, let { be the reference
flow. Construct M-operators for the flows u, ¥ adjacent to [ (see Fig. 8). Then, we require that the operators

T
M M /M, cand M, commute with each other (of course, some of them commute automatically due
(4.())). Note, however, that the M-operators constructed with respect. to different reference flows are not,

required to be comnuting, ¢.g [Mu , 1?] # 0.

Theorem 4.1. Let o be any of the elementary flows shown in Fig. & and let v, o he the corresponding
left and right adjacent ows sncl that . oo and v are independent. Then the comummitativity conditions

(A AL =0
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imposed simultaneously on three arbitrary independent reference flows x are equivalent to

03_lm+1_l+1m 0l _i4+1,m_lm+1 02 _{+1m+1_Ltm

)‘1 Tu Tu+1 + /\2 Ty Tu+1 + )‘3 Ty 7—u+l - 0’ (420)
02 U m+1_Il+1,71 03_Im _l+1,m+1 01 _I+1,m_Lm+1 _ .

Al Tu Tu+l + /\2 Tu 7—u+1 +)‘3 Tu Tu+1 - 07 (421)
01 _LI+1 1411 0210 _1+1,141 _ o1 _LI41 _1+11

ATy T, - AT T, =X Tyl Tyt - (4.22)

Sketch of the proof. By virtue of Proposition 4.1, it is sufficient to show that the functions H,
are constants, H; = —H, = —H3 = A$?. This can be done straightforwardly by writing the bilinear
equations arising from the Zakharov-Shabat equations for the M-operators corresponding to each choice
of the reference flow and requiring that they be consistent with each other.

We can see that Eqs. (4.20) and (4.22) coincide with the KP- and Toda-like forms of HBDE, (2.7)
and (2.11), respectively. Equation (4.21) coincides with the KP-like form after the change w — —wu. The
threc equations differ by the choice of only those independent variables that agree with substitutions (2.14)-
(2.19). The transition from one triad of independent variables to another should be done according to
rules (i) and (ii) (see (3.1) and (3.2)). Using these rules, it is easy to see that the three equations (4.20)
(4.22) are equivalent to each other.

The four-variable MKP-like form (2.10) of the Hirota equation follows from (4.20) by applying rule (3.2).

)
Namely, fix an extra label pg and consider the flows poAq, a =0, ... 3, with time variables p,. From (3.2)

we have, for instance, 77 1?2 = rmp2+41 otc This change of variables converts Eq. (4.20) into Eq. (2.10).
u,po+1 u,po g q q

4.3. Matrix realization of the zero curvature condition

We restrict ourselves to giving an example that illustrates the general scheme outlined in the introduc-
tion to this section.

Switching off the unnecessary variables, we consider the graph of flows (Fig. 9), which is a reduced
version of the graph from Sec. 4.2.

The simplified ad hoc notatiou is clear from Fig. 9. This choice of independent variables corresponds
to the discretized 2DTL equation.

Our goal here is to write the zero curvature condition with another choice of the reference flow. Specif-
wally. let 1t be the composite How labeled by the pair of vectors /V)\_: m and let y be the corresponding
“composite” time variable. According to the definition given in Sec. 3.1, the 7-function depends on 4 as
follows: » 7

TIIL" ‘U] - TTI‘) w4 Y
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9y acts on the 7-function by

In other words, we set, by defimition, d, := 0, + d;. Then the shift operator ¢
shifting {, [ simultancously,
LU LI L0,

¥
Y '
( 7—'ll. u

Introduce the following difference operators with 2 % 2 matrix coeflicients:

it Ty 41 (41041

7] Tw Tl Tntl Tu-1 . Tt

e+ 1/T1+1.TT1J + '“‘TI+I.I+IT1+|,7 [“/T1+1j+1
- n ntl n n n

L, = ) ,
Lt
To_ 0
[
Ta+1 P
i (4.23)
nt1i
) v ~/u/———T,j+l
M, (D) = i i i
! N L. ¢ f
WO e, | maiat
T'll+l,l+l T,‘,"+1T:,+l"+l
where we set g = A9!, v = AJ! for the sake of brevity.
Proposition 4.2. The matrix discrete Zakharov-Shabat equation
LU+ 1)M (LD =M, (DL (LD (4.24)
is equivalent to the bilinear relation
LI+1 1410 YRR ES R AR LI+l 411

Ty Tn - Hﬂ(l7l)Tn Tn - (#/V)Tn-{—l Th-1 > (425)

where H,(1,1) is periodic in n with period 1: Hyy1(1,1) = Ho(L,1).

This bilinear equation coincides with (4.14). We omit the proof since it is absolutely straightforward
after the (L — M)-pair is given. A means of deriving matrix M-operators from the scalar ones is discussed
in Sec. 5.

Asin Theoremn 4.1, the validity of the zero curvature condition for M-operators constructed with respect.
to all possible independent reference flows implies a bilinear equation with a fixed constant function H. It
has form (2.11).

Remark 4.1. In the 2DTL interpretation, the operator M, generates the evolution in the chiral
discrete “space-time” variable I, whereas L, generates shifts along the n-lattice. In our scheme, both M,
and L,, are “M-operators” rather than “L-operators.” We write L,, according to tradition, which goes back
to the case where an additional reduction of the 2DTL 1s implied.

It 15 instructive to look at the continuous version of this zero curvature condition. It provides the zero
curvature representation of the 2DTL with the composite continuous reference How defined by the vector
field 9, := 0y, + &, in the space of the times (see Sec. 3). This representation naturally arises when one
embeds the 2DTL into the 2-component KP hierarchy. The Zakharov-Shabat equation

021 Ln = A1H+1L1L - LnAlnv (42())
where
L (0 (o) -
T TTII () Al
e (4.27)
{ LN
AIH = TV I \
(' P ()y >
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is equivalent. to the equation

. . Tn41 Tn+1Tn—1 Tn+2Tn
dr, 0, log = - — , (4.28)

2 2
Tn Tn Tn +1

which is the 2DTL equation in bilinear form.

Remark 4.2. The one-dimensional Toda chain (1DTC) is a reduction of the 2DTL such that 7, does
not depend on ty+4,, 1e., Jy commutes with 7,,. Therefore, in this case, dy can be considered as a c-number.
Identifying it with the spectral parameter, one recognizes Eqs. (4.27) as the standard (L — M)-pair for the
IDTC realized by 2 x 2 matrices depending on the spectral parameter (sec, e.g., [23]).

5. Linearizing the Hirota equations

The zero curvature conditions studied in the previous section arc equivalent to the compatibility of an
overdetermined system of linear difference equations for a “wave function” . These linear equations are
called auxiliary linear problems (ALP) and they play a very important role in the theory. Common solutions
to the ALP contain complete information about solutions to nonlinear equations. All of the properties of
the latter can be translated into the language of the ALP. This is what we mean by linearization of the
HBDE.

In accordance with the diversity of zero curvature representations, there are many types of ALP. This
section deals with the most important examples.

We begin with the scalar linear problems associated with the M-operators (4.15), (4.16) for elementary
discrete flows adjacent to the reference flow. They are simple first-order linear difference equations with
coefficients expressed through the 7-function. The formal solution in a special form is called (the formal)
Baker-Akhiezer function and it depends on the spectral parameter. Baker—Akhiezer functions are formal
analogues of Bloch solutions. The formula for the Baker-Akhiezer functions in terms of the 7-function was
suggested for the first time in [24]. General solutions to the ALP are linear combinations of Baker-Akhiezer
functions with different spectral parameters. In a similar way, one may define the dual Baker-Akhiezer
functions as formal solutions to the linear problems for adjoint operators.

Given a solution to the ALP, one may consider the Bicklund transformations. Furthermore. the
“duahity” between the coefficient functions and solutions of the ALP allows one to define a chain of successive
Backlund transformations described by the Bicklund flow. We consider two types of Backlund flows. It
is shown that in the particular case where the solutions to the ALP are Baker—Akhiezer functions, the
Backlund flows can be identified with elementary discrete flows adjacent to the reference flow.

There is a “gauge freedom” in the ALP which can be fixed by certain normalizations of Y, but we
usually use the gauge that leads to the simplest possible form of the linear equations. Another choice—the
zo-gauge—is briefly discussed in Sec. 5.4. This gauge makes the equations more symmetric at the price of
imtroducing an auxiliary point zg € C and complicating the coefficient functions.

The ALP associated with the matrix M-operators are also discussed. In fact, matrix M-operators
can be most conveniently derived using the scalar ALP, as the matrix linear problems can be obtained by
combining the scalar problems. More precisely, in order to rearrange the scalar ALP in such a way that the
reference flow is taken to be composite, one has to pass to diffe;ence operators with matrix coeflicients.

5.1. Scalar linear problems
The commutativity of the M-operators (4.8) implics that they have a common set of eigenfunctions.

Equivalently, the discrete Zakharov Shabat equations (4.9)—(4.1 1) for AM-operators imply the compatibility
of the linear problems

ML ) = g, (5-1)
ﬂi'l/’lj('“‘) _ wllﬂ(“)‘ (5.2)
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for arbitrary elementary discrete flows [ adjacent to u. Note that the “cigenvalues,” which are set equal
to unity on the r.hos., can be made arbitrary by changing the normalization of 1. Our choice in (5.1), (5.2)
is most convenient in the purely discrete case, though it does not lead to a smooth continuum Ihnit.

More explicitly, Egs. (5.1), (5.2) read (see (4.15), (4.16))

I,/ll'[(ll J l) _ )\(VH‘_'l,l(”)(/![.l(“) _ I/’l' ],l(”)A (r)‘;)
Y () = AP (- 1) = g ), (5.4)
where
(L1
il L Ty Tutl
Vol(u) - T (5.5)
Tu Ty
LI+l 1,
z T T
C"I(u) = Jutl u-l (5.6)

LI+1 1]
7'u'+ Tu

These formulas become more symmetric in terms of the “unnormalized” wave function

[u _ (/,z,z(u) 1 (5

[
~1
~—

Substituting (5.7) into (5.3), (5.4), we obtain

1+11 11 01 l+ll 10 LU g
Ty Pug1 ~ A3 Tugl Pu = Tut1Pu s (5.8)
11+111 01ll+1ll _ llll+1

)‘ u+1 pu 1 — T pu (59)

Let us show that a properly performed continuum limit of these equations yields the familiar linear
problems for the 2DTL. Let us set

)\3:/\()+F, )\Q:/\l‘*'?, e, ¢ =0,

such that

661—)176(%1, e&l—al—Eazl,

by virtue of Miwa’s rule {3.3) applied to the discrete flows AgA3, AjAp, respectively. Let us change the
normahzation of the ¥-function by introducing the ¢-function as follows:

o (u) = (Ao = Ag) M (w). (5.10)

Then the linear problems read

(Ao = Ag)pb (u + 1) = A(Ag = ANV ()t (w) = oM (u),
I

(5.11)
(Ao = A2)e () = AL = A)CH et (1 = 1) = (Ao = Aa)e T (1),
where A = (A; — Ag) "L For e, € = 0, we have
g . Tuq1
dye(u) = el + 1) + </\ + Oy, log ) w(u),
TU N

{H.12)

. Tu { ITU*I

RENTI I (e — 1),

72
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The transformation 4
Ty — AT C~/\ut17_u

climinates the constant A, reducing the lincar problems to the familiar form,

( deelu) = @l 4 1) + olu)pl(u).
1 Oy plu) = cluyplu - 1).

Here _— oy
v(u) = 9, log ~FL, clu) = 2L
Tu T2

(for the sake of simplicity of the notation, we use the same letter for the transformed function). The
Zakharov -Shabat equation '
[9,, — eFv - v(u), 0 — C(u)(’,_d"] =0

L

yields the first 2DTL equation in the form

o Tu4 Tu+1Tu—1 Tu+2Tu
O, 0f, log = - . (5.14)
1 T T2 7.2
u u u+1

These equations are continuous analogues of Eqgs. (4.11) and (4.19), respectively.
5.2. Backlund transformations

The ALP in form (5.8), (5.9) have a remarkable property (see [21]). These equations are almost
symmetrical w.r.t. the interchange of 7 and p. Furthermore, one may treat them as linear problems for the
function 7, the compatibility condition being a bilinear equation for p. This equation is, again, the HBDE
of the same form. In [21], this fact was referred to as the duality between the “potentials” 7 and the “wave
functions” p. This “duality” emerges most transparently in the fully discretized case.

More precisely, rewriting Eqs. (5.3), (5.4) as linear equations for

M () = AU <1jll+1‘i+1(u+ 1))7l
+1,0+1
w+1
(see (5.7)), we obtain
(e=% — APV )t (u) = 1 (u), (5.15)
(1= A9 CH (u + 1)e® )P (u) = 91 (w), (5.16)

where V and C are given by the same formulas (5.5), (5.6) with p instead of 7. The difference operators
on the Lh.s. are adjoint to the operators (4.15), (4.16) with 7 — p. The formal adjoint operator is defined
by the rule (f(u)e*@ )1 = e %% f(u) It then follows that the compatibility conditions are described by
Theorem 4.1 with p substituted for 7.

Therefore, passing from a given solution 7 to p, we obtain a new solution to HBDE. This is a Backlund-
type transformation that is also known as the “Darboux™ or “Backlund-Darboux” transformation. For a
comprehensive discussion of transformations of this kind, see [25]. The bilinear form of the Backlund
transformations was suggested by Hirota [5].

One may repeat the procedure onee again, starting from p and, moreover, consider a chain of successive

transformations of this type. It is natural to introduce an additional discrete variable b to mark the steps
“ > . . Lol . o . .
of the “flow™ along this chain and let 7.5 o p 7y be 7 and pat the bth step, respectively. The first. Backhind
flow can be defined by identifying
I ot
7'u,h«‘] - /)u,b' ( :

s}
—
-~

—
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This means that 7 at the next step of the “Backlund time” b is set equal to a solution p of the linear
equations (5.8), (5.9). In this case, these linear problems themselves become bilinear equations for 7y,

I+1_1 01_I+1 { { +1 _

Tub Tud 1,041~ A3 Tt 1.6 Tubt1 ~ Tut 167w bs1 = O, (5.18)
+1_1 ] I+1  _ yo1_14+1 1

T Tu b1 (W) = Ty p(WT 0 = A2 T b Tum 1 b1 (5.19)

Here [ (respectively, 1) in Eq. (5.18) (respectively, (5.19)) is skipped since it is the same for all of the terms.
Analogously, one may define the second Backlund flow (the Backlund “time” is now denoted by b),

0o 1l
T = .
u,b+1 pu——l,b (520)
From (5.8), (5.9), we have

01_I+1_1 [ 1+1 1+1
)\3 Tu,E Tu,b+l + Tu,bTu,5+1 - Tu+1,b+lTu_1,E’ (521)

T _I+1 I+1_1 01_I+1 _I
T I - A 1 - =0 22
wb 151 Tud Turrher T A2 T 5w = O (5.22)

In these equations, one immediately recognizes different forms of the HBDE. A time discretization of the
Toda chain by means of Darboux transformations was considered in [26].

The Backlund flows can also be defined by a zero curvature condition. Given any solution ¥ to the
ALP (5.3), (5.4), introduce the operator

BY = o0 (eau _ %) _ (5.23)

Then Eq. (5.18) is represented as the commutativity condition [B2, AMY] = 0. A similar B-operator exists
for the second Backlund flow.

5.3. Baker—Akhiezer functions

Each of the ALP (5.3}, (5.4) is a first-order linear difference equation in two variables. Assuming
HBDE (4.20)--(4.22) hold, we construct a parameter family of their common solutions in a special form.
These solutions ¥(u) = (u;z) are called Baker-Akhiezer functions and they depend on the spectral
paramcter z € C.

Let us switch on the extra elementary flow shown by the dotted line in Fig. 10; the corresponding time
variable is p.. Let

1 1

Do Aa A=A,

A= (5.21)
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Note the useful identity satisfied by A&7,
AT = A7 (5.25)

Then, asstwming the 3-term Hirota equations hold for the triads (v lopl) and (ulopl) of independent
variables, we dind that the function

I i1
I/JI’i(U' Z) - (/\01)1&(/\03)[ f\_gj Tup.+1
) z z )\(Z)l Tl’i

u,p:

(5.26)

p.=0

is a formal common solution to Eqs. (5.3), (5.4) for any z. Indeed, substituting (5.26) into Eq. (5.3), the
latter becomes Eq. (4.20) for the triad (u,!,p.), while Eq. (5.4) becomes Eq. (4.22) for the triad (u,l,p.).
Therefore, the new label z is identified with the spectral parameter. Formula (5.26) for the -function
coincides with the formula of the Kyoto school [15, 24] because, due to (3.3), we have

1t I
Tup.+1 _ ot (=[2 = o))
Ttlty,lpl p:=0 Tlﬂ]l (0)

The general solution to the ALP can be represented in the form

P(u) = /sz w(2)P(u; 2) (5.27)

with an arbitrary measure p(z) on the complex plane. In other words, this is a linear combination of
Baker—Akhiezer functions with different spectral parameters.

Note that the B-operator (5.23), in which the function ¢ is taken as the Baker-Akhiezer function,
coincides with an M-operator. Indeed, we have the following formula for the M-operator (4.15) in terms

of the Baker- Akhiezer function:
: Plu+1;2)
v =N (C P(u; 2) (5.28)

The dual Baker-Akhiezer function ¢¥* 1s defined by the formula

N 01 o3y—1 (A ol -1
’(/" ' (u;l) = (/\z )_u()\z‘ )~ </\81> A‘,IPTI— (529)
z Tu,,p: p.=0
This function satisfies the equations
(Ali(u -1,1 - 1))1'([7*[(11; z) = ﬂ}‘lﬁl(u; Z),
_ ) (5.30)

(Mi(u - 1,1 - l))tw'l(u; z) = w'I_l(u; z),
where the difference operators on the Lhus. are formally adjoint to the operators (4.15), (4.16).
5.4. The zg-gauge
Equations (5.3), (5.4) tmply a specific choice for the normalization of the y-function. Indeed, by
multiplying ) by any function, one can change the formi of the equations. This is a kind of “gauge freedom”

as there is no canonical way to fix the gauge. The gauge that we systematically use throughout this paper
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is the most economical one in the sense that the ALP for discrete flows have the simplest possible form.
Below, however, we are going to discuss another choice, which has its own advantages.

This more general gauge requires the fixing of an additional point zo € C, which is different from
the vertices of the graph of flows. The gauge is defined by the following normalization condition for the
Baker-Akhiezer function ¥(u; z):

U(u;zg) =1 (5.31)

and we call it the zg-gauge. Given this condition, it is natural to represent ¥ in the form

Y(u; 2)
Y(u; 20)

and rewrite the ALP (5.3), (5.4) for ¢ in terms of ¥. We obtain

V(u;z) =

(AU (u, 1)e% — APW (u, 1)e® ) (u; z) = AJ T (u; 2), (5.32)
where
Sl . X 1+1 111+1
U(u,l) _ lltvl)o u+1flo+ ) W(’U,,l) — 1111P0+ 1;+1 »Pu' (533)
Tu,po+1Tut1,po Tu.po+17u+l,po

A general prescription for writing the equations should be clear from a comparison with Fig. 11. With
this method in hand, a similar equation can be written for any pair of flows such that one of them is the
reference flow and the other is left adjacent.

An attractive feature of the zg-gauge is that there is no need be concerned about the equations for right
adjacent flows. They are automatically produced by the same prescription if one changes the “orientation”
of the reference flow (i.e., consider A; Ao as the reference flow). In order to express everything in the same
variables, one should apply the rules (3.1) (v = —u) and (3.2) (P, — po). We stress, however, that Eq. (5.4)
cannot be obtained from Eq. (5.3) in this way. In this gauge, we need the two types of equations for left
and right adjacent flows to be treated separately.

The Baker—Akhiezer function that solves all of these equations in the zg-gauge has the form

l
)‘3'8 o Tpo,p:+1
\I’('II.;Z):H(/\aﬂ> s

an 2y Tpo+1,p:

(5.34)

ro=p:=0

As usual, the 7-functions depend on all of the skipped variables as parameters. Due to (5.25), the form of
the prefactor is consistent with properties (3.1) and (3.2).

Our previous gauge is a limiting case of the zg-gauge as 2o — Ay. However, the limit is singular and,
therefore, it needs a regularization. As a result, the symmetry of the zg-gauge is broken.
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5.5. Two-component formalism

Linecar equations (5.3), (5.4) can be brought to another form in which they become first-order partial
difference equations for a two-component vector function. Their compatibility yields the matrix Zakharov
Shabat cquations presented in See. 4.3, ]

Let us use the notation ol See. 1.3 and|) accordingly. denote o, = yi(n), \';{'l = Vim). and (,'7’,[ =
CtY(n). Then Egs. (5.3), (5.4) read

- .
l/’ij—l’l = wn«}—l - VV1£ l,d)ill’ (535)
Pt = bt - potityht | (5.36)

These equations allow us to find out how the vector

'll)lj
() o
Yny

transforms under shifts of n and .

Combining Eqgs. (5.35), (5.36) we have, for instance (here 9, = 0, + &),
R e e (R AL
= (@ + oV it 4 O i - vl =
= (% + vV 4 pCI T — OV gl (5.38)

Proceeding in the same way, we obtain

I n i Tl (1
(U)nﬂ) (eay + VVrf’l + ucfl-kl,l _MUCLH,IV':{I) ( L% )
i

It

1 0 d’ifl—l
(5.39)
(z/) ( ! -Gy )(wﬁf)
T VAT v T e 4 ety ) Nl

The operators on the right-hand sides of (5.39) provide a matrix (L — M)-pair for HBDE, which differs
from (4.23) by a diagonal “gauge” transformation. Recall that the Baker-Akhiezer function (5.26) has
Tn in the denominator; thus, the two components of the vector (5.37) have different denominators. In the
two-component formalism, it is natural to require the denominators be the same for both components. This
condition partially fixes the gauge.

Therefore, introducing the vector (¥,,, x»,) with the second component

L
(0 T 00
o= "lz v, (5.40)
o
we can rewrite Eqs. (5.39) in the form
I Lt
1/)” '(Z) ! 1
I,”(l,l)< )= ”+ : (5.41)
Xn X1;+l
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where the L- and AM-operators are given by Eqs. (4.23).

Equations (5.41), (5.42) umply some useful differcnce equations for 1/)5;2. Excluding x,, from (5.41), we
obtain

INERY 411 _1+1,041 (1 41141
7 7 T, T T. T. 7 T, T. 7
I+1.041 N n ‘n4l n-1 "n+l I n-1"n41 i roA-
) ! — ) - Ve *’ | (e + Y . ‘)43
Vi Pritr (4171 11 / (41041 1411 P / (1 141041 Vi ( )
n Thiql n T Tae Tn

Siiilarly, excluding x,, from Eqg. {5.42) and using HBDE (2.11}, we obtain a 4-term cquation for 4

T

- _ AL LD RPN RS B
I+1,1+1 (+1.1 n n+1 Li+1 n Tnyl I
) ? — Y V= -y ’ + (v - py)—— A 44
1/" 1’/" I+1,0+1 1,1+1w" ( l) +1,1 l,l+1w” (5 )
Tn Tr1 Tn Tn+1

Here it is implied that 75! satisfies HBDE (4.22) in the corresponding notation. For more information on
Eq. (5.44), see the next section.
The continuous analogue of Eq. (5.43) is

Tn Tn—-1Tn
(ail + &t‘)‘pﬂ = @n41 + (ah lOg T+1> PYn + ‘_;-7-1‘_1(’0“_17 (545)

n n

which is obvious from (5.12) (we write ¢, instead of ¢(u) according to the present notation). It is a discrete
nonstationary Schrédinger equation. Equation (5.44) in the continuum limit becomes

Tn Tn-1Tn
31,0, pn — <3t1 log “) O, pn — — ;2 Lo, =0, (5.46)

which is the continuous two-dimensional Schrodinger equation in a magnetic field. Its quasi-periodic so-
lutions were studied in (27] by means of the algebro-geometric approach. The corresponding theory for
discrete two-dimensional equations similar to (5.44) was proposed in {28].

6. Pseudo-difference M-operators

In this section, we study the general form of M-operators that satisfy the conditions of the zero
curvature form, with M-operators for the elementary discrete flows adjacent to the reference flow.

Starting from the scalar ALP for a pair of left and right adjacent flows, it is not difficult to find the
M-operators for nonadjacent flows. Indeed, it is possible to exclude the reference flow from the pair of linear
equations. Then the right adjacent flow can be written in terms of the left adjacent flow. Considering the
latter as a new reference flow, one can obtain a general M-operator for any elementary discrete flow in
terms of any (elementary discrete) reference flow. In general, these are the pseudo-difference operators, i.e.,
they contain negative powers of the first-order difference operators.

This construction can be extended to more general operators that generate new flows commuting with
the elementary discrete flows. We call these adjoint flows. The corresponding pseudo-difference operators
are constructed in Sec. 6.2 with the help of two arbitrary independent solutions 1, ¥* to the ALP and the
adjoint ALP.

6.1. M-operators for arbitrary elementary discrete flows and
corresponding linear problems

Transforming Eqgs. (5.3), (5.4), it is possible to find the M-operators for arbitrary elementary discrete
flows, 1 addition to those adjacent to the reference flow. The wdea i1s to exclude shifts in » and then
consider [ as a new reference flow.

Fromw (5.3}, we have

1/;“(“ + 1) = z/rlH'l(u) + /\gl\"'l‘l(u)z/ll'l(u)
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Substituting this expression instead of 1/)"i(u + 1) and 1/1"1“(14 + 1) into Eq. (5.4), written in the form
Y+ 1) - ) = A9 (e 1)t ),
we obtain
w1+1,1+1(u) + )\glvl*h‘l(u)w'j*l(u) - 1/11“*1(11) + (/\glvzj(u) _ Ag’lC"Z(u + 1))1/,1,2(10'
Using (4.22), we find

FRESNES!
7 7 7 7 TLT
/\glvl,l(u) _ /\glcl,l(u + 1) — /\gl‘/l,H—l(u) _ /\(2)lcl+1,l(u) - /\gl l+1uz+lll"+1' (6])
Tu Tu‘-{-l
Note that the first equality follows from Eq. (4.11), which is a weaker condition than (4.22).
Therefore, 3 obeys the following 4-term linear equation:

) A UL LT AL LD
{+1,1+1 oLl :)\03 u u+l ANED 02 'u ‘u+l 1l A
v (u) =9 (u) Lo i+1_1i+1 Y (u) + A3 1+1,1 1,i+1w (w), (6:2)
Tu Tut1 Tu Ty
in which we recognize Eq. {5.43) from Sec. 5.5.
Relation (6.1) allows us to rewrite (6.2) in the form
AL L i I
ARt () + A () = 0, (6.3)
Tu—1 T4l
where )
Ay =P + 29 Ar=e% 1. (6.4)

This equation looks like a discrete two-dunensional Laplace equation in curved space. It can be formally
rewritten as

Tl,h- 1 Ti+1,§
~ 01 Tutl A -1 u-l il . .
N+ Ay ———A = | ¥t (u) =0, (6.5)
Li+1 41,1
Tu Tu

or, finally,

l,f+1 01 (+1,1
: T, A T Y 7
Li+1 u+1 2 u—1 [N} .
P u) = 1 - == = |t (). (6.6)
LI+ oD 01 1411 ’
( Tu et + )\3 Tu+ ’

To avoid a misunderstanding, we stress that the pseudo-difference operator inside the parentheses acts on
the variable [, whereas w enters as a parameter. This operator, being a pseudo-difference operator in 1.
should be identified with the M-operator generating the flow [ (Fig. 12). In other words, letting { be the
reference flow, we obtain an Af-operator for the flow [, which is not adjacent to .
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In the limit where the points Ag, A, merge, the flow [ becomes left adjacent to /. Let us demonstrate
how the corresponding difference A -operator is reproduced from the r.h.s. of Eq. (6.6). Let A — Ay = ¢,
¢ = 0. FFor ¢ = 0, we have
y ) :

L2 . R ) 02 ¢
e gAY P TR O,
sz

vEl 14 O(e),

il
Tu
[NESUNES W] LI 41,141
7, 7, 7T !
1 Tui
t1£+12 zlLi+1 S 1-eA? {1~ 11 1+1 +0(%)
FLALLL AL,

(in the last line, Eq. (4.22) was used). Therefore, the naive limit of the r.h.s. of (6.6) is zero. However,
we should take into account the change in the normalization of the i-function, which is implied when the
former flow | becomes a left adjacent flow to {. This is achieved by replacing ' — (—¢)'y!. Thus, in the
limiting case, the correct M -operator,
M = ot e T1,171_+1,f+1 |
A1+

15 reproduced.

For purposes of illustration, let us give continuous analogues of the above formulas. Rather than
perform the limit directly, it is much easier to use the continuous version (5.13) of the linear problems from
the very beginning. Making use of Eq. (5.14), we find the analogue of Eq. (6.2),

O, 0, p(u) — v(u) 8y, p(u) — c(u)p(u) = 0, (6.7)

and, respectively, the analogues of Eqs. (6.3) and (6.6),

u TU
TGy, 0y, p(u) = plu), (6.8)
Tu—-1 7-u-Q-l
(8;‘ B Tu+13;1Tu—1> o(u) = 0. (6.9)
Ty Ty

6.2. Adjoint flows

Finally, we extend the above scheme to incorporate the more general flows that we call adjoint. Let

AP =1+ wlA] 'wT, Ay =ed -1, (6.10)
be a pseudo-difference operator, where w and w* are still undefined functions of all of the time variables.
We denote tlie time variable corresponding to the adjoint flow we are going to define by a. In this section,
the reference flow 1s 1. The M-operator for an elementary discrete flow p (see Fig. 13) has the standard

form
p_p+l

Tt T _ .
M =e® -2\ —r A, =0 (6.11)

T4

Proposition 6.1. The commutativity condition
Sy ga =By g .
o7 AL T M = 0 (G.12)
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holds only if w and w* satisfy the lincar equations

1 1
{ (e + AV w? = wwlf

6.13)
- p,a *p+1 _ xp ( B
(e 4 AV Y™ =
where o
pa_p a
‘/p,a — Tl Tl+1
'l — _pa _p+la
Ti417

and w 1s an arbitrary constant.

Proof. The proof is by straightforward computation. Equations (6.13) are necessary conditions for
the vanishing of the pseudo-difference part of the commutator. Here are the main steps of the proof.
Equation (6.12), i.e

(@ = VP A+ wl AT ) P) = (1 4+ Wl T A w P (2 - AV,
after opening the brackets, can be rewritten as

spatl D.a p+1 *p+l p *p
Ar(‘z -V >+“’ Wy Wi W =

_ P _ p.a+l p+1 =1, *p_
= (0, — AV, wl ww; A w,

—wlTPAT (WP - A VP P - ww?). (6.14)

Since the l.h.s. does not contain negative powers of A, the r.h.s. should be zero. This condition implies
Eqgs. (6.13).

The ALY for the p left adjacent to the reference flow { and its adjoint reads as follows (cf. (5.3)):

P L) = A VPR = (),
{1/(4) PVIUT(L) = YT (1) (6.15)

PP = 1) = AV () = 9t ().

Comparing (6.15) with (6.13), we identify
" = it ). W = (] 4 1),
where ¥ and ¢ are arbitrary solutions to the linear problems (6.15). Then, operator (6.10) acquires the

forin

AP = 19T AT 1), (6-16)



N - - g . . - . R 1,0 . .
Commutativity condition (6.12) is equivalent to a nonlinear cquation for Tl’ . The adjomnt flow a is

defined by two arbitrary solutions ¥, ¥»* to the linear problems (6.15). For continuous hierarchies, pseudo-
differential analogues of operators (6.16) and corresponding adjoint lows were studied in [29].

As an example, let us show that by taking ¢, ¥* as the Baker-Akhiezer function 4(l; z) and its dual.
one reproduces Bq. (6.6). According to the method of See. 5.3, the Baker Akhiezer function and its daal
l’(‘,}l(]

. i
?—?’:

a e : l *i1 - - T';—l .

Pr(lz) = O I ) s R T (6.17)
Tp. Ap.=0 Tp. 1p.=0

Here (¢ is a normalization factor to be specified below and p, is the time variable corresponding to the

flow Mgz left adjacent to {. In the limit z — A;, p, coincides with u. Substituting (6.17) with ¢ = 192

into (6.16), we reproduce the operator on the r.h.s. of Eq. (6.6).
7. On hierarchies of bilinear difference equations

Integrable partial differential equations can always be included in an infinite hierarchy. Infinite families
of commuting flows generate infinite families of evolution equations. The hierarchies of discrete integrable
equations have been less studied. First of all, it is not quite clear what “higher discrete flows” are on the
space of pscudo-difference operators. An understanding of this matter is necessary if one is going to extend
the Zakharov-Shabat formalism to the higher Hirota equations known in the literature {12, 30].

There are two “complimentary” points of view on this matter. First, one might consider the 3-term
HBDE (4.20) as a counterpart of the entire infinite hierarchy. In this case, this equation should be under-
stood as an infinite set of equations (continuously numbered by the labels A,) for a function of infinitely

many variables l,g associated with A,Ag. Second, one might expect that composite discrete flows are good
candidates for true analogues of the higher continuous flows. This is justified by analyzing the continuum
limit. Indeed, to obtain a higher continuous flow as a limiting case, one should start from a composite
discrete flow with specially adjusted labels.

Our goal in this section is to show how these two approaches can be consistent with each other. A
natural conjecture is that the N-termu “higher” Hirota equations for a function of N variables are conse-
quences of the basic 3-term equations (4.20) treated as a hierarchy. This means that the 3-term equation is
assumed to hold for each triad of N variables with corresponding A,. To support this conjecture, the case
of the 4-termm HBDE is considered in detail. In addition, an extension of the Zakharov-Shabat scheme to
this case 1s suggested.

7.1. Higher equations of the hierarchy

Higher Hirota difference equations known in the literature {30] are written for a function 7(I;,.. ., ly)
of N variables. These equations read
2 N-2 -
1 | 2y 2 T\ 7Ty
1 N L2 N2 -
Z2 ) <0 T2T = U’ (71)
Iw,z ......... iy
IN 2N N TNTN

where z; are arbitrary constants and
T, = T(/l\['lw - -wlz~-1»l1. + 1711+1\~ . ~7lN)~

7.2
T(ll+1\['3+’l,...,ll,1+1,[,,l,+1+1,..A,[N+1)A ( )

7,

Expanding the determinant wor.t. the Tast column, we can write these equations in a more compact form,
N

ZAJT] ;= O (7.3)
=1
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Fig. 14

The constants A; are subject to only one condition,

N
> Aj=o0.
j=1

For N = 3, we obtain the usual HIBDE, where z; are certain rational functions of A,.

case, the variables [; are identified with elementary discrete flows.
The transformation

N N 2
1
T(ll,...,lN)ﬁeXp leOgAk<Z l_-’) T(ll, ,IN)
k= 1=1,#k
changes Eq. (7.3) into the canonical form
N
> i =0,
j=1

which does not contain any free parameters.
In Hirota’s original notation, these equations are

N
(ZAJ- exp(DIJ)>T T =0,
1=1

which are obtained by the linear change of variables

N

_Qzl“

=1

;= —l; +

generalizing (2.15).

7.2. Zero curvature conditions for composite flows

As in the 3-term

(7.6)

We show that the zero curvature condition written for the composite discrete flows introduced in
Sec. 3.1 lead to the “higher” bilinear equations of form (7.1). The “higher” M-operators are obtained as
g q & I

products of the elementary ones.

In this section, we deal with the graph of lows in Fig. 14. The reference flow is u; the other notation
is clear from the picture. For simplicity, we only consider left adjacent flows, but all that follows can be

casily reformulated in terms of right adjacent flows.
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According to the definition of composite flows (Sec. 3.1), we introduce a “higher” AM-operator A1”
generating the evolution in the composite flow, labeled by the pair of vectors AgAz, AgAz, as the product. of
clementary M-operators of form (4.15),

A’L(,]r _ (,[),. A/];ll('ﬁa’ A/]:l'_ (78)
It is uscful to rewrite this equality by indicating the argumeuts explicitly,
MI(g,r) = Mi(q,r + 1)M(q,7). (7.9)

Due to the zero curvature condition for elementary flows, we have MJ" = M79. Then, the compatibility of
this composite flow with an elementary flow AgA4 reads as follows:

My (p,g +1,r+ )M (p,q,7) = M (p+1,q,7)ME(p,q,71). (7.10)

Clearly, this zero curvature condition follows directly from Eq. (4.9) and definition (7.8), provided Eq. (4.9)
holds for any pair of flows from the triad (p,q, 7).
A few words about the notation. For the simplicity, we set
A=, A=, MY =
Since we deal with a large number of variables in this section, it is also convenient to indicate the basic

variable u in the 7-function by writing the argument v in brackets: 7, — 7(u}. As above, the other variables
are written as indices. We also use the notation

TP () PP LA (y 4 1)

v.(p) — )
T = e e (1) (1)
Now we are ready to elaborate Eq. (7.10) explicitly. This equation reads
(e = AV (pg+ 1,r + 1)) (€% — AV (p, g, m + 1)) (¢® = AV (p,q,7)) =
= (% = ANV P+ 1,7+ 1)) (% = NV (p+1,q,7)) (% - MV (p,q,1)). (7.12)
Comparing the coefficients in front of €29« we obtain
A131/151))(1)1(] + 17T + 1) + /\qvlfj-)l (pu Q7 r + 1) + /\TV._,,(:»)Q(pa Q7 T) =
= /\pVLfi)z(p,q,r) AV O+ Lgr+1) + /\rVu(:L)l (p+1,q,71). (7.13)

This relation is a direct corollary of the 3-term HBDE. To see this, recall Eq. (4.18) from the proof of
Proposition 4.1. In the present notation, it reads

MV g+ L+ 1)+ AV g+ 1) = WV pgr + 1) + A V@O + 1g,r + 1), (7.14)

where 7 + 1 enters as a parameter. A similar equation can be written for the pair (p, ), where the variable
g enters as 4 paraineter,

MV g+ 1)+ AV L ar) = AV g )+ AV (0 + L), (7.15)
Adding these equations, we obtain Eq. (7.13).
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Comparing the coeflicients in front of ¢ we obtain

AAV D (p g r+ DV (pg + L+ 1) + A0V (0,01 (0, g, r + 1)+

+ ApA, VO (p g+ 17+ l)Vu(H(p.q.r) =
A, \'(‘/)(/H log,r 4 l)\“+1(]l q.7) 4 ,\,,/\,.\'7,(")(];4 ],(;‘1')\""“(")(])+ g, 4+ 1)+
+ AV (g + DV (0, g,7).

u+l (716)

In the same way, it is easy to show that this equality also follows from the HBDE. Of course, this result is
trivial since the zero curvature conditions (4.9) hold for both elementary M-operators in the product (7.9)

The fact which is not obvious from the very beginning is that Eqgs. (7.14)-(7.16) imply one of the higher

Hirota equations, namely, (7.1) at N = 4. Proceeding as in the proof of Proposition 4.1, we rewrite (7.16)
in the form

T(u+ 1) A 7-(1+1.r+1(u+ 2) B Tp+l,r+1(,u+ 2)
(u + 2) 7—q+1,r+1(u + 1) P TTp+1,r+1(u + 1)
Y 7—-P+1,T+1(u)Tp+1,q+1,r+1(u

+ 7P (u+2)\
+1)7PtI(u + 1)) B
_orPihatlral(y ) ( TPH(4) Y 7 (1)
- TPHLAFLT+1(y) q er+1(u+1)

o TP r(w 4+ )77 (u 4 2)
PPTrm(u + 1) 79+ 0+ (g 4 1) 7(u 4 2)

P29 rprlatlr+1(g)p+lr+1(y

(7.17)
(cf. (4.18)). Multiplying both sides by (A — A )79t1 " (u+1)7P+ (14 1) and using the HBDE in the form

(Ag = AT )T (u 4+ 1) = Agm P ()79 (w + 1) — A 79 N (w) 7t (u + 1), (7.18)

we obtain
T(u+ I)Tp+l,q+1,r+1(u)

PAT () — BPOT
T{u + 2)7PHLaF L (y 4 ) (u) = BT (u), (7.19)

where

APOT (1) = (Mg — A )AgA 79It Ty 4 2)7PH (4 4 1) —

LAt (y 4 9)
+1,r+1 +1,r+1
~ A TPALaHLTHI () (A7 ()7 (u 4 1))+

TPTLTH(y 4 2)
+1,g+1 +1,r41
+ ApAr TP LT (y) (AP PR ) r 9T (w4 1),

Bp,q,r(“) _ (/\q . /\’)/\ A‘TI)+1(U)T(I+1,T+1(“ + 1),

1+1
» o 2)) (/\qu“(u + 1)7"7+1(u + 2))—1—
q+1 )

_)\ )\ p+1y, r+1
+ A 11+2)( P w4 )7 (0 + 2)).

The last two terms can be further transformed using Eq. (7.18). The result is

+1r4+1, +1,g+1,r+1 ) )
APET () = B 1) X2, A LT ok et (4 2)
: Pl 7 T1;+1,([+],r+](u)

Tq+],r+l(u)T(“+ ])TIHI(U—FQ)
(1 + 2) '

B7"‘1'"<(‘1L) _ hl',q,r(“> — /\;2’(/\(] /\1-)
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where
RO () = A A (Ag = AT ()T T 1)+
+ AN = AT )PP (g 1)
AN, AT ) e g ). (7.20)
Finally, Eq. (7.19) becomies

T(u+ 1)Prhatbrtlyy  pPar(y)
7(u+ 2)rPHlatlrtl(y 1) hPar(u+ 1)’

(7.21)

which leads to the equation
WP () + (A — Ag)(Aq = A)(Ar = A)r(u + D)rP L 1r () — (7.22)

having form (7.1) for N = 4. This completes the calculation.
The M-operators for arbitrary composite flows can be defined as a straightforward generalization
of (7.8):
N

MPN PPy — exp(23pl> H Bp, MP+) (7.23)
j=1

Note that the order of the operators in the product is not essential since the operators e™%. MP+ commute
due to the zero curvature condition (4.9). For simplicity, it is assumed that all flows p; are left adjacent
to the reference flow u. Operators (7.23) generate discrete analogues of higher flows of the KP hierarchy
(see the corresponding graph of the flows in Fig. 3). Now, there is a straightforward way to write similar
operators for right adjacent flows that would generate higher flows of the discrete 2DTL hierarchy.

Postulate. All higher HBDE (7.1) follow from the compatibility of the composite flows generated by
the M-operators (7.23) and elementary discrete flows.

The calculation given above shows that the postulate is true for the 4-term bilinear equation. Unfortu-
nately, we are not aware of any proof other than this sophisticated calculation, which is hard to perform in
the general case. The postulate claims that all of the higher bilinear equations are corollaries of Eq. (4.20)
considered as a hierarchy, i.e., applied to all triads of adjacent flows.

8. Reductions of the Hirota equations

The hierarchy of the discrete Hirota equations admits several important reductions. A reduction
means imposing a constraint compatible with the hierarchy such that the number of independent variables
becomes reduced. In this way, one is able to construct discrete analogues of the KdV, sine-Gordon, and
other interesting equations.

The simplest way to impose a constraint is to require that the r-function be stationary with respect
to a particular flow s (possibly up to a “gauge” transformation (2.2)). Nontrivial examples emerge when
the stationary flow is a composite. As for the commutation representation, there are two possibilities.

First, the stationary flow can be the reference flow. Then AM-operators become free of differentiation
because the symbol dy commutes with all of the coefficients. In other words, d; can be considered as
a c-number and can be identified with a spectral parameter. This is the natural origin of M-operators
depending on a (rational) spectral parameter.

Alternatively, one may take any low y other than s as the reference How. Then any M-operator A
generating a How f contains the operators d,. Since cocflicients of the operator M) do not. depend ou s,
the compatibility condition for the flows ¢ and f acquires the Lax-type form

MO+ 1M = MDA (),
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Fig. 15

where M) plays the role of the Lax operator. Unlike the Zakharov-Shabat scheme, where cach zero
curvature condition involves two different time flows (apart from the reference flow), Lax equations are
written for each flow separately. The Lax equation represents the time flow as a similarity (i.e., isospectral)
transformation of the Lax operator. It is natural to call M(®) the L-operator of the reduced hierarchy.
This is the natural origin of L-operators, which are difference (differential) operators rather than pseudo-
difference (pseudo-differential) operators.® To illustrate this general scheme, we give some examples below.

8.1. KdV-type reductions

1. Discrete d’Alembert equation (a trivial example). Let u be an elementary discrete flow from Sec. 4.
The stationarity condition with respect to this flow, 7(v 4+ 1) = 7(u), immediately leads (see (4.20)) to the

relation
7,l+1,1'n7_l,m.+1 — Tl,mTl+l,m+l’

(8.1)

where [, m are any other elementary flows. This is the discrete two-dimensional d’Alembert equation written
in the “light cone” coordinates. The general solution is 7%™ = x, (I)x_(m), with arbitrary functions yy .
However, this is just the allowed “gauge” freedom (2.8) of the 7-function, such that when related to the
HBDE, this solution is equivalent to the constant solution 7™ = const. Thus, we can see that this reduction
18 too strong because it only contains trivial solutions. To obtain nontrivial examples, one should either
impose stationarity conditions with respect to the composite (“higher”) flow or periodic conditions in u
with periods N > 1 (e.g., 7(u + 2) = 7(u)).

2. Discrete KdV equation. Consider the graph of flows depicted in Fig. 15 and set A3! = A, A9l = A

p
for brevity. In this notation, Eq. (4.20) takes the form

p+l.q. Pa+l _ p.g+l_p+lg _ p+1l,g+1.Pq __
ATy Tut1 ApTy, Tug1 T (Ap = Ag)TE Tuh1 =0 (8.2)
To obtain the discrete KdV reduction, we impose the constraint
+1l,g+1 _ , .
LTI =T, (8.3)

Le., the 7-function is stationary with respect to the composite flow labeled by the pair of vectors AgAq,
AoAs. This condition converts the three-dimensional equation (8.2) into the following two-dimensional one:

p+l_p-1 p-1_p+1 _ PP
AT Tys1 = ApTs, Tuq1 (Ap ’\Q)TuTu+l =0 (8.4)

This is the discrete KdV equation in bilinear form [2, 30]. The discrete KdV equation is also known in the
form [30]

—1 _
V(iu,p) - Viu-1,p=-1=r(V {u,p-1) -V H{u- 1,p)). (8.5)
81n the general case, the Lax operator for a hicrarchy without any reduction is an infinite scries in negative powers of the
first-order difference operators. The theory based on the Lax representation with Lax operators of this kind is not considered

here.
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The equivalence of (8.4) and (8.5) follows from the identification

P p+1

TrT A

V(u,p) = _wutl pop——
i p+l _p ? A

u Tn+l r

Let us turn to the M- and L- operators. Following the history of the KdV equation, we begin with
the ditterence operators with scalar cocflicients. Let uw be the reference variable. Then the (composite)
stationary flow is generated by an M-operator of type (7.9),

ME? = MZ(p,q + D)M(p,q) = LK) =

p—1_p r p—1
T, T, T T,
28, u u+1 u+t+l'ut2 By B}
= — |\, SN W 2! €% + ApA,. (8.6)
Tpr Tﬂ TP
ufy41] u+l'u+42

We call this second-order difference operator the Lax operator of the discrete KdV equation. The spectral
problem LX)y = E4y is a discrete analogue of the stationary Schrodinger equation that is an auxil-
lary linear problem for KdV. The p-evolution generated by the M-operator of type (4.15) is isospectral:
LKV (4 1) = MpLEDV) () (ME) =L

If the reference flow coincides with the stationary one, we obtain 2 x 2 matrix M-operators depending
on a spectral parameter z. The spectral parameter is an eigenvalue of the shift operator along the stationary
flow acting on the 3-function: exp(d, + 8,)y = 22¢. Consider the vector

WP PP (u)
o) \lype )

Repeating the argument of Sec. 5.5, we obtain the following linear problems for shifts in u and p, respectively-

p+1

P
N T Tt TF
p P _p+1_p r+1 D
u+tl Tu Typr Tu g (8.7)
= o
XP p+1 14 ’
utl 2 Tut1 u
2t == A
14 q .
7—u+1
P
0 Tu
pptl p+l1 PP
* T” ¢ 8.8)
p+1 | P2 |- (8.
u z2u_ A=A Xu
p+1 q P
u

The compatibility of these linear problems yields the discrete matrix Zakharov-Shabat equations with the
spectral parameter z.

Equations for the first component ¥?¥ read

+1 _p-1 v—1_p+1
1 TR T L TP T
SR 2 'u—1"u+l 2 'u—1"u+1 ) P ,
)u+l + )\ o /\ /\q r i - /\p P 4 l/’u _ (~ - /\p/\q)(/'u_la (bg)
» q Tu—1Tu+1 Tu-1Tu41
41 (h)? 2 1
P @ D —
I/yfz + (/\P - Aq) ,,_1 I’+1 (/’u =z 1/’5: . (810)
u u

Equation (8.9} coincides with the spectral problem for the Lax operator (8.6), provided the 7-function obeys
the bilinear relation (8.4).
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3. Discrete Boussinesq equation [13]. In this example, the 7-function 779 satisfies the stationary

cquation szii'qﬂ = 704 Then, Eq. (8.2) is reduced to

_ - — —1,q—1
AgrPHbap=ha _x ppatlora=l gy A )pPthatierolanl o g (8.11)

P

where w implicitly enters as a parameter. Different. kinds of Lax and Zakharov Shabat representations for
this equation can be written straightforwardly, but we do not discuss that here.
In a similar way, it. is possible to define more general A,,-type reductions. In this case, the 7-function

obeys the condition
n+1
exp(Z@ a>’r =T
a=1

Note that this becomes an actual reduction only for higher Hirota equations where the number of variables
15 greater than n.

8.2. Discrete time 1D Toda chain and its relatives

This group of examples includes the discrete time 1D Toda chain (IDTC), the discrete AKNS system
(in particular, the discrete nonlinear Schrédinger equation), the discrete time relativistic Toda chain, and
the discrete Heisenberg ferromagnet (HF). These models differ in the choice of dependent and independent,
variables, while the type of reduction is essentially the sanie.

Let the graph of flows and the notation be the same as in Sec. 4.3. Now the 7-function is required to
be stationary with respect to the composite flow labeled by the pair of vectors AgA3, A1 Az, ie.,
i

+11+1 _ i,
Tn = Tn .

(8.12)

. . . — .
The stationary flow is generated by the “composite” M-operator e M, e~% M! with the reference flow n.
This operator should be identified with the Lax operator of the discrete time 1DTC,

1 i+ +1 1 ! {
Ttr T T, T T
1 ~1 1 -1 1 -
L(TC) 68" . n'n+ L n n+ vu n n+ In (813)
141 PR (Tl)z
TR Thyl TpTn n

This is a second-order difference operator in n with scalar coefficients. The spectral problem L{TC)lyy = Fy)
is a 1D discrete stationary Schrédinger equation (cf. (5.43)). The I-dynamics preserve the spectrum of
[(TC)

Changing e% = %9 by 22 in (4.23), we obtain an (L — M)-pair for the discrete time 1DTC realized
by 2 x 2 matrices depending on the spectral parameter z,

1 1+1 ! [+1
224y TnTnti n Tnt1Tn—1 _ VT:z+l
+1 ¢ H 1 1+1 M ‘rnl
L(Tc) N Tn Th TnTn .
no(2) = 1 : (8.14)
Tn
T—- O
Tn+1
-1
Tn+l
v L
-
T ~ n
M (z) = (8.15)
l -1 _1
Th-1 L2 Tn+lTn—l
l e -1
Th Ty T

T

Correspondingly, the 2D discrete Sehrddinger equation (5.44) becomes a 1D spectral problem in the vari-
able

l
n Tyq

[ _1-1 -1
T, 7T T, T,
g+l , n'n+l L2 gl n n+l -1 ,
l/]u + (’/ o /1) 1+1 _[-1 7/}n I I/,n i v -1 "/”u . (8]())
TuTn+l
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Let us pay attention to the nonstandard dependence on the spectral parameter.
Another useful form of this equation is

-1t [

—i+1 Th T1L+1 —i-1 —1 7—11Tn+1 —i

v, - TR i, = 4 (- 1)z T P, (8.17)
THTH i1 T Tu +1

. ) o
which can be obtained from the previous one by substituting v, = 2~ !y
The equation of motion in bilinear form is the following two-dimensional reduction of Eq. (2.11):

+1_1-1 -1 _i+1 {
l/Tn+ Tn - l‘LTn+1Tnt1 = (U - #)(Tn)z'

(8.18)

After the linear change l = m =1 + n, T,[z — Tr(m), this equation coincides with the discrete Toda chain
in Hirota’s original bilinear form [3],

(1 + 97 a(m + Dra(m — 1) = 1y 1 (M) 71 (m) = g7 2 (1a(m))7, (8.19)
where y
g_2 =——1.
It

In terms of the new dependent variable

Tﬂ+1(m)
Tn(m)

on(m) = log , (8.20)

Eq. (8.19) acquires the form

exp (Bl + 1) + fmm 1) = 260 (m)) = [ Ziifiéiif"z; - ¢§m;;

, (8.21)

which is nothing more than the discrete time IDTC equation studied by Suris [31].
The continuum limit in m is straightforward. Set m — m/e, g% = —¢2, then

1
do(m L 1) = ¢, Leg! + 562(}5:: for e = 0.

Developing Eq. (8.21) into a series in ¢, we obtain the well-known 1DTC equation,
d)ii — (,¢n_¢n—l _ e¢ﬂ+1"¢n. (822)

It is interesting to note that Eq. (8.21) possesses another continuumn limit that yields the sine-Gordon
(SG) equation. To see this, let us redefine the field ¢ before taking the limit,

dn(m) = 1(=1)"""p,(m), (8.23)

such that the equation reads

uxp(iap,lﬂ(m) + iy, 1{m) — g, (m+ 1) — dp,(m - 1)) =

Lt g2 exp (i1 (m) + ispy, () s
4 : - 3.
1+ g 2 exp(—tp, 1 (m) - 1oy (1)) ( )
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Now it is the field iy, (m) that is assumed to have a smooth continuum limit in n,m. Setting m — m/c,
n — nfe, and g% = —1e%, ¢ — 0, and cxpanding in € as before, we obtain the SG equation

(02 - B2)¢ = 25in(2¢). (8.25)

(‘The same it for the field ¢oin Bqo (8.21) would give the d"Alembert equation (()“ )m)t,, = 0.) A
discrete analogue of the SG equation of a different kind is given below in Sec. 8.3.

Remark 8.1. The discrete KdV reduction discussed in Sec. 8.1 is formally a particular case of the
present reduction where Ag and A; merge. However, it is more convenient to consider them separately.
Note that there also exists a continuum limit of Eq. (8.18) leading to the KdV equation. In this sense, the
discrete time 1DTC is sometimes considered as a discretization of the KdV equation.

The discrete version of the decoupled nonlinear Schrodinger equation (also called the AKNS system)
possesses essentially the same reduction, i.e., the stationary flow is as above. The difference is in the choice
of the other independent flows to be involved in the equations. Specifically, instead of the n-flow, one may
consider any other elementary discrete flow p left adjacent to L.

We show how to derive the discrete AKNS system directly from the bilinear Hirota equations. The
basic bilinear equations in question are

A+1_p+11 W p+il+1 p1+1 P11 o

ApT, 2 + (= Ap)rirh = HTayy Ty s (8.26)
pH1LI+1 pl pl p+LI+1 _ p+1,0_pl+1

L n+1 /\PTn Tn+l - (U )‘P)Tn Tn+1 . (827)

The first of these equations is Eq. (4.22) written for the triad (p, n,l). The second is obtained from Eq. (4.20)

written for the triad (I,p,n) by taking into account the stationary condition T+4+1 = +UI It is easy to
see that in terms of the quantities

R pl _ ij
pd _ n+1 pl _ 'n-1
QP = — RP! = i~ (8.28)
Tn Tn
(n is fixed), these equations can be rewritten as follows:
(V= Ap)(Ap = QP = (A — pQPIH RPN (L QrPd — 3, QPHLIFY) (8.29)
(v — /\p)(/\p _ u)RrH-l,l _ (’\p _ qu,i-HRp+1,f)(qu+l,i—H _ /\pRp‘i). (8.30)

In this form, the system is equivalent to the discrete AKNS system from [13].
There is another choice of dependent variables which converts Egs. (8.18), (8.26), and (8.27) into a

discrete analogue of the relativistic Toda chain (RTC) [32]. Passing, again, to the variable m = [+ n, as in
Eq. (8.20), we set

TP(m + 1)
‘m = —log *5——" .
T (p) 0 = FS (8.31)
The equation of motion for x,,(p) has the form
(1 = ccexp(ag1(p) ~ T (p) ))
(1 - ox])(Jtm(p — 2 (p ))
y (1 = pexp(am(p) — Tma(p — D)) - Y exp (2 (p) — zn(p + 1)) B
(1 - ﬂ(?X})(I,,,_*_](]) + 1) -rm( ))) (1 - ’)’()\])(.1 111(1) 1) - T’m(P))) a (852)
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where ( ) 3
v vip — Ap B P

- 9= Pl = . 8.33

@ V-’ / Ap(p—v) 7 Ap — 1 ( )

This equation differs only slightly from the discrete time RTC equation suggested in [33].
Lot us ontline the method of deriving Eq. (8.32).2 The basic bilinear relations (8.18). (8.26), and (8.27)
read

(v = ) (72(m))” = vrl(m + B (m — 1) = —prh, (m)7?_, (m), (8.34)
(b = Ap)TE(m + 1) (m) + A2t (m + 1)1l (m) = prl (m+ )E i (m), (8.35)
vt (m+ NP (m - 1) — /\,,T,’l’(m)r,fﬂ(m) = (v - /\,,)T,’:+1(Tn)7’:+1(7n), (8.36)

respectively. 1t is straightforward to show that the following two bilinear relations are direct corollaries of
the basic relations:

(v = AT (m)T2 ¥ (m 4 1) = (1= A)TE L (m)rl(m + 1) =

= (v = Wi (m+ )7t (m), (8.37)
Ap(v — )2 (m)r2 (m) + v(p — Ap)tE(m+ D)1t (m - 1) =
= u(v = Ap)Tl 1 (m) ,’:ﬂ(m). (8.38)

Equation (8.37) is obtained by eliminating 72(m) from (8.35), (8.36) (i.e., by dividing them by 72+ (m + 1),
T,’:Ii(m), respectively, and adding the results) and making use of Eq. (8.34). Equation (8.38) is obtained
analogously by eliminating 72*!(m) from (8.35), (8.36) and making use of Eq. (8.37). Now Eq. (8.32) easily

follows from (8.34), (8.35), and (8.38).

Remark 8.2. Bilinearization of the usual (continuous time) RTC was suggested in [34]. The equiv-
alence of the RTC and the “semi-discretized” AKNS system (with discrete “space” and continuous time
variables) was recently proved in [35].

We conclude this subsection with a note about the discrete Heisenberg ferromagnet (HF) [12]. This
equation fits the scheme in the following way and the reduction is the same. However, the choice of the
independent variables is different. In addition to the flow p from the previous example, one should introduce
yet another elementary discrete flow g left adjacent to {. The 7-function now depends on four independent

variables: T = 7i(p,q). Fix n, | and consider the following four functions of p,q: T5*Y(p,q), 7i-1(p,q),

ﬂ
,11111 (p,q), and 7"11__11 (p,q). Tt follows from the bilinear equations that certain combinations of these functions

satisfy a system of nonlinear difference equations in the variables p, ¢, which play the role of discrete space-
time coordinates. This system is equivalent to the discrete HF model discussed in detail in [12], where it
was treated in a slightly different manner as a part of the reduced 2-component 2DTL hierarchy. As in the
case of the discrete AKNS system, the aforementioned embedding into the one-component discrete 2DTL
hierarchy leads to equivalent equations of motion. We omit the details.

8.3. Periodic reductions

Periodic reductions of the continuous 2DTL hierarchy give rise to a number of very important equations.
For example, the 2-periodic reduction 7,47 = 7, contains the sine-Gordon (SG) equation. The same periodic
constraint can be imposed in the discretized setup, thus providing us with a discrete analogue of the SG
equation.

We call attention to the fact that periodic reductions can be treated on equal footing with stationary
reductions.  Indeed. the flow p = p 4 2 18, formally, a degenerate case of a composite flow where the

9The idea for this derivation helongs to S, Kharchev (unpublished).
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corresponding labels pairwise merge on the complex plane. The periodicity 7P%2 = 77 means stationarity
with respect to this degencrate “composite” How. However, this point of view does not appear to be useful
in practice. Usually, it is more convenient to treat periodic reductions separately.

Let us consider the 2DTL-like form of HBDE (2.11) with the additional constraint.

Ll IR )
Tn+2 - Tu . (L\J())

Then, the three-dimensional HBDE becomes the following systemn of two-dimensional equations:

vrg gt = (v = gt T = (8.40)
“T:,1+1T{+1‘1 —(v- /L)T{JTfﬂ,Hl _ uT(l),tHT(t)H,t_
The SG field &4 on the square lattice ([,1) is given by the formula
! TI’Z
ot = Zjog L (8.41)
2 Ll
B}
Rearranging Eqs. (8.40), one obtains a closed equation for P
vsinh(@H! + @HHLIFL _ @b _ L) = fsinh (PN 4 LD 4 gL+l | gttty (8.42)
which is known as the discrete SG equation [4] written in light-cone coordinates.
Let us mention another useful form of the discrete SG equation [36, 37]. Set
- : i} Tt+1,iTz,z'+1
St =exp(—20'ttt 2@ttty = L1 (8.43)
1410 1141
o 7o
. - } L E+10+1
SH = exp(—20t — 2q,1+1,1+1) -nn (8.44)
0_1+1,141
7o' To
then } - N -
§1,1+1§1+1,1 — Sl,lSt+1,t+1
On the other hand, the discrete SG equation implies that,
0l
=i j—vSh
gt D 8.45
pSHE — b ( )
such that (8.42) (cf. (2.5)) becomes
- } [ i
ghlghtil+l _ (1 — St H)(H - VSI“'I) (8.46)

(uSHH+T — p) (S - )

We now turn to the zero curvature representation. Let [ be the reference flow. The shift 11 — n + 2 is
generated by the scalar L-operator

Tz,iT1+1,I T1+1,ZTHz,Z

SG 24 1 7o 1 .

L9 =2y, [T L T T oy e (8.47)
(4 t+11 T+, (421
0 1 Ty T
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However, this representation is not convenient for describing the evolution in I. The matrix (L — M)-pair
with a spectral parameter is more appropriate here. To derive it, one should take the “stationary” fow 2n
as the reference low and repeat the arguments given in See. 5.5 with necessary modifications. The operator
¢29 should be substituted by the spectral parameter z2. Omitting the details, we present the result.

The auxiliary linear problems read

NS (1
7o' 'rl+ Ty
. EEWIT vl .
I+1,1 i ’ i1
1 'l/}+ f _ TO Tl Tl 1/), 8
—v 411 | — L1 i ) (8.48)
X z ittt 1 X
i+1.0
uTO+
[NES
wT
! S ii 1
- z '+ -
1‘[}I,H-l _ To ’l[)l'l 8.49
B i ) = S Tk (8.49)
X 11 NS NES X
B N S
I Li 1
z T TO‘ +lTl,

which is similar to (8.7). Denoting the matrices on the r.h.s. of Eqs. (8.48), (8.49) by M) M=) respec-
tively, we can write the compatibility condition

MOCT+ )M D = MO U+ 1, )M D), (8.50)

whence the discrete SG equation follows.

The N-periodic reductions (7,4 x5 = 7n) can be treated in a similar way. They correspond to N-periodic
Toda lattices in discrete time. It is also possible to impose periodic conditions with respect to any of the
composite flows. In the remaining part of this section, we briefly comment on an important class of such
reductions, which are discrete analogues of the intermediate long wave (ILW) equations.

The universal form of reductions from the 2DTL to the family of continuous ILW equations is most
transparently written in terms of the 7-function of the 2DTL hierarchy. The reduction to the ILW. equation
reads (38)

T,l+k(t1 +h,ty, ... ;Zl,zz, .. ) = Tn(th ta, ... ;EI»ZL . )7 (851)

where h is a fixed parameter. This parameter interpolates between the k-periodic reduction (h = 0) and
the Benjamin-Ono equation (A — oo). This means that the 7-function should not depend on a particular
combination of n and t;, which suggests a discretization of the ILW, equation. According to our general
rules of discretization, one should substitute t; by an elementary discrete low p. Then it is natural to
substitute Eq. (8.51) by
!

Thik =T (8.52)
where [ and k are integer parameters. The particular cases are the discrete KdV equation ({ = kK = 1) and
the k-periodic reduction (I = 0). In the continuum limit, we obtain the continuous ILW, equation.

8.4. Discrete Liouville equation

The discrete Liouville equation (DLE) and its A,-generalizations [39] (discrete time 2DTL with open
boundaries) form a very iimportant special class of discrete integrable systerns, which, in general, does not fit
the reduction scheme discussed in this section. We include it here because the DLE is, formally, a degenerate
case of the discrete SG equation. The relationship between these two integrable systems deserves further
study.
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The DLE can be obtained from the discrete SG equation as a result of a certain scaling limit. Let, us
rescale S — pSH in Eq. (8.46). Clearly, this rescaling means a constant shift of the field,

i i 1
bt 5 ot - Zlog ft.

Then, taking the limit 2 = 0 in Eq. (8.46) (keeping the shifts in { untouched!), one arrives at. the DLE

SIL,ZSIL+1,Z+1 _ (U—l _ 521“)(1/_1 _ SILH’Z)~ (8.53)
Here, i i
Sg' = lim (u='5"). (8.54)
pn—
Setting ) i i
SZ" = exp(—ZQ)lI:H’I - 2<I>IL"+1), (8.55)

we obtain the DLE written in terms of the discrete Liouville field [6] (cf. (8.42)),

2usinh (@4 4+ dFHH @b @bty = exp (@} + NI @l 4 @l (8.56)

or, in a simpler form,
exp(— 2051 - 20LTY) — exp(—204! — 201 = 1 (8.57)

In the continuum limit, one should set { — vY/?z,, 1 — v'/2z_, and S}' — exp(—4®(z4,z_)). Then,
expanding in =1 — 0, we obtain, in the leading order, the continuous Liouville equation
20,,0:_®(zy,z-) = e?¥EH=-), (8.58)
The bilinear form of Eq. (8.53) is obtained by the substitution

i THI+ L,DTV T+ 1)
Si' = — T Y (8.59)
T+ 1,0)T2(1,1 + 1)

after which the DLE becomes equivalent (up to a “gauge freedom,” see below) to the bilinear relation
T+ L,0T*( 0+ 1) —T*(LO)T*(+ LI+ 1) = v 1T N+ 1, D) T (L T+ 1) (8.60)
with the condition B
T*(l,l)=0 (8.61)
) for T° and T2
[) with arbitrary

for all a, except a = 0,1,2. This condition implies the discrete d’Alembert equation (8.1
Thus, T° and T2 need to have a factorized form T°(L, 1) = x°()x°(1), T*(1,1) = x2(1)%%(
(and independent) functions x®2, ¥*2. This is the aforementioned gauge freedom.

The striking similarity between Eqs. (8.43) and (8.56) is clear after the replacing T°(l,l) — Tflj.

Furthermore, taking into account the periodicity Té'l = Té'[, these equations become formally identical.
(Equivalently, using the gauge freedom, one can set T2((,1) = T°(1,1) in Eq. (8.56).) It would be interesting
to link them directly on the level of solutions, i.c., to trace what happens to solutions when taking the
continuum limit.
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cussions. It is a pleasure to thank CMA'T de ’Ecole Polytechnique, where this work was initiated, for the
hospitality.
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Appendix
Bilinear difference equations from continuous hierarchies

In this Appendix, we give an alternative point of view to the difference Hirota equations. It relies on
the famous Miwa transformation (3.3), which, so far, was obscure in our presentation. Given a continuous
integrable hierarchy (such as KI* or 2DTL), this relation can be used as a definition of the clementary
discrete flows. This definition leads to the same discrete flows as in Sec. 4.2. This approach has as many
advantages as disadvantages. The main advantage is a much raore direct and instructive connection with
the Grassmannian approach to continuous hierarchies and their 7-functions. The main disadvantage is the
misleading and less invariant formulation, which is inconvenient in some cases.

The Miwa transformation. Let 7(t),t2,t3,...) = 7(t) be the 7-function of the continuous KP
hierarchy. It is a function of an infinite number of “times” ¢; and it satisfies infinitely many bilinear
equations. The 7-function solves all of the equations of the hierarchy simultaneously.

In general, the 7-function can be represented as an infinite-dimensional determinant [15-17]. It turns
out that there exists a choice of independent variables such that the determinant reduces to a finite-
dimensional one. This choice is provided by the Miwa transformation [11],

1 _
tk:tfco)—EZpa,uak, k=1,2,.... (A.1)
acl

Here, the summation runs over a finite set I, while tfco) are “background values” of the times, u, are
arbitrary complex numbers (called Miwa’s variables), and p, are integers (sometimes called multiplicities
of pia).

Remark. The Miwa transformation plays an important role in revealing the integrable structures of
matrix models of 2D gravity. In particular, the easiest proof of the fact that the partition functions of
the Kontsevich model [40] and its generalizations [41] are 7-functions of the KP hierarchy relies on Miwa’s
transformation.

In what follows, we use the concise notation of (3.5).

Important fact. The 7-function of the KP hierarchy obeys the identity

N r(t VTN (Ve — 12 :
(004 S0 - 1)) = B g K, (A2)

N
a>g(l/a - I/ﬁ) Ha<[3(ﬂcx - /Lﬁ) Iso BN

where T(t(o) PR [u"l])
K(v,p) = o= ) (A.3)
Here N > 1 and pia, v, are arbitrary complex numbers. A useful particular case of this formula is
©  S=poo1p)  deticapen (valng))
T(t = lua J) - : (A.4)
ot [Tacp(tta = 1p)

where : g

Prnli) = o Jim v T K () (A5)

When one translates the KPP theory into the language of free fermnions [15], formula (A.2) becomes nothing

more than the Wick theorem, while K (i, 1) becomes the fermionic propagator on a Riemannian surface.
Instead of treating Eq. (A.2) as an identity, one can go another way. Given a function K (v, g) with

a simple pole at v = g, this equation can be used as a definition of the left-hand side. This simply means
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. . 0 . . .
that we disregard the dependence on background times tﬁ{ ), assuming they are fixed. The 7-function in the

Miwa variables satisfies certain bilinear relations for which formula (A.2) gives a solution in the forin of a
finite-dimensional determinant.

In the case of the 2DTL hierarchy, the Miwa transformation works in a simmilar way. The 7-function
Tl to, o ily ta, o) = To(t:1) depends on the discrete time o and two infinite sets of continuous times

{, and {,. We set.
oy l &
e =1 i Z]J‘,/ln ;
aecl

t __Zﬁaﬁ’(;v k:172a--'1
a€T

~». |

where 7z, is an independent set of Miwa variables with multiplicities p, .
The following analogue of Eq. (A.2) holds:

<f(°) Z[u‘l] ¢ +Z[ua ) =

Tn t(o);[ " N
_ N( )Ha—_lla_ det Jn(ll'avﬁﬁ)’ (A7)
Hacp(ta = np)(Ag = o) 1S PN

where
e G e A 1)}

Jn(pﬂﬁ) (t(O) _(0 )

Note that in this case, the function J,(u, ) does not necessarily have a first-order pole at y = .

Discrete flows. Discrete equations for the 7-function listed in Sec. 2 are obtained if one fixes the
Miwa variables 1, and considers the dependence on their multiplicities p,. We give a few examples.

Example 1. Set

3
FPUP2PY T(t(o) -y pcx[”;l]> (A9)
a=1

and consider ,
£9) = 40 _ ZPO[#:]
a=1

as a new “background” field. According to Eq. (A.4), we have

P = oy (m),

o1(p1)  ©1{p2)
952(#1) 952(/12)

Hy — M2

(A.10)

pPitlipatl

with some functions @1, ¢o. Combining the zero determinant with two identical lines

)

O1(im1)  P1lp2)  @r(pa)
0= [wilm) 1(p) ?1(/13) , (A.11)
Y2

wa(jer)  w2(p2)

and expanding it in the first line using (A.10}, we obtain an equation of form (2.7). Since its coefficients
do not depend on the chosen background, the equation holds for all values of py, pa, and pj.
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Example 2. Repeating the previous argument for

Tho T = T( O+ po ([ ') — v

e=1

and making use of 1. (A.2), we obtam bBq. (2.10).

E3 o) — )

Example 3. In (A7), let usset N =2, gy =pu, [y =f, gy = 00, and 1, — 0,

_ -(0 - —(0
Tn—2(t(0) _ {/L 1];t( ) + [ﬂ])Tn(t(O);t( )) —_
T (1 = [u

a1 (179 4+ (1)

TH®=

Denoting
= (10 -

U1~ ),

we obtain the equation

ll+1 l+1 {

{
Tn Tn n Tn n+1

TR ) e (1

- [/L_l];f(o))

T, ~1(t(0)§z(0))

TI +1,14+1 :( //l LI+ l+1!

nl‘

(A.12)

(A.13)

(A.14)

Example 4. Example 1 can be generalized in the following way. Consider an N x N matrix with the

lines @1 (1), o1(ps), w2(pi), @3(pi), - -y on—1(p), 1=1,2,...

, N, such that the first two lines coincide and

the determinant of this matrix is zero. Then, expanding in the first row, as in Example 1, we obtain the

“higher” bilinear difference equation of form (7.1).

Example 5. At last, we show how to derive the HBDE in a KP-like form from Eq. (A.4) in a direct
way.’® When two or more variables p, coincide, both the numerator and denominator on the r.h.s. of

Eq. (A.4) equal zero. Resolving the indeterminacy, we have

<”) Zpa[ﬂ ) i

where all p, are now distinct. Here

det(MS)

a<g(ﬂo #ﬁ)paw

Il
)=
&

N
a=1
and A/fl(]jv) is the A > N matrix having the rows
py — 1
eili),  @im), @), o @ T ),
1 —1
pupa), @ilia),  @l(ma), s @ (),
LT LR T T TR TP RREPFRTETRNTRES
eiw)y Clin), @) o @I T ),

We need the well-known Jacobi identity for determinants,

Dl | Dlia | 2| = Div ] J2] D

m'l he formulas below were taken from [41]

ir | jv) = Dliv,ia | 1, 32) D,

1<i,j <N,

I
\/\l
=

o< 2,1 < e

(A.15)

(A.16)

(A17)
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Here D is the determinant of a square matrix and D1}, 12|71, J2] denotes the minor of this matrix with the
) . . . A .
13 2th rows and j, oth columns removed. Applying this identity to the matrix Ml(j ) in (A.15) for

a b
HEN-L =N =Y pe de=nd Y pe. 1<a<b<N,
=] y—a+ ]
we obtain, in short hand notation,
(1o — prp)TrPe 1o~ = pP=1ppa=l _ ppa=lip=1 (A.18)

where f' is deﬁncd by the same formula (A.15) with the matrix 1\//_71(]/\/_1) = Ml.(]./‘[_l) for 1 <1< N -2,
MN 1] ]\4
Let p, be a third Miwa variable (different from p,, pp) with the multiplicity p. not shown explicitly in

Eq. (A.18). Multiplying this equality by 7P<~!/7 and then writing a couple of similar equations obtained

by cyclic permutations of the indices a, b, ¢, we can see that the sum of these three equations coincides with
Eq. (2.7).

Remark. The discrete flows discussed here coincide with those introduced in the main body of the
paper if one fixes the following choice of the labels Ay and A;: Ay = oo, Ay = 0. (To remove a label to
infinity, one should use a different normalization.)

Continuum limit. As is clear from Eq. (A.1), the inverse Miwa variables u;! play the role of lattice
spacings for the discrete flows. Therefore, to perform the limit to continuous equations, it is necessary for
o to tend to infinity with a simultaneous rescaling of p,.

Here is a typical example (the KP hierarchy). (In this example, we follow [30].) Introduce three (a
priori independent) lattice spacings €; = ui_l, 1= 1,2,3, and rescale p; = p;/e;. Thus, it is convenient to
rewrite the KP-like form (2.7) of the HBDE in terms of Hirota’s D-operator (1.2):

(E](EQ . 63)(,_(51/2“);11+(52/2)D177+(53/2)Dr‘3 +
+ 62(63 _ El)e(fl/z)Dpl *(52/2)Dx!2 +(Eii/2)ng+

+e3(e — 52)6(5‘/2)D"1“EZ/Z)D”_(E"‘/Z)DM)T -1 =0. (A.19)

This equation serves as a “generating function” for part of the continuous KP hierarchy. To see this, we
express the operators Dy, through the Hirota derivatives with respect to the continuous flows ¢,

=1
- Fe Dy, i=1,23
k=1

(see (A.1)). Substituting this into Eq. (A.19) and expanding in a power series in ¢;, we have

1~ 1~ l~
< 62753 Z E]&";Eg <3D>Pk <—§ )Pt(*} >+

7.k, 1=0
- - g kL. = = 1~
+ ea(es —€1) Z €16565P; fED Pl =D | P f§D +
1.k 1=0
Sl 1=\ 1~ .
+E}(t1 —62) Z E’;céé‘gpj <§1{)> p& <—§D> 75’1 (zD))T 7 :U, (A ZU)
7.k 020
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where D = (D¢, D1y /2,..., Dy, /k,...) and Pj(t) are the Schur polynomials defined by the formula

cxp<Ztkzk> - i Ponl(t)z™. (A.21)
k=1

m=0

Comparing the coefficients in front of €]e5€4, we obtain an infinite set of bilinear equations,

P (%15) P (—%ﬁ) P (—%b)
Pes (%f)) Per (-%b) Py (—%D) T =0, (A.22)
Py (3D) Py (-1D) P (-1D)

which, for 1 < 5 < k <[, form a subset of the entire KP hiecrarchy in bilinear form.
The leading term as €; — 0 in (A.20) corresponds to (7, k,1) = (1,2,3) in (A.22). In this case, Eq. (A.22)
produces the bilinear form of the KP equation itself,

<D?| _4Dt1D¢3 +3Dt22)7—‘7_:0- (A23)

This example shows, once again, that the discrete hicrarchy has a more transparent structure than the
continuous one. The continuum limit brings artificial complications.
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