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H I R . O T A ' S  D I F F E R E N C E  E Q U A T I O N S  1 

A. V. Z a b r o d i n  ~ 

A review of selected topics for Hirota's bilinear ditt"erence equation (HBDE) is given. This famous three- 
dimensional difference equation is known to provide a canonical integrable discret izat ion for most o f  the 
impor tant  types  o f  soliton equations. Similar to continuous theory, H B D E  is a member  of  an infinit(, 
hierarchy. The central point  o f  our paper  is a discrete version o f  the zero curvature  condition explic- 
i t ly  wri t ten in the form o f  discrete Zakharov-Shahat  equat ions for M-opera tor s  realized as difference or 
pseudo-dif ference operators. A unified approach to various types  o f  M-opera tor s  and zero curvature  repre- 
sentat ions is suggested. Dif ferent reductions o f  H B D E  to two-dimensional  equat ions  are considered, with 
discrete counterparts of the KdV,  sine-Gordon, Toda chain, relativistic Toda chain, and other examples. 
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1. I n t r o d u c t i o n  

In 1981, Hirota tmtflished [1], which sunimarized his earlier studies of discretized nonlinear integrabh, 
equations {2 6]. The main result wa.~ a compact  bilinear equation which (:an be viewed ms an integrabh, 
discrete ;tn;fl~)gue ~)f the two-din,msion;tl  Toda lattice. In l t i ro ta ' s  original notat ion,  il has tlw fl)r~,l 

[Z lex l , ( l ) l )  4 Zecxl~(l)2)-~ Z:~exl , (Da)]r .r  0, (1.1) 

where Zi are arbi t rary  constants ,  r = r ( z l ,  z2, xa) is a function of three variables, D, - D~,, and Hirota 's  
D-operator  is defined for the linear differential operator  F(O~) by the formula 

F ( D ~ ) f ( z ) .  g(a:) = F(Oy) f (x  + y)g(z - y) .v=0. (1.2) 

In more explicit notat ion,  Eq. (1.1) looks as follows: 

Z1r(:rl + 1,:c2,a:a)r(Zl - 1,:r2,:r3) + Z2r(a:l,:c2 + 1,za)r(:rl ,Z2 - 1,:r3) + 

-~ Z 3 T ( Z l , Z 2 , Z  a -~ 1)r(z1,:r2,:ra - 1) -- 0. (1.3) 

This equation is often called the Hirota  bilinear difference equat ion (HBDE).  Its simplicity is surprising and 
elusive at the same time: each detail is controlled by tile integrabil i ty and hides meaningful  mathemat ica l  
structures,  whereas some even simpler looking equations turn out  to be intractable  by analyt ical  methods.  

One of the most impressive outcomes of Hirota 's  work is that HBDE unifies many, if not  all, known 
soliton equations. More precisely, it contains them in an encoded form. Performing a scaling continuum 
limit for appropriate combinations of parameters and variables, one is able to obtain the Korteweg-de Vries 
(KdV) equation, the Kadomtsev-Petviashvil i  (KP) equation, the modified KdV (MKdV) and the modified 
KP (MKP) equations, the two-dimensional Toda lattice (2DTL) equation, the sine-Gordon (SG) equation, 
the Ben jamin-Ono  equation,  etc. Their  discrete analogues are produced from H B D E  by choosing suitabh'  
dependent  and independent  variables. Furthermore,  Eq. (1.1) was shown to possess soliton solutions and 
Bgcklund t ransformat ions  for arbi t rary parameter  values. These facts suggest tha t  HBDE should be con- 
sidered as a fundamental cla.~sical soliton equation, from which the typical examples can be obtained ~ 
particular cases. 

Recently, bilinear equations of this form emerged [7, 8] in the context  of quantum integrable systems 
as tile model- independent  functional relations [9, 10] for eigenvalues of q u a n t u m  transfer matrices. This is 
what motivated us to revisit the classical nonlinear difference equations. 

These notes aim at reviewing selected topics of HBDE and clarifying tile basic elements of the theory. 
In our discussion, we deal solely with the equations themselves, saying ahnos t  nothing about  their solu- 
tions. 3 Likewise, their continuous counterparts ,  the completely discretized nonlinear integrable equations, 
are known to possess soliton and finite-gap solutions. However, a sys temat ic  t r ea tment  of these and other 
particular c.lausses of solutions would be a separate enterprise requiring much more space. We confine our 
selves to elaborat ing the discrete versions of commuta t ion  representations and auxil iary linear I)roblems oi~ 
a formal algebraic h, vel. At the same time, some impor tan t  elements of our approach are mot ivated by the 
finite-gap theory. 

Tim difference soliton equations are int imately connected with differential equations. We have already 
lnentiolwd tha t  the lat.ter are obtained from the former by a scaling limit. It. would be bet ter  to say tha t  
til:ll)F was designed l,~ enjoy this property. The fact that  such an equation exists is by no means trivial. A 
link in the opt)osit.e direction w~m established by Miwa [11], who noticed tha t  discrete l l i rota  equations call 
I~c ot~l.ained fron~ the conli,mous t,~l ~ hierarchy by chorusing the time flows as certain infinite conlbinati(ms 
~ ls tand; t rd  th~ws ~t ' l lw hierarclly. Tills i~tea was furtll,.r d,weh)l, 'd in [12, 131 ns a ll. ,lh(,d ~d pr~,tmill!, 

3[-~,'<:tuse (_;f t}fis, w, '  ,l,J Hot  d l a w  a n y  , l i s t h . - t i , m  I)(qwr t.lw d i s c f e t e  a n d  d i r t s ' f e n c e  er It is u s u a l l y  im[~[i~,,[ in 

[.h(' I;I. Ltr(,I CiL";t' [.hltt .'-;,~hJl[,.~>, ; t fe  f ;mc t i ,  m,-; , d  ;~. cr inur ",.';u kdd~, w i t h  ,-,~,l t;).in ;tll&Jy|.w.:tl i*rol~,rt.ir 

131,~ 



discrete soliton equat ions  from eonl, inuous ones. The inter-relat ion between the discrete. &lid conI, illllOUS 
integrable hierarchie.s looks like a kind of Fourier duality:  they provide co m p lem en ta ry  descriI)tions of the 
sam~ol~ject., nanlely, of the infinil~,-dimensi,)nal (-grassm:mniau [14 IT]. 

1,~ this smw,y, we (]~) not / ive  a systema(,i~" l,re~tLlnent of the connect ion  between tD, discrel:e a~d 
c ~ t l . i l m ~ s  hicrarcl~i~.s. The pr~l~hln ~1 dc.scvilfit~g a l imiting, l,Z~c~',l~-~' tha t  would be colul,;tl.i l)h, w i l ] l  l]~,, 
,.,~lilc l~i~'r;tr~lly i.~ l.~,cl~i~;t]l 5 i,~v, dve~l, l l ,~wcww, il is ii~ll~ssil~h' I.,, r~qrain Iio~,~ r~'f,qri~l< I~ c~l(.i~u~m:~ 
hicrar~:hies. We agree l.o a compr~mfise and restr ic t  ourselves l,. a fi~w typ ica l  examples. 

I t  is assumed that  the reader is fami l iar  w i th  the basic not ions of cont inuous theory  such as the Lax 

and Zakharov-Shabat equations, zero curva ture  condit ions in scalar and ma t r ix  forms, co m m u t in g  flows, 
infinite hierarchies, r - funct ions ,  etc. 

Let us outl ine the contents  of the paper.  (Detailed descript ions are given in the shor t  in t roduct ions  to 
each section.)  

Se.c(,ioi~ 2 can I)e considered ms a par t  of the In t roduct ion.  Here we tr ied to collect the different form.q 
of three-dimensional  H B D E  known in the l i terature.  All of them are equivalent  and simple t rans format ions  
between them are listed. 

Sections 3, 4, and ,5 form the main body  of the paper. As we need a number  of defini t ions and axioms to 
discover the key principles under lying the variety of integrable difference equat ions ,  these are given in Sec. 3. 
All of the notions explained in See:. 3 arc used in what  follows. In Sec. 4, the discrete version of the zero- 
curva ture  representa t ion is presented.  Filling in some gaps in the exist ing l i tera ture ,  we give explicit  forms 
of IA~e h / -opc r a to r s  (realiz~d as ditference opera tors)  for discrete flows. Section 5 is devoted  to various types 
of redundan t  auxil iary linear problems. They  provide a "l inearizat ion" of the original nonlinear  equat ion.  
The  re la ted notion of the Bgcklund t r ans fo rmat ion  is also discussed and the Baker  Akhiezer  functions are 
introduced as special formal solutions to the linear problems. 

Sections 6 and 7 are more technical and might be more interesting to experts. They can be skipped 
without loss of understanding. In Sec. 6, we explain how to extend the M-operator approach to the 
arbitrary discrete flows defined in Sec. 3. In the general case, the M-operators contain negative powers of 
first-order difference operators ,  in Sec. 7, we dwell on hierarchies of bil inear discrete  equat ions  and suggest 
the notion of "higher" discrete flows with the corresponding zero curva ture  representa t ion .  We pos tu la te  
that. all "higher" (N-term) discret.o Hirota  equat ions  known in the l i tera ture  are consequences of t.he 3-term 
equations.  This assertion is proved for the first nontrivial  example of a 4- te rm equat ion  in four variables. 

Section 8 deals wit.h two-dimensional  reduct ions of HBDE,  the cor responding  (L - M)-pai rs ,  az~d 
auxil iary linear probleins. The  list. of reduct ions includes discrete analogues of the KdV equat ion,  the 1D 
Toda  chain, the AKNS system, the relativistic Toda  chain, the s ine-Gordon equat ion,  the Liouvilte equat ion,  
and others.  

In the Appendix,  we present the main elements of a different approach  to H B D E  ba.sed on Miwa's 
t ransformat ion.  This  me thod  w~s suggested in [12] for generat ing discrete soli ton equat ions.  We show how 
it works for simt~le examples  and comment  on the continuun~ limit which is, in a sense, an "inverse" Miwa 
t.ransf~ wmatim~. 

2. Equivalent  forms of the  bil inear equat ion  

/ t i r~ta ' s  di t |erei , :c  equat ion exists in sew~rat forms, ltist~)vically, they emerged as inl.egrablc discretiza- 
tions of par t icular  eont immus hierarchies (e.g., KP, 2DTL).  In this section, we give a list of most  popular  
forms of I-lilota's difference equatioll  and explicit ly demons t ra te  tha t  they are equivalent.  However, it is 
us,:'['ul to I,t~au all of them in mind since ,,he or anothor  may t)e n~ore convenient  in a par t icu lar  pr~l)lem. 

A. Hirot.a's ori.<mal form: 

Z I T ( J ' I  + 1 ) r ( f l  1) ~ Z27-(:,"2 q- ])T(:V2 | )  q Z3T(:l '3 + 1)T(2:3 -- l )  ---- 0 (2.~) 

(l,~',cafl.~,r. xw, ~ll.vn skil~ the v;trial~h.~ that. (h) n,)l. un~h ' r~  shift.s). N . t c  that. the three vaii;tl)h!~ enl.~'r in a 
~yl ,~tc l  ri~: l;L~hio1~ an, i t.he equztl.i~m i.~ invariztut und, 'r  t.hcir l)mHlutati~ms and ;t simull.an~,oll~ l )~' I ' Inl l l , ; t l ,  i~)ll 
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'.)f the parameters  Zi. Th('. (~qua(,i()n is also invarianI, und('.r a sign cha)tg(' for any of I.he varial)les aud under 
tll(~ t ransformat ion 

r(~~,:~:2,~'.~) -+ "~<i(~:~ q :>2 + a::~)~,-~(a~ -t -r:~ - :r,)),2(:r, + :r3 ~:2).~.3(~'~ 4 :>z - .r..~)r(=c~,-r.e,r.~). (2.2) 

wh(:r(' \ ,  ;u,' aul)il.rary t~l~(t.i()l)s. 
A ~. ( :anonical  [or,): 

r ( x ,  -t- 1 )r (a  ~, - 1) + r(m.2 + 1)r(a:2 - 1) + r(a:3 + 1)T(SC 3 - -  1 )  : 0 (2.3) 

does not contain free parameters  and is obtained from Eq. (1.3) by the t ransformat ion  

_ 2 . 2 2 _ 2 T(271:F2,3_3) --} Z, 1 ~-)/2Z2 a=~/ Z3 a=.~/2r(.rl,~c2,2:3) ("2.,~) 

A " .  "'Gauge mvariaut," form: 

(1 § Y(a:,,x2,ac 3 + 1))(1 + Y(:c,,w2, x 3 -  1)) 
)'(~:t,3:2 + 1 ,a-3)Y(~l ,a72 - 1,ac3) : (1 -I- ~ - 1 ( x l  + 1 , x 2 , ~ 3 ) ) ( 1  -I- Y-1(371 - -  1 , Z 2 ~ 2 ~ 3 ) )  ~ 

(2.s) 

w}ter(' t.,h(' IWW u n k n o w n  func t ion  

y(.Tl,z2,Z3) ~ r(xl,ZC2,x3 4- 1 ) r ( a : l , x 2 , Z a  -- 1) 
r(zl + 1,z2 ,za)r(z l  - 1 , a z 2 , z a )  

(2.s) 

is "gauge invariant" w.r.t ,  the  "gauge" t r a n s f o r m a t i o n  (2 .2) .  Th i s  form is a d i screte  c o u n t e r p a r t  of  nonl inear  
integrable  equations wri t ten in terms of potentials  and fields rather  t h a n  T-funct ions .  S o m e  part icular  cases 
of this equation emerge natural ly  in the the rmodynamic  Bethe ansat.z [18, 19]. 

B .  Kt'-lik<' ~)rm: 

{:2 - 28)r  v'+l:v' 'P~rv''v-'+l'v:`+l + (z3 - zl)rV"r'~+]'V~rV'+l'v~'v~+l+ 

+ (el - z 2 ) r  v' 'v~'v"+lrm+l'P-'+l'v~ = O. (2.7) 

Here r v''r'''r':~ is a functioll of three variables p, and zi are arbi t rary  constants.  This equat ion is invariant 
under cyclic permuta t ions  of the variables and simultaneous permuta t ions  of zi. Changing signs of all of 
the variables also leaves it invariant.. Invariance of Eq. (2.7) under t ransformat ion  (2.2) is equivalent to the 
fact tha t  if r v~'*'~'pa is a solution of Eq. (2.7), then 

.\0(2]q + 2p2 q 2p3).\1 (2th).~2(2t>2))Ls(2p3)r p''p2'p~ (2.8) 

is also a ,~()lul.ion of l'~( t. (2.7). M(n(~(,v(~r, l.lw (:(.)('fl{ci(mts in (2.7) can b(' set equal to unity by means of the 
transformati(m 

/ 

Tlq ,P2,P:~ _~1 ( _  

l)rin~in~ ]']fl. (2.7) i.()i.h(' can()nical ft)rul. 
B' .  MI4P-lik, ,  /brnJ: 

21Z1 -- ~ ) PIP2 ( 2~2 -- Z31P21:):t (2.9) 

(.:h)-- =I)(:2 ?-:))Tl,'I~l'l'-"1':'r1"'l'-'-]I'7':~41,, > , -k ]  ") 

(2. ='2)(::::)- ::i )rP' '7'" 4 I'v:'TVl )~ ' 1 ' ~ ' l ) ' §  p,, + 4 

+ (=,) - .-::))(:l . . . .  )H"'v-"v:'~ iri,,  + l,v-_,+1,>, = (). 
' - o  p, ,  1~,)_ t ] 

(e.l()) 
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Note  t h a t  the  c o m b i n a t i o n  of the  argtlln(HltS Pi +1)2 +P3  - l)o is (.tie sa lne  for all r - f u n c t i o n s  ill th is  e q u a t i o n .  
In o t h e r  words ,  IJm h y p e r p l a n e  ];'1 + 1)2 -]- t73 - P0 = cons t  is inwtr iant .  There.fl~re, th is  e q u a t i o n  a c t u a l l y  
d e p e n d s  on three  w m a b l e s  ra(Jler  t}|;q.n t-mr. C h o o s e  t h e m  l,,~ be tq ,  t~2, and  t73. Since,  ms in Eq. (2.7),  
the s u m  of  the  coeff ic ients  in Eq. (2.10) is zero,  t.h,~s,' equat i~ms diffi 'r  on ly  I~y a r e p a r a m e t r i z a t i o n  of  t.ho 
q u a n t i t i e s  z~. 

C.  2l)Tl , -] ik , '  ti,rm: 
t , l+l_l+t,i  .~ l,iT~q 1,t~ 1 l,ir t l+l,I 

y r ,  -~,, + (I* -- t IT,, #7-n+ 1 r , _~  , (2_1 1) 

where  r~ 'i is a func t ion  of  t h r ee  va r i ab l e s  and  #,  v are  a r b i t r a r y  c o n s t a n t s .  T h e  va r i ab l e s  l , l  a re  ca l led  
l igh t -cone  coo rd ina t e s .  N o t e  t h a t ,  in this  form,  the  p e r m u t a t i o n  s y m m e t r y  is lost .  Howeve r ,  an  a n a l o g u e  

of Eq.  (2.2) holds: if solves Eq. (2.11),  t hen  X0(2n + 21)Xl (21)Xg(2i )X3(2* , . -  21)r,~j is a so lu t ion  as well. 
T h e  t r a n s f o r m a t i o n  

(._ _1) 
l/ 

a l lows  o n e  to  hide the  coef f i c i ents  in (2 .11) ,  

-l~ ( _  # )  - , ,~ /2  r[, ~ (2 .12)  
l/ 

l,l-I-I l-I-l,l l,-I l-t-lfi+l l,-l-t-1 l,+lj r,~ r,, + % ~,, + r ,~+1%~-1 = 0. (2 . t 3 )  

By a n a l o g y  wi th  the  p rev ious  cases,  we call th is  fo rm canon ica l .  
For  the  r e a d e r ' s  conven ience ,  we p re sen t  be low the  l inear  subs t i t . u t ions  t h a t  m a k e  the  can<mical  [\~vms 

of e q u a t i o n s  A ,  B ,  and  C equ iva l en t .  

1 1 1 
Pl  = ~(--'T1 + X2 + X3), P2 = ~ ( X l  -- 3J2 + :C3), P3 = ~ ( X l  + X2 -- X3), (2 .14)  

Xl = P2 + P3, X2 = Pl + P3, X3 = Pl + P2, (2 .15)  

B +-~ C:  r'iq ,I~2,~':~ l j  

7z = p2 + t7:3, I :- P l ,  l = p:~, (2.1t5) 

Pl = l, P2 = 7 1 -  l, P3 = l, (2 .17)  

A ++ C: r ( X l , X 2 , X 3 )  = ' r ~  '~, 

1 
l ( - z ~  + :~2 + xa), i = ~(:~, z2 + ~3), (2.18) n = x i ,  l = 

Xl = 7~., z2  = n + l - l, x3 = l + l. (2_19) 

Clear ly ,  these  l inear  s u b s t i t u t i o n s  ave not  unique.  All o t h e r  poss ib i l i t i es  can  be o b t a i n e d  f rom t, ho 
ones g iven  by a p p l y i n g  a t r a n s f o r m a t i o n  of the  fo rm (:rl, :r2, a:a) -~ (~:Zp(1),  i27p(2), i27p(3)), wh(!re P is ,'t 
p e r m u t a t i o n .  Us ing  fo rmu la s  (2.14) (2.19),  one can  easi ly  o b t a i n  g a u g e  i n v a r i a n t  f o r m s  of  B and  C.  

3 .  D e f i n i t i o n s .  T h e  n o m e n c l a t u r e  o f  f l o w s  

lh,re we in t roduce  a p r ac t i ca l  set. of  def in i t ions  and  a x i o m s  which he lped  us d e v e l o p  a s y s t e m a t i c  view- 
point, of  ~.hc zoo of non l inea r  int ,egrabh'  e q u a t i o n s  and  the i r  c ( m H m l t a t i o n  r e p r e s e n t a t i o n s .  Th i s  v m w p o i m  
is, in fact .  nlore gOnelal t.hall we :~ee(l for the  H B D E  it.self. 1)itter~,nt.ial and  " m i x e d "  diIfelential-ditforvllC~, 
l lonl inear  e q u a t i o n s  also fit the  schmllo. ( )u r  ~.tl)l)loai:h is reel.iv;tied I~y the  a l g e b r o  g e o m e t r i c  so lu t ions  121)] 
t,o solit.on equat.icms expr~!sscd t, h rough  t { i e m a l m i a n  (Lflmcti~ms. l t owever ,  s ince  the  Koal is to c la r i f )  tbrHml 
a l / e b r a i c  st,tucl, ures. we ~l~ m~t reflw t.o the  s~lut.ions explicit.l?,'. 
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3 . 1 .  V a r i a b l e s  a n d  k i n e m a t i c  c o n s t r a i n t s  

The  "unknown function" entering bilinear equat ions  is always deno(,ed by r .  This  function det)en(ts 
on an mfinite set, of independent  variables, which are called t]ows or t imes. Th e  last two words are used as 
synonyms.  For each par t icu lar  equat ion,  only a finite number  ()f th('. t ime variables take n()nzero values. 

The  flows are lal)(:l('.d l)y [)()inl,s ()f (,}i(' (:()inl)lex i)l~m(' C. (:all 1.11(' l)()ill(.S A (_- C I,')b*~l/. We lllak(, ~t 
d i s t i n c t i o n  b e t w e e n  discrete all(] cont, inHous f l o w s .  4 

Discrete flows: A discrete flow l = lx~, is associated with e.ach ordered pair  of points A, p. E C,  A J: It. 
--+ 

To say it differently, the flows are a t t ached  to vectors k#, i.e., each discrete flow has two labels. 

Cont inuous  flows: An infinite sequence of t imes {tl ,  t2, t 3 , . . .  }(x) is associated with each point, k E C. 
All of the (continuous) variables t a have the commo n  label k. 

In each par t icu lar  equat ion  we consider,  only a finite number  of labels are involved. Therefore ,  we 
assume tha t  for all but  a finite number  of labels A E C and for all but  a finite number  of ordered pairs of 
labels, the corresponding variables are zero. This  condi t ion makes the defini t ion very close to the adelic 
ideology from algebraic number  theory. A definit ion in such an abs t rac t  form may  seem to be overcom- 
plicated and too general.  However, this s t andpo in t  is useful since it provides an adequa te  formalizat ion of 
the simple fact tha t  the number  of independent  variables in the equat ions  of an integrable hierarchy can be 
a rb i t ra ry  but  also finite. 

Somet imes  it is convenient  to say tha t  those variables which are nonzero are swi tched  on while all 
others are swi tched  off. According to the above definition, the set of labels cor responding  to the switched 
on variables is always finite. 

Having this in mind, it is worthwhile to reformulate  the definition, making  it a l i t t le more concrete,  s 

Let {A~}, (~ E I ,  be a finite set of marked  points  in C. Here I is jus t  the finite set of labels corresponding 

to the variables tha t  are switched on. By l,~/~ (a  # / 3 )  denote  the "discrete" variable associated with AaAB. 
(a) 

By tj  , j = 1 , 2 , . . .  denote  the "continuous" t imes associated with k~. Th e  "r-function is a function of 
these variables, 

: { t}~ 

Let G be the graph whose vertices are the marked points (labels) A~, a E I ,  and whose edges are the 
) 

vectors A~A~. The  edges have an or ienta t ion  tha t  is indicated by an arrow looking from c~ to/3.  This graph 
is referred to as the graph o f  Hows. It encodes the kinemat ic  s t ruc tu re  of the equat ion.  

We stress tha t  the only essential elements of the graph are the vert ices and  their  ordered  pairs. All 
other  graphic elements  are in t roduced for convenience of the visualization. In par t icular ,  the vectors may 
intersect on the complex plane, but  the intersection points should not  be considered as belonging to the 
graph. It is also worth emphasiz ing tha t  the vectors are just  convenient  names of flows. Th ey  should not 
be confused with the "directions" of the flows in any sense of this word. 

The int roduced variables are not independent .  There  are cer ta in  "kinemat ic"  const ra ints  imposed on 
them. 

The  first group of const ra ints  involw~.s the discrete variables only. The  const ra in ts  arise when the graph 
of flows ~ has cycles. It is sufficient to fix the constraints  for the following two cases: 

(i) The  2-cycle: 

+ + (31 

4Thes0 m('  not  mot(, t han  convonti(mnl nnm(~s. In gen(wal, bo th  t imo variables may  t~ko comph:x  WtJlI(~S. 

5For each c o n c r e t e c •  this unitiod n()tation is still not  wwyconv~micnt  to work wi th  and  will bes impl i t i cd ,  lt()wcvcl, 
t(,x th(, sake, of clari ty and dotiniten~,~s, it is I)ct.tor to in t roduce  g enor~d n<)ti, ms and  defini t ions using tho uNiliod uot;di(m 
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Intormally, this means l,h~tt llJr is i(h,m, itied with -lol#. 
(ii) The 3-cych,.: 

r(l~/~ + 1,lt~ w + 1,l-r~ + 1) = r(l~,o,Zo.r,l.r,~), (3.2) 

The corresponding rules for longer cycles follow from these two. According to these rules, one can 
subsequently remove all of the cycles and reduce the graph to a tree. The tree graphs correspond to 
kinematical ly independent  flows. Formally, it is sufficient to consider graphs wi thout  cycles. However, the 
introduct ion of cycles sometimes makes the set of variables more symmetr ical ,  though nonminimal .  

The last constraint describes the inter-relation between a discrete flow A~,AO and the "adjacent" con- 
tinuous flows (i.e., the flows corresponding to the endpoints A~ and k~). 

(iii) Miwa's rules [11, 12]: 

r(lal~ + 1; t (~) , t  (~)) = r(l~13;t (~) - [Aft - A~], t(~)), 

r( l~ , ,  - 1; t (~  (~)) = r ( l~ l j ; t (~ ) , t  ( ' ) -  [k~ - A/3]), 

(3.3) 

(3.4) 

ta (*) la~ tj(t~) 

Ao �9 �9 ~. A~. 

Here r ( t )  _= r ({ t j})  and the shor t -hand notat ion 

( (3.5) 

is used for the function f of the infinite sequence of variables t = {tl, t2,. -. }. Relat ion (3.4) follows flom 
rule (3.1) and relation (a.3). 

Relations (a.a), (3.4) should be tmderstood as formal rules which allow one to t ranslate  tile infinite 
sequence of continuous time shifts into tile shift of a single discrete variable and vice versa. We are not 
concerned about  tile convergence of infinite subst i tut ions,  i.e., the r-f lmct ion is considered to be a formal 
series in A (oil the left-hand sides of equalities (3.3), (3.4), A,, and Aft are implicitly present in tile definition 
of the discrete flows). In known examples of algebro-geometric solutions, the r - f lmct ion is a t rue  ftmctiom 
not lnerely a formal series. In this case, there are solne addit ional  restrictions on the domains  of all variables 
and labels. These ensure the convergence of the infinit(' substi tutions.  Meanwhile, for algel)ro-geometric 
solutiotls, the wwtices and edges of the graph ~7 can be presented as punctures and cuts on a lqiemann 
surface. Furthermor(!, the dis(:rel.(' t ime variabh'.s descrilm (tis(:ontinuiti(,s of the Baker Akhiezer fum'ti(m 
,m the cuts. 
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We refer to the discrete flows A~A~ as elementary discrete Bows. One may introduce more complicated 
flows, which can be thought of as "superpositions" of the elementary ones. Specifically, fix several elementary 
flows, say, Ii, 12,... , IM (here li =- la,o, for some (~i,/3,) and consider the r-function a.s the fimction of a 
new variable y as follows: r[y] =- r(l~ + !1, 12 + y, . .. , lm  + .V). In the time evolution with respect to the 
new variable 71, the "elementary" w~riables l, are simultaneously shifted by ?/while  the others are c~mstanls. 
Let us (:all flows of this type compos i te  discrete Bows. 

To say it differently, let Oi be the vector field corresponding to the flow li. Then the vector field 
corresponding to the composite flow y is 

M 

0y := ~ 0z, 
i = l  

therefore, 
ext ) (Ov)r({ lo ,~ ,}  ) : r({/o,/~, + 1}) exp(0y). 

However, one should be careful because this procedure does not necessarily generate a composite flow. For 
example, due to (3.2), the simultaneous shift of l~,~ and l/~.y is equivalent to an elementary flow. 

The precise definition is as follows: 

C o m p o s i t e  discrete Bows are labeled by finite sets of vectors {A~,A~,}, i = 1 , 2 , . . . ,  M, such that  
~, r a j  for any i , j .  Let y be the corresponding time variable. In this case, evolution along the direction of 
the composite flow is defined by the formula 

= + v } ) ,  

where l~,t~ ~ and other elementary variables are assumed to be constants. 
The distinction between elementary and composite flows can be extended to continuous flows as well. 

For reasons which are clarified later, it is natural to consider the continuous times t~ ~') as elementary flows. 
At this stage, we defend this definition by the fact that,  due to Miwa's rule (3.3), they can be obtained 

as a result of the scaling limit from discrete elementary flows. Similarly, higher continuous times t (~) with 3 
.r _> 2 are limits of composite discrete flows. Therefore, we call them composite times. 

To summarize, we have mtroduced several notions and definitions which are extensively used through- 
out the paper. First of all, a partial classification of flows and time variables in soliton equations has 
been suggested. We have defined discrete and continuous flows, and distinguished between elementary and 
composite flows. One may assign a graph to any particular equation, which explicitly shows the kinematic 
structure of the equation and possible constraints imposed on the flows. In order to make this clear, we 
give some examples below. 

3 .2 .  E x a m p l e s  

To make the graphs of flows more informative, let us add a new graphic element: fat dots mean that 
the corresponding continuous times are nonzero. 6 

In the KP hierarchy, the graph of flows consists of a single "fat" point with corresponding continuous 
"times" {ti} (Fig. 1). The set of discrete flows is empty and the r-function is r ( t )  - r( t~,  t 2 , . . . ) .  

In the 2DTL hierarchy, the graph of flows consists of two "fat" points with corresponding times { t j }  
and {?Tj} (Fig. 2). The discrete flow associated with the vector connecting the two points is the discrete 
"time" 7~. of the 2DTL r-function r~(t;[) .  

The graphs of flows for the discrete KP and the discrete 2DTL equations are as in Fig. 3 and Fig. 4, 
respectively. 
All continuous tinles are switched off. In both causes, only three independent discrete flows are switched on. 
This agrees with the continuous case, where the first nontrivial equations of the KP and 2DTI, hierarchies 

6 I t  wlJIlI~J I~? H|or t !  t)r(~ci,qr ~ [.~ s&y t h a (  [|1r oJIl{,irlll~JILq [ilil~,~ ~:&llill)[ [~/ s~![ eqti&] t o  7,~1~) ~)y & tl&ll ,~fotl l t i~tioi!  o~ 

form (:~ 3), (3 4) 
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Fig. 1. (;VZtl)h ,dlh~ws fl~r the KI' hierarchy Fig. 2. Graph of flows fl)r the 2DTL hi,'.rar(:hy. 

Fig. 3. The discrete KP equation. Fig. 4. The discrete 2DTL equation. 

Fig. 5. The discrete KP hierarchy. Fig. 6. The discrete 2DTL hierarchy. 

have three independent  variables, t l, t2, t3 and t l ,  t l ,  n, respectively. In the con t inuum limit, all of  the lines 
except the vertical one in the 2DTL figures shrink to fat points.  

Figures 5 and 6 represent  the discretized KP  and 2DTL hierarchies, respectively. 
Higher equat ions  of the hierarchies involve more than three e lementa ry  flows. The  labels of these flows 
are analogous to the nulnber  of the higher flow in the cont inuous hierarchies; these labels are complex 
numbers.  This scheme looks like a kind of Fourier dual i ty between a pa r ame te r  t ha t  numbers  the equat ions  
of the hierarchy and the tilne variable corresponding to a par t icu lar  flow: cont inuous  flows are marked by 
a dis(:rete "lab~q," whereas discrete flows at(' marked by a cont inuous label. 

4. D i s c r e t e  Z a k h a r o v - S h a b a t  r e p r e s e n t a t i o n  o f  t h e  H i r o t a  e q u a t i o n  

The  reformulat ion of cl~msical nonline,tr integrable equat ions  ~s flatness condi t ions fl)I" a two-dimensional  
c~mm,ctio~ is th,' basic , :onst i tuem of tho t h('ory. Flatness means tha t  subsequent  shifts along any pair of 
t.ixno flows ('()~mnut,'. These ('ondit.iolm are known  ~m the Zakhavov Shal,at equation.~ or the zero curvattu'c 
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Fig. 7 

representation.  In [1], Hi ro ta  gave an example  of the discretized zero curva ture  representa t ion  for Eq. (1.1). 
In physical language, the discrete connect ion is a lat t ice gauge field. The  approach  emphasiz ing the rela- 
t ionship with gauge field theories on a latt ice was developed by Saito and Sai toh  [21]. We present these 
results in a modified form, which makes the theory parallel to the 2 D T L  theory  [22]. 

The discrete zero curva ture  condi t ion is equivalent  to the c o m m u t a t i v i t y  of cer ta in  mult ivariable  dif- 
ference operators .  The  existence of such a "commuta t ion  representa t ion"  is a ha l l -mark  of integrability. At. 
the same t ime, if a c o m m u t a t i o n  representa t ion exists, it is not  unique. In par t icular ,  there  are different 
(in fact, infinitely many)  ways of represent ing the H B D E  as a zero curva tu re  condit ion.  

The general scheme is as follows. Choose any t ime flow as the "reference" one, i.e., the one in which all 
of the M-ope ra to r s  act as differential or difference operators .  Cominu ta t i v i t y  of the flows means  tha t  any 
pair of such M-ope ra to r s  obeys  a compat ib i l i ty  condit ion,  which turns  out  to be one of the Z a k h a r o v - S h a b a t  
equations.  This  fact allows one to relate the different hierarchies to each other .  In general,  M-ope ra to r s  
are pseudo-difference opera tors  r or difference opera tors  with ma t r ix  coefficients. Here,  we consider only the 
case of difference operators .  Examples  tha t  are more general are given la ter  in Sec. 6. 

When the reference flow is taken as an e lementary  one, the coefficients are scalar  functions.  Section 4.3 
contains an example  of the zero curva ture  condi t ion for H B D E  realized by 2 • 2 ma t r ix  difference operators .  

4 . 1 .  B a s i c  M - o p e r a t o r s  

Thus far, all e lementary  discrete flows have been t rea ted  on equal footing. None was any be t te r  than 
another .  Now, we are going to break this equal t r ea tmen t  and dist inguish the reference flow. This may 
be any flow, including composi te  and continuous flows. For simplicity, we s t a r t  with the case where the 
reference flow is discrete and elementary.  Other  cases are discussed later. 

The  idea is to assign difference opera tors  to all of the flows. These  opera to r s  act  on functions of the 
reference flow variable and we call thein M-operators .  In this section, we consider the simplest  M-opera tors ,  
which are the basic blocks of more general operators .  

Let us specify the no ta t ion  and take the reference flow to be AoAI. However,  the double index nota t ion 
is inconvenient  for pract ical  purposes. When dealing with a l imited number  of flows, it is worthwhile to 
give them simpler though less sys temat ic  ilames. Unless otherwise s ta ted,  the le t ter  it is reserved for the 
reference variable corresl)onding to an e lementary  discrete flow. Therefore ,  we set 

tt =/01- 

Let, A2 be any label different from A., A1. In this si tuation,  where the three e lmnentary  flows with these, 
lal~els arc switched on while all of the el, her th)ws are switched off, the graph of the flows is the triangle 

- - +  

&q)icted in Fig. 7. Its sides AoA2 and A1A~ define flows that  we call adjacent  to t}., reference flow u in 

the obvious sense. In general, a flow A,,A~ (respectively, A/~Aw~,) is said to be le,Ft, a,tjm'ezlt, (r~spectively, 
- - +  

right aHjacent) to the flow A,,A/~. Coming back to t,h~' triangle, graph of the flows, we set /0~ = l, ll,~, I'. 

' W ~ '  u s , '  t h i ~  sh(: , r t , '~  n : u n , '  foz w h a t  i.~ u . ~ u a l l y  c a l l , ' d  a " q u ; u l t u m  F , ~ C u d , ~ d i f F , , ~ m t ,  i ;d ,q~.Eal~ ,~  " 
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T h e  r- lun(:t ion is (hmote.d by r~ / r .  The.r(~ are only two indep,mdent  flows. Accord ing  to (ii), we have the 
COllll(!(~ti()ll 

l , l ' - t  1 ~ -  T ~ , -  ~ 1,l' r,,+l . (4.1) 

Tlw {'(}(~tti(:i{,nts ()l th(' M-Ol}(.'ral,()rs arc ext)ressed via r.  

D'I II> I.;tl<{' ',, l ;~s iJl(h'l}cn(l('lJt \'m ial)]c,~. I3y (h'limli{}li. l.l]{' /~/-()l}{qal.(}r as>iglw{l t,} Lh(' h'tl aulj;t{('lJl. 
t],}w 1 is 

T I TI+ I 
M~, = e 0" - A ~  u u+l t + l _ t  ' (4.2)  

Tu v u+ 1 

where the coefficient A ~ is expressed th rough  tile three labels A0, ~1, A2 as follows: 

AO 1 __ 1 1 02 __AO1 
A 2 - A 0  A 1 - A o '  A1 = - (4 .3)  

The shift  ope ra to r  e ~ has s t a n d a r d  c o m m u t a t i o n  rela t ions wi th  funct ions of u: e •  = f ( u  • l )e  •176 . 
Note that. ]l//~ = e ~ . 

hi (4_2), it is implied t ha t  the r - func t ion  depends  on all of the o ther  variables,  which are switched off 
m this par t i cu la r  case. When  they  are switched on, they enter  Eq. (4.2) as p a r a m e t e r s .  The i r  values are 
the same  for each of the four r - func t ions  m the ratio. As a rule, we do not  indicate  t h e m  explici t ly  where 
{.here is no coufusion. 

Once the M - o p e r a t o r  for the left ad jacent  flow is wr i t ten ,  it can be t r ans l a t ed  into the M - o p e r a t o r  for 
the r ight  ad jacent  flow l'  by pass ing to the independen t  var iables  u, l'. O n  the  r i g h t - h a n d  side of Eq. (4 .2) ,  
the  ( impl i c i t )  a r g u m e n t  l' is the  s a m e  in e a c h  r - f u n c t i o n .  U s i n g  (4 .1) ,  we  rewr i t e  the  r i g h t - h a n d  s ide  in such  
a way  t h a t  the  a r g u m e n t  l is the  s a m e  a n d  impl ic i t .  Ru le  (ii) te l ls  us t h a t  the  shi f t  l' -+  l' + 1 is e q u i v a l e n t  
to  the  s i n m l t a n e o u s  shi f t s  u --+ u + 1 and  I --+ l + 1. C o n s i d e r i n g  M - o p e r a t o r s  as  the  g e n e r a t i n g  shi f t s  o f  
d i scre te  var iables  by uni ty ,  it is na tura l  to  def ine  the  M - o p e r a t o r  for the  r ight  a d j a c e n t  f low l' as fol lows:  

- - l '  M~, = e -  a~ M~, 

or, more cxi)licitly, 

"tu+l  Vu--1 --0% - - l '  A O1 _ l ' + l _ l '  

A,I,, = 1 r~+lr~__ e (4.4) 

It is also useful to in t roduce tile ope ra to r s  

= , -h4u = e - a ,  , M u , 

which are difference ope ra to r s  in two variables.  I t  follows f rom the cons t ruc t ion  above  t ha t  

L l , [:%, =0. 

We have defined the M - o p e r a t o r s  for e l emen ta ry  discrete  flows ad jacent  to the reference one. In this 
case, these opera to r s  have a s imple  form: they arc f irst-order difference ope ra to r s  in u. The  M - o p e r a t o r s  
(:{}rrespondmg to compos i t e  and nonadjacel l t  flows have a more compl ica ted  s t ruc tu re ,  which is discussed 
in the sections tha t  follow. 

Let us c o m m e n t  on cont inuous  refercn(:e flows. According to (3.3), in the cont inuunl  l imit  in u, we have 
,:"~ ~ 1 - A-10t,  + O{A-2) ,  where tl is the first coll t inuous t ime with the label Ao, whih, A = (A] - Ao) -1 
Th,, linlii i,lg form (if the k/-operat,i~r (.1.2) ;ts A -~ c~ is 

Tlff I 

At ~ll - i 6 ,  ")i, l()g T~ (A~ -- A o ) -  I 
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Fig. 8 

This is a first-order differential operator in the reference continuous time variable tl. It generates shifts in 
the discrete variable l. Since it is an operator of the first order, we call the continuous flow tl elementary 
(see the end of Sec. 3.1). 

4 . 2 .  D i s c r e t e  Z a k h a r o v - S h a b a t  e q u a t i o n s  

Two independent flows are not enough to derive bilinear equations, as nontriviat bilinear equations for 
r arise from three independent discrete flows. In this case, the graph of the flows should contain at least 
four vertices. Therefore, let us fix four labels k~, c~ = 0, 1,2,3, and consider a general graph with foul 
vertices (Fig. 8). The simplified notation for the flows is as in Fig. 8. As in (4.3), we set 

1 1 A~ 7 = - A ~  ~, (4.7) 

for all possible values of the pairwise distinct indices. 

Let Ao~l be the reference flow as above. The left (respectively, right) adjacent flows are AoA2, AoA3 

(respectively, A1A~, A1Aa). Each has its own M-operator of form (4.2) (respectively, (4.4)). 
The key point is to extend the trivial commutation properties (4.6) to all of the flows in the graph 

adjacent to u, 

= = o .  ( 4 . s t  

117 contrast to Eq. (4.6), these are nontrivial requirements which give rise to the bilinear equations for r. 
Written m terms of M-operators, commutation relations (4.8) are discrete Zakharov-Shabat  equations. 

In the tollowing proposition, we use tile notation such as M,l, = M ~ ( u , l , i , . . . )  to indicate that, the 
M-otmrato,s are variable dependent. 

P r o p o s i t i o n  4.1. The discrot~, Zakharov-Shal)at equations 

r (,,,.. z + ~ M~ (,,,, l / /  M:, ( , ,  + 1. t )m2( , , , ,  Z ) .  , 

,,(l + ~,Z)ar = M,',(z,~ + ~)1r 

(4.9) 

(,1.1cJ) 

(,t.1 l) 
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are eql,ivahmt,, rc.'~l)cctivcly, t.o t, l w  ~)llowiuj4 I)ilmcar rel:ttio**.~ s r: 

A()lT[/41,m / , m + l  ~()1 l , m 4 1  l + l . m  ~, l + l , m + l  l j~ t  
'2 r ~ 1 a 3 r,, r,+~ + I f ~ ( I , m ; u ~ r , ,  r,,.~l = 0 ,  

Ao~  i+],in i,r~+~ . o ]  i,,,~4~ i4] .... , i,,, i4~,,,,+] 
3 r v q i - A 2 7- 7-u4 I 4 ]],2(7, Tlt.;~t)r,,' T,,+I = 0, 

~Ulr[.~ttr~,+I,t . l / I  ~Jql  t41/  
..:~ a, 2 r . , , ~  %. I ~ f t : ~ ( l , l : ~ ) r [ , ' e r~ ,  ~ / + l  - U .  

(4.12) 

(4 ]3)  

(.~. l-~) 

where  H,  are arbit, rm:y func t ions  .such tha t  H , ( l ,  m; u + 1) = Hi( l ,  rn; **). 

P r o o f .  The  p roof  consists of the s t r a igh t fo rward  c o m m u t a t i o n  of the M - o p e r a t o r s .  The  M - o p e r a t o r s  

read a.s 

Tl  T I +  1 
u u+I 

M,~, = e~ - k~ 77-~_-~ ' 
Tu "l'u. + l 

Trrt T ~ +  I 
- - ~  ~01 u - I  u + l  (2 0~. .~4,, = 1 

�9 r ~ +  1 ,r- Ki- 

(4.15) 

(416)  

O p e r a t o r  M m is given by (4.15) wi th  tile changes l ~ m and 3 + 2, and  it ~ is given by (4.16) with the 

changes N -~ l and 3 -~ 2. For the case of Eq. (4.9), the equa t ion  is 

( m,+,m+,,+,)( . . , . , + , ,  
eC % _ A01 v~, ' ru+ 1 cO" _ A01 "r~i-'-'ru+ 1 

2 ~ ~  m, t+ l  m,l I = 
r,., "r~ + 1 r,,, %+I  / 

= _ Ao , -,-,., , ' r , ,+ ,  / 
-- ~'3 m+l , l+l  m+l,l eO" ~ I " 

r~ r . +  t r~ r ~ + ~ /  
(4.17) 

The  t e rms  e 2a" and those t ha t  do not  contain  the shift, ope r a to r  are a u t o m a t i c a l l y  canceled. A compar i son  
of the coefficients in front of e a~ yields 

.... , .  .... +1 .+l, .  m+,,+,(.+l Aol. :) 
rn,l / 3 ~ r n + l , l /  T u m + l , l + l  r n + l , l  - - r e , l +  ' r, ,+2 \ r ~ g l  r , ,+ l  / r ~ + l  % + 1  

(4as) 

o r  

= (4.19) .~01 m + l , l  m J + l  ~,01 r t l , l + l  m + l , l  m , l  m + l , l + l  " 
3 r ~ + l  r . + 2  - " ' 2  %+1  w~+2 r . + 2 r . + l  

Tile denmnina to r s  oil bo th  sides differ f rom the numera to r s  by the shift  u -+ u + 1. Therefore ,  their  rat io is 
a "quas i -cons tan t"  in ~t with the unit  per iod and,  therefore,  the equa t ion  is equivalent  to Eq. (4.12). This  
comple tes  tlw proof.  

Now we res tore  the "equal i ty of t r e a t m e n t "  for the e l emen ta ry  flows by impos ing  tile requirelnent  thal. 
the Z a k h a r o v - S h a b a t  equation,~ hold for any choice of reference flow. For example ,  let l be the reference 
flow. Cons t ruc t  ~ ' / - ope ra t o r s  for the flows u, ~ adjacent  to l (see Fig. 8). Then ,  we require tha t  the opera to r s  

2~4~ , ./t41 , 2~'l l , and 3//l c o m m u t e  with each other  (of course, 80111(2 of t h e m  connl lute  au toma t i ca l l y  due 
I.o (q1.(5)). Note ,  however,  l,h;d the .A4-operators consl.ructed with respect  to different reference flows are I~Ot, 

required I,o be comnlut ing ,  e.g,, [ A~I '  , .3.{~1 # 0. 

T h e o r e m  4.1.  l,,~,t 2: I)~, :.m.s o f  t l , '  H~'melatary th,w.,~ ,'d~mvn in Fig. ,q and  let ~,, 'F Iw t tw c,)rr~,sl,m,line, 

left, +rod ri,e,ht a<tja<'<,nt thm','~ ,'~u,h thg~t :r, v. amt  v at , '  imh,l,C+M~ujt. TtwtJ thv  c, mm~ut:t t ivi t .v comliti,m.,~ 
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Fig. 9 

imposed  s imul taneous ly  on three arbitrary independent  reference flows x are equivalent  to 

)•03Tl,m+lTl+l,rn ~ O 1 T l + l , m  l , m + l  ~02 l §  l ,m  
1 u u + l  + A2 u T u +  1 + A 3 T u Tu+ 1 = O, 

A027_i,757q. 1 1+1,r57 . 0 3  i,< i+1,<+1 o17_i+1,,57ri,<~1 
1 u T u + l  + A2 Tu T u §  @ /~3 u u + l  = 0 ,  

AO1 l i + l  l + l  i ,.02 l,l / + 1 J §  . 0 1  l , i+ l  /+ l ,1  
3 7-u' Tu ' - - A 3  Tu Tu ~ A2 T u + l  Tu--1 " 

(4.20) 

(4.21) 

(4.22) 

Sketch of  t h e  proof.  By virtue of Proposition 4.1, it is sufficient to show that the functions H, 
are constants, H1 = - H 2  --- - H a  = Ao2. This can be done straightforwardly by writing the bilinear 
equations arising from the Zakharov-Shabat equations for the M-operators corresponding to each choice 
of the reference flow and requiring that they be consistent with each other. 

We can see that  gqs. (4.20) and (4.22) coincide with the KP- and Toda-like forms of HBDE, (2.7) 
and (2.11), respectively. Equation (4.21) coincides with the KP-like form after the change ~ + -~,. The 
three equations differ by the choice of only those independent variables that  agree with substitutions (2.14) 
(2.19). The transition from one triad of independent variables to another should be done according to 
rules (i) and (ii) (see (3.1) and (3.2)). Using these rules, it is easy to see that  the three equations (4.20) 
(4.22) are equivalent to each other. 

The four-variable MKP-like form (2.10) of the Hirota equation follows from (4.20) by applying rule (3.2). 
Namely, fix an extra label #0 and consider the flows #0A:, a = 0 , . . .  3, with time variables p~. From (3.2) 

,~+x,v2 = r ~ , ~ + t ,  etc. This change of variables converts Eq. (4.20) into Eq. (2.10). we have, for instance, r~,po+~ ,, 

4 .3 .  M a t r i x  r e a l i z a t i o n  o f  t h e  z e r o  c u r v a t u r e  c o n d i t i o n  

We restrict ourselves to giving an example that ilhlstrates tile general schenm outlined in the introdu('- 
tion to this section. 

Switching off the unnecessary variables, we consider tile graph of flows (Fig. 9), which is a reduced 
version of the graph fiom Sec. 4.2. 

The simplified ad hoc notati<m is clear from Fig. 9. This choice of independent variables correstnmds 
t.o the discretized 2DTL equati(m 

()ur goal here is t,() write l,h(, zor(~ curvature condition with another choice of the reference flow. Spe(:if - - - - ) .  ). 
i~Ml.v, lot il. I)c the composite thaw ]alwled l)y the pair <)f vectors AoA:~, A1A2 atnd h't .~1 t~c the corresl)(mding 
"'coHq)t~silo' l.ime variable. Ace(waling I() the detiniti~m given in ,Se<. 3.1, the r-function depends on ?i as 
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In other words, we set, I)y detinition, 0!/ := 0z + ~ .  Then the shift ol)erator c ~ acts on the r-fuhct.ioll I~y 

shifting l, ] simultaneously,  

lllt, r~dll<~ the fi~lh~win.~ ,liltmclwc opcrat.~rs with 2 > 2 matrix coctticienl.s: 

L,,(l, b : 

M,, ( l ,  = 

i t} I~l l Tl~t,lftTl]ll,I Tthl'-I-}l I Tn'  T n + l '  1, " r~4, I n -- (~')V -}- 1; ~- --1s n+l  T~I+I,/ I , /  I T~_}_l,/+ ~ " I + l  1+1 
T n +  l Trt ' Tn  ' 

rn- 0 
T1,1 nJ, I 

i 
l / ~L, I Tn _}_ | 

- - !  r I ~+I n' 
T / + I , ] + I  I . l + l  I + 1 , 1 + 1  

. - ~  _ e O u  _ u r . + ~  r . - ~ _  _ 
I + 1  1+1  r T l  l + l T l + l  I + 1  

Tn  ' 

(4.23) 

where we set I~ -- A~ v -/~01 for the sake of brevity. 

P r o p o s i t i o n  4.2. The matrix discrete Zakharov-Shabat equation 

L,,(l,1 + 1)M,,(t,7) = M,,+l( l , i )C,,( l , i )  (4.24) 

is equ iva len t  to the  b i l inear  re la t ion  

Tn/,l+l•/+l,l - _ / , i ~ / + l , l + l  z . . / i + 1  l + l , i  
'n - H n ( l , l ) , ~  'n = t # / v ) r . ' + x  % - 1  , (4.25) 

where Hn (l, i) is periodic in n with period 1: Hn+ 1 (l, l) = Hn (/, l). 

This bilmear equat ion coincides with (4.14). We omit  the proof since it is absolutely straightforward 
after the (L - AI)-pair is given. A means of deriving matr ix  M-opera tors  from the scalar ones is discussed 
in Sec. 5. 

As in Theorenl 4.1, the validity of the zero curvature condition for M-operators constructed with respect 
to all possible independent  reference flows implies a bilinear equat ion with a fixed constant  function h r. It 
has form (2.11). 

R e m a r k  4.1. In the 2DTL interpretat ion,  the operator  M,~ generates the evolution in the chiral 
discrete "space-time" variable l, whereas Ln generates shifts along the n-latt ice.  In our scheme, both M,~ 
and L,, are "M-operators"  ra ther  than  "L-operators ."  We write Ln according to t radi t ion,  which goes back 
to the case where an addit ional  reduction of the 2DTL is implied. 

It is instructive to look at  the continuous version of this zero curvature  condition. It provides the zero 
cuiwtture repre.sentatioll of tile 2DTL with the composite continuous reference flow defined by tile vector 
field O v := Ol, + g~, in the space of the t imes (see Sec. 3). This representat ion na tura l ly  arises when one 
embeds tile 2DTL into tile 2-component  KP  hierarchy. The Zakharov Shabat  equat ion 

~ ,  L,, = M,,+IL, ,  - L,,M,,, 

w h e l - e  

LTt 
O~. - O r ,  log . . . . . .  

~-" 0 
Tn 4 I 

AI,, TII 

Tn t J  

( q 2 7 )  

1 3 6  [ 



is equivalent to the equation 
0~, 0i, log Tn+~ = T,~+I r,~o 1 Tn+2Tn,~ 

whicll is lhe 21)TI~ equation in l~ilinear form. 

(4.2s) 

R e m a r k  4.2. Ttwol,e-~linwlJsi~mal To~tn chail, (ll)T('.) isa reduction of the 21)Tl, such tllat. 7-,,d~e,~ 
not depend o n  t 1 + t l ,  i.e., 0 u COnllnllte.s with T,,. Therefore, in tiffs case, 0 v can be considered as a c-nnmber. 
Identifying it with the spectral parameter, one recognizes Eqs. (4.27) as the standard (L - M)-pair for the 
1DTC realized by 2 x 2 matrices depending on the spectral parameter (see, e.g., [23]). 

5. L i n e a r i z i n g  the  H i r o t a  e q u a t i o n s  

The zero curvature conditions studied in the previous section are equivalent to the compatibility of an 
overdetermined system of linear difference equations for a "wave function" ~6. These linear equations are 
called auxiliary linear problems (ALP) and they play a very important role in the theory. Common solutions 
to the ALP contain complete information about solutions to nonlinear equations. All of the properties of 
the latter can be translated into the language of the ALP. This is what we mean by linearization of the 
ftBDE. 

In accordance with the diversity of zero curvature representations, there are many types of ALP. This 
section deals with the most important examples. 

We begin with the scalar linear problems associated with the M-operators (4.15), (4.16) for elementary 
discrete flows adjacent to the reference flow. They are simple first-order linear difference equations with 
coefficients expressed through the r-function. The formal solution in a special form is called (the formal) 
Baker-Akhiezer function and it depends on the spectral parameter. Baker-Akhiezer functions are formal 
analogues of Bloch solutions. The formula for the Baker-Akhiezer functions in terms of the r-function was 
suggested for the first time in [24]. General solutions to the ALP are linear combinations of Baker-Akhiezer 
functions with different spectral parameters. In a similar way, one may define the dual Baker Akhiezer 
functions as formal solutions to the linear problems for adjoint operators. 

Given a solution to the ALP, one may consider the B/icklund transformations. Furthermore. the 
"duality" between the coefficient functions and solutions of the ALP allows one to define a chain of successive 
B/icklund transformations described by the B/icklund flow. We consider two types of B/icklund flows. It 
is shown that  in the particular case where the solutions to the ALP are Baker-Akhiezer functions, the 
B/icklund flows can be identified with elementary discrete flows adjacent to the reference flow. 

There is a "gauge freedom" in the ALP which can be fixed by certain normalizations of ~, but, we 
usually use the gauge that  leads to the simplest possible form of the linear equations. Another choice the 
z0-gauge--is briefly discussed in Sec. 5.4. This gauge makes the equations more symmetric at the price of 
introducing an auxiliary point z0 E C and complicating the coefficient functions. 

The ALP associated with the inatrix M-operators are also discussed. In fact, matrix M-operators 
can be inost conveniently derived using the scalar ALP, as the matrix linear problems can be obtained by 
combining the scalar problems. More precisely, in order to rearrange the scalar ALP in such a way that the 
reference flow is taken to be composite, one has to pass to difference operators with matrix coefficients. 

5.1~ S c a l a r  l i n e a r  p r o b l e m s  

The connmitativity of the A4-ot)erators (4.8) implies that they have a common set ()f eigenfuncti<)ns. 
Equivalently, thedis(:rete Zakharov Shabatequations (4.9) (4.11) fl)r/~I ol)eratorsimply thec()mt)atit)ility 
<)[ the linear prol)h'ms 

1l(. 

AT l(,l,i(.) (,t,i+ ] (.) (5.2) 
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l}ar arbi t rary  eh.'nwnl,;try discrete flows l , l  adjacenl, to u. Note tha t  the "eigenvalues," which are sel. equal 
to unity on the r.h.s., can be made arbi t rary  by changing the normalizat ion of t/,. Our choice in (5.1), (5.2) 
is inost co~wenie~t, in the Irately discrete case, l:hough it d~es n,~t lead t.o a smooth  (:ontintmn~ limit. 

M,,rc exl)licit.ly. Eqs. (5.1), (5.2) r,,ad (se,, (4.15), (4.16)) 

,/}~(, ~ 1 ) - . . : ~  

where  

V l'bu~t J . -  r ~ ' r , , + l  
t + l j  l , l  ' ru T,,+I 
l , l +  1 I j  

C~,,~u ~ . -  r ~ + ,  r~_ 1 

l , l + l  l j  " Tu Tu 

These formulas beconm more symmetr ic  in terms of the "unnormalized" wave fimction 

, ,{}= V,"t (**) ~" (  

Subst i tut ing  (5.7) into (5.3), (5.4),  we obtain 

T l + l l  l,-I .O1T/+I j  l j  l j  / + l j  
u ' P u + l  - A 3  u + l  P u  = T u + l f i u  , 

T t l+l  _1 1 A017_l,1+1 I,i TI l_l 1+1 
u' P u  - -  2 u + l  P u - 1  ~-  u' lau " 

(5.:~) 

(5.4) 

(5,5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

Let us show that a properly performed cont, inuum l imit of these equatJon_s yields the familiar linear 
problems for the 2DTL. Let us set 

such tha t  

A3 = % + ( ,  A2 A1 +~ ,  e ,g -~( ) ,  

e a' --+ 1 eat, ,  e ~  --+ 1 - g ~ , ,  
- ) 

by virtue of Miwa's rule (a.a) applied to the discrete flows k0A~, A1A2, respectively. 
normalizat ion of the ~/J-function by introducing the so-function a.s follows: 

Then the linear problems read 

(A0 - A 3 ) ~ ' ~ ( u  + 1) - A(A3 - A ~ ) V ~ ' i ( ~ , ) ~ ' ~ ( ~ )  = ~ ' + l ' ~ ( u ) ,  

( , \ o -  ae )~ '~ (~ ,  .) - a ( a 2  - a~ )U ,~ (u )~ ,~ ( . , ,  - 1) = ( a o -  52)~/,~+~(,~),  

whelC A ~ (,\1 - A o )  1. For (, 

{ 
( ~ 0, w,~ have 

/ 
0,,v~(t~) = >q,~ + 1) ~ ~,A 4 0t, h,.< - - -  

i ) , ,  > ~ ( , t )  . \ e  r , ,  ~ ~ r , ,  l , 
. . . . .  ;, V-~.t 'u. 1 ) .  

7-,7 

r,,~ l ~ ( ' " ) '  

Let, us change the 

(5.10) 

(5.11) 

(>12) 
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The  t ransformat ion  
- - u  2 - - k u t  I 

eliminate.s the constant. A, r('(hl(:ing the linear l/rot)lems to the familiar form, 

[ i~,, v'(") r  ~ 1 ) + v ( . ) , # ( ' . ) .  

/ , ' ( , , ) v ' ( , , -  1 ) .  

H e lC 
Tu+ l 

v(u) = oqt~ l o g - - ,  c(u) - % + 1 r ~ _ ,  
r~ T~ 

(for the sake of simplicity of the nota t ion ,  we use the same let ter  for the t ransformed function).  

Zakharov Shabat  equati(m 
- _ - = 0 

yields the first 2DTL equat ion  in the form 

c 3 t ~ ,  log %+1 _ r~+lru-1 %.+2Wu 
2 2 Tu Tu Tu + 1 

These  equat ions are cont inuous analogues of Eqs. (4.11) and (4.19), respectively. 

5 . 2 .  B S c k l u n d  t r a n s f o r m a t i o n s  

(5 l:;) 

The  

(5.14) 

The  ALP in form (5.8), (5.9) have a remarkable  p roper ty  (see [21]). These  equat ions  are almost  
symmetr ica l  w.r.t ,  the interchange of r and  p. Fur thermore ,  one may t rea t  t h e m  as linear problems for the 
func t ion  r ,  the compat ib i l i ty  condi t ion being a bilinear equat ion for p. Th i s  e q u a t i o n  is, again ,  the  H B D E  
of the same form. In [21], this fact was referred to as the dua l i t y  between the "potent ia ls"  r and the "wave 
functions" p. This  "dual i ty" emerges most  t ransparen t ly  in the fully diseret ized case. 

More precisely, rewrit ing Eqs. (5.3), (5.4) as linear equat ions for 

l + l j + ]  ] 

/ + l , l +  1 ~/'l+ 1 ' i+  1 ( l t  -~ 1) 
flu + 1 

(see (5.7)), we obta in  

(C-O~ O1 - -11  ~ 
- v ,  = (5.15) 

( 5 . 1 G )  

where I) and C are given by tile same formulas (5.5), (5.6) with p instead of r .  Th e  difference operators  
on tile 1.h.s. are adjoint  to the opera tors  (4.15), (4.16) with r --+ p. The  formal adjoint  opera to r  is defined 
by the rule ( f ( u ) c  k~ = e - k a ~ f ( u ) .  It then follows tha t  tile compat ib i l i ty  condi t ions arc, described by 
Theorem 4.1 with p subs t i tu ted  for r.  

Therefore,  passing f iom a given solution r to p, we obtain a new solution to H BD E.  This  is a Backlund- 
type t ransformat iol l  tha t  is also k, ,)wn a.s the "Darboux"  or "B/ ick lund-Darboux"  t ransformat ion .  For a 
compreh('.nsive discussion of t ransformat ions  of this kind, see [25]�9 The  bilinear form of the B/ickhmd 
transfl~rlnations wa.s suggested by t i i ro ta  [5]. 

One may repeal, tim t)roceduro (race again, s tar t ing from p and, moreover,  consider a chaill of successiv(, 
t r ;msforlnat ions of this tyl)e. It is natural  to intro(tuc(, an addit ional  discret(, variable b t() mark th(, sl.ct)s 

of t.ho "Ih~w" along this chain ami h'I r t'i z.i I)(' r a n ,  t t ~ at 1.11(' bt, h st(q), resl)ect.iv,qy. T}w first. Bih:kl,tn,l ~,,b" /*~L t 
flow can I)(' (h'tinod by id, 'ntifyiug 

rl.~ l,l ,,,~,~ 1 P,*3, (5.17)  
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F i g .  10 

This means tha t  r at  the next  step of tile "B/icklund time" b is set equal to a solution p of the linear 
equations (5.8), (5.9). In this cause, these linear problems themselves become bilinear equations for rb, 

T I W 1 T  l -- /~01Tl-t-1 T 1 - -  T l T lq-1 = O,  
u , b  u+l ,b+l  3 u + l , b  u , b + l  u + l , b  u , b + l  

- -  T u , b ( ~ ) r u , b + l  - -  "'2 u + l , b  u - l , b + l "  

(5.18) 

(5.19) 

Here l (respectively, l) in Eq. (5.18) (respectively, (5.19)) is skipped since it is the same for all of tile terms. 
Analogously, one inay define the second B/icklund flow (the BS.cklund "t ime" is now denoted by b), 

mr,l_ 17 
= C 1 (5.20) u , b +  l -- ,b " 

From (5.8), (5.9), we have 

. ~ O 1 T I + I T I  T 1 T l + 1  ~ T 1 T l + l  
3 u,b u,b+l ~- u,b u,b+l u+l ,b+l  u - l , b '  

r~ 7-i+ 1 r l + l r i  A01ml+l 7-i 
u,t, u + l , b + l  -- ~,g u + l , g + l  + 2 u+l,t, u,b+l = 0 .  

(5.21) 

(572) 

In these equations, one immediate ly  recognizes different forms of the HBDE. A t ime discretization of the 
Toda chain by means of Darboux t ransformat ions  was considered in [26]. 

The B/icklund flows can also be defined by a zero curvature condition. Given any solution ~b to the 
ALP (5.3), (5.4), introduce the operator  

Bb=e_ob (eo, r162 " (5.23) 

Then Eq. (5.18) is represented as tile commuta t iv i ty  condition [t~,b, 3/I~] = 0. A siinilar B-operator exists 
for tim se(:ond Bs flow. 

5 . 3 .  B a k e r - A k h i e z e r  f u n c t i o n s  

Each of tile ALP (5.3), (5.4) is a first-order linear difference equation ill two variables. Assuming 
HBDE (4.20) (4.22) hold, we construct  a parameter  family of their common solutions in a special form. 
These solutions h/,(**) - ,/J('u; z) ar(, called Baker Akhiezer functions and they depend oil the spectral 
l),rimwt, cr z C C. 

l,('t u.~ swiI.('}l (mth , '  t!xt.r,t (q(,ln~,nt,ary flow shown by th,' (h,tt,,d litw in Fig. 10; the (:orr('stmnding t.im(' 
wtriabh' is p:. Lel. 

1 1 
A'2 ~ (5.2-1) 

z - A,, A/~ - A,, 
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Note the useful identity satisfied by A~/~, 

"l'hml. assmuiue, the' 3-t,eHn t t i ro la  e<tual,ions hcdd t . r  the t r iads ( 'Tl . / .p:) an.t ( . , / . 7 , : )  of i l .h, lwmh,Tl t  
variatdcs, v,,'~' liIl~l l,llal, I,h~' lunc l i~ l l  

,,, , . = 0  

Tu,pz + l 
v""~(~; z) = ( x ~ 1 7 6  \.x0, ,,7 

Tu,p: 
(5.26) 

is a formal common solution to Eqs. (5.3), (5.4) for any z. Indeed, subs t i tu t ing  (5.26) into Eq. (5.3), the 
latter becomes Eq. (4.20) for the triad (u,l,pz), while Eq. (5.4) becomes  Eq. (4.22) for the triad (u, Lp~). 
Therefore, the new label z is identified with the spectral  parameter .  Formula (5.26) for the ~b-function 
coincides with the formula of the Kyoto  school [15, 24] because, due to (3.3), we have 

T 1 ,-I P" ~,,,~ + ,  = ~t '~(-[~ - ~01) 
./,l ,_~,i(0 ) u , P z  . ~ 0  

The general solution to the ALP can be represented in the form 

t/a(u) = f d2z #(z)~b(u; z) (5.27) 

with an arbitrary measure #(z)  on the complex plane. In other words, this is a linear combination of 
Baker-Akhiezer functions with different spectral parameters. 

Note that  the B-operator  (5.23), in which the function ~p is taken as the Baker-Akhiezer  function, 
coincides with an Ad-operator .  Indeed, we have the following formula for the M - o p e r a t o r  (4.15) in terms 
of the Baker Akhiezer function: 

A4'~ = lim (c ~ , / , (u+X;z))  ~,~.~, .r z) " (s.2s) 

The dual Baker-Akhiezer function ~1~* is defined by the formula 

( A ~  , , ~  ~, 
V,*d(u; z) = (A~~ \ ~T01 ) -7~-"'v'- ~ 

T u ' ,  p : = 0 

(5.29) 

This function satisties the equat ions 

(]~Jl('/t- 1 , / -  l))'ft/?/(t/,i Z) :  t / , * l - l ( I z ; Z ) ,  

(A~.( , , -  1 , l -  1))%'k,, ;z = , ' t -~ (~ ;z ) ,  
(5.30) 

where tilt' difference opera tors  on the 1.h.s. are formally adjoint to tile opera tors  (4.15), (4.16). 

5 . 4 .  T h e  z o - g a u g e  

Equat ions  (5.3), (5.4) iml~ly a sl)ecitic choice, for t, he normalization of the ~/,-fimction. Indeed, by 
multiplying ~p by any function, one can change the form of the equations.  This is a kind of "gaup, e freedom" 
as there is no canonical way t,o tix the gauge. The gauge that  we systelnat.ically line throughout, this paper 
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Fig. 11 

is the most economical one in the sense tha t  the ALP for discrete flows have the simplest  possible form. 
Below, however, we are going to discuss another  choice, which has its own advantages.  

This more general gauge requires the fixing of an addit ional  point zo E C,  which is different from 
the vertices of the graph of flows. The gauge is defined by the following normal iza t ion condit ion for the 
Baker-Akhiezer  function q~(u; z): 

�9 (u;zo) = 1 (5.31) 

and we (:all it the zo-gauge. Given this condition, it is natural  to represent q2 in the form 

r  z )  - 
zo) 

and rewrite the ALP (5.3), (5.4) for r in terms of k~. We obtain 

(5.32) 

where 

U ( u , l )  = u,po u + l , p o + l  W( 'u . , l )=  ~,,~o+1 ~,+t,po (5.33) 
Tl l + l  ' Tl T I + I  " 

u,po+ltu+l,po u , p o +  1 u + l , p o  

A general prescription for writing the equations should be clear from a comparison with Fig. 11. With  
this method  in hand, a similar equat ion can be wri t ten for any pair of flows such tha t  one of them is the 
reference flow and the other  is left adjacent.  

An at t ract ive  feature of the zo-gauge is tha t  there is no need be concerned about  the equations for right 
adjacent  flows. They are automatically_+produced by the same prescription if one changes the "orientation" 

of the reference flow (i.e., consider ~ A o  as the reference flow). In order to express everything in the same 
variables, one should apply the rules (3.1) (u --+ - u )  and (3.2) (P0 ~ P0). We stress, however, tha t  Eq. (5.4) 
cannot  be obtained from Eq. (5.3) in this way. In this gauge, we need the two types of equations for left 
and right adjacent  flows to be t reated separately. 

The Baker Akhiezer function tha t  solves all of these equations in the zo-gauge has the form 

()'~t~)t~ ,,o=v- qS(.,; z) H rp0 ,p: + I (5.34) 
1 "  = 0  

As usual, i t . '  w-functions del){'n,! on all of the skipped variables a.~ t);tr;m.'t,ers. Due Lo (5.2.5), the' form of 
the prefact, or is consistent with pr, q)ertics (3.1) and (3.2). 

Our previous gitugt' is a lilnitin.~ cas, ~ of the z0-gauge ;~s z~, -+ A0. Howew~r, the limit is singular aml, 
t.tmrefl~rc, it, n~:ed,q ~t r~'~,ulalizat.ion. As a result, tlw sylnmct, ry of the zo-gauge is broken. 
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5 . 5 .  T w o - c o m p o l a e n t  f o r l n a l i s m  

l,inear equations (5.3), (5.4) can be t)roughl, to another  fl)rm in which they become firsl.-or(ler partial 
ditference equations for a two-component  vector function. Their  coml)atibili ty yields the matr ix Zakharov 
SIlal);tl equal.ions l)resented in S('(:. ,1.3. 

l.,,'l, u.'-; u.'-;(~ I.he n(,Ial.h,~l ,)1 ,";(',..1.3 an,l, a(:('()r, ling, ly, ,.hm,,(,' ,/,,., _ (/,(u), l.~t,. 'z 1.,'t't(~t)..an(I (-,{z 

Cl'l(Tl). ~]'h(,.ll Eq5. (5.3), (5.,1)l-earl 

= ~ , ,+~  - v v . '  % ; ,  (5 .35 )  

~/ l j + l l -t , C t  ~ q , - I  
',~ ---- 1/,,; - -  [ ~' "(/n 1" (5 .36)  

These equations allow us to find out  how the vector 

t ransforms under shifts of n and I. 
Combining Eqs. (5.35), (5.36) we have, for instance (here 0y - 01 + ~ ) ,  

l l  = ~[lq.-1,l r l l  I j  l+l , i- t-1 . t f d -k l , l . l l ) l - I - l , l  "~r l , l .  l j  

�9 r l i x - - l l  . ' ~ l + l l , . l i  , r l J  . / , i  , 
"~- ( gOu -~- V V n '  )'q)n -~- # t a n  ' [l l)n --  l / V n - l l l ) n - 1 )  = 

= ( e~ + z'V~ 'l + ~ .  ' r~;; - # u C .  . . _ a ~ _ ~ .  

l i  o \ ~,;_~ 

Proceeding in the s a m e  way,  we obtain 

~/~,~+1 e ~ + u V ~  '~ + ~ , ~ ,  

~l, l l ~ 1 

(5.37) 

(5.38) 

(5 .39 )  

\ q / , l , - l + l  g . r l , l - k  [ , r l , lq -1  - 1  -1  ) 

The operators on the r ight-hand sides of (5.39) provide a matr ix  (L - M)-pa i r  for HBDE, which differs 
from (4.23) by a diagonal "gauge" t ransformation.  Recall tha t  the Baker-Akhiezer  function (5.26) has 
rn in the denominator;  thus, the two components  of the vector (5.37) have different denominators .  In the 
two-component formalism, it is natura l  to require the denominators  be the same for both  components.  This 
condition partially fixes the gauge. 

Therefore, introducing the vector (%,, Xn) with the second component  

g;~ T _1 ,t.~ (5.40) 

Tn' 

we can rewrite Eqs. (5.39) in the fl)rm 

X,;~ t j  ' 
X n +  1 

(5 .41)  

M . ( l ,  Z) : ,. , 
X, lli I l + l ).,; , 

(5.,12) 
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wirer(: th(' L- and M-()t)erat()rs are given by Eqs. (4.23). 

Equations (5.41), (5.42) imply some useful difference (,quations for ~h[; i. Excluding X,, from (5.41), we 
obl,aill 

I l / + l , l  / + l j  l + l , l + l  \ l,l / + l j + l  
~/t+:,i+: l ~ r/? r,,+__A L r,,-1 r,,+l ) ,~/)j r , , - l r , ,+l  l ~ (5.43) 

T,~ T ~ 1 T~I Tn T~ T n 

Similarly, cxclmling X~, from Eq. (5.42) and using IIBDE (2.11), we obtain a ,l-term equation for g~,,, 

l,i+1 1+1,i+1 l~ l+:,~+1 
7 / l + l , l + l  ~ l + I  I Tn T n + l  7/)/,1+1 ~ rn' Tn+l 1 
- -n  --  l#n ' = --V / + l j + l  / , l + l  rn  + (I/ -- l l ) ~ + l ~ l r  n . 

Tn Tn + 1 Tr ~ Tn + 1 

(5.44) 

Here it is implied that r~ 'i satisfies HBDE (4.22) in the corresponding notation. For more information on 

Eq. (5.44), see the next section. 
The continuous analogue of Eq. (5.43) is 

(Ott +O~t:)g?n =Wn+t + (Or: l ogTn+l )  ~n + T n  
E,~-- 1 Wn+ 1 (5.45) 

which is obvious from (5.12) (we write ~o~, instead of qo(u) according to the present notation). It is a discret.e 
nonstationary Schr6dinger equation. Equation (5.44) in the continuum limit becomes 

) Tn -- 1 Tn+  I 
O t , ~ : ~ o , ,  - Or, log r,,+x ~,qo,, ~o,, = 0, (5.46) 

which is the continuous two-dimensional Schr6dinger equation in a magnetic field. Its quasi-periodic so- 
lutions were studied in [27] by means of the algebro-geometric approach. The corresponding theory for 
discrete two-dimensional equations similar to (5.44) was proposed in [28]. 

6. Pseudo-difference M-operators  

In this section, we study the general form of M-operators  that satisfy the conditions of the zero 
curvature form, with M-operators  for the elementary discrete flows adjacent to the reference flow. 

Starting from the scalar ALP for a pair of left and right adjacent flows, it is not difficult to find the 
M-operators  for nonadjacent flows. Indeed, it is possible to exclude the reference flow from the pair of linear 
equations. Then the right adjacent flow can be written in terms of the left adjacent flow. Considering the 
latter as a new reference flow, one can obtain a general M-operator  for any elementary discrete flow in 
terms of any (elementary discrete) reference flow. In general, these are the pseudo-difference operators, i.e., 
they contain negative powers of the first-order difference operators. 

This construction can be extended to more general operators that generate new flows commuting with 
the elementary discrete flows. We call these adjoint flows. The corresponding pseudo-difference operators 
are constructed in Sec. 6.2 with the help of two arbitrary independent solutions ~b, ,/~* to the ALP and the 
adjoint ALP. 

6.1. M-operators  for arbitrary elementary discrete flows and 
corresponding linear problems 

Transforming Eqs. (5.3), (5.4), it is possible to find the M-operators  for arbitrary dementary  discrete 
flows, in addition to those adjacent l,o the reference ttow. The idea is to exclude shifts in u and then 
consider l ;u~ a new reference flow. 

F r o m  (5.3),  wv haw~ 
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F i g .  12  

Subst i tut ing this expression instead of */,l'~(u + 1) and Ct,i+l(u + 1) into Eq. (5.4), wri t ten in the form 

~t,t'i(u + 1) - g / ' i+ l (u  + 1) : A~ + 1)~//'/(u), 

we obtain 

I/,/+1,i+1(~)-}- /~~ ('~/.)~/,/,l+l (L/) ~_~ ~/,/+l,l(,u) + (~031Vl'l(t/.) --  /~Olc/,/(t z -1- 1))~/,',i(u). 

Using (4.22), we find 

T 1 ~ _ l + i , t + l  
)kOlvl3(ts --  )k21C/'l(t/, n t- 1) = /~~ --  .~O1cl+l'l(t/,) : .~01 u' ' u+ l  (6. ])  

l+l , i  L i+ I '  
Tu Tu+ 1 

Note tha t  the first equahty  follows from Eq. (4.11), which is a weaker condit ion than  (4.22). 
Therefore, r obeys the following 4-term linear equation: 

t t ~+1,l+1 
_ = 1~+1 ,+l,i+l t ~ A03r ~' ru+ 1 l/fl j+ 1 (u) + _ _  el  j( t ,)  , r ~ + ,  (6.2) 

~) ( ] - - g + l ' l + l .  u .  -- 1/)1+1'1(tz) 1 _ ~ + 1 ~ @  Tl+l,iTl,i+l 
Tu Tu+ I u u + l  

in which we recognize Eq. (5_43) from Sec. 5.5. 
Relation (6.1) allows us to rewrite (6.2) m the form 

r,l+l,~ l o l r  i u TI,I+ 1 
+ , (  ) = o, (6.3) 1+1,1 

T ~ - I  Tu+ l  

where 
7Xt - e ~ + a ~ A~  - e ~  - 1. (6 .4 )  

This equation looks like a discre e two-dimensional Laplace equation in curved space. It can be formally 
rewritten ms 

V,"i0 ) = 0, (6.5) Af -'2 1,~+~ 
Tu 

or, finally, 
l,-l+l .~01 7-l+ljk~ 

. . . .  -1-1 (6.6) g, tJ+l(u)  = I TU+IT~IJ+' C0, + )~01. T ~ + , , ~ ]  

To avoid a misunderstanding,  we stress tltat t, ho pseudo-difference operator  inside the parentheses acts on 
t, hc varial)le l, whereas '~z enters a.~ a t Ja la ln{} t ( ' l .  T h i s  op{' . l ; t l ,Ol,  being a l)seudo-ditfor~mcc Ol~erator m l. 
should be identified with the M-oporator  generating the fl~w l (Fig. 12). In ol.h,'r words, h'l, ting l be I.ho 
reference flow, we obtain an Al-operator  for the flow l, which is n,~t adjacent  l,,~ l. 
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In l,he limit where the points lo, A 1 merge, the flow I becomes left adjacent l,o I. Let us demonstrate 
how the corresponding difference M-operator  is reproduced from the r.h.s, of Eq. (6.6). Let kl - A0 = ~, 

~ O. F~n r ~ O, we have 

- > 1  t , ( ,  .~ t ,xll ~) t o ( , ~ ) ,  

t,-I 
T u  =k 1 

t,--T -~ 1 + O(e ) ,  
Tit 

7-u+l Tu-I (~02 ] ~ @  / _}_ O((2) 
l+1,i l,i+1 -4 1- 

Tu ru 

(in the last line, gq. (4.22) was used). Therefore, the naive limit of the r.h.s, of (6.5) is zero. However, 
we should take into account the change in the normalization of the C-function, which is implied when the 
former flow i becomes a left adjacent flow to l. This is achieved by replacing r  __9 (_e)TCt. Thus, in the 
limiting case, the correct k4-operator, 

M [  = e a' - A ~ rOrZ+~'-l+~ 

is reproduced. 
For purposes of illustration, let us give continuous analogues of the above formulas. Rather than 

perform the limit directly, it is much easier to use the continuous version (5.13) of the linear problems from 
the very beginning. Making use of Eq. (5.14), we find the analogue of Eq. (6.2), 

0,, ~ ,  ~(~,) - ~ ( u ) ~ ,  ~ ( ~ )  - ~ ( ~ ) e ( ~ )  = 0, (6.7) 

and, respectively, the analogues of Eqs. (6.3) and (6.6), 

ru_l 
(C~tt, Tu+lTu oq-lt, Tu--lTu /] gp(tt)= 0. (5.9) 

6 .2 .  A d j o i n t  f l o w s  

Finally, we extend the above scheme to incorporate the more general flows that we call adjoin t .  Let 

A~ = 1 + wAl-:w*, A, = e ~ - 1, (6.~o) 

be a pseudo-difference operator,  where w and w* are still undefined functions of all of the time variables. 
We denote the time variable corresponding to the adjoint flow we are going to define by a. In this section, 
the reference flow is I. The M-operator  for an elementary discrete flow p (see Fig. 13) has the standard 
[01"1It 

M : '  = (~o, _ A,, - ~*~;'~;;"~ A,, - A ~ ( 6 . ~ )  
�9 p p +  1 ' Ti+ 1TI 

P r o p o s i t i o n  6.1. T h e  c o m m , t . ; d i v i t y  cond i t ion  

[,' '"' AI ' ,  ,,-~',,a~;'] = 0 /6 .1~/  
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holds only if  w and v," satisfy the linear equations 

Fig. 13 

where 

{ (C Ot -~ Ap~,~P'a-F1)21/~ = OJW~ +l, 
(6.13) 

p,a  p +  ] ,a 

TGTf+~, o 

and w is an arbitrary constant. 

P r o o f .  The proof is by straightforward computation. Equations (6.13) are necessary conditions for 
the vanishing of the pseudo-difference part of the commutator.  Here are the main steps of  the proof. 
Equation (6.12), i.e., 

p + l ^ - - i  *p+l~ (d' - ~v/"~ + ~ a i - ~  ~) = (1 + ~, ,,~ ~,~ ) ( d '  - ~ v ~ , ~ ) ,  

after opening the brackets, (:an be rewritten Ks 

_ _ " t d l l + 1 7 1 ~  l : 

*p 

- -  ~, w l - 1 - -  

Since the 1.h.s. does not contain negative powers of Al, the r.h.s, should be zero, This condition implies 
Eqs. (6.13). 

The ALl ) for tim p l(',fl, adjacent t,r the reference flow l and its adjoint reads a,~ follows (of. (5.3)): 

{ ~/,r'(/ q 1) - AvI~"~/,"(l ) = ~ / , r + ' ( l ) ,  (6.15) 

Comparing (6.15) with (6.13), we ideutify 

.,,,~ .... _ ,,/ ,v,.~ '(/), 'w; '''~ = V , * v " ( l  + 1), 

where  (, amt  (P ~tie ~uJ)itd~try st)hit.ions to the l inear  prol)h'.lns ({5.15). T h e n ,  opcra.t, or ({5.11)) re:quires t.h,' 
fOFl l i  

.4; 1 + g,~+l(l)A; 1"r + 1). ({5.1(;) 
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Colvmmtat ivi ty (:(inditi()n (6.12) 
defined by two arb i t ra ry  solutions ~/,, 
diflerential analogues of opcrat,ors (6. 

As an example, let us show tha t  
one reproduces Eq. (6.6). According 

r z) ,-.,..a,f q /z~ ) 

is equivalent to a nonlinear equation flu r]"". The adjoint  flow a is 
g;* to the linear problems (6.15). For continuous hierarchies, pseudo- 
16) and (:orrest)ovlding adjoint flows were stu,ti('(t in [2:)]. 
t)y i.akmg g,, g,* ~s the 13aker-Akhiezer fun(:ti(m ~/J(l; z) and its (tual. 
I.,> th(' n:(q,h(,(1 of S('.(:. 5.3, th(' 13ak~:r Akhiez,!r f, mcl, i()n a,J(l il.s (lual 

Itere (~ is a normalizat ion factor to 

flow A0z left adjacent  to l. In the limit z ~ A:, Pz coincides with u. 
into (6.16), we reproduce the operator  on the r.h.s, of Eq. (6.6). 

TI"+I p-=O T p ' - - I  J 
�9 - , ( 6 . 1 7 )  : )  ::  - '  

_ rv: Iv: = 0  

be specified below and Pz is the time variable corresponding to the 

Subs t i tu t ing  (6.17) with ~" = A ~ 

7. On hierarchies  o f  bi l inear d i f ference  equat ions  

Integrable partial  differential equations can always be included in an int ini te  hierarchy. Infinite families 
of commut ing  flows generate infinite families of evolution equations. The hierarchies of discrete integrable 
equations have been less studied. First  of all, it is not quite clear what  "higher discrete flows" are on the 
space of pseudo-difference operators.  An unders tanding of this mat te r  is necessary if one is going to extend 
the Zakharov-Shaba t  formalism to the higher Hirota  equations known in the l i terature [12, 30]. 

There are two "complimentary"  points of view on this inatter.  First,  one might consider the 3-term 
HBDE (4.20) as a counterpar t  of the entire infinite hierarchy. In this case, this equat ion should be under- 
s tood as an infinite set of equations (continuously numbered by the labels A~,) for a function of infinitely 

inany variables la~ associated with AaA;. Second, one might expect tha t  composi te  discrete flows are good 
candidates  for true analogues of the higher continuous flows. This is justified by analyzing the cont inuum 
limit. Indeed, to obtain a higher continuous flow as a limiting case, one should s tar t  from a composite 
discrete flow with specially adjusted labels. 

Our goal in this section is to show how these two approaches can be consistent with each other. A 
natura l  conjecture is tha t  tile N- te rm "higher" Hirota  equations for a function of N variables are conse- 
quences of the basic 3-term equations (4.20) treated a,s a hierarchy. This means tha t  the 3-terln equation is 
assumed to hold for each triad of N variables with corresponding Ao. To suppor t  this conjecture, the cas~, 
of tile 4-term HBDE is considered in detail. In addition,  an extension of the Zakharov-Shaba t  scheme to 
this case is suggested. 

7.1. Higher  equat ions  of  the  h ierarchy 

Higher Hirota  difference equations known in the li terature [30] are wri t ten for a function r ( l l , . . . ,  IN) 
of N variables. These equations read 

~2 . Z N - 2  

'~ N 2 
1 z e  z :  �9 . . z 2 r2 f'2 = O,  ( 7 . 1 )  

"' N - 2  
1 zN zTv . . .  z N rNiN 

where z, are arbi t rary  constants  and 

% = w ( / 1 , / ' 2 , - - - , l , - . 1 , l z  + 1 , / , + 1  . . . . .  l N ) ,  

76 7-(ll 4 1,1.24 1 , . . . , l ,  l + l , I , , l , + l  ~- 1 , . . . , I N  + 1 ) .  (7.2) 

Exlmnding the dctcrulill;u:t w.r.t . l .]w l;tsl C()][ l l l l l l ,  W(! ('~tll write t.lle.~e equations ill  ;t n l o r e  c()l l l]) ; i . ( ' t  f()rul, 

N 

3=1 
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Fig. 14 

The constants  A2 are sul)je(:t to only one condit ion,  

N 

- ~ A j  = O. 
j = l  

For N = 3, we obta in  the usual ! tBDE,  where zi are cer ta in  ra t ional  functions of A~. As in the 3- term 
case, the variables l, are identified with e lementary  discrete flows. 

The  t ransformat ion  

r( l t , . . . ,  IN) --9 exp 
N 2] 

1 ~-'~logAk( Z l j)  
2N - 4 k=1 j=l,r 

r(ll,. . .,XN) (7.4) 

changes Eq. (7.3) into the canonical  form 
N 

j = l  

which does not contain any free parameters .  
In Hirota ' s  original notat ion,  these equat ions  are 

= 0 ,  (7.5) 

N 

j = l  

which are obta ined by the linear change of variables 

7 - ~ 0 ~  (7.s) 

N 
1 ~ l ,  

:% = -13 + N ~  
,.=1 

(7.7) 

generalizing (2.15). 

7.2. Zero c u r v a t u r e  c o n d i t i o n s  for c o m p o s i t e  f lows 

We show that  the zero curwtture  condit ion wri t ten for the composi te  discrete flows int roduced in 
Sec. 3.1 lead to the "higher" bilinear equat ions  of form (7.1). The "higher" M-operators are obta ined a.s 
products  of the e lementary  ones. 

In this section, w~'. deal with the graph of flows in Fig. 14. The  reference flow is u; the other  m~tation 
is clear from the picture'. For simplicity, we only consider left adjacent  flows, bu t  all tha t  follows can b~' 
e~csily r~'formulated in t.,!rnlS of right adjacent  flows. 
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-" ~ +7 7 Ac(:ording t() the defizlil.ion of (:omt)ositc flows (See. 3.1), we introdu<:e a "higher" /~4-Ol)eratcu- / /  

generat ing the. evolution in the composi te  flow, labeled by the pair of vectors AoA2, AoA3, a.s the p roduc t  of 
eh'.mentary M-opera to r s  of form (4.15), 

M;f' ,,~ aC,,-  a, M: (7s) 

It is useful 1.o rewrite this equal i ty  by indicating the argmnenl.s explicitly, 

Mqr(q,  r) = Mq(q,  r + 1)M~'(q, r). (7.9) 

Due to the zero curvature  condi t ion for e lementary  flows, we have M~ ~ = M~q. Then,  the compat ib i l i ty  of 
) 

this composi te  flow with an e lementary  flow AoA4 reads as follows: 

1 M q" , , r M V ( p , q + l , r +  ) ~ (p q ) = M q ~ ( p +  1 , q , r ) M V ( p , q , r ) .  (7.10) 

Clearly, this zero curvature  condi t ion follows directly from Eq. (4.9) and definition (7.8), provided Eq. (4.9) 
holds for any pair of flows from the tr iad (p, q, r). 

A few words abon t  the notat ion.  For the simplicity, we set 

~ 0 1  ~ , .  / ~ 0 1  /~q, A01 = /~p. 

Since we deal with a large number  of variables in this section, it is also convenient  to indicate the basic 
variable u in the r-function by writing the argument u in brackets: % -+ r ( u ) .  As above,  the other variables 
are wri t ten  as indices. We also use the nota t ion 

V(V)(p, q, r) = "rV'q"(u)rv+LqT(u + 1) (7.11) 
rv+l 'v ' "(u)rV'V'"(u -I- 1)" 

Now we are ready to e labora te  Eq. (7.10) explicitly. This equat ion reads 

(e a" - A V (v)l,~, p ~ ,F,q + 1, r  + 1))(e  a~ AqV(q)(p,q ,r  + 1))(c ~ A,V~(~)(p,q,r)) = 

= (e o= - AqV~(V)(p+ 1 , q , r  + 1))(e  ~ - A,V( ' ) (p  + 1 ,q , r ) ) ( e  a" - AvV(V)(p ,q ,r) ) .  (7.12) 

Compar ing  the coefficients in front of e 20~, we obtain 

A~V (v)/- 1) (q) 1) k V {') r) ~ [ p , q + l , r +  + A q V ~ + ] ( p , q , r +  + ~ ~+2(P,q, = 

= " v ' ~ , + 2  ~ V(P) (p ,q , r )+AqV~(q ) (p+  1 , q , r +  l) +A,-V ( ' ) _  ~ + , ( p +  1 ,q , r ) .  (7.13) 

This  relation is a direct corollary of the 3-term HBDE.  To see this, recall Eq. (4.18) from the proof of 
Proposi t ion 4.1. In the t)rcsent notat ion,  it reads 

Itf(q) = ,~ U (p) /~qVu(q)(p+ r "'p'~ V(v ) (P ,q+ 1 , r +  1 ) + " q ' , , + l ( P , q ,  ,, u + l ( P , q , r + l ) +  1,q, + 1 ) ,  (7.1,1) 

where r + 1 enters as a parameter .  A similar equat ion can be wri t ten for the pair (p , r ) ,  where the variable 
q enters as a [ ) a l a lHe te r ,  

""(") ") = A ~.0,) ,,.(,) , A,,t;}~)l(t,,q,r-F 1) + A~, . , ,+2u,q , r )  , , , ~2 ( l , , q , r )  + A, + 1,q,r) .  (7.15) u +  1 ( P  

Ad(tin,< I.IJ('s~' equali ,ms, w,' ()l)l.ain I~;q. (7.13). 
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Comparing the coelticicnts in fronI, of c ~ , we obtain 

r~v(q) )~v)%v,!q)(y,q,r + 1)V(V)(p,q+ 1 , r +  1)+)~qA,.V(;)l(p, q, , , ,+~(p,q,r + 1)+ 

+ ~vs q ~ r +  1) V(') ' , , ,+~u),q.r) 

: A A I "(q) "(") ,)1;~")(1, 1 ,q ,r  1)+ ,, ,; ,, (pq l , q , r  ~ l)l "(~') ,,+~(p,q,r) ~ .\qA,.I,, (p ~ l,q, + + 

V (i'') ' ) 1)Vu(;)ltp, q ,y )  +Ark,.  ' , , + ~ l , q , r  + (7.16) 

In the same way, it is easy to show that this equality also follows from the HBDE. Of course, this result is 
trivial since the zero curvature conditions (4.9) hold for both elementary M-operators in the product (7.9). 

The fact which is not obvious from the very beginning is that Eqs. (7.14)-(7.16) imply one of the higher 
Hirota equations, namely, (7.1) at N = 4. Proceeding as in the proof of Proposition 4.1, we rewrite (7.16) 
in the form 

r ( u  + 1) ( rq+"~+l(u  -{- 2) __ TP+I ' r+ I ( t t  q- 2) 

~ ( ~ +  2) ~a~a~q+l ,~+~(~+ 1) x ; a ~ + ~ , ~ + ~ ( ~ +  a) 
<+,,~+,(~)<+~,~+L~+~(~ + 1)~+~(~ + 2)) 

- ~ ~ ~ +  1>~+1(~ + i i ~  = 
rv+ l ' q+ t ' ~+ t (u+ l )  (AqA~ rv+ ' (u )  - - r~+'(u) 

rP+Lq+ ' '+ l (u )  \ rv+l(u  + 1) AP/~qTr+I(~t n t- 1) 

T~+~,~+'(~)~(~ + 1)<+*(~ + 2) ) 
- Ap)W r~+1(u + 1)rq+l,~+l(t t + a)r(u +-2) ] (7.17) 

(cf. (4.18)). Multiplying both sides by (Aq-  A~)rq+X#+~(u+ 1)rV+~(u+ 1) and using the HBDE in the form 

(Xq - a~)wq+~'~+x(u)~-(u + 1) = aqW~+~(~)wq+~(u + 1) - ~ q + ~ ( u ) w ~ + ~ ( u  + 1), (7.18) 

we obtain 

where 

r(u + 1)rv+X'q+l'~+l(u) 
r (u  + 2)rV+l,q+l,r+l(~ + 1) 

Av,q,~(u) = Bv,q,~(~,), (7.19) 

AP'q'r(u) = (Aq - /~r)/~qArTq+l'r+l(11 -1- 2)7P+1(~  -1- 1) -  

"rP+l 'q+l (~  + 2) 7_q+l,r+l(tt -- "~p/~q ~ ~ ~( ~)) (/~q TP-l- l'r + l ('tt ) -[- 1))~- 

~+~,~+'(~  + 2 ) ( x ~ , , + , , ~ + , ( ~ ) ~ + , , ~ + , (  ~ + 1)), 
-1- Ap/~r TP+l,q + 1,r~i i lZU 

Bv'q'"(u) (Aq - A,-)AqA,.rP+l(~,)rq+a'~+l(~z + 1) 

- A,,~ ~ ; -~  ( ~ < +  (,~ + 1 '(,~ + 2))+ 

+ a~a~ 7~7, +-53 (a,.~,'+'(.�91 + 1)<+1(~ + 2)). 

Tim last two terms can be further transformed using Eq. (7.18). The result is 

T q~ l ' r+l( - )Tv+l 'q+~'"+l(u  + 1)<+~ (',,, + 2) 2 A>q'"( . )  / J" '~"(~+ 1) Av(A, I s  
T, '+ '  ,q+l ,r+ l(,Lt ) 

n",',.' (.,, ) I,,',',," (.. ) A~,(A~, A,) T"+''+'(,,)T(,~ + I)~-"~ ~(~ + 2) 
r(~ + 2) 
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W h( ! l ' ( '  

t?,q,~(~O = .~,~s .X,-)TV+I(~0Tq+~'"+~(~, + 1)+ 

+ /~r/~l , ( /~ ,. -- /~p)Tq+I('H)TP+I'r+I(ZL -{- 1)+ 

~- AI, I , I ( .X  1, .",,/)r"+l(?~)rv+l'q~J('. -I 1). (7.2o) 

Finally, t2( t. (7.19) bc(:()m('.s 

T(Zt + 1 ) T P + l ' q + l ' r + l ( ~ )  hP'q'r(ll) 

"r(u + 2)'rp+l,q+l,"+l(u + 1) hP,q,r(u + 1)' 
(7.21) 

which leads to the equation 

hP,~,~(~,)  + () ,~ - . X ~ ) ( ~  - A ~ ) ( . ~  - ~ , , ) T ( ~  + 1 ) ~ - P + ' , ~ + ' , ~ + ' ( ~ , )  = 0 (7.22) 

having form (7.1) for N = 4. This completes the calculation. 
The M-operators for arbitrary composite flows can be defined as a straightforward generalization 

of (7.8): 

M ~  .wv, = exp (, Ov~ (e -~ M~'). (7.23) 
\ j = l  i=l  

Note that  the order of the operators in the product is not essential since the operators e - ~  Mg' commute 
due to the zero curvature condition (4.9). For simplicity, it is assumed that  all flows Pi are left adjacent 
to the reference flow u. Operators (7.23) generate discrete analogues of higher flows of the KP hierarchy 
(see the corresponding graph of the flows in Fig. 3). Now, there is a straightforward way to write similar 
operators for right adjacent flows that  would generate higher flows of the discrete 2DTL hierarchy. 

P o s t u l a t e .  All higher HBDE (7.1) follow from the compatibility of the composite flows generated by 
ttw M-operators (7.23) and elementary discrete flows. 

The calculation given above shows that  the postulate is true for the 4-term bilinear equation. Unfortu- 
nately, we are not aware of any proof other than this sophisticated calculation, which is hard to perform in 
the general case. The postulate claims that  all of the higher bilinear equations are corollaries of Eq. (4.20) 
considered as a hierarchy, i.e., applied to all triads of adjacent flows. 

8. R e d u c t i o n s  of  the  Hiro ta  equat ions  

Tile hierarchy of the discrete Hirota equations admits several important  reductions. A reduction 
means imposing a constraint compatible with the hierarchy such that  the number of independent variables 
becomes reduced. In this way, one is able to construct discrete analogues of the KdV, sine-Gordon, and 
other interesting equations. 

The simplest way to ilnpose a constraint is to require that  the T-function be stationary with respect 
to a particular flow ~' (possibly up to a "gauge" transformation (2.2)). Nontrivial examples emerge when 
the stationary flow is a composite. As for the commutation representation, there are two possibilities. 

First, the stationary flow can be tile reference flow. Then M-operators become free of differentiation 
because the symbol 0~ commutes with all of the coefficients. In other words, 0~ can be considered as 
a c-number and can be identified with a spectral parameter. This is the natural origin of M-operators 
depending on a (rational) spectral parameter. 

Alternal, ivcly, one may take any flow y other thai| .~ as the reference flow. Then any M-operator ]li (I) 
g(!iler0.ting a flow f (:(mtaill,s the operators 0 v. Since co(ffficients of the operator AI (f) (h) not, det)eml on .s, 
the coml)atil)ility condition for t, ho flows ,~' and f acquires the Lax-type form 

Al(~)(f + 1)AI (f) = Al(f)At(,~)(f), 
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Fig. 15 

where M (f) plays the role of tile Lax operator. Unlike the Zakharov-Shabat scheme, where each zero 
curvature condition involves two different time flows (apart from the reference flow), Lax equations are 
written for each flow separately. The Lax equation represents the time flow as a similarity (i.e., isospectral) 
transformation of the Lax operator. It is natural to call M (s) the L-operator of  the reduced hierarchy. 
This is the natural origin of L-operators, which are difference (differential) operators rather than pseudo- 
difference (pseudo-differential) operators, s To illustrate this general scheme, we give some examples below. 

8 . 1 .  KdV-type reductions 

1. Discrete d'Alembert equation (a trivial example). Let u be an elementary discrete flow from Sec. 4. 
The stationarity condition with respect to this flow, r(u + 1) = r(u), immediately leads (see (4.20)) to the 
relation 

T l + l ' r n T  l ' m + l  : T l ' r n r l + l ' m + l ,  (8.1) 

where l, m are any other elementary flows. This is the discrete two-dimensional d'Alembert equation written 
in the "light cone" coordinates. The general solution is r I'm = X+(I)x-(m),  with arbitrary hmctions );:~. 
However, this is just the allowed "gauge" freedom (2.8) of the r-function, such that  when related to the 
HBDE, this solution is equivalent to the constant solution r i'm = const. Thus, we can see that  this reduction 
is too strong because it only contains trivial solutions. To obtain nontrivial examples, one should either 
impose stationarity conditions with respect to the composite ("higher") flow or periodic conditions in u 
with periods N > 1 (e.g., T(U + 2) = T(U)). 

2. Discrete KdV equation. Consider the graph of flows depicted in Fig. 15 and set A ~ = ~q, h ot = ~v 
for brevity. In this notation, Eq. (4.20) takes the form 

_ + 2 ,  = 0.  

To obtain the discrete KdV reduction, we impose the constraint 

TP+l'q+lu = --uTP'q' ( 8 . 3 )  

) 
i.e., the r-function is stationary with respect to the composite flow labeled by the pair of vectors AoA2, 

A0-~. This condition converts the three-dimensional equation (8.2) into the following two-dimensional one: 

- + ( a , , -  : o .  ( 8 . 4 )  

This is the discrete KdV equation in bilinear form [2, 30]. The discrete KdV equation is also known in the 
form [30] 

V( ' / z , ] ) )  - V ( l / . -  1 , ] ) -  1) = t c ( v - - l ( l z , [ ) -  1) - v - l ( u -  1,p)). (8.5) 

81n t}m genera l  cause, the  Lax op( ' . rator for a h ie ra rchy  w i t h o u t  arty r e d u c t i o n  is an  in f in i te  series m twg;ttiv(, [)owcrs ~)[" t.h(" 
first orde~ d i f t -c ren( :eopera tors .  T h e  theo ry  t)~kse(t ( m t h , .  Lax rcpres ,q~ta t ion wit.h La• opcrat . ( ) rs ,~f- this  k ind is n,~l. c, msid , ' r , . t  
Irate. 
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The equivalence of (8.4) and (8.5) follows fiom the identification 

TPTP+ l u u-t-1 /~q V ( u , l , ) -  _ v + l  t, ' ~ : = - -  
71, T j + l "~P 

l,rt us turn 1,o I,h, M- ;rod L- op(qators. F(dhlwing the history of the K(IV e.quati(m, we begin with 
the ditteren(:e (ipcrat,ors with scalar coefficients. Let u be the reference variable. Theu the (composite) 
stationary flow is generated by an M-operator  of type (7.9), 

M~ q = MPu(p, q + 1 ) M q ( p ,  q) = L (KdV) = 

/u u+ l + Aq q-u+ eO~ 
C 20u _ ~p _pTP--1 TP--1T p 

I l l  11-t-1 I t -F1  t t - t -2 

+ )~pAq. (8.6) 

We call this second-order difference operator the Lax operator of the discrete KdV equation. The spectral 
problem L(l<dV)I/ ,  = E ~  is  a discrete analogue of the stationary SchriSdinger equation that is an auxil- 
iary linear problem for KdV. The p-evolution generated by the M-operator  of type (4.15) is isospectral: 
L(KdV)(p + 1) = M~L(KdV)(p)(M~)-t .  

If the reference flow coincides with the stationary one, we obtain 2 • 2 matrix M-operators  depending 
on a spectral parameter z. The spectral parameter is an eigenvalue of the shift operator along the stationary 
flow acting on the ~b-function: exp(0 v + Oq)~b = z2~b. Consider the vector 

p + l  
kXPu r '_-~ "lhP+ 1 

-ru " r t t  

Repeating the argument of Sec. 5.5, we obtain the following linear problems for shifts in u and p, respectively: 

[ TPTP+l 1 ( ) / ) ,  u u+l  TuP 

, = | ~ T + ~  r~+~ V'~ (8 .7)  

T p u+l  

Tup+ I 

Tile compatibility of these linear problems yiekls tile discrete matrix Zakharov Shabat  equations with the 
spectral parameter z. 

Equations for the first, component ~b~ read 

rV+~T'-i T"-lTv+l) = (Z 2 (S.9) 
1) ] / ~  Tp p ' p  Tp T!I~ "t tt ~/'u+I 4- A, Aq u _ l T u + l  , , -1  u + l  

-t/,~ ~'  + (A,, A, ~ !r'r~')2 'r/, v : z2V,~ -~ (8 .10)  

Equatio~l (8.0) coh.:ides with t}:(' spectral pr()bl('nl for t.he Lax operator (8_G): provi(:l(,(t the r-function ol)eys 
d.~ t,ilim'ar rclat,ion (8.4). 
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3. D i s c r e t e  B o u s s i n e s q  e q u a t i o n  [13]. In this example, the r-function r]~ 'q satisfies the stationary 
T r '+l 'q+l  = T1u ''q. Then, Eq. (8.2) is reduced to equation ,,+1 

/~qrP+l ,qTP- - l ,q  __ .~pTp,q+lTp ,q  1 _1_ (~ i " -  /kq) T P + I ' q + I T P  1,q--1 = 0, (8.] 1) 

wh,,re , in~I)li(:it.ly Oll|.lqs ;~,q 2. paramet.er. Different. kinds of l,ax and Zakharov Shalml r(q)r('s('nl.al.i~ll.~ t,~v 
tills equation can I)(! written straightforwardly, bul. we do n(,l. discuss that here. 

In a similar way, it is possibh', to define more general A,,-type reductions. In this case, the r-function 
obeys the condition 

n+l  

o r = l  

Note that  this becomes an actual reduction only for higher Hirota equations where the number of variables 
is greater than n_ 

8.2. D i s c r e t e  t ime  1D Toda  chain  and its re lat ives  

This group of examples includes the discrete time 1D Toda chain (1DTC), the discrete AKNS system 
(ill particular, the discrete nonlinear Schr6dinger equation), the discrete time relativistic Toda chain, and 
the discrete Heisenberg ferromagnet (HF). These models differ" in the choice of dependent and independent 
variables, while the type of reduction is essentially the santo. 

Let the graph of flows and the notation be the same as ill Sec. 4.3. Now the r-function is required to 

be stationary with respect to the composite flow labeled by the pair of vectors XoX3, klk2, i.e., 

r~+1,i+1 = rnl,~. (8.12) 

got ~ l  - Ol l The stationary flow is generated by the "composite" M-operator ne M n with the reference flow n. 
This operator should be identified with the Lax operator of the discrete time 1DTC, 

/ l t+l ~+1 ~ \ ~ l 
L ( T C )  = eO. t Tnrn+l rn - l rn+l  ) r n - l r n + l e - O  ~ 

- -  | v  T g i ~ -  + P t t + l  + v #  ( 8 . 1 3 )  

This is a second-order difference operator in n with scalar coefficients. The spectral problem L(TC)r = E r  
is a 1D discrete s t a t i o n a r y  SchrSdinger equation (cf. (5.43)). The /-dynamics preserve the spectrum of 
L(TC) 

Changing e~ = e~ by z 2 in (4.23), we obtain an (L - M)-pair for the discrete time 1DTC realized 
by, 2 • 2 matrices depending on the spectral parameter z, 

T I T I + I  1 _/+1 t ) T~+l'/n--1 __ rn+ 1 n n+l  -t- // --/*v 7 Z2 -1- P 1+1__1 1 1+1 
L}TC) (z) = r~ ',,+ 1 r;,7-,, " , (8.14) 

< 
7- l 0 

n+l  
1-1 

" w'~'- ' . ( 8 . 1 5 )  A4},TC) ( : )  
rl, , -  , _z2 #r:,+llr, ' ,  - , 

Correspondingly, the 2D discr,,l.,~ SchriMinger equal, ion (5.44) becomes a 1D spectral problem m the vari- 

,/,,+1 rl'r['+'1 ' e'l, q " (8.16) 
. , ,  + ( v - l ~ )  l+1 l- r :" - - - -  
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L(',I. us pay aLt,ent, iol~ to (,It('. nons tandard  (let)enden(:e on the spectral l)aralneter. 
Another  useful form of this equa(,ion is 

' ,t  - I/ T/, TJ, ~11 -~ 
: + ( , -  , , ) . -~ ~;,q,+, ) - '  

Ttl TTI ~- I 
(817) 

In terlns of the new dependent  variable 

where 
- 2  // g - 1. 

# 

r,~+l (m) 
+~(-~) = log - - ,  (8.20)  ~ ( ~ )  

Eq. (8 .19)  acquires the form 

exp(r + 1) + C n ( m -  1) - 2r  = 1 + g2 exp(r - Cn(m)) (8.21) 
1 + g= exp(gb,~(m) -- ~ n - l ( m ) )  ' 

which is nothing more than  the discrete t ime 1DTC equation studied by Suris [31]. 
The cont inuum limit in m is s traightforward.  Set m --9 m/e, g2 = _ r  then 

1 2 ,  
~b,,(m • 1) --+ ~bn :k eOS" + ~e r for e --+ 0. 

Developing Eq. (8.21) into a series in ~, we obta in  the well-known 1DTC equation,  

r = ~+"-+"- '  - ~+~ (8.22) 

It, is interesting to note tha t  Eq. (8.21) possesses another  cont inuum limit tha t  yields the sine-Gordon 
(SG) equation. To see this, let us redefine the field q5 before taking the limit, 

4,,,(,,,.) = ~(-1) . . . . .  ~,,(,,~), (8.23) 

such tha t  the equation reads 

cxp(/>~,,+l(,,,) + iW,L l('m) 'i>~,(m + 1) - i~, , (m - 1)) = 

I + .o -~  e x p ( i ~ , , + l ( , . )  + i~,,(, , ,)) 
1 + v-2, ,xp(-iv, , ,_~(, , , . )  - , : r  (8.24) 
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~- l  1 l which call be obtained ffOlll tile previous one by subst i tu t ing ~/'n = Z */J,~. 
The equation of motion in bilinear form is the following two-dimensional reduct ion of Eq. (2.11): 

u<+lTr , l - -1  _ /'tTn+lTn--ll--1 l+ l  __-- (U -- /.t)(T/n) 2. ( 8 . 18 )  

After tile linear change l -9 m = l + n, r~ -9 r , ( m ) ,  this equat ion coincides with the discrete Toda chain 
in Hirota 's  original bilinear form [3], 

(1 + g-2)r~(m + 1)r~(m - 1) - r ,~+l (m)r ,_ l ( rn)  = g-2(r,(m)) 2, (8.19) 



Now it is tile field ~o,(m) tha t  is a.ssumed to have a s inooth co n th m m n  limit in n, m. Set t ing rn. ~ m /e ,  
n ~ n / e ,  and 9 -2 = _ i ( 2  ( + 0, and expanding  in e as before, we obta in  the SG equat ion 

(O# - a#,)~,  = 2s in (2 {p ) .  (8.2s) 

(TI~,, san~e limit f{)r th,, ti{,hl ,/, i~ 1';, I. (H.21) w{mht give th(, {lAh~ul}crt {,.(tuati()~ (i)i ~, Oie,,)sm = ().) A 
discrete analogue of the SG e(tuaI.i(m of a difl'erent kind is given l)elow in Sec. 8.3. 

R e m a r k  8.1.  The  discrete KdV reduct ion discussed in Sec. 8.1 is formally a par t icu lar  case of the 
present  reduct ion where A0 and At merge. However, it is more convenient  to consider t hem separately.  
Note tha t  there  also exists a con t inuum limit of Eq. (8.18) leading to the KdV equat ion.  In this sense, the 
discrete t ime 1DTC is somet imes  considered as a discret izat ion of the KdV equat ion.  

The  discrete version of the decoupled nonlinear Sehr6dinger equa t ion  (also called the AKNS system) 
possesses essentially tile same reduct ion,  i.e., the s ta t ionary  flow is as abovc. Th e  diffcrence is in the choice 
of the other  independent  flows to be involved in the equations.  Specifically, instead of the n-flow, one may 
consider any other  e lementary  discrete flow p left adjacent  to l. 

We show how to derive the discrete AKNS sys tem direct ly from tile bil inear Hiro ta  equations.  Tile 
basic bil inear equat ions  in quest ion are 

A vj+l  v+~,i - , ~,~ v+~,i+l v#+l v+l,i vr,, 7-;, + (It - Av l r  &' r;~ = # r a + 1 % - 1  , 

urV+l ' i+lr  v'-I -- A ~ v j ~ v + l j + l  = ( u -  A ~T v+l'i v j+l  
n + l  P - - n  - - n + l  P }  n T n + l  " 

(8.2G) 

(8.27) 

The  first of these equat ions  is Eq. (4.22) wr i t ten  for the tr iad (p, n, l). Th e  second is ob ta ined  from Eq. (4.20) 

wri t ten  for the tr iad ( l , p , n )  by taking into account  the s ta t ionary  condi t ion r 1+1,~+1 = r IJ. It is easy to 
see tha t  in terms of the quant i t ies  

(8.28) 

(n is fixed), these equat ions Call be rewri t ten  as follows: 

(u - Av)(A v - #)QV,Z+l = (A v _ #QV, l+lRv+u) (uQV, l  _ AvQV+l j+l ) ,  

(" - Av)(Av - #) Rv+~'~ = (;'v - #Q"'~+~ Rv+lJ) (  "Rv+~'~+~ - AvR"'~). 

(8.29) 

(8.30) 

In this form, tile sys tem is equivalent  to the discrete AKNS system from [13]. 

There  is another  choice of dependent  variables which converts Eqs. (8.18), (8.26), and (8.27) into a 
discrete analogue of the relativistic Toda  chain (RTC) [32]. Passing, again, to the variable ,-,7. = l + n, as in 
Eq. (8.20), we set 

T~(m + 1) 
m,,~(p) = log r~(m)  (8.31) 

The  equat ion of motion for x, , , (p) has the forln 

(1 - ~  eXl ) ( : r , , ,+ , ( l ,  ) - : r , , , (p ) ) )  
X 

( i  - ~ , , x p ( , : , , ~ O , )  - , :  .... ,(;,))) 

(~ -I~e• *,,, , 0 ' -  I .)))( l  -~exp(,:,,,(7,) ~:,,,0'+ I ) ) )  
X 

( i  - f l e x l } ( X , , , + , ( / ,  + l) - ~ , , , ( p ) ) ) ( I  - 7( ' -Xl , (J: , , , (p I )  - ~: , , , (p)))  
= 1 ,  

(8.3-,) 
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where 
p u(IL - A v) Av 

c~ - /3 - 7 - (8.33) 
P - I*' ~ v ( l * -  v )  ~ v  - I* 

This equati()n differs only slightl.y from the discrete time RTC equation suggested in [33]. 
l.ot. us ,)~ll.line th(' meth()d ~)tderiving Eq. (8.32). 9 The basic lfitinear rolat.ions (~q.l,~). (,%26), aim (8.27) 

p 2 
( .  - # ) ( z ; , ( m ) )  - ur~ ' (m + 1)r~(rn - 1) = -#r;,+,v (m)rP_l(rrz), 

1 ) T P  +1 (# - Ap)r~(m 4- 1 ) r ~ + l ( m ) +  Apr~+l(m 4- 1)r~V(rrz) = ]-tT-nP+l(/'/'/. 4- . n_l(//'L), 

,,r~v+, (m 4- 1)r~ p+ l (m -- 1) -- Apr~(m)r~+~ (m) = (t, - A v)r~+l (nz)z~+l (m.), 

(8.34) 

(8.35) 

(8.36) 

respectively, it is straightforward to show that the following two bilinear relations are direct, corollaries of 
the basic relations: 

- -  /~-~TP+I(,/Z)TP(m 4- 1) = 

= (V - # ) r ~ + l ( m  + 1 ) r ~ + l ( m ) ,  (8.37) 

k p ( , / -  l~)r]'(m)r~'+'(rrz) + u(# - Av)%P(rn + 1 ) r ~ + l ( m  - 1) = 

= ,//,(/'/ -- /~p)TP+I ('/,)'FrP_+~ (/Tt). (8.38) 

Equation (8.37) is obtained by eliminating r~(m) from (8.35), (8.36) (i.e., by dividing them by r~+~(m+ 1), 
p + l  - %+l(rn),  respectively, and adding the results) and making use of Eq. (8.34). Equation (8.38) is obtained 

analogously by eliminating r~+l(rn) from (8.35), (8.36) and making use of Eq. (8.37). Now Eq. (8.32) easily 
follows from (8.34), (8.35), and (8.38). 

R e m a r k  8.2. Bilinearization of the usual (continuous time) RTC was suggested in [34]. The equiv- 
alence of the RTC and the "semi-discretized" AKNS system (with discrete "space" and continuous time 
variables) was recently proved in [35]. 

We conclude this subsection with a note about  the discrete Heisenberg ferromagnet (HF) [12]. This 
equation fits the scheme in the following way and the reduction is the same. However, the choice of the 
independent variables is different. In addition to the flow p from the previous example, one should introduce 
yet another elementary discrete flow q left adjacent to I. The z-function now depends on four independent 
variables: r = T~(p,q) .  Fix n, l and consider the following four functions of p,q:  @ l ( p , q ) ,  r~-l(p,q) ,  

r,~+~ (p, q), and r,~_ I(P, q)- It follows from the bilinear equations that certain combinations of these functions 
satisfy a system of nonlinear difference equations in the variables p, q, which play the role of discrete space- 
time coordinates. This system is equivalent to the discrete HF model discussed in detail in [12], where it 
was treated in a slightly different manner as a part of the reduced 2-component 2DTL hierarchy. As in the 
case of the discrete AKNS system, the aforementioned embedding into the one-component discrete 2DTL 
hierarchy leads to equivalent equations of motion. We olnit the details. 

8 . 3 .  P e r i o d i c  r e d u c t i o n s  

Periodic reductions of the continuous 2DTL hierarchy give rise to a number of very important equations. 
For example, the 2-periodic reduction r,,+2 = rn contains the sine-Gordon (SG) equation. The same periodic 
constraint can be imposed in the discretized setup, thus providing us with a discrete analogue of the SG 
equation. 

We call attention to the fact. that periodic reductions can I)e t reated  on equal footing with stationary 
reductions. Indeed, the ttmv p --+, p -t 2 is, formally, a degelwrat,e (:a~se of a composite fl~)w Wllere the 

9The, idea  fr th i s  d~,~ivat.i~m I, , ,hm~s t~ ~. Kh;uch~ 'v  (untml , l i s lm,I ) .  
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corresponding labels pairwise merge on the complex plane. The I)eriodicity rp+2 = T v means St,at, ionarit.y 
with respect to this degenera te  "composite" flow. However, this point of view does not appear  to be useful 
in practice. Usually it, is more convenient t,o treat  periodic reductions sel)arat,ely. 

Let llS consider the 2DTL-like form of HBDE (2.11) wit.h the addit ional  COllstraillt 

n 4 2  

Then,  the three-dimensional  HBDE becomes the following system of two-dimensional equations: 

/ l + l  / + 1 i  \ l , l  l §  / 1 + 1  /+1 ,1  
v r  o' r o ' - ( v  - # ) %  r o = # r  1" r 1 , 

l l + l  /+1  l (V \ l j  / - t - l , l + l  / j + l  1+1 I ( 8 . 4 0 )  
l I T  1' T l ' __ __ # ) T  1 T 1 = # T  O 7- 0 , . 

The SG field ,;I) t,I on the square lattice (l, l) is given by the formula 

q4J = _1 tog r~ (8.41) 
2 t,l 

T 1 

Rearranging Eqs. (8.40), one obtains a closed equation for q/J ,  

vs inh(~ ld  + qSl+~d+l _ ~t,~+~ _ ~St+L~) = #s inh(~i / j  + fft+lfi+~ + ~bt,i+~ + <bt+~j), (8.42) 

which is known as the discrete SG equation [4] written in light-cone coordinates. 
Let us mention another useful form of the discrete SG equation [36, 37]. Set 

T1 ' T I '  S t'-t = exp( -2q~t+L~ 2q/d+1) _ t+1 ~ t ~+1 - ~ ,  
r o ' r  o' 

- TI '  T 1 ~ t , i  exp( -2q)t'l __ 2~) l+1 '1-1-1)  = l l / - t -I , l -bl  

T O ' T O 

then 
s l , l + l s l + l , 1  = s l , l s l+X , l+  1 

On the other  hand, the discrete SG equation implies that, 

~ t , ~  IZ - v S  l'~ 

I z S  t ' l  - -  t '  

such that  (8.42) (cf. (2.5)) becomes 

(8.43) 

(8.44) 

(s45) 

(8.,17) 

1384 

Li l-~li t+l~ 142~) 
T 1' 7- 0 , TO ' TI ' CO I . 

T 0 T 1 T 1 TIj 

We now turn to tile zero curvat, ure representation. Let l I)e tilt, reference flow. The shift 71 ~ 71. + 2 is 
generated by the scalar L-ol)erat.~r 

S l , - ~ S t ~  ~,-l+l _ ( I t  - vSlJ+l ) ( / t  - vSt+ld)  
- -  (//,,5' l '~+1 - - ' / ) ( I T S  l + l ' - I  - - 1 / ) "  ( 8 . 4 ( J )  



lh>wew~r, this rel)fesentation is not convenient for describing the evolution in l. Tile matrix (L - M)-pair 
with a spectral parameter is more, appropriate here. To derive it, one should take the "stationary" flow 2n 
as the reference flow and repeat, the arguments given in Sec. 5.5 with necessary modifications. The operator 
e 20" shonld be substitute, d by the spectral parameter z 2. Omitting the details, we present the result.. 

The auxiliary linear problems read 

T 0' 7-1 Z T O 
TO ' T1, IV TI' 

--ly--1 ~k X l+lJ / 1+1 l X 1'~ ' 
z_ r 1 ' t 

v T/+ t ,l 

( 1  #7-11'i+1/ ) 

( ) ; (v,,, 
# \ X  U+~ = l~ z~ ti+~ k,X l'~ ' 

# r  0, r o' r 1' 

z rld T O ' 7" 1 ' 

(8.48) 

(8.49) 

which is similar to (8.7). Denoting the matrices on the r.h.s, of Eqs. (8.48), (8.49) by M (+), M(-) ,  respec- 
tively, we can write the compatibility condition 

M(+)( l , l+  1)M(-)(/,l) = M(-)(l + 1,i)M(+)(/,l), (8.50) 

whence the discrete SG equation follows. 
The N-periodic reductions (r ,+N = T,) can be treated in a similar way. They correspond to N-periodic 

Toda lattices in discrete time. It is also possible to impose periodic conditions with respect to any of the 
composite flows. In the remaining part of this section, we briefly comment on an important  class of such 
reductions, which are discrete analogues of the intermediate long wave (ILW) equations. 

The universal form of reductions from the 2DTL to the family of continuous ILW equations is mos! 
transparently written in terms of the T-function of the 2DTL hierarchy. Tile reduction to the ILWk equation 
reads (38) 

Tn+k(ta + h, t 2 , . . . ; t a , t 2 , . . . )  = r n ( t l , t 2 , . . . ; t l , t 2 , . . . ) ,  (8.51) 

where h is a fixed parameter. This parameter interpolates between the k-periodic reduction (h = 0) and 
the Benjamin-Ono equation (h -+ oo). This means that the r-function should not depend on a particular 
combination of n and tl,  which suggests a discretization of the ILWk equation. According to our general 
rules of discretization, one should substitute tl by an elementary discrete flow p. Then it is natural to 
substitute Eq. (8.51) by substitute Eq. (8.51) by 

r v + l  v ( 8 . 5 2 )  +k = Tn, 

where l and k are integer parameters. The particular cases are the discrete KdV equation (l = k = 1) and 
the k-periodic reduction (l = 0). In the continuum limit, we obtain the continuous ILWk equation. 

8.4. Discrete  Liouville equation 

The discrete Liouville equation (DLE) and its A,,-generalizations [39] (discrete time 2DTL with open 
boundaries) form a w~ry important special class of di'~crete integrable systems, which, in general, does not fit 
the reduction schenm discussed ill this section. We include it here because the DLE is, formally, a degenerate 
(:a~e of the discrete SG equation. The relationship l)e(,wcen these two integrable systems deserves further 
study. 
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The DLE can be obtain('.d from the discrete SG equation ms a result of a certain scaling linfit. Let us 
rescale S 1'5 --+ #S l'I in Eq. (8.46). Clearly, this rescaling means a constant shift of the field, 

cl~t,- t ~ cl, t,i _ 1 log I t 
4 

Th(,n, taking t.hc li~uit/t ~ 0 in Eq. (~.40) (k('.cping the shifts in i untouched!) one arriw> al. t,}~, DLE 

St,~ ~,, +1 ,i+l (v , -1  _ S{,~+ 1) ( , / - 1  _ S~I ,~). L - -* ,  = ( 8 . 5 3 )  

Here, 
S~ 5=  lim (/*-' S"5)- (8.54) 

p.--~O 

Setting 
,5'25= exp(--2(I'15 +1 '5 -  2(I)~5+1), (8.55) 

we obtain the DLE written in terms of the discrete Liouville field [6] (cf. (8.42)), 

2" sinh (q)~ i + dP~ +1'~+' - ~L(l)/'l+ 1 (I)t +1'5) exp (<I)~ 5 "1- (l)~ +1'~+1 nc =L q- (8.56) 

or, in a simpler form, 

/+1 l I 5+1 : 1 (8.57) e x p ( - 2 ~  L ' - 2 ~  ) - e x p ( - 2 ~  5 - 2 ~  +1'i+1) u -  

In the continuum limit, one should set /--+ ul /2x+,  l --+ u l /2x_ ,  and S~ ~ --+ e x p ( - 4 ~ ( x + , x _ ) ) .  Then, 
expanding in u -1 --+ 0, we obtain, in the leading order, the continuous Liouville equation 

20~+ 0~_ ~(z+,  z_)  = e 4~(~+'~-). (8.58) 

Tile bilinear form of Eq. (8.53) is obtained by the substitution 

8 ,  5L T 1(l+ 1 , l ) r  1(l,1+ 1) 
= r0(l  + 17i7 (T, + 1)' (8.59) 

after which the DLE becomes equivalent (up to a "gauge freedom," see below) to the bilinear relation 

T~(l  + l , l ) T ~ ( l , i  + l) - T~( l , l )T~( l  + l , l  + l) = u - l T ~ - l ( l  + l , i )T~+~( l , l  + l) (8.60) 

with the condition 
T"(/ , i )  = 0 (8.61) 

for all a, except a = 0~ 1,2. This condition implies the discrete d 'Alembert  equation (8.1) for T o and T z 
Thus, T o and T 2 need to have a factorized form T~ = X~176 T : ( l , l )  = X2(/),~2(l) with arbitrary 
(and independent) functions X ~ ~o,2. This is the aforementioned gauge freedom. 

The striking similarity between Eqs. (8.43) and (8.56) is clear after the replacing T~ ~ r~ ,~. 

Furthermore, taking into account the periodicity r~ 'i = ro I J, these equations become formally identical. 
(Equivalently, using the gauge fi-eedom, one can set, T2(l,  i) = T~ l) in Eq. (8.56).) It would be interesting 
to link them directly on the level of solutions, i.e., to trace what hat)pens to solutions when taking ttw 
continuum limit. 

The author is grateful to A. Gorsky, D. Lebedev, O. Lipan, A. Marshakov, A. Mironov, A. Orlov. 
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cussions. It is a pleasure to thank CMAT de 1 E(oh, l'olytechnique, where this work w~m initiated, for th,' 
hospitality. 
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A p p e n d i x  

B i l i n e a r  d i f f e r e n c e  e q u a t i o n s  f r o m  c o n t i n u o u s  h i e r a r c h i e s  

In this Appendix,  we give an al ternat ive point of view to the difference Hirota  equations.  It relies on 
the famous Miwa t ransformat ion (3.3), which, so far, wgLs obscure in our presentat ion.  Given a continuous 
int.cgral~h! lliel~trchy (such ~ts t'~l' ~l 2DTL),  I.his lel;tt.i,m c,tl, I)e used :m a detit*it, iol* ot t.lw eh,.nwnl.aly 
discrete tlows. This detinil, ion lends t.o the salne, dis(:rct(' ttows as in Sec. 4.2. This at)proa(:h has as many 
advantages ~Ls disadvantages.  The main advantage is a inuch more direct and instructive connection with 
the Grassmannian  approach to continuous hierarchies and their r-functions.  The main disadvantage is the 
misleading and less invariant formulation,  which is inconvenient in some cases. 

T h e  M i w a  t r a n s f o r m a t i o n .  Let r ( t l , t 2 , t 3 , . . . )  = r(t)  be the r - funct ion  of the continuous KP 
hierarchy. It is a function of an infinite number of "times" ti and it satisfies infinitely many  bilinear 
equations. The r - funct ion solves all of the equations of the hierarchy simultaneously.  

In general, the T-function can be represented as an infinite-dimensional de te rminan t  [15-17]. It turns 
out  tha t  there exists a choice of independent  variables such tha t  the de te rminan t  reduces to a finite- 
dimensional one. This choice is provided by the Miwa t ransformat ion [11], 

tk = t (~ 1 - ~ Z p o # a  k, k =  1 , 2 , . . . .  (A.1) 
oCI 

Here, the summat ion  runs over a finite set I ,  while t(2 ) are "background values" of the times, #o are 
arbi t rary  complex numbers (called Miwa's variables' ,  and p~ are integers (sometimes called multiplicities 
of #,~). 

R e m a r k .  The Miwa t ransformat ion  plays an Important  role in revealing the integrable s t ructures  of 
matr ix  models of 2D gravity. In part icular,  the easiest proof of the fact tha t  the par t i t ion functions of 
the Kontsevich model [40] and its generalizations [41] are r -funct ions of the K P  hierarchy relies on Miwa's 
t ransformation.  

In what  follows, we use the concise nota t ion of (3.5). 

I m p o r t a n t  f ac t .  The r - funct ion of the KP hierarchy obeys the identi ty 

N ) r(t(o) ) N 
r t (~ + Z ( [u~711 - [ # 2 ' ] )  [ i  oN> e ( u-~- -_- - -  -~W- -- - det  K ( u o , # e ) ,  (A.2) 

o=1 "e)  - # e )  

where 
# )  : r ( t ( ~  + [ # - , 1 )  

(, ,  - u ) r ( t ( o ) )  

Here N > 1 and It,~, z,,~ arc arbi t rary  complex numbers. A useful part icular  case of this formula is 

(A.3) 

N ) det  1 <c,,/3 < N (g)a (#/3)) 
r t (  ~  . . . .  , 

o : ,  - r e )  
(A.4) 

where 
1 Om 1 

-- l ) !  V - - 4 C ~  
~c~"~(Iz)- (m lira u ~ ' ~ - a 0 , ; , , _ , / 4 ( u , # ) .  (A.5) 

When one translates the KP theory into the language of free fermions [15], fl)rmula (A.2) becomes nothing 
more than the Wick thcol(!m, while K(~,, #) becomes the fernlionic propagator  oi1 a Rienmnnian surface. 

lnst.cad of t reat ing Eq. (A.2) as an identity, one can go another  way. Given a flmction l ( (u ,  #) with 
a sillq)l,' I)~)h' at. i, - #, this e(luati()n can I)(' used a.'~ a dclinit.im~ of the h'ft-han(t side. This simply means 
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tha t  we disregard the dependence on background times t~ ~ assuming they are fixed. The r-funct ion in the 
Miwa variables satisfies certain bilinear relations for which formula (A.2) gives a solution in the form of a 
finite-dimelmional del,erminant. 

In the case of the 2DTL hierarchy, the Miwa transformal:ion works in a similar way. The. r-function 
7n(l*l, t 2 , . . .  ; ll ,  ~2,--- ) = Try(l; t) del)ends on the discrete l . i lne 7~ a n d  l.wo inlinilJ' sets of ('Olll.illllOllS t i m e s  

1, a n d  l , .  W e  sel. 

~'1 E p o l L ~ k  t,k = t k 

oel (A.6) 1 
t,k = t~")"~ 

k ~ 

where fi~ is an independent  set of Miwa variables with nmltiplicities po. 
The following analogue of Eel. (A.2) holds: 

Tn - N 

N N 

~  o=1 

r~ (t(~ / (~ FIN [laN-1 
: *1of:  1 det 

N 
I - [ o < f l ( # o  --  ]*fl)(-~f4 -- ~ o )  I < o , 1 3 < N  

J'~(#o, fie), (A.7) 

where 
Tn_l ( t (O)  - - [ # - - l ] ; t ( O ) @  [~]) 

J n ( # , ~ )  r~ (t(~ ~(o)) (A.8) 

Note tha t  in this case, the function an(#,  g) does not necessarily have a first-order pole at  # = ~. 

D i s c r e t e  f lows.  Discrete equations for the r-funct ion listed in Sec. 2 are obta ined if one fixes the 
Miwa variables #o and considers the dependence on their multiplicities po. We give a few examples. 

E x a m p l e  1. Set 

and consider 

3 

o=1 

3 
i(o/= r Zpo[ a'I 

O=1 

as a new "background" field. According to Eq. (A.4), we have 

(A.9) 

= @l(m), 

@1(#1) @1(/-/'2) 

@2("1)  @2(#2) TPI + I,P2 +1 
#1  -- # 2  

(A.10) 

with some functions @1, @2. Combining the zero determinant  with two ide.ntical lines, 

= @I(]L1) @I(#2) @1 (/~3) 
@2(#~) @~(#2) ~>2(#a) 

(A.11) 

and expanding it. in t,h,~ tirs~, line USill,~ (A.10), we obtain an equation of f()illl (2.7). Si~mc its coefficienLs 
do not. depend on the ('l,~sen tmckgl~,lm~t, l.he e q u a l , i o n  holds for all v;tlues of ];1, 1)2, and p3. 
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E x a m p l e  2. Rel)eal.ing the previous a rgument  for 

3 

m~t r~tki~g use of 1';~t. (A.2), we obtain Eq. (2.10). 

E x a m p l e  3. In (A.7) , l e t  us set N = 2 ,  lq = # ,  /~1 = ~ ,  #2--+oo, and~2 --+0, 

Tn_2(t(0 ) __ [ i t_ l ]  ;~(0) q- [~])Tn(t(0);~-(0)) = 

. ~_~( t (0 )  _ [ _,];~/o) + [~]) ~.._,(t/o) _ [ /_,];~/o~) 

~,,_l (r ~(~ + [~]) ~-._,(t(~ 7 (~ 
(A.12) 

Denoting 

we obtain tile equation 

r: , i  = %(1(o) _ / [ p _ , ] ; ~ ( 0 ) -  ~[~]), (A.13) 

/,l+l l+ l j  l,i /+ l j+ l  . . . .  l,l+l /+l,l 
% r~ -- r n r~ = ( # / # ) r ~ +  1 r , ,_  1 . (A.14) 

E x a m p l e  4. Example 1 can be generalized in the following way. Consider an N x N matr ix  with the 
lines ~ot(#~), ~o~(#,), ~o2(tq), ~o3(#i) ,- . . ,  ~oN-~(#i), i = 1 , 2 , . . . ,  N,  such tha t  the first two lines coincide and 
the de te rminant  of this matr ix  is zero. Then,  expanding in the first row, as in Example  1, we obta in  the 
"higher" bilinear difference equat ion of form (7.1). 

E x a m p l e  5. At last, we show how to derive the HBDE in a KP-like form from Eq. (A.4) in a direct 
way. 1~ When two or more variables #o coincide, both the numera tor  and denomina to r  on the r.h.s, of 
Eq. (A.4) equal zero. Resolving the indeterminacy, we have 

N ) det/M~J)/ 
1 < i , j  <_ Af, (A.15) 

where all Pa are now distinct.  Here 
N 

Af_-- E p o  
0 ~ 1  

and M { / )  is t h e  _M >: A/" m a t r i x  having the rows 

_(;o~ 
(Pi (#1) ,  (/9'i (~1) ,  ~ 3 t i t ( # l ) ,  - ' ' ,  ~d i -1 ) (#11 ,  

_ ( v 2  : , ( / ,2 ) ,  ~' , ( .2) ,  : ' / ( . 2 ) ,  . . . ,  ~, - 1 / ( / . ) ,  

: . (p.~: - 1 ) :,(/,~), <(#v), : , (#~) ,  . . . ,  : ,  (/,~v), 1 < i < A / .  

(A.16) 

We need th(, w('ll-known ,Ja(:obi idcm,ity fl)l detorminanl,s, 

1)[,, I J,]:~[,;.2 I)~] - > [ i ,  I_J~]:~[c_. IJ,] P[,,,._~ I j,,j~}l), ,, <. . ._. j ,  < j~. /A.17) 

t~ f, ,ruml~ b~+..v wcr~ takon fioul [41] 
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Here D is t, he determinant of a square matrix and D[il,  i2[jl, j2] denotes the minor of this matrix with the 

h,2th rows and jl,2th cohmms reinoved. Applying this identity to the matrix M}7) in (A.15) fin" 

a b 

, ~ -  I , ~ = ~ 1  q- I 

we obtain, in short hand notation, 

( # a  -- #b )  T T p a - I ' P b - 1  : TPb- - l l - p~ - - I  -- TPa--17-pb--1,  (A.18) 

where r is defined by the same formula (A.15)with the matrix M'}7 - ' )  = M}7 -1) for 1 < i < JV"- 2, 

~jc(Jr ~ ) = M (jr 
- 1 , j  A r a  �9 

Let #c be a third Miwa variable (different from #=, #b) with the multiplicity Pc not shown explicitly in 
Eq. (A.18). Multiplying this equality by r P ~ - : / r  and then writing a couple of similar equations obtained 
by cyclic permutations of the indices a, b, c, we can see that the sum of these three equations coincides with 
Eq. (2.7). 

R e m a r k .  The discrete flows discussed here coincide with those introduced in the main body of the 
paper if one fixes the following choice of the labels t0 and i :  k0 = oo, kl = 0. (To remove a label to 
infinity, one should use a different normalization.) 

C o n t i n u u m  l imi t .  As is clear from Eq. (A.1), the inverse Miwa variables/,~1 play the role of lattice 
spacings for the discrete flows. Therefore, to perform the limit to continuous equations, it is necessary for 
#~ to tend to infinity with a simultaneous re.scaling of Pa. 

Here is a typical example (the KP hierarchy). (In this example, we follow {30].) Introduce three (a 
priori independent) lattice spacings : ,  = #~-:, i = 1,2, 3, and rescale Pi --+ pi /e i .  Thus, it is convenient to 
rewrite the KP-like form (2.7) of the HBDE in terms of Hirota's D-operator (1.2): 

(KI(:2 -- E3) C - ( g I / 2 ) D ~ i + ( E 2 / 2 ) D "  2+(r  

j_ E2(E 3 _ E 1 ) e ( : , / 2 ) m , , ,  ( :2 /2 )Dp2+( : :{ /2 )D, ,  3~_ 

+ : 3 ( E l  --  E2)e  ( E t / 2 ) D p '  + ( : 2 / 2 ) D p 2 - ( : a / 2 ) D p 3 ) 7  - 7- = 0. (A.19) 

This equation serves as a "generating function" for part of the continuous KP hierarchy. To see this, we 
express the operators Dp, through the Hirota derivatives with respect to the continuous flows tk, 

o o  

D . =  k-'D 
k = l  

i = 1,2,3 

(see (A.1)). Substituting this into Eq. (A.19) and expanding in a power series in el, we have 

1 l b )  + 
j,k,l=O 

0<2, 

3,k,l=t) 
o o  

~:~2e3>5 2 "P: - 7 ' l  r - r  = 0 ,  
3 ,k ,l = 0 

(A.20) 
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where f )  - (D, , ,  D r  D , .~ / k , . . .  ) and T'j(t) are the Schur polynomials  defined by the formula 

exp tkz  k = P m ( t ) z  '' '. 
k =  1 m = O  

(A.21) 

COlnl~arin~ Lhe coetfi~:ie~ts in fr,ml, of c{ k t C2~-3, we o[)l,;till all inlinit.e set. of bilinear equat ions ,  

, , ,  . , ,  , ,  

5Dl_ 1 (1D) 1 (lj ) I ( 1 D )  
r . r  = 0, (A.22) 

which, for 1 < j < k < l, form a subset  of the ent ire  KP hierarchy in bil inear form. 
The  leading t e rm as e, + 0 in (a .20)  corresponds  to (j, k, l) = (1,2,  3) in (A.22). In this case, Eq. (A.22) 

produces  the bilinear form of the KP  equa t ion  itself, 

(D~, - 4Dt,  Dt~ + 3D2~)r" r = O. (A.23) 

This  example  shows, once again, tha t  the discrete hierarchy has a more transparent,  s t ructur~ than the 
continuous one. The  con t inuum limit brings artificial complications.  
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