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R A N D O M  W A L K S  I N  A N  I N H O M O G E N E O U S  O N E - D I M E N S I O N A L  

M E D I U M  W I T H  R E F L E C T I N G  A N D  A B S O R B I N G  B A R R I E R S  

N. E. Ratanov ~ 

A particle moving in inhomogeneous, one-dimensional media is considered. Its velocity changes direction 
at Poisson times. For such a random process, the backward and forward Kolmogorov equations are derived. 
The explicit formulas for the probability distributions of this process are obtained, as well as the formulas 
for similar processes in the presence of reflecting and absorbing barriers. 

1. I n t r o d u c t i o n  

Let N ( t ) ,  t > O, be a homogeneous Poisson process with the rate ~ > 0 and ~ be a random variable 
independent of N ( t )  with the values +1 taken with the probability 1/2. Let c(z) ,  z �9 ( - o c ,  oc), be some 
positive continuous function. In the present paper, we consider the processes satisfying the equation 

fO t X ( x ,  t) = x + ~ ( - -1 )N(~)c(X(x ,  s)) ds, z �9 ( -oo ,  oo), t > O. (1.1) 

We also consider the analogous processes in the presence of reflecting and absorbing barriers. Process (1.1) 
describes the random walk of a particle in a one-dimensional, inhomogeneous media. The velocity of the 
particle performs instant changes of direction at Poisson times. Such models arise naturally in some physical 
problems, especially in diffusion problems where the finiteness of the propagation velocity is essential. 
There are many mathemat ica l  and physical articles writ ten on processes of form (1.1) (see, e.g., [1-2], [3- 
5], and references therein). However, all known results in this field are concerned with random walks in 
homogeneous media, where c(z)  - eonst. Generalization of Orsingher's results [2] to the inhomogeneous 
case (c(z)  ~ const) is one of the aims of the present paper. Note that  many known results look more natural 
for process (1.1) (in comparison with the homogeneous case). 

The main results of this paper consist in the explicit calculation of the distribution of process (1.1), 
both in the case of "free" motion and in the presence of reflecting and absorbing barriers. Such a calculation 
is based on the fact that  the distribution of process (1.1) is a solution of the telegrapher equation, 

02U(Z, t) Ou(x , t )  
- c(x) c(x) t / ,  x �9 t > 0. ( 1 .2 )  

Ot 2 + 2# O ~  

This assertion was first formulated by Goldstein [6] and Kac [7]. It was proved later (see, e.g., [8, 9]) for 
the case c(z)  - const. The proofs in [8] and [9] were based on absolutely different ideas, but they both led 

to the same equation. 
As follows from the results of Secs. 2 and 3 below, Orsingher's approach [8] for a random walk in 

inhomogeneous media (1.1) results in an equation that  is identical to the forward Kolmogorov equation, 
while Kabanov's idea [9] leads to the backward Kolmogorov equation. The modifications that  arise due to 
tile presence of barriers are discussed in Sec. 4. Explicit formulas for the solutions of Eq. (1.2) are contained 

in Sec. 5. 
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2. D e r i v i n g  the  b a c k w a r d  K o l m o g o r o v  e q u a t i o n  

In this section, we briefly repeat  the a rguments  of [9] for the case of a variable mot ion  velocity c(x). 
Let c E C l ( - c o ,  co), c(x) > O, Vx E ( -co ,  co). Denote  by X • the solut ions of the  following equations:  

L 
t 

X + ( x , t ) = x +  ( - 1 ) N ( ' ) c ( X + ( x , s ) ) d s  (2.1) 

and 

/0' x-(~ , t )  = x -  (-1)N(S)c(X-(~,s))ds, (2.2) 

where X + and X -  are the r a n d o m  walks of particles with initial velocities c(z) and - c ( x ) ,  respectively. 

T h e o r e m  2.1. Let ~Z = ~(z) ,  x E ( - c o ,  co) be a smooth function. Then, the functions 

tte = u•  = E~o(X+(x,t)) ,  x e ( -co ,  co), t > O, 

satisfy the telegrapher equation 

02u • (z, t) 
Ot 2 + 2t'~177 t ) = 0 t  c ( ~ ) ~ 1 7 6 1 7 7  t)' x E ( - c o ,  oo), t > O, (2.3) 

with the initial conditions 

u+lt=o = ~(x),  ut• = +c(x)~o'(x). (2.4) 

Here and below, E( . )  denotes  the expec ta t ion  value. 
First ,  we prove the following lemma.  

L e m m a  2.1.  Let s(t) = ( - 1 )  g(t),  where N(t)  is a Poisson process with the rate #. Let X( t )  be some 
process predictable with respect to N ( t ) and f be a measurable function (i.e., f ( X ( t ) ) is a r andom process). 
Then 

E f (X (t) ) ds(t) = -2tLE f (X (t))s(t) dr. (2.5) 

P r o o f  o f  L e m m a  2.1 (cf. [9]). Consider  re(t) = s(t)e 2"t. Using this nota t ion ,  it is easy to see tha t  
the process s(t) satisfies the equat ion  ds(t) = -2pm(t )e-2t ' td t  + e-2Utdm(t). Therefore,  

E f (X (t) ) as(t) = - 2#E f (X (t) )m(t)e -2ut dt + e-2Ut E f (X  (t) ) draft). 

The last term vanishes because re(t)  is a mart ingale .  L e m m a  2.1 is proved. 

P r o o f  o f  T h e o r e m  2.1.  This  proof  consists of a direct calculat ion using L e m m a  2.1. It follows from 
(2.1) and (2.2) tha t  

OX • 
at (~,t)= +(-1)~l~)c(X• (2.6) 

( "y• dy L t j~ c(y) - • (-1) Nt~) ds. (2.7) 

and 

Differentiating (2.7] w.r.t, x, we obtain 

c(X• 
o x•  ' t) - (2.8) 

as c(z) 
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Account ing  for (2.6), we calculate the derivatives of u • w.r.t ,  t, 

oqu + 
Ot - +E~/(X•177 

whence, formally (see the rigorous proof  in [9]), 

02u + 
at 2 - E~"(X•177  ~ + E~'(X•  • + E~'(X•177 

By L e m m a  2.1, the last t e rm is equal to 

Ou • 
~:2~E~' (X• = - 2 ~  -57 

To find the derivative w.r.t ,  x, we use (2.8), 

Ou • _ E~, (X•177 c(~) 

o ou + = E ( , , ( X + ) c ( X •  ~(~) ~ ( ~ ) ~  + ~'(X+)~'(X• 

From here, it is evident  tha t  u • (x, t) satisfies (2.3). One can easily check initial condi t ions  (2.4). 

The  following representa t ion  of solut ion to Eq. (2.3) follows from Theo rem 2.1. 

T h e o r e m  2.2 (cf. [9]). The solution of the Cauchy problem for Eq. (2.3) with the initial conditions 

ult=o = ~ o ( x ) ,  utlt=o = 0 ( 2 . 9 )  

has the form 

u(x,t) = 1E[~(X+(x, t ) )  + ~p(X-(x,t))]. (2.10> 
2 

R e m a r k  2.1. It is na tura l  to call Eq. (2.3) the backward Kolmogorov equation for the process X(x, t). 
The formulas resolving the problems (2.3), (2.4) and (2.3), (2.9) are contained in Sec. 5. Note tha t  these 
forumlas are well known in the case of cons tant  coefficients (see, e.g., [10] or [2]). 

Define the d is t r ibut ion densit ies p(z, Y, t) and p• y, t) for the processes X(x,  t) and X+(x, t) by the 
relations 

E~(X(x , t ) )  = (p(x, . , t ) ,@, (2.11) 

Ecp(X• =(p+(x , . , t ) ,@,  x E ( - o c ,  oc), t > 0 ,  ~ e C ~ ( I R t ) .  (2.12) 

Here and below. (., .) denotes  the act ion of the d is t r ibut ion on a test function. 

C o r o l l a r y  2.1.  Functions p(x, y, t) and p• (x. y, t) satisfy telegrapher equation (2.3) with the following 
initial conditions: 

P [ , : o  = d (x  - y) ,  P , l , : 0  = o, (2.13) 

P + ] , : 0  = 5(x  - y) ,  P f [ , : 0  = + c ( x ) d ' ( ~  - y )  (2.14) 

Here d denotes  the Dirac d-function. 

R e m a r k  2.2.  It is clear tha t  the smoothness  condi t ion for the coefficients c E Cl ( -= ' c .  >c) may be 
replaced by a piecewise smoothness  condit ion.  Namely, it suffices to consider c E C ( - ~ c .  :x:) and assume 
tha t  the derivative (/(z) exists everywhere except for a discrete set of points. 
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3. Deriving the forward Kolmogorov equation 

T h e o r e m  3.1. The function p(x, y, t) defined in (2.11) is the solution of the following Cauchy problem: 

0 2 O 0 0 
ot2P(x ,y , t  ) + 2 ,  p (x ,y , t )  = -~yC(y)~yC(y)p(x,y,t), (3.1) 

Op 
Plt=o = 5(x - y), N i t =  o = o. (3.2) 

Proof .  Following Orsingher (see, e.g., [1]), we introduce the following distribution functions: 

F(x , y , t )  = P { X ( x , t )  < y, V(x , t )  > O}, 

B ( x , y , t ) = P { X ( x , t ) < y ,  V ( x , t ) < O } .  

(Here V(x , t )  denotes the current velocity, V(x , t )  = ~(-1)N(t)c(X(x, t ) ) . )  
the corresponding distribution densities. 

Let A = A(x, t) denote the solution of following equation: 

~ ( ~ , t )  = x +  c ( A ( ~ ,  s ) )  ds .  

By definition of the process X(x ,  t) (cf. [1]), 

(3.3) 

(3.4) 

Let f ( x ,  y, t) and b(x, y, t) be 

(3.5) 

F ( x , y , t  + At) = (1 - 

B ( x ,  y, t + zxt) = (1 - 

From (3.6), (3.7), we have 

OF 
Ot 

OB 
Ot 

Differentiating these equations w.r.t. 9, we obtain 

of 
Ot 
Ob 
Ot 

. A t ) F ( x ,  A ( y , - A t ) ,  t) + . A t B ( x ,  A(y, At), t) + o( At), 

. A t ) B ( x ,  A(y, At) , t )  + . A t F ( x ,  )~(y, - A t ) , t )  + o( At),  

the following differential equations: 

- -  - c(y) OF(x ' y ' t )  + , ( B ( x , y , t )  - F (x , y , t ) ) ,  
Oy 

OB(z, y, t) 
- c(y) oy + . ( F ( ~ , y , t ) -  B(x,y,t)).  

Oc(y)f(x, y, t) + . ( b ( x , y , t ) -  f(~,y,t)) ,  
Oy 

Oc(y)b(x, y, t) 
+ , ( f ( x , y , t )  - b(x,y, t)) .  

Oy 

At ~ 0. (3.6) 

At --+ 0. (3.7) 

Note that p(x ,y , t )  = f ( x . y , t )  + b(x,y, t) .  Denoting w(x ,y , t )  = f ( x , y , t )  - b(x ,y , t ) ,  we obtain 

Op Oc(y)w(x, y, t) aw Oc(y)p(x, y, t) 
& - O y  ' Ot  - O y  - 2 . w ( x ,  y ,  t ) ,  

which leads to (3.1). Initial conditions (3.2) coincide with (2.13). 

R e m a r k  3.1. We call Eq. (3.1) the forward Kolmogorov equation (or the Fokker-Planck equation). 
Note that the operator on the r.h.s, of (3.1) is formally conjugate to the operator in (2.3). 

R e m a r k  3.2. The following obvious relations between f,  b, and p+ are valid (see (2.12)): 

p+(x,y , t )  : 2 f ( y , x , t ) ,  

p+(a ' ,  y, t) = p - ( y ,  z.  t), 

p-  (x, y, t) = 2b(y, x, t), (3.8) 

p(x, y, t) = p(y, x, t). (3.9) 
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4. Te l egraph  proces se s  w i t h  barriers 

4.1.  R e f l e c t i n g  b a r r i e r s .  Assume that  the particle walking in accordance with law (1.1) changes 
the direction of its velocity at the point  y = a > x. In other  words, consider the process 

xref(x, t) = ~ X(x, t), t <_ r = r 1, 

a-(-~)~(T~) f:~(-1)~(')c(X~~ ,-" <t<_,-'~+~, ( k =  1 , 2 , . . . .  

Here r k = rk(x ,  a), k = 1, 2 , . . , ,  denotes the time of the kth reflection and 

T = r 1 : inf{t > 0 :  x r a ( x ,  t) = a} (4.1) 

is the first moment  when the particle reaches the point y = a, 

r k = inf{t  > r k - l "  X ~ f ( x , t )  = a},  k >_ 2. (4.2) 

Note that  after each collision, the particle velocity c(a) becomes negative regardless of the sign of the 
initial velocity. Fur thermore,  the process starts  afresh after each impact  with the wall y = a. Indeed, at 
t E (r  k, rk+l],  we have 

L 
t 

xr~f(x,t) = a- (-1) N(rk) k(-1)NO)c(X'a(x,s)) ds : 

t - - r  k 

:a-- [ (--l)N(s+rk)--N(rk)e(xref(z, Sq- T k ) ) d s =  
3 0  

t - r  k 

: a - [  ( - 1 ) ~ ' ( ' ) e ( X ~ ( ~ ,  s + -~)) as. 
J0 

(4.3) 

Here N'(s )  = N ( s  + r k) - N ( T  k) is the number  of Poisson events tha t  have occurred since the moment  r k 
and has the same dis t r ibut ion as N(s ) .  In this section, we assume tha t  c = c(x), x < a, is a function from 
the class C 1. Let ~o = ~(x) ,  x < a, be some smooth  function with ~JIz=a- = 0. Consider the function 
%tref(z,t) : /~o(Xref(x ,  t)). 

T h e o r e m  4.1.  The function u ~ef is the solution to the mixed boundary-value problem 

02u(x , t )  ~, Ou(x , t )  0 
ot  2 + ~  ~ -c (x)  c(x) u(~,t), ~ < a ,  t > o ,  (44) 

~l~=0 = ~ (~ ) ,  u~l,_-0 = 0, ~ < a, ( 4 ~ )  

u~lx=~_o = O, t > O. (4.6) 

P r o o f .  Let ~ = ~(x), x E ( - c o ,  oc), be the symmetr ic  (under reflection with respect  to a) extension 
of the function c(x) initially defined for x < a. Denote X ( x ,  t), x E ( - o o ,  oo), t > 0, as a process of form 
(1.1) with respect to the velocity field ~(x). 

The proof  of Theorem 4.1 is based on the following lemma. 

L e m m a  4.1.  The distr ibut ions X ( x ,  t) and X + ( a , t  - r 2k-1) coincide for r 2k-1 <_ t < r 2k, while the 
distributions 7~(x.t)  and X - ( a , t  - r2k), k E N,  coincide for r 2k <_ t < r 2k+1. 

Here the processes X + and X -  are defined by equalities (2.1), (2.2), and the moments  r k are determined 

ill (4.1). (4.2). 
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Proof o f  L e m m a  4.1. We present the proof for the case r = r 1 < t _< r 2 (in the general case, the 
arguments  are analogous). Observe tha t  by the definition of r 1 (4.1), 

l /7 --X(x,t) = a + {  ( - 1 ) N ( s ) e ( - - X ( x , s ) ) d s = a + { ( - 1 )  N(r) ( - 1 ) N ' ( s ) e ( X ( x , s +  r ) )ds .  

To complete the proof, it suffices to observe tha t  { ( - 1 )  N(~) = 1 since, in the case { = +1, the number  of 
Poisson events occurring up to the moment  r is even, whereas, for { = - 1 ,  this number  is odd. 

Let us turn  to the proof of Theorem 4.1. Observe tha t  

u~ f (x , t )  = E q o ( x ~ f ( x , t ) )  = E[~o(X~f(x , t ) ) I{ t<~,}  + qO(xref(z,t))I{t>_r,}]. 

Denote by ~ = ~(z)  the symmetr ic  extension of the function ~o to the right of the point y = a. For 
t < r 1, xr~ f ( z , t )  = X ( x , t ) ,  and by virtue of (4.3), x~e f (x , t )  = X - ( a , t  - r k) for each of the intervals 
r k _< t < r k+~, k E N. Hence, by Lemma 4.1 and due to the s y m m e t r y  of the extension of the function ~. 
we have 

uref(x,t)  = E[~ (X(x , t ) ) I { t<-~}  + @(-X(x,t))I{t>_r,}] = E ~ ( - X ( x , t ) ) .  

By Theorem 2.2, the r.h.s, of this equality, E-~(X(x ,  t)) - u(x,  t), is the solution of the Cauchy problem 
(2.3), (2.9). Since e and ~ are symmetr ic  functions, problems (2.3), (2.9) and (4.4)-(4.6) are equivalent. 

4.2. A b s o r b i n g  b a r r i e r s .  Now we assume that  the particle is absorbed at the point y = a > x. This 
means that  the corresponding process denoted as xab~(x, t), x E ( -oo ,  a], t > 0, coincides with X ( x ,  t) for 
t < r 1. If t _> r 1, then  xabs(x ,  t) = a. Denote  uabs(x, t) - E q o ( x a b s ( x ,  t)). Also, consider the distr ibution 
functions F~b~(x, y, t) and B~b~(x, y, t), which are defined for the process X ~b~ similarly to (3.3), (3.4). Let 
f~b~ and b abs be the corresponding probabili ty densities. It is obvious that  pabs = labs + babs where pabs 
is the density of X abs. 

Proposition. 
(1) labs is the solution of the problem 

at 2 u + 2 #  u =  c(y) c(y)u, y < a, 

 lt=0 = a ( * -  y),  tl =0 - 2 0y c ( y ) a ( x -  y)' 

c(y)  + = o; 

(2) b abs is the solution of the problem 

x, y < a, 

(4.7) 

(4.8) 

(4.9) 

~2 

Ot 2 
- - u + 2 p  u =  y < a ,  

1 0  
= o- C(y)a( x - y), 

ul~=a_  o = 0. 

x, y < a, 

Hence, the following theorem is valid. 

T h e o r e m  4.2. Let ~ E C ( - o c ,  a]. Then 

'/tabs= ( f a b s ( x  . t),qO) + (babS(x , ' , t ) , cp ) ,  

where fibs and b ~bs are the solutions of  problems (4.7) (4.9) and (4.7')-(4.9'), respectively. 

(4.7') 

(4.8') 

(4.9') 
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. 

and (4.7')-(4.9'). First, we construct  the solution to the Cauchy problem (2.3), (2.9). 
consider the following equation,  together with telegrapher equation (2.3): 

Solut ions  of  the  t e l e g r a p h e r  equat ions  

In this section, we write the formulas for the solutions to problems (2.3), (2.9), (4.4)-(4.6), (4.7)-(4.9), 
To this end, we 

O~v 0 Ov 
oF = c ( ~ ) ~ c ( ~ ) ~  + , ~ v .  (5.~) 

For ~2 < 0, this equation is known as the Kle in-Gordon equation. 
Consider the bi-characteristics A + common to Eqs. (2.3), (3.1), and (5.1). Let A+ = A(x, t) and 

A- = A ( z , - t ) ,  t E ( - c o ,  oo), where the function A(x, t) is defined in (3.5). Observe that  A + are solutions 
to the following (ordinary) equations: 

/( A+(~,t) = �9 + c(~+(~,s))d=, (5.2) 

/( ,~ - (~ , t )  = x - c ( ) , -  (:~, s)) d=. (s.3) 

T h e o r e m  5.1. The solution to problem (2.3), (2.9) has the form 

, <[ ~(x,t) = i ~ - .  ~(.x+(x,t)) + ~o(.~-(x,t))+ 

' 0 ))  ds] (5.4) + f_ t~a(A(x , s ) )  ( t t Io(#V/-f i  - s 2 ) + - ~ I o t t t v @  - s  2 �9 

Here 
X2n 

z0(=) = ~ 22-(n!)2 
rl-~0 

is the Bessel function of  imaginary argument.  

R e m a r k  5.1. Passing to the variable y = A(x, s) in the integral on the r.h.s, of (5.4), we obtain 

1 -t,t [ ,4:~, t )=  ~e ~(.X+(x,t)) + ~(.X-(:,:,t))+ 

+ f '<:">~(Y) (vzo(v,it2-<,(y,x)~)+ ~ )),~] . c5.,') u,x-(:~,t) c(y) <.,o I ~  - a ( y ' z ) 2  

Here cr = c~(y, x) is the solution to the equation A(x, or) = y. 

P r o o f  of  T h e o r e m  5.1. The proof is based on the following lemmas. 

L e m m a  5.1. The function u = u(z ,  t) is the solution to problem (2.3), (2.9) if u = e-~'tv, where 
v = v(x, t) is the solution to Eq. (5.1) with the initial conditions 

vl,=o = ~, v,l,=o = ,~,. (5.5) 

~(a(x, s/)s0(.4V-- ~2) ,ss 

Denote 

'f0 Z ( z ,  t: '~) = :j ( r  + t / ' ( A - ( z ' s ) ) ) I ~  s2) ds = 2 -t  
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L e m m a  5.2. The solution v(x,  t) to Eq. (5.1) with the initial conditions 

u l t = o  = ~ ,  u t  I t=o  = 

has the form 
v (x , t )  = Z ( x , t ; r  + Z t ( x , t ; ~ ) .  (5.6) 

To prove Theorem 5.1, it suffices to substitute #~ instead of r into (5.6) and to differentiate w.r . t . t .  
Lemmas 5.1 and 5.2 are proved by simple direct calculations, which are omitted here. 

Theorem 5.1 leads to explicit formulas both for the distribution p = p(x, y, t) of the process X ( x ,  t) 
("free" motion) and for pr~f(x, y, t) or p~b~(x, y, t) (for eases of motion with reflecting or absorbing barriers). 
Corollary 2.1 and Theorem 5.1 result in the following formula for the distribution of the process X ( x ,  t). 

C o r o l l a r y  5.1. The probabili ty density p(x, y, t) o f  the process X ( x ,  t) has the Form 

1 [~(y a+(x,t))+~(y A-(~,t))+ p(~, y, t) = ~ - . *  - 

1( o ) ] 
+ ~ .Zo( . J t~-o- (y ,x)~)  + ~Io(.v/t~--o-(y,:~)~) xI~,-(~,~),~,+(~,~)l(y) (5.7) 

Here XA (Y) = 1 if  y �9 A and XA (Y) = 0 i f  y qt A (cf  formula (2.5) from [2]). 

R e m a r k  5.2. It is clear from the assertions proved above that the solutions to problems (2.3), (2.9) 
and (3.I), (3.2) exist for aI1 t �9 [0, +oo) if the bi-charaeteristics A + and A- tend to infinity during an infinite 
time. To provide this condition, it suffices to assume that  

c ( x )  > co > 0, z �9 ( - o ~ ,  oo ) ,  (5 . s )  

foo+~ dy f~_ dy c ( y )  - o~,  ~ c ( y )  - o~. (5 .9)  

Formulas for the probability densities p+(x, y, t), p - ( z ,  Y, t), pref(x, y, t), and pabs(x, y, t) are based on 
formula (5.4), Theorem 2.1, and Lemmas 5.1 and 5.2. 

Co ro l l a ry  5.2. The probability densities p+(z,  y, t) of  the processes X ~: have the form (of. (2.17) 
from [2]) 

e-/~t ~ 2 
p+ (x , y , t )  = p (x ,y ,  t) T --~-X[x-(~, t) .z+(x, t)](Y)~yIo(#~/t  - a ( y , x )  2 ). (5.10) 

Using (5.7), one can obtain the explicit formulas for p+(x, y, t). 
To write the formulas for prer(x, y, t) and p~bs(x, y, t), we again consider the process .--Y(x, t) generated 

by the symmetric (with respect to the point x = a) velocity field ~(x). Below, we denote by p = p(:c. y, t) 
the corresponding probability density. 

Co ro l l a ry  5.3. The probability density pref(x, y, t) Of the process with reflections xref(z, t) has the 
form 

pref(x ,y , t )  = # ( z , y , t )  + # ( 2 a -  x , y , t ) ,  z , y  < a. (5.11) 

Proof .  As follows from Theorem 4.1, the function pref(z, y, t) satisfies problem (2.3). (2.9) with c(x) = 
P(a') and 02(z) = 6(x - Y) + 6(2a - x - Y)- Hence, by Corollary 2.1, equality (5.11) follows. 

From (5.7), it is easy to obtain the explicit formulas for pref. 
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C o r o l l a r y  5.4.  The probability density pabs(x, y, t) of  the process with the absorption X abs has the 
form (cf. formulas (3.3), (3.4) from [21) 

pabS(x,y,t)  = ~ ( x , y , t )  -- p - ( x ,  2a--  y , t ) ,  x , y  < a. ( 5 . 1 2 )  

Explici t  formulas for pabs follow from (5.7) and (5.10). 

P r o o f .  First ,  we observe t ha t  

1 
babS(x,y,t) = -~ (~- (x , y , t )  -- iO-(x, 2a -- y , t ) ) ,  x ,y  < a, (5.13) 

is the solut ion to p rob lem (4.7') (4.9') and 

1 
f~bS(x ,y , t )  = ~ ( ~ + ( x , y , t )  - - ~ - ( x ,  2a--  y , t ) ) ,  �9 , y < a ,  ( 5 . 1 4 )  

is the solut ion to problem (4.7)-(4.9). 
These assertions are verified directly by subs t i tu t ing  (5.13) into (4.7')-(4.9')  and,  respectively, (5.14) 

into (4.7)-(4.9). In this case, we use Corollary 2.1, formula (3.8), and the ident i ty  

0 
- y )  = - y ) .  

Oy 

Adding (5.13) and (5.14), we obta in  (5.12). 

This  work is suppor t ed  by the Russian Founda t ion  for Basic Research (Grant  No. 96-01-01169). 
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