Letter to the Editor TREATMENT OF MYCOPLASMA CONTAMINATION

Dear Editor:

Two papers (2,3) concerning treatment of mycoplasma-positive cell cultures were published in your journal during this year. Drexler et al. (2) recommend BM-Cyclin (BMC) but Hlubinova et al. (3) propagate a more convenient method. This letter describes our experience with BMC (eight cell lines) and presents two representative examples.

Cell cultures: MDCK/H (Mardine-Darby canine kidney) and NB-E (human newborn kidney) cells were cultivated in Eagle's minimal essential medium (MEM) or Dulbecco's MEM containing 10% fetal bovine serum and standard antibiotics (penicillin, streptomycin). During the BMC treatment, medium without antibiotics was used. All cells were dispersed by 0.125% trypsin and 0.05% EDTA.

Mycoplasma elimination: BMC treatment was carried out with 2.5-fold increase over the manufacturer s instructions (Boehringer Mannheim, Germany).

Detection of mycoplasma: Detection was performed by DNA fluorochrome Bisbenzimide (1) or by enzyme-linked immunoassay (ELISA, Boehringer Mannheim).

In addition to the discussion of the above-mentioned papers, the following points should be taken into consideration:

- 1. The success of mycoplasma elimination depends on the degree of contamination and concentration of antibiotics. Low doses of BMC as recommended by the manufacturer did not produce a stable mycoplasma inhibition. The 2.5-fold increase of BMC concentration prolonged the effect of this mixture of antibiotics. After three treatment cycles the growth rate increased (Table 1, split ratio).
- 2. The contaminating mycoplasma species *M. hyorhinis* and *A. laidlawii* were more difficult to eliminate than the others. This does not agree with already described data (2,5).
- 3. The suggested antibiotic combination enables only a decrease but not a complete elimination of mycoplasma. Each concentration for an individual cell line should be tested. Concentrations that produce more than 60% cell growth inhibition are successful.

- 4. Mycoplasma detection kits are useful to monitor and differentiate the mycoplasma infection or elimination.
- 5. BMC-treated cells have a higher quality with regard to cell proliferation. This is an advantage for a virus assay with a culture period longer than 1 wk. With BMC-treated NB-E cells virus titration was possible and an increase of virus propagation was achieved (4)
 - 6. Periodic monitoring of the cured cells should be continued.

ACKNOWLEDGMENTS

I thank Dr. J. Schlehofer (DKZ Heidelberg, Germany) for providing NB-E cells and Mrs. G. Weisel and H. Linke for valuable technical assistance.

REFERENCES

- Chen, T. R. In situ demonstration of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell. Res. 104:255-262; 1977.
- Drexler, H. G.; Gignac, S. M.; Hu, Z. B., et al. Treatment of mycoplasma contamination in a large panel of cell cultures. In Vitro Cell. Dev. Biol. 30A:344–347; 1994.
- Hlubinova, K.; Feldsamova, A.; Prachar, J. Evaluation of two methods for elimination of mycoplasma. In Vitro Cell. Dev. Biol. 30A:21– 22: 1994.
- Nissen, E.; Schulze, P.; Böthig, B. Erfahrungen mit der Eliminierung von Mykoplasmen aus kontaminierten Zellkulturen. Lab Med. 17:347–349; 1993.
- Polak-Vogelzang, A. A.; Brugman, J.; Osterhaus, A. D. M., et al. Elimination of mycoplasma from cell cultures by means of specific bovine antiserum. Zbl. Bakt. Hyg. A 264:84-92; 1987.

Eberhard Nissen

Robert Koch-Institute
Federal Institute for Infection and Non-Communicable Diseases
Department Virology
Britzer Str. 1–3, D-12402 Berlin
Germany

(Received 6 September 1994)

TABLE 1

EXAMPLE OF SUCCESSFUL AND LESS SUCCESSFUL BM-CYCLIN TREATMENT

Experimental Group	Optical Density 405 nm					
	A	Н	L	0	Percent DNA Staining	Split Ratio
Positive control	2.330	2.036	2.150	2.202	_	
Negative control	0.309	0.282	0.277	0.249	_	_
MDCK/H						
Before	2.825	2.277	0.363	0.673	27.7	1:8
After	0.319	0.306	0.368	0.313	2.8	1:15
NB-E						
Before	0.321	2.348	0.596	0.369	69.3	1:4
After	0.297	2.330	0.638	0.246	30.4	1:12

Key: Solution 1: 50 μ g/ml; solution 2: 25 μ g/ml; absorbance: 405 nm; A: M. arginini; H: M. hyorhinis; L: A. laidlawii; O: M. orale; DNA staining: % of cells with fluorochromestained plasma membrane; mean cell growth of treated cells: 24.3% \pm 1.4