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The vibrations of a vessel strongly influence the behavior of the interface 
of the fluids in it. Thus, vertical vibrations can lead both to the para- 
metric excitation of waves (Faraday ripples) and to the suppression of the 
Rayleigh-Taylor instability [i-2]. At the present time, the influence of 
vertical vibrations on the behavior of a fluid surface have been studied in 
sufficient detail (see, for example, review [3]). The behavior of an inter- 
face of fluids in the case of horizontal vibrations has been studied less. 
An interesting phenomenon has been revealed in the experimental papers [4, 
5]: in the case of fairly strong horizontal vibrations of a vessel con- 
taining a fluid with a free surface, the fluid collects near one of the 
vertical vessel walls, the free surface being practically plane and sta- 
tionary with respect to the vessel, while its angle of inclination to the 
horizon depends on the vibration rate. But if there is a system of 
immiscible fluids with comparable but different densities in the vessel, 
horizontal vibrations lead to the formation of a steady wave relief at the 
interface. An explanation of the behavior of a fluid with a free boundary 
was given in [6] on the basis of averaged eq4ations of fluid motion in a 
vibrational field. Thepresent paper is devoted to an analysis of the 
behavior of the interface of fluids with comparable densities in a high- 
frequency vibrational field. 

i. Let two immiscible incompressible fluids fill a vessel that executes vibrations 
in accordance with the law 

r=aks in  ~t+ro 

where r is the coordinate of an arbitrary point of the vessel, r0 is its mean, ~ is the 
frequency of the vibrations, a is their amplitude, k is the unit vector along the axis 
of the vibrations. 

(i.i) 

In the frame of reference associated with the vessel, the equations of fluid motion 
have the form 

Ov~ + (v~V)v~ = _ i_J._ Vp~+v~Av~_g?+a~ksinot, Vv~=0, ~=1, 2 (1 .2 )  
Ot PB 

where 7 is the unit vector directed vertically upward, the subscript $ labels the fluids, 
the remaining notation is standard. 

The no-slip conditions are satisfied on the rigid walls of the vessel, while the 
following conditions of stress balance and rate continuity, and the kinematic condition 
are satisfied at the interface of the fluids f(r,t)=0: 

- [o~j l~+[p ]n~=~ (r n)n~ ( 1.3 ) 

aF VF 
[v]=0, Ot + . v V F = 0 ,  n =  ]VF]  (1 .4)  

Here ~ij is the viscous stress tensor, ~ is the coefficient of surface tension, n 
is the vector of the normal to the surface, [f] =-fl -- f2- 

If the vibration frequency is fairly great, so that m >> ~/L =, where L is the char- 
acteristic dimension of the hydrodynamic structures, all the processes in the fluid can 
be divided into fast and slow. Effective decoupling of the problem into fast pulsation 
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and average parts is possible if there is reason to discard the nonlinear terms in the 
equations of the pulsation component of the motion. The pulsation component of the fluid 
velocity is equal in order of magnitude to the velocity of the vessel itself in the labora- 
tory frame of reference v = a~, therefore, the nonlinear terms can be discarded if a2~2/ 
L < a~ 2, this imposing constraints on the amplitude of the vibrations a < L. Subsequently, 
we shall assume that the conditions ~ > v/L 2 and a ~ L are satisfied, so that we shall 
assume that the amplitude of the vibrations a is small, the amplitude of the vibration 
rate b = a~ is finite, while be is large. 

We now go over to a derivation of the averaged equations of motion and boundary con- 
ditions. In the case of high-frequency vibrations in all variables, we can separate the 
fast-changing pulsation component and the slow part whose characteristic times of varia- 
tion are large in comparison with ~-z. Thus, a time hierarchy arises, and this makes 
the application of the method of many scales natural in the averaging of the equations 
and the boundary conditions [7]. In accordance with the basic idea of this method, we 
introduce the time sequence 

t_~=~t, to=t, t~=~:~t,. . .  (1 .5 )  

and assume that all the variables in (1.2)-(1.4) depend on both the fast time t_x and the 
slow times t o , t~ .... Then the derivative of any quantity f(t) with respect to time, 
and the required velocity and pressure fields and the function F which determines the 
interface can be represented in the form of the series 

0/ o/ 0/ - - = o ~ +  +o~-' Of + 
Ot at-t fit~ Otl 

v~=v~(~ 
(1 .6 )  

c-,~.. (o~ ~ o~ F=Fo+co-~F~+. . p~=o~p~ § +o~- p~ + ' ' "  r 

Equations (i.o2) give the following leading orders in ,,-i: 
~01 

Ov~ Vp~ 
co - -  = - -  o + b~k sin t_~, Vv~  ~' ----0 ( 1 . 7  ) 

whence ~t-~ p~ 
(0 )  . ( - O  

v~ ----bV~ cos t-~+u~, p~ ----bP~ sin t-i (1 .8 )  

p~(V~+k)----VP~, VV~=O, Vu~=O (1 .9 )  
where t he  f i e l d s  Vo. u~, P~ do no t  depend on the  f a s t  t ime t_ 1. 

Equa t ions  ( 1 . 7 ) ,  which e s s e n t i a l l y  de te rmine  the  ampl i tude  of t he  p u l s a t i o n  v e l o c i t i e s  
V~, do no t  c o n t a i n  the  v i s c o s i t y  and, t h e r e f o r e ,  the  second d e r i v a t i v e s  of  the  v e l o c i t y  
wi th  r e s p e c t  to  the  c o o r d i n a t e s .  T h e r e f o r e ,  t h e i r  s o l u t i o n ,  g e n e r a l l y  speak ing ,  does 
no t  s a t i s f y  the  n o - s l i p  c o n d i t i o n s  on the  r i g i d  w a l l ,  so t h a t  f o r  V~ on the  v e s s e l  w a l l s ,  
we r e q u i r e  on ly  t he  no- f low c o n d i t i o n  V~nlS = O, but  t he  t a n g e n t i a l  component of  t he  p u l s a -  
t i o n  velocity on the wall can be nonvanishing. The substitution of the no-flow condi- 
tion for the no-slip condition is admissible if the thickness of the viscous skin layer 
near the walls is small in comparison with the dimensions of the vessel. The equations 
are averaged on precisely the assumption that ,.~ >> 9/L 2. 

It follows from the boundary condition (1.4) that the principal part of F does not 
depend on the fast time. Substituting the found fields (1.8) in Eqs. (1.2) and averag- 
ing them over the vibration period, we obtain equations for the mean velocities t% with 
no-slip conditions on the rigid wall: 

+b vcJo  +,,oAuo-g ,  oI.=o 
The boundary conditions (1.3)-(1.4) at the "interface give, after averaging with allow- 

ance for (1.8), 

i 
--[o,~]nj+[pln, +-~ bZ[pV~W,]n,-----(z(Vn) n, ( 1.11 ) 

[oW,]=0, [W,]=0,  OF + uVF=0, W~==V~+k (1 .12)  
Ot 

In expressions (i.i0)-(I.12), the subscript (superscript) zero is omitted from to, 
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the mean pressure p,(~ and the function F0; the subscripts n and ~, respectively, denote 
the vector components normal and tangentia I to the interface. The tensor oij in (i.ii) 
is determined in the field of mean velocities u~. 

Equations (1.9)-(1.10) with the no-flow and no-slip boundary conditions and (i.ii)- 
(1.12) fully determine the fields of the amplitudes of the pulsation velocities Y~. u~, 
and the pressures PS' and the position of the averaged interface of the fluids. 

We consider the "equilibrium" conditions of fluids in a vibrating vessel, under- 
standing by equilibrium the state in which there is no averaged motion (u,=0), while the 
interface is steady (i.e., does not depend on the slow time to). In this case, the equa- 
tions and boundary conditions for the pulsation velocities can be written in the form 

rotW~=O, VW~=O, W~l~=k~ (1.13) 

On the interface of the media F ( r ) = O ,  relations (1.12) are satisfied, while condi- 
tion (i.ii) takes the form 

I 
[Pl + ~- b~[pV~W,] == (Vu) ( 1 .14  ) 

The e q u i l i b r i u m  p r e s s u r e s  a r e  d e t e r m i n e d  f rom Eqs.  ( 1 . 1 0 ) ,  in  wh ich  t h e  mean v e -  
l o c i t i e s  u~ mus t  be  s e t  e q u a l  t o  z e r o .  

We n o t e  t h a t  f o r  t h e  p u l s a t i o n  v e l o c i t i e s  a t  t h e  i n t e r f a c e ,  o n l y  t h e  c o n d i t i o n s  o f  
b a l a n c e  o f  n o r m a l  s t r e s s e s  and e q u a l i t y  o f  n o r m a l  v e l o c i t y  c o m p o n e n t s  a r e  s a t i s f i e d .  
The t a n g e n t i a l  c o m p o n e n t s  o f  t h e  p u l s a t i o n  v e l o c i t i e s  a r e  d i f f e r e n t  and t h e r e  i s  no 
c o n d i t i o n  o f  b a l a n c e  o f  t a n g e n t i a l  s t r e s s e s .  Thus ,  t h e  c o n d i t i o n s  w r i t t e n  down a r e  c o r -  
r e c t  o n l y  i f  t h e  t h i c k n e s s  o f  t h e  v i s c o u s  s k i n  l a y e r  n e a r  t h e  i n t e r f a c e  i s  s m a l l  in  
comparison with the characteristic dimensions of the surface structures. 

2. We will apply the obtained equations and boundary conditions to the development 
of an undulating relief on the interface of media in a horizontally vibrating vessel. 
Such a relief was observed experimentally [4, 5]. 

Let fluids with densities p~ and P2 (Pl > 02) fill a horizontal layer of thickness 
2h. We direct the z axis of the Cartesian coordinate system vertically upward. For 
simplicity, we assume that the fluids occupy equal volumes. We select the origin so that 
in the absence of vibrations the heavy fluid occupies the region --h < z < 0 and the light 
fluid 0 < z < h. The horizontal dimensions of the vessel are assumed large (in comparison 
with h), so that the effects associated with the presence of vertical walls can be dis- 
regarded and the vessel assumed unbounded in the horizontal directions. 

We consider the behavior of fluids in the Presence of horizontal vibrations with 
frequency m and amplitude a. We direct the x axis along the axis of the vibrations, so 
that k in (i.i) is the unit vector along the x axis. 

We formulate the problem for the determination of the "equilibrium" interface of 
the fluids z = ~(x, y): 

rot W~=O, rW~=O ( 2 . i )  

W,~=O ( z = - h ) ,  Wz,=O ( z = h ) ,  W,.=Wz., p,W~.=p2Wz, (2.2) 
b ~ 

--~ [ W,. ~ (p,-p~) -- (p~WJ-p:W~. ~) ] - (p~-p~) g ; + =  (Vn) = const ( 2 .3  ) 

Condition (2.3) is obtained from (i.14) after the substitution of the pressures deter- 
mined from (i.i0) with u~ = 0 in (1.14). Since the fluids are incompressible, it is still 
necessary to require the satisfaction of the condition of normalization of the volume. 

it is easy to verify that problem (2.1)-('2.3) admits an equilibrium solution with 
a plane boundary that satisfies the following condition of closure of the pulsation flow: 

h 

~=0, W,~= 2p__..___~z Wz,= 2P---'-i~, Wtu=W2u=Wz~='W,,=O, ~ Va~dz+ ~Vz~dz=O ( 2 . 4 )  
pl+pz ' pl+pz ~ -h : 

We consider the bifurcations of solution (2.4). Since the vibrations are directed 
along the x axis, they do not influence the perturbations polarized along the y axis and, 
therefore, it is sufficient to consider the plane perturbations that depend only on x 
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Since the vectors ~'~ are solenoidal in the two-dimensional problem, we can intro- and z. 
duce the stream functions T, # for the perturbations which, in accordance with (2.1), 
are harmonic functions: 

W , . =  29__,__2__ ~ OW W , . = -  OW , W ~ = -  29, + o3r W,.=-0r 
Or+p2 Oz ' Ox 9,+92 Oz ' Ox (2.5)  

• Ar 

It is convenient to solve the problem in dimensionless variables. We select the 
combination [a/(p z -- p2)g] u2 as the unit of length. We will measure ~ and ~ in the same 
units. With such a selection of units, Eqs. (2.5) are written as formerly, while the 
boundary conditions take the following form in terms of T and #: 

�9 =0 (z=-H), "r  (z=H), z=~(x): 
r (2.6)  

P 

B [  2p vZ,+ 2 @,+lv O,+v/,r  + [::J= -=const 
L p+t p+l ( 1 +  ~:,2"~ 'f' 

,~ (2.7)  
'/, b 2 / 9 , - loz  \ '/, 

t ~ --j-g. 
% 

Here H is the dimensionless mean thickness of the fluid layers, B is the dimension- 
less parameter characterizing.the vibrations, the subscripts to ~, #, ~ denote differentia- 
tion with respect to the corresponding variable. 

For an analysis of the bifurcations of the plane interface of the fluids, we linearize 
problem (2.5)-(2.7) near the equilibrium solution (2.4) and, considering the x-periodic 
perturbations (~, ~, ~ ~ cos kx), we obtain the following bifurcation curve in the co- 
ordinates B ~ k or the dimensional coordinates b, k: 

B =  (P+t)3 ( k + k - ' ) t h k t t  (2.8)  
so(p-i) 

b~= (P'+P2) 3 [ a k + ( p , - p o ) g k - ' l t h k h  (2 9) 
2p,p2 (P'--P2) 2 

If the amplitude of the vibration rate exceeds the critical value (2.9), the plane 
fluid interface becomes unstable and a wave relief develops. 

As can be seen from (2.9), for p= > Pl (heavy fluid above), perturbations (with fairly 
long wavelengths) leading to a loss of stability will always be found. Thus, in this 
case, the plane interface is absolutely unstable, i.e., the horizontal vibrations do not 
hinder the development of the Rayleigh--Taylor instability, in contrast to the vertical 
vibrations which suppress its development under certain conditions [2]. 

It also follows from (2.9) that a wave relief (for Pl > P2) is possible only on the 
surface of fluids with comparable densities, but not for a free surface, since the crit- 
ical value b 2 becomes infinite as P2 + 0. This fact is also noted in the experimental 
papers [4, 5]. 
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Figure 1 gives the neutral curves for different values Of H. The relief with a finite 
wavelength is not possible for every fluid thickness. In fact, for thin layers (kH ~ i), 
the neutral curve (2.8) takes the form 

B = -(P+t)3H (k2§ 
8p(p-l) 

hence, it follows that, in this case, the perturbations with k = 0 are the most dangerous. 
Analysis of (2.8) indicates that a relief with a fiffite wavelength develops only in fairly 
thick layers for H > /~, i~ h > [3=/(p I -- p2)g] u2 

We shall subsequently consider layers with kH m i. In this case, the critical ampli- 
tude of (2.8) is determined from the expression 

B =  (P+I)~ (k+k-') 
8~ (p-l) 

with a minimum at k = i, while Bm~n='/,(p+i)3/p(p-i). Thus, for fairly thick fluid layers 
in the field of horizontal vibrations with a velocity amplitude exceeding the critical 
value 

bs = (P'+P~) ~ 
2p,p: (p,--92) [a (p' -p~) g]'~' 

a wave relief with the following wavelength develops at the interface of the fluids: 

[ ~=2~ t'(p,_p2) gJ 

Before proceeding to a n o n l i n e a r  a n a l y s i s  of  problem ( 2 . 5 ) - ( 2 . 7 ) ,  we note one i n -  
t e r e s t i n g  f a c t .  Problem (2.1)-(2.3) and, t h e r e f o r e ,  problem (2.5)-(2.7) obta ined  f r o m  
i t  i s  e q u i v a l e n t  ( excep t i ng  f o r  the  n o t a t i o n )  to  the  problem f o r  the  development 
of  a s teady r e l i e f  on the su r face  of  a f l u i d  i n s u l a t o r  (a magnet) i n  a v e r t i c a l  cons tan t  
e l e c t r i c  (magnet ic )  f i e l d .  The analogy between the  problems i s  incomple te .  I n  the prob-  
lem cons idered  here f o r  the appearance of  the wave r e l i e f  i n  the v i b r a t i o n  f i e l d ,  t he re  
is a defined direction (the axis of the vibrations). But in the electric problem, all 
the horizontal directions are on an equal footing. However, if we solve the problem for 
the instability of the surface of the insulator in the electric field in a two-dimensional 
formulation, the substitution of (Pl -- P2)g/Pl for g, EXk/f~--~ for 7262W,, and ~ for p (E 
is the electric field strength, ~ is the permittivity of the fluid) converts the problem 
under discussion here to the problem for the stability of the plane surface of a fluid 
insulator in a vertical electric field, solved previously in [7]. 

Nonlinear analysis of (2.5)-(2.7), carried out by the standard method of expansion 
with respect to the amplitude of the perturbations, gives the following expression for 
the amplitude of the wave A: 

A 2 = -  64p(p*-I)  (B--B~,~) ( 2 . 1 0 )  
i l p 2 - 4 2 p + l i  

whence it follows that for p < 3.535 the wave develops through soft excitation, and for 
p > 3.535 through hard excitation. (We recall that the wave relief is only possible for 
p > i.) The same value (~ = 3.535) for the boundary of the change of relief excitation 
regimes is obtained in [8], Eq. (2.10) of the above substitution being converted into 
the expression for the amplitude of the wave obtained in the same paper. 

The vibrational--electrical analogy is not complete. All horizontal directions are 
on an equal footing in an analysis of the stability of the surface of an insulator in an 
electric field, therefore, a three-dimensional relief is possible besides the two-dimen- 
sional relief. As shown in [9, i0], the two-dimensional relief (at least for (e -- i)/ 
(~ + i) << i) on the surface of the insulator is unstable and the relief is realized 
with either a hexagonal or a square structure. But in the problem considered here, there 
is a distinguished direction -- the axis of the vibrations -- and, therefore, only the 
two-dimensional solution has the necessary symmetry. Precisely this two-dimensional 
structure was observed in the experiments of [4, 5]. 

Thus, the theory developed in the present paper qualitatively describes the 
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experiments on the development of a steady wave relief at the interface of the fluids 
in the case of horizontal vibrations. It is not possible to carry out a quantitative 
comparison with the experiment, since papers [4, 5] do not contain the necessary data 
for such a comparison. 
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DISSIPATIVE INSTABILITY OF FLUID FLOWS WITH PIECEWISE 

LINEAR VELOCITY PROFILES 

P. I. Kolykhalov UDC 532.51.013.4 

The viscous dissipative instability of two flows with continuous spectrum of 
neutrally-stable perturbations in the absence of dissipation is investigated. 
Ranges of wave numbers in which viscosity leads to flow destabilization are 
determined for a shear discontinuity in a smoothl> stratified fluid. A shear 
flow with a velocity in the transition layer that depends linearly on the 
coordinate has a continuum of neutral modes even in the case of an unstratified 
fluid. When viscosity is present in one of the layers with constant velocity, 
one of the branches of the spectrum becomes unstable. When the viscosity is 
the same above and below the shear layer, dissipation only leads to the damping 
of the perturbations. 

i. Formulation of the Problem 

Study of flows with piecewise linear velocity profiles is of interest in gas dynamic 
stability theory. The greatest number of results have been obtained for flows of the 
shear discontinuity type and shear flows with linear transition layers (see the reviews 
in [1-3]): 

a(z)=asgn(z) ,  a=const ( 1 . i )  
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