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SUMMARY 

Cell suspensions prepared by collagenase digestion of pancreases obtained from rat fetuses (21.5 d 
old) and newborns {2.5 d old) were mixed with a collagen solution and inoculated on a collagen base 
layer. At the onset of the culture, most acinar cells became necrotic, whereas other epithelial cells 
proliferated. Most of the cell clusters arranged themselves into simple polarized structures composed of 
epithelial cells forming hollow spheres, and from these budded neoformed endocrine islets. Scarce 
fibroblasts were located close to these structures. Immunocytochemical localization of insulin and 
glucagon, as well as ultrastrnctural characteristics of the cell types revealed an intrainsular distribution 
similar to the in vivo localization. Tridimensional matrix of collagen offers, to perinatal pancreatic cells 
in culture, an environment close to the in vivo conditions: cells reorganize themselves in tissuelike 
structures and cell interactions concerned in the cytodifferentiation of pancreatic islets occur. This system allows 
for the study of undifferentiated epithelial cells--the presumed stern cells--differentiating and differentiated 
endocrine cells in the same preparation. 
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I NTRODUCTION 

An intriguing question concerns the probable existence 
of a pool of precursor cells destined to differentiate into 
endocrine B-cells in the perinatal pancreas. It  is now 
generally accepted that pancreatic endocrine cells 
develop from endodermic cells located in the primitive 
duct epithelium (1-3). The close relation between islet 
cells and exocrine ducts in the fetal rat pancreas {3-6) as 
well as in the regenerating adult rat pancreas t7, 8), or in 
the nesidioblastosis t9-11) corroborate this notion. 
Precursor cells should have a greater capacity for mitosis 
than differentiated endocrine cells and should constitute 
the main proliferative population during pancreatic 
ontogenesis. During the late fetal life of the rat, there 
exists a marked discrepancy between islet growth, 
representing a population doubling time of 48 h, and 
endocrine cell proliferation, as only 20% of the newly 
formed B-cells result from the divisions of preexisting 
B-cells {12). A similar observation was made concerning 
the regenerating endocrine pancreas of neonatal rat after 
partial destruction of the B-cells by streptozotocin {13, 
14). These studies suggest a rapid formation of islet cells by 
multiplication and differentiation of committed cells which 
could be located in the acinar part and the ducts of the pan- 
creas. Nevertheless, only indirect evidence has been offered as 
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to the existence of this cellular pool. More extensive studies of 
the pool of precursor cells may provide information on the 
possible causes of B-cell inadequate formation later in life 
(15). 

A limited number of in vitro experiments on fetal rat 
pancreas have produced additional data about the origin 
of islet cells. Based on morphologic criteria, some 
authors have observed the endocrine differentiation from 
pancreatic epithelial cells in culture {2, 16-19). However, 
no in vitro model, other than the complex organ culture 
originating from massive explants {20-22), can mimic the 
in vivo ontogenesis of islet cells. 

In the present study, we describe the morphologic 
aspects related to the culture of rat pancreatic cell 
suspension composed of isolated cells and small 
aggregates within a tridimensional matrix of collagen. 
This culture provides an environment closer to the in vivo 
architecture, thereby allowing specific cell interactions to 
occur. 

MATERIALS AND METHODS 

Animals. The gestation period in our strain of Wistar 
rats lasted for 22 to 22.5 d. Fetuses 21.5 d old were 
collected from primiparous rats. Newborn rats were taken 
2.5 d after delivery. 

Tissue culture. The technique results from a combina- 
tion of the culture method modified after Hellerstri~m et 
al. t23) along with the preparation of collagen gel {24). 
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The entire procedure, including the digestion of 
pancreatic tissue, was carried out in RPMI 1640 medium 
(Flow Laboratories, Irvine, Scotland) containing 10% heat- 
inactivated fetal bovine serum (GIBCO, Grand Island, NY) 
and antibiotics (penicillin: 200 U/ml, streptomycin: 0.2 

mg/ml). The pancreases were removed aseptically, pooled by 
groups of 15, and placed in 2 ml of medium (4 ~ C). They were 
then minced into small pieces and placed in 2 ml of medium 
containing 6 mg of collagenase (Boehringer, Mannheim, 
FRG} for fetal pancreases or 10 mg for newborn pancreases. 
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TABLE 1 

Culture Period I h 1 d 4 d 7 d 

Mean number of 
cells(• 5 .5•  11.1• 28 .8•177  

Endocrine cells 
proportion (%} 15.2 28 41.8 41.6 

n 60 60 100 64 

Mean number of cells and proportion of the endocrine cells in 
sections of randomly selected clusters fixed at various times after the 
inoculation. Isolated cells were not taken into account in these com- 
putations. 

The tubes were vigorously hand shaken at 37 ~ C for 6 to 8 
min, and the tissue was then washed three times with 5 ml of 
cold medium. The pellet was resuspended in 40 ml of medium, 
gently stirred for 60 rain at room temperature to increase the 
cell dissociation, and then centrifuged. 

The collagen gel was prepared by mixing two solutions. 
The A solution was composed of 1 vol of 10X 
concentrated RPMI ,  1 vol of fetal bovine serum and 
antibiotics, and 1 vol of a mixture of NaOH (0.1 M) in 
NaHCO3 buffer (0.25 M). The B solution was obtained by 
diluting 6 vol of purified collagen for tissue culture 
IVitrogen 100, Flow Laboratories, Irvine, Scotland) with 1 
vol of HCI 0.013 M. A base layer was poured into each 
60-mm petri dish (Falcon 3006, Falcon Plastics, Los 
Angeles, CA) (1.5 ml/dish) and incubated for 10 to 15 min 
at 37 ~ C until it gelled. 

The cells were mixed with another aliquot of collagen 
gel solution (1 ml/fetal  or 4 ml/newborn pancreas) and 
inoculated over the base layer (2.5 ml/dish).  Gelation was 
achieved on warming at 37 ~ C. Culture dishes were 
incubated in a humidified atmosphere ~5% CO2 in air) at 
37 ~ C. The growth medium was changed daily after the 
2nd d up to 7 d. 

Microscopy. Dishes were sampled and fixed in Bouin's 
solution at different times of culture. The collagen gel 
containing the tissue was embedded in paraffin, serially 
sectioned at a thickness of 7 gin, and stained according to 
Masson's trichrome method or with indirect peroxidase- 
antiperoxidase immunodeteetion (25) of insulin and 
glucagon. 

Other dishes were fixed with 2.5% glutaraldehyde, 
postfixed in 1% OsO4 and processed for electron 
microscopy (26). 

Autoradiography. On the 5th d of culture, 1 t~Ci/ml 
tritiated thymidine (deoxyribose-6[3H]thymidine; specific 
activity: 7.3 to 7.6 Ci/mmol,  Radiochemical Center Ltd, 
Amersham, UK) was added to the medium. Alter 24 h of 
incubation, the dishes were washed with Earle 's  solution 
containing 50 t~g/ml cold thymidine, fixed in Bouin's solution 
and processed as above for light microscopy, or fixed in 
glutaraldehyde and Epon embedded. The paraffin or semithin 
sections were covered with a nuclear tract emulsion (Ilford 
K5). The slides were exposed for 1 wk, then developed and 
stained. 

RESULTS 

Cultures were fixed daily from the initiation of the 
experiment up to the 7th d and processed for light and 
electron microscopy. One hour after inoculation, isolated 
cells and small cell aggregates were dispersed within the 
collagen matrix. Five hundred of these structures were 
counted on randomly selected fields of light microscopy 
sections: 96.7% were composed of less than 6 cells, 3.1% 
contained 6 to 19 cells, and only 0.2% amounted to 20 
cells or more. The cell aggregates consisted of incom- 
pletely dissociated islets, fragments of pancreatic ducts, 
clusters of acinar cells, and other heterogeneous structures 
~Fig. 1 A-D k  During the first 2 d of culture, most acinar cells 
disintegrated after intensive vacuolization. Some may have 
lost their zymogen granules and taken on the appearance of 
ductlike cells. The remaining epithelial cells segregated from 
fibroblasts. More interestingly, numerous polarized structures 
appeared during the first 4 d of culture: epithelial (presumably 
duct) cells formed hollow spheroids from which budded en- 
docrine clusters identified as neoformed islets (Fig. 2 A ~. The 
fibroblasts embedded within the collagen matrix remained few 
in number, most of them being preferentially located around 
epithelio-endocrine structures. On the 7th d of culture, the 
same cell arrangements were observed. However, the lumen of 
the epithelial spheres was enlarged, as were the endocrine 
islets (Fig. 2 B). 

Cells were counted in randomly sampled epithelio- 
endocrine clusters (one section/cluster) after 1 h and 1, 4, 

FIG. 1. A-D, pancreatic cells dispersed with coUagenase were fixed 1 h after inoculation within collagen gel. 
Newborn rat, paraffin sections, Masson's trichrome. A, low power light micrograph of isolated cells and cell clusters 
in the collagen gel; B = base layer. X190. B, incompletely dissociated islet (arrowj. X862. C, fragment of epithelial 
duct; * = lumen. X862. D, clusters of acinar cells; z : zymogen granules in apical cytoplasm. X733. 

FIG. 2. A, B, epithelio-endocrine polarized structures within the collagen gel. Paraffin sections, Masson's 
trichrome. A, differentiated endocrine cells budded from epithelial layer (*). Fourth day of culture. Fetus. X 783. B, 
the lumina of ducts (*) were enlarged, presumably due to some secretion activity of the epithelial cells. Seventh day of 
culture. Newborn rat. X450. 

FIG. 3. Thymidine incorporation in S-phase nuclei of epithelio-endocrine structures during a 24-h period on the 5th 
d of culture revealed an autoradiographic labeling of epithelial {large arrowt and endocrine cells ~small arrows), suggesting cell 
proliferation. Fetal rat, semithin section. X817. 

FIG. 4. Glucagon immunodetection on paraffin sections showed scattered glucagon cells (arrows) mainly located in the 
transitional zone between islet and epithelial drop. These cells frequently featured cell processes. Fourth day of culture. 
Newborn rat. X450. 
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and 7 d of culture (Table 1). The results clearly 
demonstrated the growth of the clusters. The endocrine 
cells, identified on the sections by their rounded nucleus 
and granule content, markedly increased in proportion 
up to the 4th d. 

Mitoses were identified in epithelial duct cells and to a 
lesser extent in budded islets. Thymidine incorporation 
during a 24-h period on the 5th d of culture revealed an 
autoradiographic labeling in both types of cells {Fig. 3). 
In the R P M I  medium containing 200 mM glucose and 
10% fetal bovine serum, the labeling index reached 
10.4% (n = 1000 cells) for the endocrine ceils. In other 
experimental series performed in a modified Eagle's 
medium containing 50 mM glucose and 1% fetal bovine 
serum, the labeling indexes for the endocrine and 
epithelial cells were 3.5% In = 4500) and 6% in = 4500), 
respectively. 

Insulin and glucagon were detected by immunohisto- 
chemistry on the 4th and 7th d of culture. Scattered 

insulin and glucagon cells were inserted between 
epithelial ductlike cells. In budding endocrine islets, 
insulin cells comprised the bulk of the volume, whereas 
glucagon cells were mainly located in the transitional 
zone between the islet and epithelial sphere or in the 
periphery of islets (Fig. 4). Glucagon cells frequently 
featured cell processes. 

By means of electron microscopy, the majority of ceils 
surrounding the lumen of the epithelial sphere were 
observed as being undifferentiated. The light cytoplasm 
contained numerous ribosomes, scarce rough endoplas- 
mic reticulum and Golgi, small mitochondria, lipid 
droplets, and prominent cytoskeleton. The plasma 
membrane facing the lumen bore short microvilli, and 
the lateral faces of neighboring cells were closed by 
apical junctional complexes (Fig. 5). In spite of the 
absence of cytologic evidence, the enlargement of the 
lumen with the duration of culture was probably due to 
some fluid secretion. 

FIG. 5. Electron micrograph of an epithelio-endocrine structure on the 4th d of culture. Surrounding the lumen flu) of the 
duct fragment, most epithelial cells did not feature differentiated characters; their light cytoplasm contained numerous 
ribosomes, scarce rough endoplasmic reticulum (rert and Golgi Ig), small mitochondria (m}, vacuoles Iv), and prominent 
cytoskeleton (s); mv = mierovilli, / = junctional complexes. Some cells were engaged in endocrine cytodifferentiation (E) 
revealed by the presence of secretory granules (sg). Fetal rat. )<4172. 
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FIG. 6-8. Electron micrographs of endocrine cells close to the duct epithelium. FIG. 6. Presumable glucagon (G) and 
somatostatin IS} cells. Fetal rat, 4th d of culture. X7699. FIG.7, 8. Presumable B-cells (B), containing few secretory granules 
and unusual large mitochondria ~m). Fetal rat, 6th d of culture. X8850. Other legends: lu = lumen, E = epithelial cells; j = 
junctional complexes; C = collagen gel. 
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The endocrine cells inserted within the epithelial layer 
were generally separated from the lumen by cytoplasmic 
sheets of undifferentiated cells, but in some cases their 
apical plasma membrane was in contact with the lumen. The 
secretory granules of differentiating endocrine cells close 
to the ducts were of various known types: characteristic 
insulin, glucagon, somatostatin granules, and others 
remaining unidentifiable by the morphologic criteria 
{Fig. 6). Granules were often few in the latter cells {Fig. 7 
and 8). Another feature was the presence of mitochondria 

of the exocrine type, i.e. large and showing numerous 
internal cristae (Fig. 7 and 8). Clusters of more 
differentiated cells containing an increased number of 
secretory granules and detached from the duet were 
observed (Fig. 9). 

In the islet sprouting off the epithelial layers, electron 
microscopy revealed the absence of nonendocrine cells 
and confirmed the peripheral location of the non-B-cells. 
The penetration of cell processes originating from 
glucagon and somatostatin cells was also observed. 

FIG. 9. Close to a large budding islet, the duct lumen flu) is surrounded by cytoplasmic sheets of undifferentiated epithelial 
cells. Insulin {B) cells comprise the bulk of endocrine mass and the non-B-cells are distributed in the periphery. Some of their 
cell processes (circles) are directed toward the center. A ---- glucagon cells; D ---- somatostatin cells. 7th d of culture. Newborn 
rat. )<3103. Inset: non-B-cell process. X13 793. 
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Insulin-secreting cells forming the major part of the islets 
were generally well granulated and displayed the 
cytologic characteristics of functioning B-cells (Fig. 9). 

These descriptions apply to neonatal as well as fetal 
material. 

D ISCUSSION 

Perinatal pancreatic cell cultures on bidimensional 
support produce endocrine monolayers (19, 27, 28) or 
neoformed islets (16, 23, 29, 30) where observations of 
epithelio-endocrine affiliation have been only occasional. 
Dudek et al. (16) described the budding of islets from 
heterogeneous structures and noted a continuity between 
endocrine and epithelial duct cells. However, they did 
not provide ultrastructural description. Except for the 
complex organ culture originating from massive explants, no 
in vitro system exists that enables us to observe the dif- 
ferentiation of the pool of committed precursors into endocrine 
cells. As a consequence, few in vitro studies have dealt with the 
genesis of Langerhans islets. 

From pancreatic cell suspensions prepared according 
to the method of Hellerstr~m et al. (23) and cultured on 
bidimensional support, the endocrine cells first arrange 
themselves in monolayers, proliferate, and then reorgan- 
ize into neoformed islets under the mechanical influence 
of fibroblasts, as was previously described (29, 30). The 
same preparation technique was used in the present 
study, except that the cells were inoculated in a collagen 
gel. The differentiated exocrine cells spontaneously 
disappeared by the 2nd to 3rd d after the inoculation. 
This was also the case on a bidimensional support (29, 30). 
By contrast, in the collagen environment, the behavior of 
other epithelial cells and fibroblasts was quite different 
from that observed in bidimensional cultures. The 
proliferation of fibroblasts was low, as was already 
observed with other tissues in tridimensional collagen 
matrix (24, 31). The endocrine and ductlike epithelial 
cells formed growing polarized structures recalling their 
in vivo ontogenic relationships, where the endocrine cells 
originate from duct cells and accumulate under the 
epithelium after rotation of their mitotic axis (1). 

Contrasting to the present results, no endocrine islets 
budded off from adult pancreatic ducts cultured within 
an agarose matrix (32). It should be noted however that in 
collagen, as in agarose, the fragments of ducts sealed 
their cut ends and progressively enlarged due to fluid 
secretion into the lumen. The kind of secretion could not 
be identified, but was probably due to the specific 
secretory properties of the pancreatic duct cells. In 
another study (33), neonatal rat pancreatic cells overlaid 
with collagen also resulted in a rearrangement of 
epithelial cells into tridimensional organoid structures 
with typical lumen, but no appearance of endocrine cells 
was mentioned. 

Preservation of or reorganization into tridimensional 
tissuelike architecture (a.o. by inoculation into a collagen 
gel) has been shown to promote or maintain differentia- 
tion in several cultured cell types, such as liver ceils (34, 
35), mammary epithelial cells (36-38L submandibular 

gland cells (39), thyroid cells (40,41), seminal vesicle cells 
(42}, and corneal epithelium (43}. Among the various 
factors that could favor the outgrowth of endocrine islets 
in the present culture system, the promotion of epithelial 
polarization and the plasticity of the collagen gel may be 
suggested. The contact of epithelium on collagen would 
maintain the cuboidal form of the cells and stabilize the 
basal pole, simultaneously destabilizing the apical pole 
(40,41,43) probably with movements of membrane receptors 
(35). On the other hand, the plasticity of collagen gel would 
permit the cells to change shape and to aggregate (37}, thereby 
allowing endocrine islets to escape. 

An extracellular matrix of collagen is known to increase 
the proliferation of epithelial ceils (38,44-47}. As far as 
islet cells are concerned, a bidimensional support of 
collagen favors the growth of the monolayers (28,29). 
However, when islets became spherical the presence of 
the collagen surrounding them did not seem to enhance 
their proliferative capacity, inasmuch as the labeling 
indexes of the endocrine cells after thymidine incorpora- 
tion were roughly the same in the present study (10.4% in 
stimulating RPMI  and 5.5% in nonstimulating MEM 
medium) and in islets neoformed on bidimensional 
support (12.4 and 3.5% in the two media, respectively) (48 
and unpublished data}. 

Epithelio-mesenchymal interactions have been repeat- 
edly evidenced during morphogenesis and cell differentia- 
tion (49-53). Insulin cells differentiate in organ culture 
from the pancreatic duct epithelium under the probable 
influence of mesenchymal factors (3). In the present 
system, fibroblasts surrounding the epithelial structures 
could meet the mesenchymal requirement, producing 
factors that could then reach the membrane of precursor 
epithelial cells and promote their differentiation. 

In our cultures, differentiating insulin and glucagon 
cells were inserted between duct ceils, and some of them 
were in contact with the lumen. Pictet and Rutter (1) also 
observed a few endocrine cells facing the lumen during 
rat pancreatic ontogenesis in vivo. This suggests that 
escape from the epithelial layer need not be a 
prerequisite for the cytodifferentiation of the endocrine 
cells. The secretory granule formation could occur 
simultaneously with and not exclusively subsequent to 
the liberation from junctional complexes. In collagen gel, 
the endocrine cells of the transitional zone between the 
duct and the islet usually displayed incomplete cytodif- 
ferentiation, norever ,  they occasionally revealed the 
characteristic mitochondria of acinar cells. In the 
budding islets, non-B-cells tended to aggregate peripher- 
ally as in adult rat islets. The same topographic 
distribution was found in isleflike organoids obtained 
from monolayers grown on collagen and overlaid with a 
second layer of collagen (54), as was observed in islets 
neoformed after pancreatic cell cultures on bidimension- 
al support (29,30L Cytoplasmic processes of non-B-cells 
were observed between the central B-cells in our cultures. 
Such processes were frequently exhibited by the 
somatostatin cells in adult human islets (55) and were 
related to their functional role as endocrine and 
paracrine unit. 
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In  conclusion, the tridimensional matrix of collagen 
offers perinatal  pancreatic cells in culture an environ- 
ment  conducive to cellular reorganization in tissuelike 
structures, which generally does not  appear in monolayer 
culture. In  this system, endocrine cytodifferentiation 
occurs in vitro, which allows for undifferentiated 
epithelial cel ls-- the presumed stem cel ls--and differenti- 
ating and differentiated endocrine cells to be studied 
together. 
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