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1 Introduction and statement of results 

In this paper, we will study the existence and regularity of  complete constant 
mean curvature hypersurfaces in hyperbolic space with prescribed asymptotic 
behaviour at infinity. Let 

H n+l = {(x,y)  C R n × R ,y  > 0} 

denote the standard hyperbolic space equipped with the metric 

y2 

In this model, Hn~ j = R n × {0}U{*} is the one-point compactification of  R n × {0} 
which can be identified with the asymptotic infinity of  H "+l. M. Anderson studied 
complete area-minimizing submanifolds in H n+i. One of  his results is 

Theorem 1.1 ([A1][A2]) Let N " - t  C H n+i be a closed embedded n - 1 dime- 
sional submanifold. Then there exits a complete absolutely area minimizing inte- 
gral n -curren t  S asymptotic to N n-1 at infinity. 

He notes that in case n <_ 6, currents obtained are smoothly embedded com- 
plete submanifolds. In case n ___ 7, as is the Euclidean case, there can be closed 
singular set of  Hausdorff dimension at most n - 7. 

The question of  the boundary behavior of  such hypersurfaces was discussed 
by R. Hardt and F.-H. Lin in [HL],[L1] and [L2]. It is proved that 

Theorem 1.2 ([L2]) Suppose N is C t submanifold. Then there exists a positive 
PN such that ( S  tO N )  fq {y < PN} is a finite union o f  C 1 submanifolds with 
boundary. These have disjoini analytic interiors and meet R n × {0} orthogonalty 
at N. 
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The above boundary regularity implies that all the singularity remains at some 
finite distance, and the hypersurface has a finite genus in case n < 6. Concerning 
the higher order regularity, F.-H. Lin showed that 

T h e o r e m  1.3 ([L1]) Suppose that N is C ~'~ with either 1 <_ k <_ n - 1 and 
0 < c~ < 1 orn  < k andO < c~ < 1. Then, thereexistspN s u c h t h a t ( Z U N ) n { y  < 
PN } is a finite union of  C k'a submanifolds with boundary. 

It is then natural to consider similar questions for constant mean curvature 
hypersurfaces, and investigate the differences and similarities between the area 
minimizing and non-zero constant mean curvature case. Let M C H n+l be a 
smooth oriented hypersurface with continuous unit normal vector field u. The 
mean curvature H of  M at x c M is 

H ( x )  = - < VHeiei, v' > 
n 

i=1 

where {el }in I is an orthonormal basis for the tangent space of M at x and V n and 
< .,. > are the covariant derivative and inner product respectively associated 
with hyperbolic space. Let g2 C R" × {0} C __~tl "+l be a bounded domain (in 
Euclidean metric) with boundary 0(2, and suppose that there exists a smooth, 
oriented hypersurface M with /17/ \ I-I "÷l = 0Y2 and constant mean curvature 
H ,  where the closure is taken in Euclidean topology. We first show that such 
M exists by assuming that IHI < I and 092 is of  class C l at least, with the 
possibility of  M having a small singular set. The hypersurface M is realized as 
a reduced boundary of  a set of  locally finite perimeter (See IS], [F,4.5.11] for 
the definition) in I t  n+l which locally minimizes a family of functionals 

A c ( E )  = n i l .  I tEN Clln + I[O*E N CItn 

for all compact sets C C H ~+l. Here, II" Iln is the volume measure in hyperbolic 
space of appropriate dimension. Then, the existence and interior regularity fol- 
lows from standard results of  geometric measure theory and the use of  appropriate 
barrior surfaces: 

T h e o r e m  1.4 Suppose g2 C R" × {0} is a C 1 bounded domain and IHI < 1. 
Then, there exists a set o f  locally finite perimeter E C H n+l with E \ H n+l = 
and whose reduced boundary M = O*E satisfies : 

(1)M is smooth outside a closed set 1" o f  Hausdorff  dimension at most n - 7. 
(2) M \ 1" has constant mean curvature H with respect to the inward normal 

vector field o f  O* E. 
(3)the closure ~1 of  M satisfies 3 t  \ H n÷l = 0Y2. (The closure in the above 

statement is taken in Euclidean topology of R n+l.) 

The regularity near the boundary (in Euclidean metric) is discussed. One 
needs to examine the quasi-linear degenerate elliptic partial differential equation 
(or PDE) 
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(l .1) 
_ u i u ~  y ( A u  l+-7--~-~ulj) - n  (uy - H ~ )  =O o n B ;  

u(x, O) = ~(x ) 

where u is the non-parametric representation of the graph of M and the equation 
has degeneracy on {y = 0}. There have been numerous works on degenerate 
elliptic PDE, notably by Kohn and Nirenberg ([KN]), Baouendi and Goulaouic 
([BG]). However, the above equation is not covered by these authors. F.-H. Lin 
discussed the case H = 0 in ILl], and the proof of this paper closely follows the 
idea there. We proved that 

Theorem 1.5 Suppose 0[2 is in the class C ~'~, 1 < k < n - 1 and 0 < ~ < 1 or 

k = n and 0 <_ ~ < 1. Then M U 0[2 is a C ~'~ submanifold with boundary near 

012. 

Hence in particular, M U 012 has finite genus for n _< 6 and any interior 
singularity of M remains within some finite distance for n > 7. Higher order 
regularity exhibits certain differences depending on the dimension and the mean 
curvature H. For the area-minimizing case, i.e. H = 0, we show 

Theorem 1.6 Suppose that M is area-minimizing, i.e. H = O, and 012 is C k'a, 

k > _ n + l  a n d O < c ~ <  1. 

(1) I f  n is even, then M UO[2 is a C k'a submanifold with boundary near 012. 

(2) f i n  is odd, then M U 0[2 may not be a C n+t submanifold with boundary 

near 0[2 in general. 

For case (2), we will show that there is a necessary and sufficient condition 
that 012 has to satisfy in the form of a non-trivial partial differential equation 
involving derivatives of up to n + 1, to recover C k,~ regularity. The higher C "÷1 
regularity was claimed in [L1] for all dimensions, but the author found a gap 
here which led to the interesting dependence in theorem 1.6 on the parity of the 
dimensions. For H ¢ 0 case, we can show regularity for n = 2. 

Theorem 1.7 Suppose that M is 2 dimensional surface o f  constant mean curvature 
H with IHI < 1, and 0[2 is C k'c~ with k > n + 1 = 3, 0 < a < 1. Then M U 0[2 

is a C k'c~ submanifold with boundary near 0[2. 

We will exhibit that the case H ¢ 0 is different somehow from the case H = 0 
by showing 

Theorem 1.8 For n = 4, H ~ 0 and IHI < 1, there exists a smooth 012 such that 

M U 012 is not a C n÷l = C 5 submanifold with boundary. 

These two theorems show that n = 2 is special, and that we do not have the 
same kind of higher order regularity result for the H # 0 case as for the H = 0 
case. Even though there are no such obstructions on the boundary regularities 
for minimal hypersurfaces in Euclidean space, we would like to note that the 
similar parity dependence of the boundary regularity has been observed in other 
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problems such as the complex Monge-Amptre equations ([FE],[CY]), harmonic 
functions on hyperbolic spaces ([G]), and harmonic mappings between hyper- 
bolic spaces ([LT1,2]). For example, in [LT1,2], Li and Tam studied harmonic 
mappings from H m tO I-I n with prescribed boundary behaviors with various reg- 
ularity assumptions and so called nowhere-vanishing energy-density hypothesis. 
Among the other interesting results, they showed that the map constructed by 
using the heat flow method is C "-1,~ if the prescribed boundary is C m-l,'~ for 
/3 < c~. The further higher order regularity seems to be difficult to prove, even 
though they conjecture for the positive answers ([LT2]). They also observed that 
there are obstructions for the smooth boundary regularity for odd dimension and 
none for even dimensions, assuming that the harmonic map is smooth up to the 
boundary. So the situation for the minimal surface here seems very similar, while 
the non-zero constant mean curvature breaks the parity. 

There are numerous works on the minimal surfaces as well as the constant 
mean curvature surfaces in hyperbolic space, but we only mension the works 
by Bryant [BR], Umehara and Yamada [UY] for the surfaces of constant mean 
curvature 1 in H 3 and refer to the further references therein. In case IH[ > 1, 
there have been investigations on the behavior near the infinity (see [KKMS]), 
and it seems to indicate that the analytic properties are totally different from the 
case of IHI < 1. We will discuss only IH[ < 1 case in this note. 

After this paper was accepted, we were informed that Alencar and Rosenberg 
(JAR]), Nelli and Spruck ([NS]) studied the constant mean curvature hypersur- 
faces in hyperbolic spaces and showed certain existence and uniqueness. Our 
work has a different approach and should be of independent interest. 

I would like to thank my advisor F.-H. Lin for continuous encouragement 
and advice. This paper is part of Ph.D dissertation at New York University. 

2 Proof  of  existence and regularity up to C 2,~ 

In the following, we use Euclidean topology and metric associated with R n+l 
unless steted specifically as "hyperbolic". 

First, we consider the special case of f2 = Br(xo) and IH[ < 1. Direct calcu- 
lation shows that, for a set En(xo,r) C H n+l with 

R l y r e b i r d }  (x0,r)~ (x,y) E ×R+;Ix-x012+ + I_x/T-S-B~ < l_n------- 5 

M tt = OE(nxo,r) N {y > 0} has constant mean curvature H (in hyperbolic metric) 

with respect to the inward unit normal vector field, and OM It = OY2 = OBr(xO). 

If H = 0, M° is a totally geodesic plane, which looks like a half sphere in the 
upper-half space model. If I > H > 0, M H is a graph o v e r  Br(xO), which looks 
like a "cap of sphere" in the upper-half space model. We note that the boundary 
behaviors of these examples suggest that of  the general case. In particular, if 
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the boundary behavior of  the surface is smooth, we expect that the angle On of  
intersection of  the constant mean curvature surface and the bottom plane R n × {0} 

at infinity is given, as is the case of  the above example, by 0u = arctan ( ~ ) .  

Suppose some bounded C 1 domain D C R n x {0} is given and that there 
exists some open set E C R ~ x R + with /~ \ {R ~ x R ÷} = ~ and that M = 
OE C~ {y > 0} is a smooth submanifold with (hyperbolic) constant mean curvature 
0 <_ H < 1. Then, by using the family of  aforementioned constant mean curvature 
surfaces, we can use a moving planes method adapted suitably to this setting (See 
[GNN]). It shows that surfaces with the same constant mean curvature cannot 
touch at a point away from (hyperbolic) infinity. One has to be careful with the 
direction of  the normal vector field with which one measures the mean curvature 
of the surface in this argument. With these considerations, the followings are 
true: 

(1) i f x  E R n and/~R(x) C 12 f o r R  > 0, then E(~,R ) C E. 

(2) if x E R ~ and BR(x) D X) for R > 0, then E C E(x~ R). 
- H  (3) if x E R ~ and/~R(x) A ~) = 0 for R > 0, then E N E(x,R ~ = O. 

Hence, the above E~,R) serves as barriers for such E and are used to establish 
existence and regularity of  the surfaces. With these remarks, we prove existence 
of a constant mean curvature surface for any given C ~ boundary at infinity and 
interior regularity. 

Theorem 2.1 Suppose 12 C R ~ x {0} is a C l bounded domain and lit I < 1. Then, 
there exists a set of locally finite perimeter (in hyperbolic sense) E C R ~ x R ÷ 
with E \ {R ~ x R ÷} - ~) and whose reduced boundary (in hyperbolic sense) 
M = O*E satisfies: 

(1) M is smooth outside a closed set F of Hausdorff dimension at most n - 7 .  
(2) M \ F has constant mean curvature H with respect to the inward normal 

vector fleld of M. 
(3)the closure M of M satisfies ~'I \ {R" x R +} = 012. 

Proof. Without loss of  generality, we can assume H _> 0. If  0 > H > - 1, then 
we only need to invert H ~÷l with a suitable isometry and change the direction 
of the normal vector field. Then define 

/~  = { ( x , y )  E R n x R ÷ ; x  E 12,0  < y < ~} 

for ~ > 0 and choose r0 > 0 and xo E Y2 so that ~ C B~o(XO). Also define 

6e  = {(x, y); (x, y) C E~,ro), y > ~} 

, ~  = {E C H"+I ,E is a set of  locally finite perimeter and E n (/gD c = / ~ }  

(2.1) A~, = n i l .  IEI~ + II0*EH~ 

= nH L dVH + sup f diva~dVH 
n~ = ~cc~'(~3,101<_1 J~nE 
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where volume, divergence and reduced boundary of the set of locally finite 
perimeter are associated with hyperbolic metric. With these, we solve a min- 
imizing problem for all sufficiently small c > 0, i.e. we find a J~ E , ' ~  such 
that 

H ~ H A{y>.~}(J~)- i n f  A { y > ~ } ( E )  
E~.~ 

This follows from BV function compactness (See [S]). Moreover, J~ is in the 
(hyperbolic) convex hull o f / ~ .  Here, the convex hull of set A is defned to be 

0 NACE~,r)E(x,r)" 

Since the normal projection map to a totally geodesic plane is Lipschitz contin- 
uous with Lipschitz constant 1, the minimizer should stay inside of the convex 
hull. Suppose xl E f2 and rl > 0 satisfies /~r~ (xt) C f2. Then, by the barrier 
augument, Je D E/4 for any z > 0. The use of moving planes method for J~ (xl,rl) 

can be justified by the fact that, if E~,r) touches O*J~ at z E {R" × R+}Nbe then 
O*J~ is a smooth hypersufface in the neighborhood of z. This follows from the 
fact that the tangent cone exists at every point of O*J~ \D~ and that it is actually 
tangent plane at this point due to the extremal nature of this point. With these and 
a suitable relative isoperimetric inequality, it follows that there exists a constant 
C(n, ('~') for any open set ~ CC H n+l SUCh that IJ~]c. + IlO*Jellc~ < C(n, '(;~) for 
all small e > 0. Thus, again by compactness, there exist a set of locally finite 
perimeter J and subsequence ei --* 0 such that Je~ ~ J in L~o~and a.e. and J 
minimizes functional A~ (.) for any bounded open set CJ. By a similar argument 
as in the smooth case, J has barriers of type (1 - 3) described above. This shows 
that J \ {R" x R + } = f2 and OZJ \ {R" × R + } = 0f2. Standard regularity theory 
of geometric measure theory gives the stated interior regularity of O*J. [] 

Remark  2.1 The open set f2 only needs to be a set of finite perimeter to carry 
out the above proof, and all the interior regularity holds as in the C 1 case. 

We denote the set of locally finite perimeter obtained in the previous proof 
by E, and let M = O'E, where the reduced boundary is considered in hyperbolic 
metric. Due to the barrier for the constant mean curvature hypersurfaces, we have 

M n { y  < p } c W p = - R  n × { 0 < y  < p }  

- -H .  /4 . \ {z  E E(x,r),x E R" \ ~ , 0  < r < d(x)} \ {z E E(~,r),X E R"Nf2,0  < r < d(x)} 

where d(x) = dist(x, Of/). Let uoo(x) be an inward unit normal vector field of 
0f2 at x E Of/ in R" and for x E 0S2 and r > 0, let 6(x,r) = min{d(x + 
ruo~(x)), d(x - ruoo(x))}. Simple calculations show the following. 

Lemma 2.1 

(1) s u p [ I - r - t r ( x , r ) ] - - * O  a s r ~ O  i f O f 2 i s C  1 
xEOI2 
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(2) sup [1 - r - 1 6 ( x , r ) ]  < cor2a/O-a~for r < Pl ifOg2 is C ~,c' with 0 < ~ < 1 
xEO(2 

Here, co and Pl depend on O f  2, n and c~. 

(3) r-16(x, r) = 1 for all positive r < ]]max. principal curv.]IL~OO ) - 1  if 0£2 is C 1'1. 

Let Px C R n × (R ÷ U {0}) be a (Euclidean) half plane through (x, 0) whose 
intersection with the 'bot tom plane' R ~ × {0} is tangent to 0J'2 at (x,0),  and 

makes an acute angle 0H = a r c t a n ( ~ )  with the inward unit normal vector 
/ 

to 0J2. Also let de~(xl,yl) = dist(P~,(xl,y~)) for any (xl,Yl) E R" × R +. With 
this notation, direct computations using the previous lemma show 

L e m m a  2.2 For (xo, Yo) E Woo a, 
(1)dp~o(xo, Yo)/Yo --~ 0 uniformly as Yo ~ 0 if O[2 is C I. 

(2)dP~o (XO,YO)/Yo <_ cly~ for yo < P2 if Og2 is CLa for 0 < a < 1. Here, cl 
and P2 depend on Of 2, n, a and H. 

We next use the isometry of hyperbolic geometry under the scaling (x, y)  
(~,  ~). By the previous lemma, the current is squeezed in narrow strips parallel 
to the tilted plane Px as one lets A ~ 0. 

Theorem 2.2 Suppose 0S2 is C 1,% 0 <_ c~ < 1. Let E be a minimizer of the 
functional (2.1) and let M be O*E where reduced boundary is considered in 
hyperbolic metric and topology. Then there exists a positive p which depends 
on Og2, H, n and ~ such that M U Og2 ;q {y < p} is a C t'a submanifold with 
boundary. 

Proof. We will show that there exists p > 0 such that M n {y < p} has no 
singularity and uM is continuously extended to the boundary by defining uM (x, O) 
as a unit inward normal vector to the plane Px. If  this is false, then there exists a 
sequence (xi, yi) converging to (x, O) such that either M has a singularity at (xi, Yi) 
or l i m i ~  ] l /M(Xi ,Yi )  -- /-'M(X,0)] 2> 0. Let $i E Og2 be such that d ( x i , O f 2 )  = 

I~i - x i [ .  For each i, we shift ~i to the origin and scale by (x ,y)  ~ (~,  Y). With 
this scaling, (xi,yi) is shifted to (0, 1). Then, for any e > 0 and for all large i, 
we have 

({  1 }) 
d Mfq  (2,Xn,y):12] <_ 1 ,~  <_y <_ ~,deo(X,y)< 1 ,Po -<e  

One can calculate that the generalized mean curvature (in Euclidean metric) of  M 
(See [S] for the definition) is bounded by C (n)(1 +H)/y  at (x, y), so that AUard's 
regularity theorem ([S],[AL],[BO]) combined with the small height conclude that 
M is a C 1'1 graph ui over P0 near (0, 1) and that [Ui]c~.~Bi/:) --~ 0 as i --~ c~. 
Since the normal vector to P~ converges to Px, limi_~oo ] V M ( x i , Y i )  - -  VM(X,  O) t = 

O. This concludes the proof of  the C l case. 
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For C l,~ 0 < a < 1 regularity, we view M near x E 0J2 as a C 1 graph over 
the hodograph plane, i.e. let x E c0J2 be translated to the origin and T0(0J2) = 
{x,, = 0}. Then a C 1 function u defined on B~-1(0) x (0, p) C {xn = 0} x 
R ÷ for suitably small p represents the surface M. Suppose that u <_ yL on 
n~-~(0) x (0, p ) n  (Ixl _ ½y} for some constant L. Then u locally minimizes 
the corresponding functional 

(2.2) f K ( I + u 2 +  2½ n f K y L - U d x  Uy) /y dxdy+nH yn+l 

for any compact set K CC B~,-l(0) x (0, p ) N  {Ix[ <_ ½y}. The first term corre- 
sponds to the hyperbolic area of the graph and the second term to the enclosed 
volume times nH between the graph yL and u over K. The Euler-Lagrange 
equation for such functional is given by 

UiUj n (uy -- H ~ )  =0 .  
Au 1 + IDul :iuij - y 

"-1(0) × (o, p )n  {lxl < ~}, Also we have a uniform estimate for u on Bp 

u(x ,y ) -  ~ y  <_ c(n,H,g?,a)y 1+~ 

if Og2 is C1'% Consider a scaling 

v;~(x,y)=A-lu(Ax,Ay) for A > 0. 

n--I By the invariance of scaling, v~,(x,y) locally minimizes (2.2) on Bp/~,(O) x 
(O, p A - ' )  A {Ix I _< ~} and 

v.x(x,y) H ] l ~ _ ~ y  < c(n, H, ~, a)A a. 

By the interior gradient estimate (See [GT]), we have 

O(v~, - l~_ Hzy) 
.< 

c ( n ~ n  ~ ~ o~)~k °~ 

IDZv,x[ < c(n,H, Yl, a)A a 

I After scaling v~ back to u, we have on 0 < A < p, ½ <_y_< 32- I x l _  < ~. 

H 
D(u(x,y) - l ~ _ ~ y )  <_ c(n,H, ~2, o0(Ixl + y ) a  

IDZu(x,y)l <_ c(n,H, ~2, a)(lx [ + y)a-i 

for all (x ,y)  E {Ix[ <_ ~}N{y < e}.  This shows, after the change of  coordinates, 
that u is a C 1,~ graph in the neighborhood we are considering. [] 
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We now assume that 052 is C 2,'~, 0 < a < 1. We showed above that the 
graph u over the vertical plane satisfies 

(2.3) { y ( A u -  u~---SY~--,,..'~ ( - H ~ )  = 0  on B~ l+[Dul2~q ] -- n Uy 

u(x, O) = ~(x ) 

where B~ = { ( x , y ) ; x  C B~- I (0 ) ,0  < y < 1} and u E C~'t(B~'+~(0) x [0, 1)). 
H We can choose a coordinates so that ~(0) = IV~(0)l = 0, and Uy(0, 0) = v/l_n2. 

Simple calculation also shows that Uy(X, O) = q" IVqg(X)I 2. 

Theorem 2.3 Let  u be a solution o f (2 .3 )  on B~ and qD C C2'C~(B1). Then u E 

C2'a(B+), f o r  0 <_ e~ < 1. 
2 

Proof. The idea of  proof is the same as [L1], so we only point out the difference 
in case of H # 0. First we consider the C 2 case. Let ( x i ,Y i )  E n ~ ,  Yi > 0 and 
( x i ,Y i )  --~ (X0,0) as i ~ ec. We subtract a linear part of  u and form a new 
sequence 

u i ( x , y )  

= y-2i u(xi + y i x , y i y )  -- ~p(xi) ~ 1 + IV~(xi)12yiy -- y ix  " Vqo(xi) • 

By using C ~'1 estimate, one can conclude that there exists a subsequence um' of 
u "~ such that um' converge locally uniformly in C t with uniform bound in C ~'t 
on the half-space fl~. and converge locally uniformly in C 2 with uniform bound 
in C 2'9 (/3 < 1) on R+. The limit u ~ of  um' satisfies the equation 

y ( A u  °° -- n2(uC~)yy)  - n(l  - H2)(u°C)y = 0 on R~ 

l u~(x , y ) l  <_ e(lxl 2 + yZ) 

Let y = y ( l  - H2)-½. Then the above equation is 

y Ax,yU °° - n(u~)y  = 0, 

so that it reduces to the same equation as that of  the minimal surface. Hence, the 
subsequent arguments for C e and C 2,'~ are similarly done as the case H = 0 in 
[LI ]. We omit the detail of  the computations. [] 

3 Tangential derivative estimate and regularity up to C n,~ 

In this section, we obtain tangential derivative estimates as well as the C n'~ 
estimates. The idea of  the proof is basically the same as for the C 2,~ case, that 
is, we use the maximum principle to show a C 1,1 bound and a blow-up argument 
for the C 2'~ bound. It is technically more involved, though, mainly due to the 
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presence of non-vanishing mixed derivatives. The estimate will be used to obtain 
normal derivative estimates in the following sections. 

Theorem 3.1 Suppose that u is a solution of(2.3) with lul <_ 1 on B~. Suppose 
that qo E C k'a for k > 2, 0 <_ a < 1. Then k-2 D~ u E C 2'a f o r 0  < a  < l a n d  

k - 1  C1,1 D x u C for a = 1. 

Proof. We prove by induction. Assume that ~-1 D~, u c= C2,~(B~) have been proved 
for a < 1 with the assumption that ~p E C~+l'a(B1), which is true for k = 1. 
Assume that qo E C k+l' I(B1) and we will show that Dkx u ~_ C 1,1 . We differentiate 
equation (2.3) k times in x. Then, 

- -n(Dxu)y+nHDx ~ ~/1 + IVul 2Dxui Y A(Dkxu) 1 + IVul 2(o~u)° k k-I i=l 

(3.1) 
k- I  

: y  ~-~ (kl)  (Dkx_ t uiuj "~ 1 2) (D'xuo) 
/=0 

We will change the above equation into one for which we can find a suitable 
comparison function for Dx k u with quadratic decay at the origin. We will collect 
terms of order O(y) and O({x[) with control of decay depending only on the 
derivatives of qo up to C k÷1'1. The last term on the left hand side of (3.1) is 

where 

nH ( ~ Ui ] (Dkx u )i + B i(x,O) n tJ (x,O) 
i:, v/1 + l V u l  2 (x,0) 

Ui (x,y) (Dkxu)i) 
+ V/1 + IVu[ 2 i=1 (x ,0) 

B(x,Y)=k-~_~ (kT1) {i=~l (Dkxql-lv/i:iVu[2)(Dlx+lui) } 

]~l(x'Y) = B ( x , y ) -  B(x,0) and so on. By using Ux,(x,O) = and B [(x,0) = B(x, 0), u I(x,o) 

~xi(X), Uy(X,O) = H ~ l ( x , O )  ~ V / 1  + lVqol2(x), and - .- . . . . -~1 - H,  v = (D~u) 

satisfies 

uiuj "~ nH~/1 - H2qOx,(X) 
y Av 1 + ~  v o j - n ( 1 - H 2 ) v y +  V/l+lvqot2(x) v~, 

k 2 ( )  
t=o 1 Dk_l-I  V/1 +~iiVqO[ 2 (Dt+lqa)i(x) + yR 
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where 

R(x ,Y )=-nHy  - t  ,._., Dkx - ' - I  (D~+lu) i 
L l=0 1 i=1 4 1 + [Vu ]z (x 0) 

ui (x,y, (Okxu)i + ~ (kl)( okx-I uiuj ) (olxuij)" 
+ v/1 + [Vul = 1 + iVu[ 2 i=1 (x 0) l=0 

The highest order of differentiations in R(x,y) is k, and since we have control 
of derivatives C k+l,~ in the x direction and C a for Dk-lury for c~ < 1, we can 
check that I[RNc~(B;) < c(n,H,o~, I1~11o+',o) for a < 1. Let ~ be v minus a 
constant and linear term at the origin, i.e. 

O(x,y)=v(x,y)_(D~)(O)_xi(Vx,  DkxqO)(O)_y (Dkx I~_ 1+]V9912 ) (0). 

Then, ~ satisfies 

( UiUj ) nHv/- f -H2Wi(x)  ~, 
(3.2) y /X~ I+IVul z°'s -n(1-n2)©Y+ --~-+-(V--~ 

I ~ - ~ (  k l l ( h k x - ~ - t  V/1 +IV I ~p' '~ [(X)(o) : yR - n H  ~ L 1=0 --l --~- qo'2 ] (o/+lq°i) 

,/1 f{V~l 2 (x)~Dx D~ ~)(0) 

= ye - P(x). 

Note that [e(x)[ <_ c(n,n, II~llck+,)lxl. We show that 10(x,y)[ < c(Ix[ 2 +y2) 
on B~ for some constant c = c(n,H, I1~11o+,.,) by finding a suitable sub- and 
super-solution for ~ as follows. Let L be defined as 

uiuj "~ nHv/1 - H2qox, 
- Lq~=y A~b 1 + ~ - ~  ) n ( 1 - H 2 ) $ y +  

Then, 
L(iXt 2 + c ly  2) 

<_2y ( n - 1 ) + c l  1 l+ lVu l2 )  - 2 n ( 1 - H 2 ) q y  

+2nil x/1 - H 2 ~°i 
x/1 + IV~l  2 (x)x, 

<_ c21xl 2 + 2y {(n - 1) + c1(1 - n)(1 - n 2) + c(n, H, ll~Ollc,,,)y } 

< -y (n  - 1)(1 - H2)q + c2lx[ 2. 
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The last line is true by assuming that cj is suitably large. Also the calculation 
shows that 

L(Ix[2y) <_ c3y - n(1 - H2)lxl 2 

L(P(x)y/n(1 - H2)) < c4y - P(x)  

where c2,c3,c4 depend on n,H,l[~[[c~+,.,, and note that the second derivative of  
e ( x )  can be bounded by [[~p[tc~÷~.~. Let 

9(x ,y)  = cs([x[ 2 + cly 2) + c61xl2y + P(x)y /n(1 - H2). 

Then, by using the above calculation, one can choose cl, c5, c6 depending only 
on n , H ,  II~llc-,,, so that the following are true: 

~(x ,y)  < 9(x ,y)  on OB{ 

Lg < LfJ on B~'. 

Then by the maximum principle, we have 

-< 9 o n B { .  

Since IP(x)ly < c(Ixt 2 + y2), for a suitably large constant c = c(n, H,  II~[Ic~+,,,), 
we have 

<_ c(ixl 2 + yZ) 

on B{. A similar argument shows that 

[~(x,y)l < c(Ix[ 2+y2)  on ni  ~. 

We return to equation (3.2) and note that 

By using the scaling 

we have 

[[P(x)[[c,,, <_ c (n ,H,  Ilqollck+l,,). 

©~,(x,y) = A-2O(Ax, Ay), 

Ilo~llc~ ~(jxl<},~<y<}) ~ c(ll©xllco(~7) + [lyRIlco,~(8?) + IIPl lc , , , )  

for a < l, 0 < A < 1, and subsequently 

11V29[lc0(lxl_<y,0<y<½) < c (n ,H ,  ll~[lck+,,,). 

Since a similar estimate is true for any Ixl <__ 1/2 after a change of  coordinates, 
we have C 1,1 estimate for Dkx u on B~/2. 

it/I(x,Y) instead of  Here, one may not see immediately the necessity of  taking ~ ~(x,0) 

B (0,0)'(x'Y) The reason is that, even though we obtain bound of  the kind c([x]+y) for 
the right hand side of  equation (3.2), it is not good enough to construct barrier 
functions since x changes sign in B~. 
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For  ~p C C k÷2 and C ~÷z'~, the method is the same as the C z and C a,~ estimate 
(just more computations), and we omit the proof. [] 

For  n > 3 we can prove the following by employing the similar method. 

Theorem 3.2 Suppose that u satisfies the equation 

y A u  - ~ U i j  n (U s -- H k/1 + IVu[ 2) = 0  on B{ 

u(x,O) = ~(x)  on B1, 

E Ck'~(Bl),  2 < k < n - 1,and 0 < ct < 1. Then u E Ck'~(/~/2)  and 

Ilu <- e(H, k, a, II llc  

If k = n, then the above is true for  0 <_ a < 1. 

4 Higher order regularity for dimension 2 

In this section, we will show that constant mean curvature surfaces are as regular 
as the boundary near infinity in case the dimension is two. As we will see in 
section 5 and 6, unless we impose an extra condition on the boundary behavior, 
we may not have C n+l regularity for certain cases depending on the dimension 
and value of H .  Hence, dimension two can be considered special in the sense 
that it recovers all the regularity without any extra condition on the boundary 

behavior. 

Theorem 4.1 Suppose that u satisfies the equation 

u, uj 
(4.1) y ( z ~ u - ~ u i j ) - 2 ( u y - H ~ )  = 0  

u(x,  O) = ~;(x ) 

c Ck'C~(B1), k >_ 3,and 0 < ~ < 1. Then u E ck'c~([~/2) and 

Ilu IIc,,o(e:/=) <- c(H, k, II llc,,o(B, )- 

on B~ 

on B1 

Proof. Assume ~ E C3'a(B1),  0 < oz ,( 1. We proved that u E C2'/3(/~/2) for 

any fl < 1 and Vxu C C2'~(/)~/2) with the growth estimate for the higher order 

derivatives 

(4.2) ]Diul(x ,y)  < c + cy  2+c~-j , IDJOxul(x ,y)  < c + cy 2+~-j 

f o r j  = 0, 1 , . . . ,  0 < y < 1 /2  and Ix[ < 1/2. For  any x E B1/2, we can assume 
that x = 0 and ~(0) = V~(0)  = 0 by a suitable transformation. Let 

a(y) = u(O,y) - uy(O, O)y - Uyy(O, 0 ) ~  
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H ~xx (0) y2 
= u ( O , y )  ~ y  1 --  9 2 2 " 

We need to prove that fi E C3'~([0, 1/2]). From the equation (4.1), fi satisfies 

Uy 
--  - -  Uyy + ~,Oxx (0 )  (4.3) y(Ftyy 2~y)(1 H2) =Y 1 + lXYul 2 HZ 

2Ux Uy u x 
-Uxx + l + l~7u[ zuxy + l + [Vu] ~ u x x  + ( 1 - H  2) Uy 

( ' ¢  ) }  × x / l _ H a  l+ lVu[  2 -Hu2x  u y + H v / l + l V u [ 2  

-=fo(y). 
By using estimate (4.2), we can check that 

2 
Uy H 2 = 2 H  X/1 - H2~xx(O)y + O(y l+°t) 

1 + [Vul  2 

H 2 O(yl+,~) ~xx (0) -- Uxx = -  ~ qOxx (O)y + 

1 H 
1 + [~Tul 2 x/1 - H ~ 2  - 1 - H ~ x x ( O ) y  + 

O(y l+°t) 

2 
U x Uy U x 

1 + IVul  2uxy' 1 + IVul 2ux~ = o¢ / ) .  

Direct substitution shows that the coefficient of y2 of the Taylor expansion offo 
equals 0, and 

y(Flyy -- 2t]y)(1 -- H 2) = O(y2+a). 

The vanishing of the coefficient is the decisive factor to obtain the higher order 
regularity, and it is uniquely so for dimension 2 with H ¢ 0. Let 

Ox 
y2" 

Then, y3Wy = O(y2+~), so that w(0) is well defined by the integral and 

I~(0)1 ~ c(H, II~o1103,~, ~). 

By integrating equation (4.3), we have 

f l  dt 
(1 - H2)/~y(y) = y2w(0) + J0 f ( t y ) ~ .  

By using estimate (4.2), we can check that 

ImJjo(Y)l ~ cy2÷~-J 
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for j = 0, 1,- ... This shows that 

ID~ul(y) ~ c +cy 3+°~-j 

which implies that u C C3'C~(B~/2 ) with the desired estimate. 

For C k,~, k > 4, 0 < c~ < 1, assume that the theorem is true for k - 1, 
0 < c~ < 1 with the estimate 

(4.4) IDi u[(x,y) <_ cl + c2y ~-l+'~-j 

for Ix[ < 3/4,  0 < y < 3/4,  ci's depend only on H ,  k, c~,j and II~llck-,.~. By 
the tangential estimates, we have D xk-2u C C2"~(/t~/2) and 

(4.5) IDiO~-2uF(x,y) <_ c + c y  2+~-j 

for Ix I < 1/2, 0 < y < 1/2. We prove Dx ~k-auC C3,a(/~/2) at first. To do so, 
differentiate the equation with respect to y. Then, we have 

( y Au 1 + IVul------zUijjyy 1 +t-~u] 2uij y 

(UxUxy_"FUyUyy) 
-2Uyyy+2n \ v / l+ lVu l  2 ---0. 

Y 

There is a cancelation of 2Uyyy, and by solving for yD4u, we have 

(4.6) - ( l  - H2)yD:u = y U~y - l + lVul~Ui:  - H2D2yU yy 

+2U~y - 2  1 +lVul 2u'j -H2D~u y 

U x Uxy 4- Uy Uyy ) 
+2. \ ; i- ul  Ho u --o 

:y 
on B~(/2 × (0, 1/2). Since we have established C 3,~ estimate, for each x E Bl/z, 
we can let y ~ 0. Then the equation above yields 

3 (4.7) 2Uxxy(X, 0) - 2 1 + [Vul 2uq - H2D2yu (x, O) 
, , y  

( uxblxy-'-I-Igyuyy HD2u)  (x ,0)  = 0 
+2H \ V/1 + ]Vul 2 " Y 

for Ix I < 1/2. Note that expression (4.7) does not actually include D3ru(x,O) 

u-------z----~ = H .  Also note that each term is explicitly represented terms, since ~ ~,0) 

by the boundary value D/x ~ of order up to j < 3, so that it makes sense to take 
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derivatives with respect to x k - 3 times. Then, by using such identity, tangential 
derivative estimates and (4.7), we can check that 

(4.8) lyO~-3Daul(x,y) < c(n ,k, o,, II~[Ick,~)y ~ 

for Ixl _< 1/2, 0 < y < 1/2. This shows that D~-3D4u has decay of order y ~ - l ,  

which implies that D~k-Su E C3,a(~/2)  with 

k-3 IIO~ ullc3,.(%~) _< c(H,k,a,  ll~llck,.), 

(4.9) IDJDkx-SUl(x,y) < c + cy 3+'~-j 

on Ix I < 1/2, 0 < y < 1/2 for a n y j .  
Next, we show that Dmu E ck-m"~(fi~-/Z) for 1 _< m < k - 4, with the 

estimate 

(4.10) [D~Oxmul(x,y) ~ C + cy k+c~-j-m 
Suppose that estimate (4.10) is proved for m + 1 , - - . ,  k - 3. The case k - 3 is 
proved already in (4.9). Then we will prove it for m. Set v be D~u minus the 
Taylor expansion of  up to the second order at x. By shifting x to the origin and 
assuming ~(0) = V~?(0) = 0, and restricting v on x = 0, v satisfies 

(y'l)yy -- 2Vy)(1 -- H 2) 

Vyy + 2 1  + iVu[2Uxy + 1 + ~ - - ~ u ~  = y -Vxx + 1 + [Vu 12 H2 IAxRY x 

+y i ~  (7)(om_, Uiblj ) ) (0,y) 
1 + [Vul 2 (D~uij) + G(O,y) 

k 1=o (o,o) 

ui (Dmu)i _ Y - 2 H ~  ¢ I + I V u l  2 v / l+ lvu l  2 (O~u)i (0,0) 
i=1 (0,0) y 

fA (O,y) -- yAy(O, 0)}  - 2 H  ,[,a (0,0~ 

= fm(y)  

for x = 0, 0 < y < 1/2, where 

m--2 (m--II ~-~ (O2-'-I ui ) 
a(x , y )  = E l V/I +[Vul 2 (Dlx+lu)i 

1=0 i=1 

with 

[ ( 2 )  uxuyl 
u 2 Uy Cl + 2dl 1 + iVul 2 j G ( x , y ) = y  l + [ 7 u [ 2 a u +  l + [ V u l  2 H 2 
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Cl = (D~u)yy(O, O) 

d l =  (Ox~u)xy(O, O) 

all = (Dmu)xx(O, 0). 

Since m <_ k - 4, v E C3'~([0, 1/2]) at least. Also, 

(4.11) ly~3yy -- 2Vyl(O,y ) < c ( H , m , o ,  I[qOllC,.~3,=)y '~+2 

by the estimate (4.8), and 

IDJ(y'Oyy - 2vy)l(0,y) <_ c(H,m,o~, tlcpllc,.+3,~)y a+2-j. 

By a similar procedure as in the C 3'" case. we have 

fo dt (4.12) (1 -- H 2 ) v y ~  ') = y 2 w ( 0 )  + fm( ty ) -~  

/;v 
where w(y) = ~r and is well-defined at 0 due to the estimate 

(4.13) IO~-mvl(y) ~ c IDk-m+lz; l (y)  < cy ~-1 

We can estimate the order of  growth of  each term of  fro(y) by using the estimates 

(4.2) and (4.10), which gives 

IDif,. I(y) <_ e +cy k+c~-m-l-j .  

By this and the expression (4.12) for %., the estimate (4.10) for 1 < m < k - 3 

as well as the estimate (4.13) are proved. 
To finish, we need to prove u E Ck'"(B~/2), or m = 0 case. This is accom- 

plished by using estimates for m = 1,- - •, k - 2, and one can show that 

IDJfo](y) < c +cy k-l+'~-j. 

This completes the proof that u E ck"~([~/2). [] 

5 Higher order regularity for area-minimizing case 

For n > 3 and H = 0, we show the following. 

Theorem 5.1 Suppose that u satisfies the equation 

(5.1) 
y A u - - ~ u i j  - n u y = O  on B~ 

u(x,O) = ~(x) on Bl 

with ~ E Ck'NB1), k >_ n + 1, and O < ~ < 1. Then 
(1) (n is even) u E ck'~([~/2) and 
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Ilullc,,o(~:/2) -< c(n,k,t~, II:llc~ -(B,)) 

(2) (n is odd) u does not belong to Cn+l(/)~/2) i f  ~o does not satisfy a partial 
differential equation Pn - 0 on Bl/z. Pn involves derivatives o f  ,co of  order n + 1 
• and the form ofF'.  depends only on n. I f  the equation Pn =- 0 is satisfied on Bl, 
then u C Ck'C~(B~lZ) with 

llu [Ic~,o(~:) -< c(n, k, <~, Iko[Ic~.o(,,)). 

To prove the above theorem, we need the following 

Lemma 5.1. Suppose u is a solution fo r  equation (5.1) and ~ E C"'~(B1) f o r  
some 0 < a < 1. Then 

D~uiy_--o -- 0 for  odd number j with 1 < j <_ n 

utu ) y=O D~ ( ~ u i j  =--0 for  odd number j with 1 < j <_ n - 2 

I f  q) E C n+l'c~ and n is even, then 

i + IVul 2uO (x , y )  -~ 0 

as y ~ 0 uniformly in x. 

Proof  o f  Lemma. 
Dyuiy=O =-- 0 follows from the equation. Then all the mixed derivatives of the 

form D~Dyu is identically 0 on y = O. From this follows 

( UiUj ~ y=O Oy \l+lVul2UO) ==-0. 

Suppose that 
O J U l y = o .  = - o 

l ( U, Uj ) y=o 
Dy I+IVuL 2u/; - 0  

for all the odd numbers l less than or equal to some odd number s, and s < n - 2. 
Then, take (s+l) derivative of the equation (5.1) with respect to y. By rearranging, 
we have 

(5.2) ( n - l - s ) u ( S + 2 ) = y  A u  (s+l)- 1 + tVul2U/j) ) 

+S(Z~xU(S)( UiUj ~(s)~ 
l+lVul :uis) ) 
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where U (i) ~ OyU. By the C n,'~ estimate, 

(5.3) [Dku[(x ,y )  < cy ~+'~-~ +c .  

Hence, the first term of  the right-hand-side of  (5.2) goes to 0 as y ~ 0 uniformly 
{ ,,_~__ ..~(~)l 

i nx .  Since u (s) v=o ~ 0, we have Axu(S)ly=o = O, and also ~, l+lVul:Uv) ly--0 ---- 0 

by the inductive assumption. This shows that u(S+2)ly=O =- O. If  s + 2 _> n - l ,  
this proves the first part of the Lemma. If  s + 2 < n - 2, then we need to show 

UiUj I 
1 + IVul 2 u ° )  ~--0 -- o. 

We can check that 

+ I-vul2) (' 1 1 ~ 0  
y---O 

for odd l with 1 < l < s + 2. Since 

(ui  
1 + IVu] 2u i j )  = ~ s 2 1 + [Vu] 2 1  (O~ uiujuij) 

/=0 
we only need to prove 

(D;+2-luiujuij)[y__.o ~ 0 

for even l. But this follows from the inductive assumption and s being an odd 
number. To show the last statement, we use the tangential estimate for C n+l,'~ 
and we can conclude the proof. [] 

We first derive a necessary condition for ~ to have u in C "+1 up to the 
boundary. So assume u ~ C~+I(B-~/2). Take (n - 1) derivative of  equation (5.1) 

with respect to y. Then, 

(5.4) YU("+l) - u(') = - Y  A ' :u(" - l )  -- 1 + IVUl 2uij 

l ) 
By Taylor expansion at any x E B1/2 and by substracting a suitable constant 
term depending on x from both side, one can see that the left-hand-side of  

UiUj , x~(n--1)~ 

has to be satisfied. From the equation (5.1), We have 

m--1 {Axu(m_2) l b l i U  j / (m-2) / 1 
(5.6) u(m)(x, 0) = n - m + 1 1 + IVu [2 uij 

)/(x,O) 
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for 2 < m < n. If  n is odd, then, one can show that (5.5) combined with (5.6) 
impose a condition on 02 in the form of non-trivial partial differential equation 
of  order n + 1. This shows the necessary condition for odd dimension n. By 
the previous lemma, (5.5) is satisfied by the even dimension n with an extra 
assumption that ~ E C n+l'~. 
Proof of theorem. 

We first prove qo E C n+l'a implies u E C n+t'c~. Also, assume that condition 
(5.5) is satisfied for the odd dimensional case, which is necessary as was noted. 
By the tangential derivative estimate, we have 

O~-lu E C2'c~([1~/2) 

Oy-2Dxu E C2'C~([~/2). 

Hence, we only need to prove that Oyn-2u E C3,~(/~/2) with the appropriate 
estimate. Take (n - 2) derivative of  (5.1). Then, 

. .  (n-2) 2uSn-2) _ y ( A x u ( n - 2 ) _ f  UiUj ~ (n--2)~ (5.7) 
yUyy - -  = ~ ~, 1 + IVul 2 uij J J 

( ( u'"j ' °-3ql+lv.12 ) _ -(. - 2 )  ' ° - ' '  . e ,  ) 
By subtracting a suitable constant and linear term, we can assume that both sides 
of  (5.7) vanish at least of  order O(y 2) at a fixed x. The crucial point here is 
that the quadratic term of the right-hand-side of  (5.7) also vanishes due the the 
condition (5.5). With the help of  tangential derivatives, we can conclude that 

(5.8) I(yu~ - 2 ) -  2u~n-2))(x,y)--(--2U~,n-2)- U~.~-2))(X, 0)1 

< c(n, [[g)llC,,+,,,~, ct)y 2+c~. 

This, combined with an argument similar to the one used for n = 2 shows that 

Dyn-2u E C'3'C~(B?/2). 

This concludes the C n+l''~ estimate. 
For C k,'~ with k > n + 2, the proof is similar to the argument described for 

n = 2 with H = 0, so we will only sketch the proof. Suppose that the theorem is 
proved for C k-l' '~, with the estimate 

[DJui(x,y) < c +cy k-l+°~-j. 

Assume that qo E C k''~. By the tangential derivative estimate, we have 

(5.9) [DJDiul(x,y) < c + cy k-i+'~-j 

for any j and i = k - n , . - . ,  k - 2. Then we show that 
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IDJDkx-n- lu l ( x , y  ) <_ C + cy "+l+a-j 

by examining the equation satisfied by Dn-2D k - " - l "  --y --x u, as was done for n = 2. 
Then, assume that (5.9) is true for any j and for i = m + 1 , - - . , k  - 2 with 
m + 1 < k - n - 1. Then a similar computation can be carried out to show 
that (5.9) is satisfied for i = m, and this concludes the proof of  higher order 
regularity. 

6 R e m a r k  o n  the  r e g u l a r i t y  o f  n o n - z e r o  c o n s t a n t  m e a n  c u r v a t u r e  c a s e  

The discussion in the previous section may motivate a conjecture that one can 
establish similar regularity results for H ~ 0. In particular, we have already 
established the higher order regularity for dimension n = 2 without any extra 
condition on the boundary value ~, so that one may speculate that the regularity 
for even dimension may be obtained without any extra condition on qa for H ~ 0 
as well. In this section, we show that there exists a smooth qa in n = 4 such 
that constant mean curvature surface u with H ~ 0 is not C 5 = C n÷t up to the 

boundary. This shows that ~ has to satisfy some condition to assure that u is as 
smooth as the boundary value qo. For n _> 5 and even, we do not prove that it 
is necessary for ~ to satisfy extra condition. But the example strongly suggests 
that constant mean curvature surfaces with H ~ 0 may not be as regular as 
the asymptotic boundary value even if the dimension of  the surface is even and 
n _> 6 unless qo satisfies some extra condition. More precisely, 

T h e o r e m  6.1 For dimension n = 4 and H ~ O, there exists a smooth boundary 
value qa defined on BI and a solution to the equation 

u, us (6.1) y (z~u - ~ u i j )  - n  (uy - H v / l  + lVu]2) =O on B{ 

u(x, O) = ~(x ) on x 6 Bi 

such that u does not belong to C5(/~/2). 

Note that the equation (6.1) can be written in divergence form 

n - -  1 Dx, u + Dy Oyu --n H = O. 
y Ox, V/1 + iVul2j  V/1 + iVul 2 v/1 + iVul 2 

By taking the n - 2 derivative with respect to y and by comparing the coefficient 

of  the Taylor expansion at x,  we can obtain a necessary condition for u E 
Cn+I(B~/2), that is, 

)t "- t  ~-~Ox, ---0 for Ixl < 1/2. 
(6.2) Dy \ v / l +  [Vu 12 - 

i=1 (x,0) 
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Notice that in view of  the C n,'~ estimate, all the normal derivatives of  u up to 
order n are determined in terms of  qo, so that the condition involves derivatives 
of  order up to n + 1. 
Proof of Theorem 6.1. We only need to find qa such that the condition coordinate 
so that ~(0) = ~7~a(0) = 0. We choose qa such that the second derivatives of  ~9 
vanish at 0, i.e., x72~9(0) = 0, but at the same time, some of  the third derivatives 
are non zero at the origin. With this choice of  boundary value, we will prove 
that 

D 3 y Z D x  ̀  vq+lVul2 (o,o)#o. 
i=1 

We recall that 

(6.3) 
H 

Uy(X,O)-- 1 ~  W/1 + IV~tgI2(X,~ O) 

1 3H 2 - 1 qoi~; 
Uyy (X ~ O ) 3(1 - H2) A~(x'O)+ 3(1 - H e) 1 + IV~l 2~ij(x' °) 

The second identity can be obtained by taking first derivative of the equation we 
eliminate terms which vanish at the origin. Then, 

(6.4) 
3 ) 

Z (o,o) 
i=1 

-D;-3( Z~x// ~ (0,0) - UyUyyxj 
v/1 + IVu l2 j  3 v ,  1 + tVu]2 3uyyx'(O'O) 

the third line follows by using Uyx, (0, 0) = 0. From (6.3), 

(6.5) 3 -  blyUyyx) bl H IXT(A~)I2(0, 0). 
~ 3  YYX) (0 ' 0 ) - -  3(1 - H  2) 

Next, we have 

by uyy(0, 0) = 0 and 

Thus, 

( 1 )  
Dy ~ l + l V u l  2 ( 0 , 0 ) = 0  

DyA~u(O, O) = Axu(O, O) = O. 

(6.6) 
 x_U Oy, axU 

V'I +lVul2] (o,0)= 

Hence, we need to find AxUyyy(O,O ). TO do so, take second derivative of  the 
equation and rearrange to obtain 
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I ~ Uxi Ux3 U t (n -- 2)(1 - H2)uyyy = 2AxUy - 2 1 + IVul z x~x, 
\ i,i=l Y 

- 4  l+[Vul2Ux, y - 2  l + l V u l 2 j  Uyy 
\ i=l . y y 

+nil V/1 + IVul  2 1 + IVu[ z Uyy 
\ i = 1  y y 

where the above is evaluated at (x, 0). We have some nice cancelations in case 
n = 4, that is, 

U v Uy 
nH X/1 Vu[ 2 Uyy - 2 1 + IVu[ 2 Uyy 

Y Y 

( U y )  Q U y ) Q U y )  
= 4 H  V/1 +[Vu]= yUyy - 4  V/1 +[Vul= X,/1 + l V u l  2 yUyy ~---0 

( u ' ) ( x , O ) = - - H .  Also, since 

( ~  ) (~--4 Ux'UY Ux, Ux, y - 4 n n  
V/1 + IVulZ 1 ÷ [VU] 2ux'y 

\ i=1 y \ i=1 y 

( uy uxuxy) 
= - 4  V/1 + iVul2  _ _  v/1 + lVu[  2 . 

y i=1 

The second derivative in the tangential direction for the last identity vanishes 
at the origin, hence we can eliminate this term as well. With these remarks, we 
have 

/~x Uyyy (0, O) 

1 
- 1HSAxZlxuy(O , O) 1 H2 Zlx 1 -  ~ 1 + t V u l  z x,x; (0, 0). id=l y 

One can check that the second term of  the above also vanishes due to the as- 
sumption V2~(O, O) = O. Thus, finally, 

1 
(6.7) AxUyyy(O , O) = 1 - H - - ' - - - -~  A x A x u y ( O '  O) 

_ H ('~ijk) 2 + [~7(A~9)12 (0) .  

1 - v ~  3 Vj,k:~ 

Combining (6.4), (6.5), (6.6) and (6.7), we obtain 
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Dr Ox, X~ 1 + IVulZ j j 

] 
- 30 3 ~ (~ijk): + 2[v(za~)l 2 ~0). 

ij,k=l / 

I f  the third derivatives of  ~ at the origin are non-zero at the origin and H # 0, 
then u does not belong to C5(B~/2) with this choice of 9o. [] 

Remark 6.1 The proof also indicates that u is not in C5(/)~/2) if [V2~I(0) is 

sufficiently small relative to the size of  IV 3 ~](0). This follows from the continuity 
o f  ~. 

R e m a r k  6.2 It is possible to prove higher order regularity of  a non-zero constant 
mean curvature surface beyond C ~,~ by assuming condition (6.2). But we will 
not pursue further in this note. 

Remark 6.3 The calculation for dimension n larger than 4 seems quite compli- 
cated, even though it is possible in principle. It would be nice if one could prove 
a similar theorem for any even dimension. It is not proved that there is some 
boundary value ~ which does not permit the surface u to be in C "+1 for odd 
dimension n, but it is most likely that it is so in view of  the area-minimizing 
case. 
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