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Introduction 

Continuity and sequential continuity were given their essential formulations in 
the nineteenth century. Their equivalence for spaces commonly studied during 
that period was attributable, of course, to the underlying metric nature of these 
spaces. The notion of metric space, in turn, was not fully articulated until the 
early twentieth century by Frrchet. The classical viewpoint provided no deeper 
insight into the relationship between these types of continuity or the possible 
extent of departure from full equivalence because it lacked the framework of 
modem topological ideas. 

In contrast to the classical situation, modem analysis is rife with spaces 
which are non-metrizable and for which sequential continuity does not entail 
full continuity. Stonian spaces [4 Ch. V p. 255 or 5 Ch. II Sect. 7 p. 108] are 
typical in this respect. Convergent sequences on these spaces are stationary, 
hence all functions on the space are sequentially continuous but not neces- 
sarily continuous. Clearly spaces for which the two types of continuity are 
distinct must not be first countable. However, there exist spaces which are 
non-first countable for which the continuity notions coalesce for large classes 
of functions. 

This paper explores the detailed relationship of full and sequential continu- 
ity in the restricted setting of linear functionals on locally convex topological 
vector spaces (LCS). As the starting point, a class of spaces is defined by pre- 
cisely the condition that sequential continuity of any linear form implies full 
continuity. With notation following [4] define a Hausdorff LCS to be weakly 
semi-bornological (WSB) whenever full and sequential continuity of its linear 
forms are equivalent. If a WSB space has a Mackey topology [4 IV Sect. 3 
p. 131], it is called semi-bornological (SB). The terminology stems from the 
fact that bomological spaces are always Mackey [4 IV Sect. 3.4 p. 132] and dis- 
play equivalence of continuity types [4 II Sect. 8.3 p. 62] for linear functionals. 
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The non-degeneracy of the terminology follows from the fact that bornologi- 
cal spaces are not fully characterized by continuity type equivalence for linear 
forms. Clearly the bornological property implies SB, which in turn implies 
WSB [8 Ch. 12 p. 176 IT]. It develops that the equivalence of full and sequen- 
tial continuity for linear forms on a given LCS is identical to such equivalence 
for linear maps into an arbitrary LCS. 

Examples 

We now exhibit two non-bornological SB spaces. The first involves the space 
of bounded real sequences, and the second involves the space of bounded Baire 
functions on a suitable compact set. 

E. 1 Space of bounded real sequences 

The fact that weak* duals of separable Banach spaces are WSB spaces provides 
a ready source of non-bornological WSB spaces [1 Sect. 3.2.2 p. 65]. 

E.I.1 Proposition. ( l~(N), z( l~(N), ll(N) ) ) is SB but not bornological. 

Proof Let E = ll(N), then l l ( N f  = I~(N).  It is well-known that E is norm 
separable. Since ll(N) is Banach, the remark above implies I~(N) is WSB. 
Claim: if (fn) is a sequence in I~(N) that converges in the weak* topology 
a( l~(N),  ll (N)), then (fn) converges in the Mackey topology z(l~(N), ll (N)). 
For the balance of this example, denote the weak* topology by a and the 
Mackey topology by z. Without loss of generality, assume that (fn) a- 
converges to 0. {(f~): n E N} U {0} is a-compact, a is Hausdorff; hence 
{(f~): n E N} U {0} is a-closed, and consequently closed for the finer topology 
z. By Phillips' Lemma [5, Ch. 2, Lemma 10.3, Corollary] the bounded subsets 
of loo(N) are z-relatively compact; hence {(fn): n C N} U {0} is z-compact. 
It follows that (fn) v-converges to 0, for otherwise some z-neighborhood of 0 
would exclude infinitely many terms of (f~), permitting an irreducibly infinite 
open cover, contrary to r-compactness. Thus claim is true and the a-convergent 
sequences are precisely the z-convergent sequences in I~(N).  

Now for linear forms on ( l~(N),z) ,  r-continuity certainly implies 
z-sequential continuity. Conversely, z-sequential continuity implies a-sequential 
continuity by the equivalence for sequences of a- and v-convergence embod- 
ied in the claim. I~(N)  is WSB by the above, hence a-sequential continuity 
implies a-continuity, and since z refines a, z-continuity as well. It follows 
that (lo~(N),z) is SB. However, (loo(N),Q is not bomological. If it were, 
then B ° := { f  E I~(N) :  [f(~)l -< 1,~ ~ ll(N)}, which is bounded, bal- 
anced, and convex would have to be a v-neighborhood of 0. This requires that 
(lo,(N),z)'  = ll(N)", the norm dual of I~(N),  which is impossible, since 
ll(N) is irreflexive. Thus ( l~(N) ,z)  is SB but not bornological. [] 
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E.2 Space of bounded Baire functions 

A classical construction due to Baire begins with an arbitrary infinite, compact, 
metrizable space K and forms the space C(K) of continuous real functions on 
K. Set Bo(K) = C(K), and for each countable ordinal 7, define B~+I(K) to be 
the space composed of all pointwise limits in R K of sequences from B~(K). 
This transfinite recursion results in an increasing nest of Baire classes whose 
union is sequentially closed. Those elements which are bounded make up the 
family B(K) used below. Each member of  B(K) may be integrated against 
any measure in M(K), the class bounded Baire measures, which by the Riesz 
Representation Theorem constitutes the dual of C(K) (See [9] for additional 
details). 

E.2.1 Proposition. Let K denote a compact metrizable space with card(K) > 
~o, B(K) the bounded Baire functions on K, and M(K) the bounded Baire 
measures on K. Then each a(M(K),B(K))-compact subset of M(K) is weakly 
(i.e. a(M(K), M(K)'))-compact. 

Proof Observe that the bilinear form t): B(K) x M(K) --~ R; ( f ,  g) H fK fd#  
induces the duality (B(K),M(K)). Since K is metrizable, the space of contin- 
uous real functions on K, denoted by C(K), is separable with respect to the 
II " ][o~ norm [5, Ch. 2, Proposition 7.5]. By the Riesz Representation Theorem, 
each continuous linear form on C(K) is realized as a bounded Baire measure 
and vice versa, hence C(K) t = M(K). The dual unit ball B ° := {# E M(K): 
fK f d g  < 1; IIfllo~ < 1} is weak*-compact (i.e. a(M(K),C(K))-compact) by 
Banach-Alaoglu. Moreover, since C(K) is separable, B ° is metrizable. Now 
let A be a a(M(K),B(K))-compact subset of M(K). A is compact for the 
coarser (HausdortO topology a(M(K), C(K)), and hence absorbed by B °. But 
then 2B ° D A for some /t C R, and 2B °, hence A, is clearly metrizable for 
the topology a(M(K), C(K)), so a(M(K), C(K)) and a(M(K),B(K)) must co- 
incide on A. Thus a(M(K), B(K)) restricted to A is metrizable as well. Suppose 
(gn) is a sequence of  measures in A. Since A is ~r(M(K),B(K))-compact and 
metrizable, A is ~r(M(K),B(K))-sequentially compact, whence (/~n) contains a 
a(M(K), B(K))-convergent subsequence, say (/~(k)). Since B(K) is a Dedekind 
a-complete unital AM-space, it follows that (#,(k)) a(M(K), M(K)t)-converges 
[5, Ch. 2, Theorem 10.4] in M(K). 'Since A is a(M(K), C(K))-closed, it is 
a(M(K),M(K)f)-closed as well. Finally, by Eberlein's Theorem [4, Oh. 4, 
Theorem 11.1, Corollary 2] A is a(M(K),M(K)')-compact. [] 

E.2.2 Proposition. The topolooy induced on B(K) by r(M(K)',M(K)) is 
the Mackey topology r(B(K),M(K)). Also, (M(K)',z(M(K)',M(K))) can be 
regarded as the completion of (B(K),z(B(K),M(K) )). 

Proof For a given duality (F,G), a zero neighborhood base for z(F,G) is 
given by the family of polars of the z-equicontinuous sets in G, namely the 
class of subsets of  all a(G,F)-compact, circled, convex sets. In the case at 
hand, a zero neighborhood base for z(M(K)~,M(K)) is given by the polars of 
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all a(M(K),M(K)~)-compact, circled, convex sets. These sets are a(M(K), 
B(K))-compact as well, since B(K) C M(K)'. By E.2.1 every a(M(K),B(K))- 
compact set is a(M(K),M(K)')-compact. Denote by ~ the family of  
convex, circled a(M(K),M(K)l)-compact subsets of  M(K). {A°: A E ~ }  is a 
zero neighborhood base for r(M(K)I,M(K)), and {A°: A E ~}MB(K)  is a zero 
neighborhood base for its restriction to B(K), equivalently for z(B(K),M(K)). 
Denote by B -  the completion of (B(K),~(B(K),M(K))), and let E be the 
family of  all convex, circled, a(M(K),B(K))-compact sets C C M(K). B- 
is the set of  all linear forms u on M(K) with the property that for each 
C E E,utc is a(M(K),B(K))-continuous [4, Ch. 4, Theorem 3.2, Corollary 1]. 
Claim: B -  = M(K) ~. Certainly if u E M(K)', then u[c is a(M(K),M(K)~) - 
continuous for each C E E.  E.2.1 establishes that the a(M(K),M(K)r)-compact 
sets are the same as the a(M(K),B(K))-compact sets. It follows that the E-  
topology on B(K) is the relativization of the e- topology on M(K)' to B(K). 
Hence u is a(M(K),B(K))-continuous, and u E B- .  

Conversely, if  u E B - ,  then u is a(M(K),M(K)~)-continuous on each C E 
E,  by Grothendieck's theorem [4, Ch. 4, Theorem 6.2, Corollary 1]. Accord- 
ingly, u is bounded on the unit ball of  M(K) ~. I f  not, there exists a sequence 
in M(K), say (/in), such that l imn~o~fKd[#,  [ ~ 0 and lu(#,)l > n. But 
{#~}ncr~ U {0} is norm-compact, hence its closed, convex, circled hull is norm- 
compact, hence a(M(K),M(K)~)-compact. By a(M(K),M(K)~)-continuity of 
u on such a set, {lu(~.)l).~N must be bounded, which is absurd. Since u 
is bounded on the unit ball, it is continuous on M(K), hence u E M(K) ~, 
establishing the claim. By Grothendieck's theorem once more, M(K) ~ endowed 
with the e- topology is a complete locally convex space in which B(K) is 
dense. Since the e-topology was selected to induce z(B(K),M(K)), the result 
follows. [] 

E.2.3 Proposition. B(K) and M(K) t are topological Riesz spaces under their 
respective Mackey topologies T(B(K),M(K) ) and z(M(K)t,M(K) ). Moreover, 
the respective sets of sequentially continuous linear forms constitute ideals in 
their respective Riesz duals [5 Ch II Sect. 5 p. 81 if]. 

Proof It must be shown that (B(K),T(B(K),M(K))) and (M(K)',r(M(K)', 
M(K))) have bases at zero consisting of solid sets. Both Mackey topologies 
are formed by taking polars (in the respective space) of all compact disks 
in M(K), where compactness is understood to be relative to the appropriate 
weak topology. M(K) is an abstract Lebesgue (AL) space under the integral 
norm coming from the bilinear form defining the duality under consideration. 
Accordingly, i f  A is a a(M(K),B(K))-compact disk, the closed, solid hull of 
A is likewise a(M(K),B(K))-compact [5, Ch. 2, Proposition 8.8, Corollary]. It 
follows that the solid hulls of  weakly compact disks in M(K) generate the same 
E-topology as the disks themselves, namely x(B(K),M(K)). But the polar of  
a solid set is solid [5, Ch. 2, Proposition 4], hence (B(K),z(B(K),M(K))) has 
a neighborhood base at zero consisting of solid sets and thus is a topological 
Riesz space. 
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For the larger space M(K)' ,  observe that every a(M(K),M(K)')-compact 
set is trivially a(M(K),B(K))-compact, and conversely by E.2.1. It follows 
that T(M(K)',M(K)) is the e-topology induced by the same class of solid, 
a(M(K),B(K))-conpact sets as in the preceding; hence (M(K)',z(M(K) t, 
M(K))) is also a topological Riesz space. 

Denote (B(K),z(B(K),M(K))) by (B,z) and the family of c-sequentially 
continuous linear forms on B, or sequential dual, by (B, z)~. Certainly (B, z)~ 
is a subspace of the Riesz dual, denoted by (B,z)b; hence to show it is an 
ideal it is enough to verify that (B, z)~ is both Riesz and solid. 

Claim 1. If f E (B,z)~, then Ifl  E (B,z)~c, where t f l  is s u p { - f , f }  taken 
in (B, z)b. For the sake of contradiction, suppose not. Then for pre-assigned 

> 0 there exists a z-null sequence (xn} in the positive cone B + such that 
Ifl(xn) > e for all n E N. Now I f J (x ) :=  sup{]f(z)l: [zl < x; x > 0}, so for 
each n E N there exists a zn E B such that IZnl < Xn and If(zn)l > e/2 by the 
supremum property. By the local solidity of z established in the preceding, it 
follows that {zn} is a z-null sequence as well. But {f(zn)} cannot converge 
to 0, contrary to sequential continuity. Thus If[ is sequentially continuous and 
(B,z)~ is Riesz. 

Claim 2. If 9 E (B, z) b and 19[ < [fl  for f E (B, z)~, then 9 E (B, T)~. Sup- 
pose {xn} is a z-null sequence. It is true that ]g(xn)l < IoI(Ixnl) < ]fl(lxnl). 
The sequential continuity of If[ forces the sequence (19(xn)l} to converge 
to 0; hence 191 is sequentially continuous as well, establishing solidity. It fol- 
lows that (B,z)~ is an ideal in (B,z) b. 

For the larger space (M(K)',z(M(K)',M(K))), the foregoing argument 
applies mutatis mutandis. [] 

E.2.4 Proposition. B(K) endowed with the Mackey topology induced by the 
duality (B(K),M(K)) is SB but not bornological. Moreover, B(K) is both 
Dedekind a-complete and z(B(K),M(K) )-sequentially complete. 

Proof Let z = z(B(K),M(K)) and/a E (B(K),z)tc . To show (B(K),z) is SB, 
it is clearly enough to establish # E M(K). First observe that # is bounded on 
bounded sets. Otherwise, by the usual argument, there exists a sequence {fn} 
of Baire functions in the I1 " [[o~-norm unit ball such that [#(fn)l > n. But 
{n-lfn} is a norm-null sequence in B(K), hence a fortiori a z-null sequence 
as well, hence # cannot be sequentially continuous, contrary to supposition. 
Denote by 2; the e-algebra of  Baire sets in K (the minimal a-algebra in go(K) 
which contains every compact G6-set). In the terminology of Dunford and 
Schwartz [2], # E ba(2;), the bounded finitely additive Baize measures on K, 
and it must be established that kt E ca(X)( = M(K)), the countably additive 
Baire measures on K. To this end, let An ~ q~ in X, that is to say rn > n implies 
Am C An, and (']neNAn ----- ~b. This forces the characteristic functions L4n to 
converge monotonically to the null function on K. Certainly for every measure 
v E M(K), limn--.o~v(An) = 0; otherwise v cannot be countably additive. Since 



342 T.A. Beatty, H.H. Schaefer 

~a, -~ 0 pointwise on M(K), it follows that 7~n ~ 0 for a(B(K),M(K)) 
by Lebesgue's Dominated Convergence Theorem. E.2.3 has established that 
(B(K),z) is locally solid, hence it follows [4, Ch. 5, Theorem 7.1] that B(K) + 
is a normal cone. But under this condition, any subset S of  B(K) that is 
directed for the canonical order has the property that if  the section filter ~ ( S )  
converges weakly, then it converges with respect to the original topology, z 
[4, Ch. 5, Theorem 4.3]. Applied to the set {XA,}, it is clear that ga, ~ 0 
for z. Returning to p, since p is z-sequentially continuous on B(K), it follows 
that lim,~o~p(Za,) ---- 0. But then # is countably additive, or/~ E M(K), and 
(B(K), z) is SB. 

(B(K),z) is not bornological, however. I f  it were, each bornivorous disk 
would necessarily be a neighborhood of zero. Consider the unit ball U := 
{ f  E B ( K ) :  Ilfll~ ~ 1). u certainly absorbs any z-bounded set. Sup- 
pose, for the sake of  contradiction, that U is a z-neighborhood of zero. By 
Kolmogorov's normability criterion, since U is a bounded, convex zero neigh- 
borhood for z,z must actually be the norm topology. Now C(K) is a subspace 
of B(K) which separates M(K);  hence C(K) is a(B(K),M(K))-dense in B(K) 
[4, Ch. 4, Theorem 1.3]. C(K) is convex, so its closure for any consistent 
topology, in particular r, is the same as its weak closure. But this means the 
norm closure of  C(K) is B(K). However, C(K) is norm-complete, hence norm- 
closed. It follows that C(K)-= B(K), which is absurd if the ground space K 
is infinite, which is assumed. Therefore, U is a bornivorous set which is not 
a zero neighborhood; whence (B(K), z) is not bornological. 

For Dedekind a-completeness, it must be shown that i f  A is a countable 
subset of B(K), and A is majorized in B(K), then sup A exists in B(K). Let 
{ai} be an enumeration of the elements of  A, and define bn : =  suPi<n{ai }. 
The finite suprema bn are certainly in B(K), and letting b := l i m , ~ b , , ,  it can 
be seen that b = sup A. But b is a pointwise sequential limit, and B(K) is 
sequentially closed, hence b E B(K), as required. 

For z-sequential completeness, suppose {fn} is a z-Cauchy sequence in 
B(K). z is the 6- topology induced by the class of  solid, convex, a(M(K), 
B(K))-compact sets in M(K);  hence it may be viewed as being generated by 
the Minkowski functionals defined by the sets in this class, namely semi-norms 
of the form PA(f) = sup~EA fK [fid# for A E "6.  The z-Cauchy condition is 
then expressible as follows: for pre-assigned e > 0 and for all A E 6 ,  there 
exists an N E N, which depends on both e and A, such that for n, m > N, 
P,~(fn - f ro)  < ~. The Dirac measure fit is a Baire measure on K, since 
singletons are Baire sets in compact, metrizable spaces, cSt must be in some 
A E ~ ,  hence fK Ifn(t) - f~,(t)ld6, = I f , ( t )  - fm(t)l < ~, provided m,n > N. 
It follows that l i m , ~ f n ( t )  exists pointwise. Additionally, the sequence {fn} 
is r-bounded, hence ]1 • H~-bounded [1 Sect. 5.3.8 p. 108]. Thus for all n E N, 
I l f . t l~ _-__ c, for some constant c, and f ( t )  := lim,--.~fn(t) is in B(K). 
Claim: f is the z-limit for limn--,~fn(t) as well. Clearly, [fn(t)-f,n(t)l < 2c; 
hence by Lebesgue's Dominated Convergence Theorem, l imm-,~ fK Ifn(t) - 
f,,(t)ldt~ = fx I f , ( t ) -  f(t)idl~. It follows supu~A fK [ f ~ ( t ) -  (t)l < ~, or 
equivalently, pA(fn(t)- f ( t ) )  ~_ ~. But A and e were arbitrary; hence { f , }  
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converges sequentially with respect to the entire family of semi-norms {pA: 
A E ~ }, and accordingly with respect to z. [] 

It is not mandatory in the preceding that M ( K f  strictly include B(K). The 
inclusion is proper whenever the compact space K contains a (non-void) perfect 
subset. In the event K is scattered (i.e. contains no non-void perfect subset) 
and B(K) is Dedekind complete, M ( K f  collapses to precisely B(K) [6]. 

The significance of the example developed in E.2.1-E.2.4 is twofold. First, 
as advertised, a non-bornological SB space is presented. Second, the space 
(B(K),z) is a natural object, namely the space of bounded Baire functions 
outfitted with the finest locally convex topology that preserves the validity of 
the Riesz Representation Theorem. Any finer locally convex topology would 
necessarily introduce continuous linear forms which would not be realizable as 
bounded Baire measures. 

Stability properties 

We turn now to the question of stability of  SB and WSB spaces under com- 
mon topological constructions. It would be reasonable to expect that inductive 
topological constructions involving SB spaces would be stable since such con- 
structions and the SB notion are both defined in terms of a finest locally convex 
topology which preserves a given property. In the former case, the continuity 
of a family of linear maps is preserved, and in the latter case, the family of 
linear maps which are a priori continuous is invariant. Intuitively, it is plausi- 
ble that a topology cannot be refined indefinitely without ruining the continuity 
of linear maps into the space or without conferring continuity upon originally 
discontinuous linear maps defined on the space. That the amount of refine- 
ment tolerable for either case is precisely the same is the key to the next 
result. 

S.1 Proposition. Let {L~, T~}~e~ be a family of  SB spaces and {f~}~A a 
corresponding family of linear maps into a vector space L (i.e. f~: L~ ~ L). 
Endow L with the finest locally convex topology ~ such that each f~ is 
continuous. Then (L, ~ ) is SB. 

Proof It must be shown that continuity and sequential continuity of linear 
forms on L are equivalent, and that ~ is a Mackey topology, i.e. the finest 
locally convex topology consistent with the continuous dual. For the former it 
clearly suffices to show that sequential continuity entails full continuity. Sup- 
pose u: L ~ R is a sequentially continuous linear form. Then u induces a 
sequentially continuous linear form on any L~ given by u o f~. By hypothesis 
u o f~  is continuous, showing u to be a continuous linear form. It remains 
to verify that ~ = ~(L,L'). Each map f~ is T~-z(L,L')-continuous [4, Ch. 4, 
Theorem 7.4(bl)], since T~ is already Mackey. It follows that ~ ,  which is 
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induced by the family {f~}~SA, must refine z(L,L'). But z(L,L') refines ~ by 
definition; hence ~ = ~(L,L ~), and the result is established. [] 

S.2 Proposition. Let (L, T) be a semi-bornological space, and M a closed 
subspace of  L. Then the quotient L/M is semi-bornolooical. 

Proof Apply S.1 to the space (L,T) and canonical quotient map q: L --~ L/M. 
Note that the closedness of M ensures the quotient is Hausdorff. [] 

S.3 Proposition. Let {L~, T~}~A be a family of semi-bornological subspaces 
of the vector space L = U~A L~. Suppose the index set A is partially ordered 
by " < ", and whenever ~, ~ E A and ~ < [J, there exists a continuous em- 
bedding of L~ into L& Equip L with the finest topology ~ that makes each 
embedding h~: L~ ~ L continuous. Then (L, ~ ) is semi-bornological. 

Proof Apply S.1 to the family of spaces {L~,T~}~A with maps {h~: L~ 
L}~A where L = ~ A  L~. [] 

For projective constructions, the situation is not so tidy. Permanence under 
formation of very general products is available, but subspaces of SB spaces may 
fail to be SB (or even WSB). This parallels the situation for fully bomological 
spaces. 

S.4 Proposition. There exist non-SB subspaces of SB spaces. 

Proof Suppose V is any real vector space, and B = {x~: e E A} is a Hamel 
basis for V. V is algebraically isomorphic to the direct sum ~)~eA R, and its 
algebraic dual V* is I-LeAR. The weak* topology in this setting is the prod- 
uct topology on I-Le~R. The Mackey-Ulam Theorem asserts that for index 
set cardinality less than the smallest strongly inaccessible cardinal do, 1-[~eA R 
is bornological, hence afortiori SB. Thus (V*,(a(V*, V))) is SB assuming 
card(A) < do. Take V to be l~ ,  and let E = ( l ~ , a ( l ~ , l ~ ) ) .  By definition, 
E ~ = l~ .  It is well-known that It is irreflexive [2, IV.15]; hence l~  is as 
well. In fact 1~ ~ ba(N), the bounded additive measures on N. Ii ~ ca(N), 
the countably additive measures on N, and ba(N.) D ca(N). Consider the con- 
tinuous bidual E0 of ll endowed with the weak topology induced by l~ .  Claim: 
E0 := (ba(N),a(ba(N), I~) )  is not WSB. Suppose it were. Every linear form 
that is a(ba(N),l~)-sequentially continuous is a(ba(N),ba(N)t)-sequentially 
continuous because the predual of ba(N), namely l~ ,  is a Grothendieck 
space (i.e. weak* sequential convergence implies weak sequential convergence 
with respect to the bidual). Then by assumption every functional in ba(N) r 
is ~r(ba(N), l~)-continuous. It follows that a(ba(N),ba(N) r) = a(ba(N), l~) ,  
which is absurd since ba(N) t ~ l~ ,  and the claim is established. Now E(= l ~ )  
is the completion of E0 with respect to a(ba(N), l~) ,  and E is SB by the above 
argument. However, the subspace E0 C E is not SB nor even WSB. [] 

The foregoing example extends the well-known result that subspaces of 
bomological spaces need not be bornological [3 Sect. 28.4]. 
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As a further illustration o f  the special role played by sequentially continuous 
linear forms, consider the curious fact that such forms on a product o f  SB 
spaces turn out to be almost identically zero in the sense that a given functional 
can be non-zero only on a finite number of  co-ordinates. This result is put to 
use in the following analogue to the well-known theorem that bomology is 
preserved for products over arbitrary index sets, as long as they are not "too 
large", i.e. their cardinality must be constructible within the framework of  the 
Zermelo-Fraenkel + Choice axiom system. 

S.5 Proposition. Let {L~, T~}~eA be a family of SB spaces indexed by A, where 
card(A) < do the smallest strongly inaccessible cardinal. I f  X := I-I{L~ :~ EA}, 
then X is SB. 

Proof Since an arbitrary product o f  Mackey spaces is Mackey [4, Ch. 4, 
Theorem 4.3, Corollary 2] and product continuity implies product sequential 
continuity, it remains only to show that product sequential continuity of  an ar- 
bitrary linear form is equivalent to full continuity. Suppose u is a sequentially 
continuous linear form on X. Let u~ be the restriction of  u to L~. Claim: u~ is 
identically zero for all but finitely many co-ordinates. For the sake o f  contradic- 
tion, suppose u~ t 0  for indices in the set B, where ~0 < card(B) < card(A) < 
do. For ~ E B, u~(x~)~eO for some x~ E L~. Form Y := I I{Rx~ : ct E B}. Y is 
certainly a linear subspace of  X; moreover it is topological under the relative 
topology coming from X. The map ~: Y --~ RB; (2~x~) ~ (2~) is bijective. 
Viewing Y as I-I~cB{Rx{x~}} ~ RBxI-I~Bx~ -- RBx(x~), where (x~) is a fixed 
vector, it is clear that ~ is bicontinuous as well; hence Y is linearly homeomor- 
phic to R B. But for product index cardinality less than do, R B is bornological 
[3, Sect. 28.8]; hence so is Y. Now u is sequentially continuous on X by hy- 
pothesis; hence its restriction to Y, denoted by uy, is likewise. The bornological 
property of  Y implies that ur  is continuous on Y, in particular at zero. Ac- 
cordingly, ur  must be bounded for some 0-neighborhood V in Y. A technical 
argument [I p. 82] may be adduced to show that the infinite cardinality of  
B contradicts this boundedness condition on ur.  It must be concluded that B 
cannot be an infinite set, and the claim is establised. 

For a given u, the finite set B is determined for which ~ E A\B implies 
u~ = 0. Write x E X as the finite sum of vectors x~ with support only at the 
~-th co-ordinate for ~ E B plus a complementary vector ~ supported on co- 
ordinates in A\B. Let Z := I-[{L~ : ~ E A\B}. Denote the family of  finite 
subsets of  A\B by o~. o~ is directed upwards by  inclusion and induces a 
net {xn}14~s~ where XH is zero on co-ordinates in A\(B t3 H) and co-incides 
with )~ on those in H. Uz(XH) = 0 by hypothesis. By the earlier argument, Z 
is homeomorphic to R A\B, hence bornological. It follows that the image net 
{uz(x/~)}HGS~ converges to u~(lim~{x14}n~) = u~(:f). But the image net is 
null; hence u~(£) = 0. Thus u(x) = u ( ~ B x ~  + £) = u(~Esx~)  + u(£) = 
u ( ~ B x ~ )  = }-'~Bu(x,) = ~ o u ~ ( x , ) .  Clearly u = ( ~ B  u, is continuous 
as the finite sum of  elements of  L~. Thus X is SB. [] 

It should be noted that the above yields (I~{L~ : ~t E A}) '  = (~){L" : ~ E A}. 
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We conclude the survey of stability properties with a result on the sequential 
completion of an SB space. Recall that a topological vector space L admits a 
uniform completion L'. Define the sequential completion L'to be the sequential 
closure of  L taken within L~(Cf [1 p. 84]). 

S.6 Proposition. Let (L, T) be an SB space. Then its sequential completion 
(L. 7") is SB. 

Proof Denote the uniform completion of  (L, T) by (L, T'). Observe that T ~ is 
T-relativized of  F. It is necessary to show that /" is  the Mackey topology, and 
sequential continuity of linear forms on L ̂  is equivalent to full continuity. For 
the former, note that the topological duals of L ̂  and L~ co-incide (with appro- 
priate restriction of domain) with L I by denseness of L in L, hence L ~. T" is a 
Mackey topology [4, Ch.4, Theorem 3.5], so a fundamental system of equicon- 
tinuous sets consists of the convex, circled, ¢r(U,L')-compact subsets, denoted 
by ~.  These sets are certainly compact for the coarser topology G(U,L). T is 
Mackey, so I~ is an equicontinuous family for T. 

Conversely, denseness requires any T-equicontinuous set to be T--equiconti- 
nuous as well. It follows that the equicontinuous sets for each topology co- 
incide and that E is the (saturated) family of  all equicontinuous sets for 
But the Mackey topology on L ̂  is precisely the E-topology. Hence T ~ is the 
Mackey topology on L'. 

For the latter, it suffices to show sequential continuity entails full continuity. 
If  u is a T-sequentially continuous linear form on L, then its restriction to L 
is certainly T-sequentially continuous. Since (L, T) is semi-bornological, u[L is 
T-continuous. By denseness, utL has a unique T'-continuous extension to L,  
say ft. Clearly fill A and u are sequentially continuous on L ̂  and their restrictions 
to L agree. It follows that they co-incide on L ̂ . But tT]L- is continuous on L ;̂ 
hence so is u. [] 

For the sake of  comparison, it should be noted that the strictly bomological 
version of  the preceding theorem, wherein the full uniform completion is taken 
instead of  the sequential completion, is not true. 

The sequential dual 

We continue with the problem of  characterizing the sequential dual of a given 
LCS (see E.2.3 for definition). It will emerge that the nature of  the sequential 
dual is a litmus test for the WSB property. The application hinges on con- 
struction of  the topology of uniform convergence on a distinguished class of 
subsets of  the LCS derived from vector null sequences. The following lemma 
sets out the details. 

SD.1 Lemma. Let (L, T) be a Hausdorff, locally convex space which is com- 
plete relative to its Maekey topolooy. Denote by ff~ the collection of all 
subsets of L which are the closed, convex, circled hull of the range of some 
null sequence {x,,} in L. Then every C E ft. can be expressed in the form 



Semi-bomologieal spaces 347 

C = {EnEN~nXn : {~n} E B} ,  where B is the closed unit ball of the Banach 
space lv 

Proof Each set C is weakly compact by Krein's Theorem [4, Ch. 4, Theorem 
11.4]; hence E is a subfamily of the family of sets whose polars induce the 
Mackey topology on U, namely the family of all weakly compact, convex, 
circled sets in L. Accordingly, the e-topology on U is coarser than z(L',L), 
hence consistent with the duality (L,L'). 

Consider the map ~b: (L',T~) --+ co given by ~b(f): = {/xn, f}}, where co 
is the space of all real null sequences (equipped with the supremum norm). 
Now co has norm-continuous dual ll. The canonical bilinear form 
associated with these spaces is ( • , • ) : coxll ~ R; (3, () = ~ . eN¢ . ( . ,  where 

= {~.} and ~ = {(.}. The adjoint map ~b' is implicitly defined by the re- 
lation (~b'(~),() = (~,qS(()). Then (q~(f),{(.}) = ~-~nEN(Xn, f)~n. This sum 
is well-defined by Dirichlet's Convergence Theorem since {(x. , f )}  is a null 
sequence by continuity of f ,  and the series ~.EN(-  has bounded partial sums 
(even absolutely) since the ll norm of ( is finite by assumption. By fin- 
earity of ( .  , f ) ,  ~nEN(Xn, f)~n = ~nEN(~nXn, f ) .  Claim: ~nEN(~nxn, f )  = 
(~.~N~.X., f ) .  Again by linearity, ( • ,  f )  commutes with finite summation. It 
suffices to show that there exists an M E N such that for pre-assigned e > 0, 
I~n>M(~x~,f)] < e. But this is immediate from the established convergence, 
and the claim is valid. It follows that ~b'({~n}) = ~nzN~.x.. Note that the 
partial sums of the preceding form a Cauchy sequence in L, and by assump- 
tion L is complete, so ~.~N~.X. E L. Clearly the image under q~ of any set 
C °, C E E, is contained in the closed unit ball of co, since sup. [(x., f)[ < 1 
by definition of the polar. Thus q~ is T~ -/ /(co,  ll)-continuous. It follows [4, 
Ch. 4, Theorem 7.4 (bl)=> (b4)] that ~b' is a( l l ,co)-  a(L,L') continuous. By 
Banach-Alaoglu, the closed unit ball B in 11 is a(ll,c0)-compact; hence its 
adjoint image is a(L,U)-compact by weak continuity. This image contains the 
closed, convex, circled hull of {x0}, that is, C. On the other hand C D 4¢(B). 
Thus C = q~'(B), and C is expressible a s  {~nEN~nX n : {(n} E B}. [] 

We note without proof the following corollary. 

SD.2 Corollary. SD.1 remains valid when the assumption of  Mackey com- 
pleteness is replaced by the assumption of T-sequential completeness. 

SD.3 Proposition. Let (L, T) be a Hausdorff locally convex space which is 
T-sequentially complete. Denote by E the collection of all subsets of  L which 
are closed, convex, circled hulls of some null sequence in L. Then f E L* is 
sequentially continuous if and only if the restriction of f to each C E E is 
weakly continuous. 

Proof Suppose f l c  is a(L,U)-continuous for each C E E.  It must be shown 
that if {xn} T-converges to 0 E L, then {f(xn)} converges to f(0).  Consider 
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the closed, convex, circled hull of  {xn}, denoted by Co. Clearly Co E E and 0 E 
Co. By assumption, f restricted to Co is weakly continuous, hence continuous 
for the finer topology T. In particular, f is T-continuous at 0 on Co. It follows 
that {f(xn)} converges to f ( 0 ) ,  as required. 

Conversely, suppose f is T-sequentially continous on L. Consider the space 
(ll,tr(ll,co)). As noted in SD.1, the closed unit ball B in this space is weakly 
compact by Banach-Alaoglu. Since co is separable, B is metrizable. It has 
been verified in SD.1 that every null sequence in L defines both a C E 
and a map ~bc. Moreover every such set C is expressible as the image of B 
under the adjoint map qS~. This image is likewise compact by continuity, and 
furthermore metrizable by a standard technical argument [1 p. 107]. Thus the 
sequential continuity of  f on each C E E is equivalent to weak continuity. [] 

The following theorem presents a fortuitous equivalence of the WSB prop- 
erty for a given sequentially complete space with the completeness of its dual 
for the topology of uniform convergence on sets defined by null sequences. It 
is necessary to introduce the notion of  associated sequential topology to facil- 
itate the argument. Given a topological space (AT, T), the associated sequential 
topology Ts is formed by taking all subsets of  X whose complements are 
sequentially closed relative to T. This construction does not commute, in gen- 
eral, with formation of  the subspace topology. A distinction must be drawn 
between induced and intrinsic associated sequential topologies. The induced 
topology is the relativization of  Ts to the subspace, and the intrinsic topology 
results from forming Ts after relativizing T to the subspace. For first count- 
able (afortiori metrizable) spaces, T agrees with Ts. In the context of  locally 
convex spaces, Ts may be coarsened to ensure local convexity. The finest such 
locally convex topology refined by Ts is denoted by Tc (See [1] for detailed 
discussion). 

SD.4 Theorem. Let (L, T) be a Hausdorff, locally convex space which is 
T-sequentially complete. Denote by ~ the family of sets defined in SD.1. 
Then (L, T) is weakly semi-bornological if and only if  (L I, Te ) is complete. 

Proof Claim: Te is consistent with the duality (L,L~). It must be shown that 
Te is coarser than the Mackey topology z(L~,L). Now T(L~,L) is induced by 
the polars of the fundamental family of  all tr(L,L~)-compact, convex, circled 
sets in L. The claim would follow if E were shown to be a subfamily of this 
fundamental family. Each C E E is convex and balanced by definition, so it 
remains only to show that each C is o-(L,L~)-compact as well. The converse 
case argument of  SD.3 establishes that each C E IE is a T-compact, metrizable 
set. T and the induced Ts agree on any metrizable set a fortiori [I Sect. 1.2.7]. 
T is Hausdorff, so each C is T-closed. The intrinsic Ts on each C is identical 
to the Ts topology on L relativized to that C [1 Sect. 1.3.4]. But then each 
C E IE is Ts-compact. Since the associated convex topology Tc on L is coarser 
than Ts by definition, each C is Tc-compact as well. Observe that Tc refines 
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a(L,L'c); hence each C is a(L,L~)-compact, and the claim is established. The 
validity of the claim guarantees that L is the topological dual of L~ endowed 
with T¢; hence the fundamental family ~ of subsets of L is appropriate for 
applying the @-topology construction. 

For necessity, suppose L is WSB, so L' = L~. Grothendieck has shown 
[4, Ch. 4, Theorem 6.2 et seq.] that for L' to be complete under the ~ -  
topology induced by a saturated family ~ of  bounded sets covering L, it is 
(necessary and) sufficient that every linear form f on L which is T-continuous 
on each member of ~ be T-continuous on all of L. The family ~ is sat- 
urated and covers L (every x E L is in the closed, convex, circled hull of  
the null sequence {n-ix}). Moreover, if f is a T-continuous linear functional 
on any C E ~ ,  then it is T-sequentially continuous on L, hence fully contin- 
uous on L by the WSB condition. It is now apparent that L', hence L' c, is 
complete for T~, or more exactly, for the canonical uniformity associated 
with T¢. 

For sufficiency, suppose (L ~, Te ) is complete. Then L' is certainly closed in 
(L~, T~ ). By a corollary to Grothendieck's completeness theorem, the vector 
space of all f E L* which have weakly continuous restrictions to the sets in 
E ,  given the E-topology, is a complete locally convex space in which L' is 
dense. But the linear forms which are weakly continuous when restricted to 
the members of  E are precisely the sequentially continuous linear forms. This 
is immediate from SD.3. Hence L~ topologized by T~ is a complete locally 
convex space in which L p is dense. But since L' is closed, L ~ = L~, and L 
is WSB. [] 

It has been known [7 Cor. 3.6 p. 352] that the WSB property in the set- 
ting of SD.4 is sufficient to conclude Mackey completeness of the dual. SD.4 
strengthens this result by weakening the topology for which completeness 
obtains and, more interestingly, provides the converse. 

With the addition of the Mackey property the following is clear. 

SD.5 Corollary. Let (L, T) be a Mackey space. Then L is SB tf  and only if  
(L', Te ) is complete. 

SD.6 Proposition. Let (L, T) be a Hausdorff, locally convex space which is 
T-sequentially complete. I f  each bounded subset of L is metrizable, then L is 
WSB i f  and only if the strong dual (Lr, fl(L',L)) is complete. 

Proof SD.4 establishes necessity verbatim. For sufficiency, suppose the strong 
dual is complete. Consider the class ~3 of all T-bounded sets in L whose 
polars induce the strong topology on L'. Again by Grothendieck's completeness 
theorem [4, Ch.4, Theorem 6.2], it is necessary that every functional on L which 
is T-continuous on B E ~ be T-continuous on all of L. By metrizability, the 
T-continuous forms on the sets in ~3 are exactly the sequentially continuous 
linear forms and it follows that L' = L~. [] 
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Extension of sequentially continuous functionals 

We conclude by examining the general question of what sort of extension the- 
orem might be available for sequentially continuous linear forms? More specif- 
ically, if (E0, To) is a topological vector subspace of (E, T), and 050 : E0 ~ R 
is T-sequentially continuous, is there a sequentially continuous linear form 
05: E ~ R such that 051E0 = 050- Regrettably, but not unexpectedly, the 
answer is "generally not." The following example illustrates what can go 
awry. 

E.3 Example. In E.1 the non-SB subspace E0 := (ba(N), a(ba(N), I s ) )  of the 
SB space E := (l*~,(a(l~, l ~ ) ) )  was introduced. Let 050 be any sequentially 
continuous but not fully continuous linear form on the subspace, specifically a 
functional in the set ba (N) ' \ l~ .  By irreflexivity, this set is not void. 050 has no 
extension to the SB superspace E that respects sequential continuity. If it did, 
then by the semi-bomological propel ~ the extension 05 to E would be fully 
continuous, and 05 restricted back to E0 would be continuous as well, contrary 
to the original specification of 050. [] 

It is always possible, however, to extend a sequentially continuous lin- 
ear functional on a topological vector space M to a superspace E, provided 
M is sequentially closed and finite co-dimensional in the containing space. 
This holds without the assumption of local convexity. If E is weakly semi- 
bornological, these conditions ford'e the original space to be WSB as well, and 
the type of difficulty embodied in E.3 is avoided. The following lemma is 
essential. 

SE.1 Lemma. Let E be any topological vector space; M a sequentially closed 
subspace of  finite co-dimension. Then any projection P : E ~ M is sequen- 
tially continuous. 

Proof It is sufficient to show that the complementary operator O d e -  P )  is 
sequentially continuous. Note that O d e - P )  has finite rank. For arbitrary x E E, 
Ode - P ) x  may be written y~l<i<nO~iXi, where {xi}~l<_i<=n) is a basis for the 
range. Claim: The coefficient functional ci(x) = ~i for each i = 1 . . . . .  n is 
sequentially continuous. For the sake of contradiction, suppose not. Then there 
exists a null sequence {xk}kSN with xk = Yk "4-~l<i<nO~k,iXi, Yk E M, such that 
for all k, ~l<=i<__,}~k,it = 1. By considering subsequences, if necessary, it can 
be assumed that l imk-,~k,/  = ~i. By sequential closure of M, l i m k ~ y k  = 
y E M. Hence 0 = y + ~ l<i<~ix i  where ~l__<i=<.l~k,/I-- 1, which is absurd. 
The claim is established and the result follows. [] 

SE.2 Proposition. Let (E, T) be a Hausdorff topological vector space. Suppose 
M is a T-sequentially closed subspace o f  finite co-dimension in E. Then M~ 

t 0 Ec/M . 
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Proof Consider the map p: E L ~ M~ which orders to each sequentially con- 
tinuous linear form on E its restriction to M. The induced map P0 : E~c/M ° ---* 
M~ is clearly injective. Moreover, P0 is surjective by SE.1, establishing the 
result. [] 

SE.3 Proposition. Let (L, T) be a locally convex space and M a sequen- 
tially closed subspace of  finite codimension in L. I f  L is (resp. weakly) semi- 
bornological, then M is closed and (resp. weakly) semi-bornological. 

Proof Let P be any projection of  L onto M. i d L - P  is sequentially continuous 
and has form ~O<=i<__n)~ixi by SE.1. Moreover, the coefficient functionals c~i 
are all sequentially continuous, hence by the (W)SB property of  L, continuous 
as well. Thus idc - P is continuous and M = (idL -- P ) - l ( 0 )  is closed. 

For the assertion regarding semi-bornological spaces, it remains to be shown 
that if  L is Mackey, so is M. The preceding shows that M is a direct summand 
of  L; hence it can be viewed as the topological quotient of  L by the comple- 
mentary summand. But the Mackey topology on M is precisely the quotient 
topology on L [4, Ch. 4, Theorem 4.1, (~: ;~lary 4]; hence M is Mackey. [] 
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