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0 Introduction 

This paper is the second of a series dealing with spectral multiplier oper- 
ators on Heisenberg-like groups, in the setting where an underlying multi- 
parameter structure plays a key role. Here we refine the initial version of the 
Marcinkiewicz multiplier theorem considered in the first paper, and obtain a 
sharp theorem of this kind: one which requires the minimum differentiability 
hypotheses. We also broaden the scope of our results by extending the class 
of groups considered. This larger class, the H-type groups, includes all nil- 
potent Iwasawa sub-groups of  real-rank one simple Lie groups, and has been 
of substantial interest recently, (see [K], [R], [Me], [CDKR], [DR]). 

Starting with one of these groups, suppose Za is the associated sub- 
Laplacian, and U1, U2,..., Un an orthonormal basis for the center of the Lie 
algebra. For an appropriate function m defined on IR~_ × IR n, we consider the 
operator m( &e, U1/i, U2/i . . . . .  Un/i) = m( ~ ,  U/i), and its variants below. 

Our main result is then a sharp version of Marcinkiewicz multiplier theorem 
with the following feature: that essentially d/2 + e smoothness of the multiplier 
m suffices, where d is the (usual) dimension of the group. 

More precisely, suppose we consider the following multi-parameter Sobolev 
norm on functions defined on IR x IR ~ = {(~,/~)}: 

(0.1) ItfllL$ a = I1(1 + I~1) ~ I~I (1 + [a~[ + IO.il:fllL2 • 
, j= l  

With this norm, if 

sup IlmrzllL$,a < oo, with ot > ( d -  n)/2 and fl > 1/2, 
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then we can conclude that m(.Sa, U/i) is bounded on L p, 1 < p < oo. Here 
mr(z, la) = m(ro%r'#), r E (IR+) "+l, and g is a suitable cut-off function. 

There are also corresponding results for functions of ( A - I ~ ,  U/i) instead 
of  (A a, U/i), with A = [-(U12 + . . .  + U2)] I/2. Furthermore, we should note 
that the above theorem is an extension of the recent result for functions of 
only, in [MS] and [He]. 

As in the first paper [MRS], the method of proof requires a reduction to 
appropriate Littlewood-Paley square functions. Here, however, a crucial dif- 
ference is that we do not lift the problem to higher dimensions, since this 
would increase the needed differentiability; and thus we carry out our analysis 
on the group itself. There are two forms of the square functions studied in 
paragraphe 4, first 91 and then 92, each depending on a decomposition of the 
joint spectrum of  .L~ and U/i. The key estimate is the assertion 

(0.2) Ilgz(T(f))[ILp = AII02(f)IILP, 2 = p < oo,  

where T is the operator m(A-l~fl, U/i). This is demonstrated by showing that 

(0.3) sup f [Nj, llzWj, ldX < oo, 
j , l  

where Nj.,t are the kernels of  the components of T corresponding to the 
decomposition of  the spectrum; also the wj, l are appropriate weights which 
have the property that 

s u p f  tf(y)ll/wj, t ( y - lx )dy  < ~ s ( I f l ) ,  
j , l  

with JCs a "strong" (i.e. multiparameter) maximal function. 
The weights can be expressed in terms of  products of powers of  [z] and 

In1 I,.-., lu, I, and the fact that (0.3) holds results from the relation between the 
kernels Nj,1 and their corresponding multipliers given by the Laguerre expan- 
sion. This is carried out in paragraphe 5. 

The proofs of  our results are preceded by a discussion of  several appli- 
cations and examples. A basic example is given by A i ~  113. In particular the 
cases a = - f l  and the case ~ = 0 considered in'[MS] allow one to see that 
our results cannot be improved. 

As a final remark we note that in the R" analogue (for spectral operators 
m(~O 1 ~  l a  ~-~1' 7 ~ . . . . .  7 ~-~.)) our argument gives a corresponding variant of the 
classical Marcinkiewicz multiplier theorem; we have learned that this particular 
result has also been recently indicated in [CS]. 

1 Sub-Laplacians on H-type groups 

Let us briefly recall the definition and some basic facts from harmonic analysis 
on H-type groups, also called groups of  Heisenberg type. 
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Suppose g is a 2-step nilpotent Lie algebra which decomposes into sub- 
spaces g = gl @ g2 such that g2 is central and [gl,91] C g2. Suppose further 
that g is endowed with an inner product {, t for which the above decomposi- 
tion is orthogonal. This allows in particular to identify g with its dual g*, and 
thus to endow g* with the induced inner product. For each # E g~, there exists 
a skew symmetric endomorphism J~ of  gl such that 

= { J . z , z ' ) ,  z ,  z '  e • 

g is said to be of H-type, if  J~ is orthogonal for each # E g~ of unit length, 
i.e. i f  

= -I/At2Id, /A e 

This implies that dimg~ = 2m is even, that [gl,gl] = g2 and that g2 is the 
center of 9. Let n := dim g2. 

In the sequel we assume that g is of H-type, and we denote by G = exp g 
the corresponding group of H-type. The element exp(z + u), z E gl, u E g2, 
will be denoted by (z, u). The left- and right-invariant Haar measure on G is 
then given by the Lebesgue measure dz du. 

A function f on G is said to be gFradial, if it depends only on [z[ and u. 
Let us denote by ~¢ the closed subspace of  the group algebra Ll(G) formed 
by the gl-radial integrable functions on G. Analysis on H-type groups is often 
facilitated by the following facts [R] (see also [DR]): 

~¢ is a commutative, semisimple subalgebra of Ll(G)  whose Gelfand spec- 
trum ~ can be parametrized by ~ +  U (g~\{0}) x IN, where ~ +  := [0,+oo[ 
and IN := {0, 1,2,...}. 

For p E IR+, put Zp(z, u) := e ~p(~'zo), where z0 is a fixed unit vector in gl, 
and for (#, k) E (g~\{0}) × IN put 

(k+m--1)-le-i#(U)e -~11~-~- ( ~ 1 )  Z ,k(z,u) :=  k /Allzl2 ' 

where L~' denotes the Laguerre polynomial of  type m and degree k. 
Then the Gelfand transform of f E ~¢ is given by fqf(og) := fo f(x))~o~(x) dx 

for to E F,+ U (g~\{O}) x IN. 
Moreover, either from the representation theory of  G [R] or directly from 

the orthogonality properties of  Laguerre polynomials [El one derives the 
following Plancherel theorem for G: 

If  f E d N L2(G), then 

(1.1) tlfll 2=  f El f(/A,k)] 2 k + m - 1  g~\{0} k=0 k l/A[ m d/A, 

where the constant x depends only on dim gl and dim g2. 
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Correspondingly there is an inversion formula 

(1.2) f (z ,u)=r,  f ~ (~f(l~, k)-~,k(z,u)(k + m - l )  
g~\{0} k=0 k [/~l m d/~, 

valid for instance for f in the Schwartz space S(G). 
These formulas show that the part of .~ corresponding to IR~_ is of 

Plancherel measure zero. 
Next, let us fix an orthonormal basis 3(1 . . . . .  X2m of gl, and consider the 

lefl-invariant sub-Laplaeian 
2m 

j = l  

on G. Then one checks that ~ is gl-radial in the sense that it maps ~¢ fq C°~(G) 
into itself, and that ~af  = -(Az + ~J£ff-4Au)f for 91-radial f .  Here Az and Au 
denote the Laplacians on ~1 and ~2, respectively. Moreover, either by repre- 
sentation theory or by direct calculation based on the spectral properties of 
Laguerre polynomials [E, p. 188] one finds that 

(1.3) $(L;f)(/~, k) = (2k 4- m)IlalCgf(#, k).  

Similarly, each U E g2 is gl-radial, and 

(1.4) ~¢(uf)(u, k) = ~u(u)~cfO,, 1,). 

2 Joint spectral multipliers 

Besides the sub-Laplacian Sa, let us also fix an orthonormal basis U1 . . . . .  U~ 
of  g2. We denote by A the central pseudo-differential operator 

A := [ - (U~ + . . .  + U2)] 1/2 . 

By means of  the bases )(1 . . . . .  X2m of  gl and U1 ..... Un of g2 we shall 
identify gl with R 2m and g2 with R n. 

Let us mention that the notation used throughout this paper differs partially 
from the one in [MRS] and is more adapted to the one in [MR]. If G = Hm 
is the Heisenberg group of  dimension 2m + 1, the variable u appearing here 
corresponds to the variable t/4 in [MRS], U = U1 to 4T, # to 42, etc.. 

It is well-known that the operators ~ and ~ ! U, 7 U1 . . . . .  i n are essentially self- 
adjoint on 5a(G). Moreover, the sub-elliptic estimates for Rockland operators 
in [HN] show that Sa-IA is a bounded symmetric operator on L2(G), so that, 
by spectral theory, A - 1 S  a is essentially selfadjoint on ~ ( G ) .  Since all these 
operators commute, they admit a joint spectral resolution, and we can thus give 
meaning to expressions like m(~, i 1 ra(A-l C~, ~U1,. 1 7U~,..., 7U,) or .., 7U,) 
for each continuous function m defined on the corresponding joint spectrum. 
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Suppose m C C ~ ( ~ _  x IR n) and suppra C IR* _ + x (IR"\{0}). For simplicity 
of notation we write 

( 1  1 ) 
u/i:= 7 ~ " " ' 7  U" " 

Since m(~ °, U/i) and m ( A - l ~ , U / i )  are bounded, gl-radial, left-invariant op- 
erators on L2(G), they are given by right convolution with gl-radial distribu- 
tions Mm and Nm on G. By (1.3) and (1.4) their Gelfand transforms are 

(2.1) ~4M,, (#, k) = ra((2k + rn)t#l,/.t), 

ffNm (#, k) = m((Zk + m)#) ,  

if we choose coordinates # = (#1 . . . .  , # , )  for 9~ by putting #j := #(Uj). From 
(1.2) and (2.1) it can easily be seen that the support property of m implies 
that Mm and N,, are in fact Schwartz class functions (see also [Hu], [Ma]). 

We shall also use the notation M~ = ra(La, U/i)6 and Nm =ra(A -1 .Le, U/i)6, 
where 6 denotes the Dirac measure at the identity element (0, 0) of G. 

Remark 2.1 (2.1) shows that the joint spectrum of ~ and U/i is contained 
in the "Heisenberg fan" Z1 := {(2,/t) E IR~_ x R" : 2 = (2k + m)]/~] for 
some k E IN}-, and the joint spectrum of A-1L, e and U/i in Z2 := {(2,#) C 
IR~_ x IR" : 2 --- (2k + m) for some k C IN}. 

By means of representation theory and a reduction argument to the case 
of the Heisenberg group as in [R] one can prove that Z1 and Z2 are in fact 
exactly the joint spectra (compare also [St]). 

Remark 2.2 The mappings 6r(Z,U) := (rz, r2u), r > 0, define automorphic 
"dilations" of G, and the operators ~ ,  1 Uj and A-1£,¢ are homogeneous of  
degree 2, 2 and 0, respectively, with respect to these dilations. From this one 
infers the following scaling properties, which can also be read off directly 
from (1.2): 

(2.2) r-QMm (6r-lX) = M~fr2 . ,r z . ) ( x ) ,  

(2.3) r-QNm (6r-~x) = Nm~ . :2 . ) ( x ) ,  

where Q := 2m + 2n is the homogeneous dimension of G. The Euclidean 
dimension dim G = 2m + n will be denoted by d. 

For later use, let us also introduce the canonical homogeneous norm [ • [ 
(compare [FS]) on G given by 

I(z,u)l  : =  (Izl 4 + 16lul2) 1/4 , 

which in particular satisfies [6rx l  = rlxl. 
The identity (2.3) reveals in particular that if ra = r~ (2) depends only on the 

first variable, then the corresponding kernel N,~ = ~  (A-l.~q')6 is homogeneous 
of  critical degree - Q .  

In order to formulate our main theorem, we need to introduce fractional dif- 
ference respectively differentiation operators on the l.c. abelian group Z × IR n. 
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If  f is a suitable function on this group, we denote by A the first order 
difference operator in the Z-variable 

( A f ) ( k , # )  := f ( k  + I ,#)  - f ( k , # ) ,  

and by 0uj the partial derivative in the pj-variable. If 

f ( t ,  u) := Y~ f f ( k ,  #)e -i(kt+" " u) d# 
k E Z  1~ n 

denotes the Fourier transform of f ,  we have 

3~'f(t, u) = (e/t - 1 ~ ( t ,  u ) ,  
A 

a g y f ( t ,  u )  = i u j f ( t ,  u )  . 

Correspondingly, we define fractional powers ]A[ ~' and [O~,j[~, ct c ~, by 

( l a l " f )  ^(t,u) := [e a -  l ] ' f ( t ,u ) ,  

(10,j[~f) ^(t,u) := lujl~f(t,u). 

The meaning of more general expressions like (1 -4-Iroa[) = or (1 + [roAI + 
IrjSuj]) ~ is then also evident. 

Theorem 2.3 Let r~ = m(2k + re, g) be a continuous function defined on the 
joint spectrum (21N + m) × R"  of  A-15Y and U/i. By putting 

{ o ( 2 k + m , # ) / f k > O ,  
t~ (k,#) := if k < O, 

we identify m with a function 7a on Z x ~".  
Fix a non-trivial bump function rio E C ~ ( R  ) supported in IR*+, and define 

IR* n + l  k + l  #_.k for  r = (to, r1 . . . . .  r ,)  E ( + )  the function tlr by tlr(k,#) := qo(-~o )t/l(rl ) 
• ..t/x(r, ), where ql(x) := t/o(x) + ~/o(-x). Suppose that 

2 1 1 
Ilmllt~(L=)~,a,~to~ := sup -- ~ r - 

r j  > o r o  k E Z  l . . . rn  

I IrjO.j I) 
2 

x f ( I  + I,'o,11) ( l  + Iroaq + d# 
p.n j =  1 

is finite for some ~ > m, /~ > 1/2. Then the operator m(A-1.W,U/i)  is 
bounded on LP(G) for  1 < p < o~, and 

I lm(a- tL  a, U/i)llv,,Le <= cp,,llmlltu(z%,,a,,to ~ • 

w e  postpone the proof of  this result to later sections, but remark already 
here that, by standard partition of  unity arguments, it can easily be shown that 
different bump functions//0 lead to equivalent 12(L2)~,B, sloc norms (the symbol 
"sloe" stands for "scale invariant localized"). 

For Heisenberg groups, a weaker version, which did not specify the degree 
of  smoothness of  the multiplier, had already been proved in [MRS, Thm. 2.2]. 
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I f  we define mixed L2-Sobolev spaces L2~,/~ = Lz, t~(R x R " )  by 

llfllLz, a 
n 

:= II(1 + It[)~ (I-[ (1 ÷ Itl + lujl)#f(t,u)ltL~ 
j= l  

= c11(1 + I&IY lUI (1 + 10¢1 + ]0ujl)# f t lL2,  
j= l  

we have 

Corollary 2.4 Fix a bump function qo as in Theorem 2.3, and let X denote 
the corresponding bump function Z :=  ~/o ® ~/1 ® "" • ® ~l on IR × IR ~. 

Let  h be a bounded, continuous function on IR~_ × ~ ,  and put h~(z, #)  = 
h(roz, rlpl . . . . .  r~p~) for  r = (ro . . . . .  rn) E (lR~_)~+k I f  

IlhllL2,a,~o~ := sup [[h~xl]L~,a 

is finite for some o¢ > m, fl > 1/2, then the operators h ( A - l ~ , u / i )  and 
h ( ~ ,  U/i) are bounded on LP(G) for  1 < p < oo, with norms controlled by 

The proof of  this corollary rests on the following 

[ ,emma 2.5 Let  ~ > 1/2, and suppose that g E L2~(ff~) is continuous. Denote 
by y the restriction o f  g to Z. Then 

(2.4) II(1 + IR~I)=~II~2(z) ~ 6d1(1 + IgO, l)=g]lLz(R) 

for  every R >- e > O. 

Proof  It suffices to establish (2.4) for g ~ ~9°(IR). Then, by Poisson's summa- 
tion formula, 

~,(z) = ~ 9(k)e -ikz = y~ 0(27rk + z ) .  
kEZ kEZ 

Therefore 

I(1 + Rte iT - l{)a~(z)l _< (1 + RIzl)" ~ 10(2rtk + z) I 
k 

x ]0(2r&+z)(1 +RIZ,~k+~l)~lq . 

And, for Izl < n and R >-_ e, 

y]. (1 + RI2rtk + "c]) -2~ = (1 + Rlzl) -2~ + O(R -2~) =< C~(1 + R[z[) -2~ . 
k 
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So, by Plancherel's theorem, 

II(X + IRAIY ~ll~(z) ~ C~ E f [0(2nk + r)(1 + Rl2nk + ~1)~12 d~ 
k --it 

= f [O(s)(1 +Rlsl)~12ds 
IR 

2 = c~lt(1 + IR0,1) gllL2(m) • [] 

For a partial converse to Lemma 2.5, see [MRS, proof of Thm. 2.2]. 
It is now easy to prove Corollary 2.4. Put ~(k,#)  = h(2k + m,#), if 

k > 0,~(k,#) = 0 for k < 0. We have 

+ ( - ) - m  . ) ] ( 2 k + m , # )  
2 ' 

for every k E 7Z, p E IR", where Zr(Z,#) = Z(~0, ~rl, ' ' -  , ~) .  Since r~qr = 0 for 
r0 sufficiently small, and since ~ > m > 1/2, it is clear by Lemma 2.5 that 
Ilmllt2(L2)~a, slo~ is dominated by 

(2.5) s u p - -  f (1 + Ir0OdY (1 + Ir0&l + IrjO~jl)a(hz~) dvd~, 
r F O . . . r n ~  1 j = l  

which equals [[hilL2 ,~o, as can be seen by scaling. 

This proves the statement about h(A -1 ~ ,  U/i). 
And, if we put Sh(z,#) = h(z,p) := h(zl#l,#), then h(Sf , U/i) = f~(A-l ~ ,  

U/i), and 

(2.6) II hllL2a.~lo~ ~ CllhllL=a.~o. 

In order to see this, it suffices to prove that the expression (2.5), with h 
replaced by h, is dominated by the corresponding expression for h, maybe 
with another bump function ~ in place of X. But, if we fix r and put rmax := 
maxj_>l rj, then I#1 ~ rmax on suppXr, and thus 

I~jl ~ rj, I~1 ~ rm~xro 

on the support o f  s - l ( h ~ ( r ) .  T h u s ,  if 
R* and identically I on a sufficiently + 
we form ~r from g0 in analogy to the 

we choose tTo E C ~ ( R )  supported in 
large neighborhood of supp r/0, and if 
construction of Zr from r/o, then 

(2.7) h~r = (h~F)'Zr, 
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where ~ = (rmax r0, r~ . . . .  , r,). Moreover, for any ~ > 0, /3 > 0, one has 

(2.8) 
n 

- - 1 1 (  1 + [roO~lY I-[ (1 + IroO~l + IrjO~jl)l~(hXr)ll~LZ 
r o . . . r n  j= l  

= < C~,t~ 
?'max ?'0. •. rn 

I1(1 + Ir00~lY I~ (1 + Ir00~[ + IrjO~jl)ahll~=. 
j= l  

For integer a and fl, (2.8) can easily be checked by straight-forward cal- 
culation. For instance, we have 

f I?'00~( hz~)(~, ~)12 dz ap 

C f I~l~10~h(vl~l, ]A)~r(T, ~)12 d~ dp+  C f Ir0h(vl~l, ~)~Z~(v, ~)t 2 dr d~ 

< C {flroO~h(r,~)12drdP+flh(T,~)lZdzdp}, 
?'max 

and 

rj ~)2 flrjO~j( hzr)(z,#)12 dzdp < C f # *]#lO.h(rlpl, l~)Zr(*, dzd# 

+f  IrjO.j h(rlttl, P)Z~(*, ~)12 d~ dp + f  lrjh(T[#[, #)0~,j Z.(*, ~)12 dr dp} 

< - -  lroa.h(r,p)12dzdp + f IrjO~jh(T,t~)lZd*dt~+ f Ih(r,U)l=dzd# . 
?'max 

and the general term in (2.8) can be estimated similarly. 
Interpolating the estimates for the operator h ~ hzr between integer values 

of a and fl, we obtain (2.8) for arbitrary a, fl > 0. 
Then (2.6) follows, since by (2.7) we may replace h in the fight-hand side 

of (2.8) by h~e, and from (2.6) we finally conclude that h(A-1.LP, U/i) = 
h(~P, U/i) is LP-bounded. [] 

If  we apply Corollary 2.4 to multipliers depending only on the first vari- 
able, we retrieve the Hrrmander-Mihlin multiplier theorem for functions of 
£P of [MS], [He]. Since this result was shown to be essentially sharp with 
respect to the critical degree of differentiability of the multiplier, this indicates 
that also Theorem 2.3 is essentially optimal. For further evidence to this, see 
also Section 3. 

3 Some applications 

Before we come to the proof of Theorem 2.3, let us discuss some applications. 
The first one is obvious. 
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Corollary 3.1 Let  ra = ra(2k + m) be a multiplier defined on the spectrum 
o f  A -  1 .~, and put 

~>ork~]] z + IrAI ~) q0 

I f  IlmlbL~o < ~ for some • > d/2, then m(A- l .~ )  is bounded on LP(G), 

1 < p < o0, with norm controlled by ItmllG~o; 

We remark that II • IJt~,~lo~ is related to the wbv, 0t-norm studied in [GT]. 

Example 3.2 For k E N let ~k = Z{2k+m}(A -1-~) denote the orthogonal 
projection onto the (2k + m)-eigenspace of  A - l ~ .  Then 

(3.1) II~kltL~,L" < Cp,,(1 +k)(d-1)l-} -½1+e, 1 < p < c~, 

for every t > 0. 
This follows easily from Corollary 3.1. Since ~( l )  = Z{k}(l), we have 

~q0(L~7 : - )  -- 0 unless r ~ krt- 1. And i f r  ~ k +  1, then ~ q o ( L ~  -) = arch, 
with [a~ [ = I n0(~-~)[ =< I In0 I1~ ~ .  Moreover, Plancherel's theorem implies 

~1 (1  + [rAl~)fa(l)} 2 = C ?  I(1 +ral e i t -  l[~)e-i~tl2dt 

so that 

-< C(1 + r)  2a ~ C(1 + k) 2~ , 

tlz(2k+.} IIG, ~ = o((1 + k y - ' 2 ) ,  

hence by Corollary 3.1 
d--I +~ 

II~kllL~,L" = O((1 + k)--r- ) 

for every e > 0. Interpolating with [I~tlLz,L2 = 1 then leads to (3.1). 
For the Heisenberg group Hm, for which d - 1 = 2m, estimate (3.1) 

is due to Strichartz [St]. He derived it, however, by a completely different 
method, making use of the explicit formulas for the kernels Pk,~ as defined 
below (respectively their analogues on H , ) .  Theorem 2.3 could indeed easily 
be applied to obtain the same estimates as for ~k also for the corresponding 
projections ~k.~. 

Example 3.3 Let ~ , / /E  R.  The operator A J ' ~  i~ is bounded on LP(G), 1 < 
p < oo, and for every e > 0 

(3.2) I}Ai~i~llLv,Lv <--_ G[(1 + I]/t)2"(1 + I~1 + I//I)"] 0+~)1½-½1 • 

We apply Corollary 2.4. If we put h~,~(z,~u) := zi~J#li~, then, by some 
standard interpolation argument, 

IIa~£eiattLp,L~ =< Clih~,al}Lz , <_- C ( l  -}- }j~l)m(l+e)(1 + Ifll + 1~I) ~(1+~) • 
re(l+8), ~'~A, sloe 

Interpolation with IIA~atlL=,L~ = 1 leads to (3.2). 
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Notice that for lel < Clfl I we have 

hi°~ ~i~ I] IILe,LP < C,(1 + I/~l)O+~>dl~-½1 . 

l l 
In particular II~;WlIL~Lp __< C~(1 + I/~l)"+~)dl~-= I and II(A--I~ey~IIL~,L~ <= 

1 l 
C,(1 +lt~l)" +~)dl ~-31  It was shown in [MS] that the first estimate is essentially 
sharp for p close to 1 and I/~1 large (and G a Heisenberg group), and the same 
is in fact also true of the second estimate. 

In order to see this, let us look more closely at the case of  the 3-dimensional 
Heisenberg group H,, for which gl = R 2, g2 = IR and J~ = ( o g ) ,  

The discussion to follow will also illuminate the meaning of the spectral 
parameters k. 

For Hi, the results in [St] imply the following spectral decomposition of  
m(A-l,.~): 

o o  

m(A -1 ~ ) ~  = N,~ = ~ ra(2k + 1)(ek,_l + Pk,1 ) ,  
k = 0  

where, away from the origin, Pk,,(e = + l )  is given by the Calderon-Zygmund 
kernel 

Izl 2 + 4ieu~ ([2"12 - -  4ieu) k 
Pk,~(z,u)-- (--1)k k + l + k  

n 2 [z[ 2 -- 4ieu] ( [ ~ - ~ + 7 4 / ~  2 

(Pk,~ is in fact the sum of this kemel and a multiple of  the Dirac measure 6). 
From these formulas it is again evident that m(A- l .~ )3  is a kernel of crit- 

ical degree -4 ,  so that it is determined by the angular parameter 0 defined by 

4u + ilz[ 2 =: I(z,u)[2d °/2, 0 < 0 < 2n,  

where I(z,u)l denotes the homogeneous norm defined in Section 2. Then, in 
polar coordinates r := [(z,u)[ and 0, we may write PR,~ as 

Pk,~(r,O) = ~ r 4 ( ( k  + 1)e i~(k+l)° - kd~°) . 

Consequently, whenever convergence is guaranteed (say in the sense of  
distributions), 

2 o~ 
(3.3) N~(r,O)= n-T~r4 ~(k+k=0 1)(ATn)(k)cos((k+ 1)0), r > 0 ,  

where we have again putrh(k) := m(2k + 1). 
The numbers (k + 1 )(A~ )(k) are thus nothing but the Fourier coefficients 

for the Fourier series expansion of  Nm with respect to the angular variable O. 
Corollary 3.1 thus presents a condition on the Fourier coefficients of the 

angular Fourier development of a homogeneous multiplier of  degree 0 which 
ensures LP-boundedness. For corresponding results on IR n, see e.g. [CS]. 
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Let us specialize (3.3) for the case of  the multiplier ra r defined as follows: 

r~r(k) =f(k), where for 7 E IR the function f on IR is defined as 

Since 

one has 

{ Ixl-l+iee -Ixl, x > o ,  

f ( x )  = Ixl -l+i~e-O-i)l~l, x < o.  

O O  

f x-l+ire-~e - t~  dx = F( - iT ) (1  + iu)  -i7 , 
o 

f(u) = r ( - i r ) { ( 1  + iu) -jr -F (1 - i(u + 1))- i t}  . 

In particular we see that f ( -k)  = f ( k  - 1), k E 2g. This relation implies that 

1 
Nr~ (r,O) = ~ ~ (k + 1)Af(k)e i(k+~)° . 

kEZ 

And, by  Poisson's summation formula, 

f ( k ) e  i*° = 2zc ~ f(O + 21tk) = F(O), 
kEZ kEZ 

where 

F(O) = 2~zlOl-l+ire -I°l-ie(°)° + E(O), 

with E(O)= 2rc~_,k,of(O+2z~k ). Here we have put e ( O ) =  O, if  0 > O, and 
e(O) = 1, i f  0 < O. It is then easily seen that, say for 10t < n, 

(k + l )Af(k)e  i~k+l)° - d - ~-~[(1 - ei°)F(O)] 
kE7 

= 2rr(r + 0101-1+% -1°1 + O(1~1) as lyl --" oo ,  

i.e. 

N ~  (r,O) = 2 ~ { ( r  + i)lOl-l+ire -I°l + o(lTI)} as Irl --' oo.  

This shows that the weak type (1,1) norm o f  tnr(A-1ZP) is grows at 
least like a multiple of  lg[ (and the norm on L p at least like a multiple of  
I~11-'(~ > 0) for p sufficiently close to 1) as I~1 --+ oo. 

On the other hand, since I F ( - i y )  I ~ (2n)l/Ze-nlel/zlTl-l/2 as I~l ---} c~ 
and (1 + ik) -it = O(e~lrl/2), one verifies easily that IIm~tl/~/z+~,s~oo _< C~l~l 1+~ 

This shows that Corollary 3.1 is essentially sharp with respect to the critical 
index d/2, at least for the Heisenberg group (which however seems to be 
representative for the general case here). 

The preceding example allows also to give a lower bound for the operator 
(A-~La)-~r.  
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In fact, we may write 

IvlVZf(k) = ~kv(2k + 1 ) ( 2 k +  1) -i~, k E N ,  

where 

f ( l + i k ~  -i~ ( 1 - i ( k + l ) )  - i t }  
(,r(k) = l~ll/2r(-i7) [ k 2k + 1] + -2X~ T " 

One checks that for any ~ > 0 I[~,vlllz.s~oc ~ C~ for 171 sufficiently large, 

and thus Corollary 3.1 shows that, for p close to 1, 

cb, l~-. < l[l~t~/2m~(A-1L~)tlLp,Lp < Cll(A-*Le)-iv[IL.,L.. 

Our discussions show that the operators ~i/~ and ( A - I ~ )  ia essentially do 
have comparable norms on Lp for p close to 1. This somewhat surprising result 
reflects the fact that the operators ~ and A are not independent operators, like 
for instance Ox~ and 0x2 on IR 2, which act on separate coordinates, but both act 
on the u-variables. Also this indicates why one should expect a "non-standard" 
Marcinkiewicz condition in Theorem 2.3. 

Corollary 2.4 could of  course also be used to estimate operators like 
[ U 1 ]io; t . . .  [ U n li~:" ~Q~i~. Another immediate consequence is 

Example 3.4 Let a,b,y,r E IR, r > O. The operator (&a~+ rAb)i7 is bounded 
1 1 

on LP(G), 1 < p < oo, with norm of  order O((1 + ly[)(l+"~al~-~l). This 
includes for example powers of  the full Laplacian &a _ (U12 + . . .  U~) on G. 

As a last example, let us consider the Heisenberg group Hm, for which 
~1 ~ ~,2m, ~2 ~ ]R and J~ = # ( o  ~0"), # E IR. There is only one central 
vector field U1 in this case, which we shall denote by U. For r > 0, a E IR, 
let us consider (formally) 

T := I--9° - rU 2 - iaUI il~, fl E IR. 

The corresponding multiplier on R~_ x IR is h(z ,#)  = [viii I - a #  + rtl21 i#, i.e. 
T = h(A-I£P,~U).  I f  a + 0 ,  h will not be continuous, so that Corollary 2.4 
does not apply. However,  i f  we consider the restriction to the Heisenberg fan, 
i.e. i f  we look at rh defined on Z x IR m by 

~(k ,u )  = l(2k + m)WI - ap + rl~21 ifl 

for k E IN, and rh --- 0 for k negative, we see that r~ is continuous if  r = 0, and 
if in addition a avoids the singular set {+(2k  + m) : k E N} ,  i.e. i f  £e - iaU 
is hypoelliptic. Notice that for a in the singular set T is not defined. And, if  
r = 0  a n d k C N ,  then 

l(2k + m) - al~'d e, ~ > O, 

= l(2k + m) + al;P[#l ~p, # < 0 ,  

which by Theorem 2.3 easily implies 



280 D. Miiller et al. 

Example 3.5 I f  a ~ {-4-(2k 4- m) : k E IN}, then [Ga _ iaU[i# is LP-bounded 

on Hm for 1 < p < cx~, and [ll..~-iauIiallLp,i.p <= c~(1 4-1fll)(l+~)(2m+l)l~ -½1. 

In contrast, i f  for instance r = 1, i.e. if  we consider IL- iaU[ ~, where L = 
Ga_  U 2 is the full Laplacian on Hm, and if  lal > m, then (2k+m)l#l-a~4-~ 2 
will always vanish away from # = 0. This will, however, happen on a set o f  
Plancherel measure zero, so that T is still defined on L 2, and one expects that 
T is also bounded on L p for 1 < p < c~. However  such a result does not 
seem to be attainable with our methods. 

4 Littlewood-Paley decompositions 

Fix X 6 C ~ ( ~ , )  such that Z > 0, supp Z C [1/2,2] and 2_~j=_~X)tx) = 1 for 

x > 0, where we have put Zj(x) :=  ~(2-Jx) .  Let ~j(x) :=  Xj(x) + ~ j ( - x ) ,  and 
for l = (l l  . . . . .  1,) E Z" let us write ~1(/~) := ~q( /~ l ) . . .~ / , (# , ) .  Then one has 

(4.1) ~ Z } ( 2 ) ~ ( # )  = 1 for 2 > 0, /~ E ~ n \ { 0 } .  
j , l  

Set 

q~j := z j (Le)a ,  

~0z := ~ , (u / i )a .  

Notice that i f  G2 :=  exp ~ denotes the center o f  G, then we may form 
~,(u/il~)a =: # on G2. Then ~o E 5g(G2), and 

(4.2) ~t°(u) = ~ ( U l  ) . . .  ~kg(un), 

~,(z, u) = a(z) ® # ( u ) ,  

q,j • ~0t = (zj ® £t)(~e, u/i)a, 

where ~°(t):= Zk(~ ~)6 on R .  
I f  we replace £,e by A - l  £,0, we may formally also define 

• j = Z.i(A-l.~q')6. 

By Remark 2.2, ~j  is a kernel o f  critical degree which, in the sense of  
distributions, can be defined correctly for instance by ~ j  := ~ t  ~J * ~kl, where 

(4.3) ~j  * ~kl :=  (Xj ® ZI)( A-I*Lp, U/i)6. 
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We define two 9-functions as follows: 

) 1/2 

91( f ) (x )  := ~ I f  * (q~j * I~ l ) (X) [  2 , 
j,l ( )1,2 

g2( f ) (x )  := ~ I f  * (4~j * ~,t)(x)[ 2 , 
j , l  

for f E 5¢'(G). Observe that the Littlewood-Paley decomposition appearing 
in 91( f )  is just the "projection" to the Heisenberg (type) group of the one 
defined in [MRS]. 

By applying the Gelfand transform and (4.1), we observe that 

(4.4) lira ~ ((~bj • ~¢l) * ((~bj • ~kt)*,f) = f ( 0 )  
g ~  F[-<g, I/I--<N 

for each f E 6e(G). 
In fact, by polarization of (1.1) and (1.2), this is clear for gx-radial f ,  and 

the general case follows by "radializing" f .  
(4.4) implies that l lo~(f ) l l r=  = IlfllLz for f C 5e(G), i.e. that Ol is an iso- 

merry of L2(G). 
Similarly one proves that also 92 is an isometry of L2(G). 

Proposition 4.1 For each p C]l ,+v~[ there exists a constant c e > 0 such 
that 

%IIfIILp < I[o (f)l[Lp < Cp  [[fHLp, 

f E LPP(G). One may choose c2 = 1. 

Proof By a standard duality argument [S], it suffices to prove the second 
inequality. 

Moreover, in order to simplify the notation, we shall assume that n = 1, 
the extension of the argument to the general case being straight-forward. 

If  e = ((e),~))j , t  is a double sequence of numbers e) = ~1, we denote by 
K~ the singular kernel 

e ) e l ~ O j  * ~ll . 
j ,  I E Z  

By some standard randomization argument based on Khintchin's inequality 
[S,p. 276] it then suffices to prove that 

[If *K IILp _<_ cp]llfllLp , (4.5) 

independently of ~. 
But, if we put 

J 
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with 

m~,(2) := E ~JZj(2), 
J 

m~2(p) := Y~ ~ 1 ( # )  , 
l 

then rn~ and m~ satisfy a Hrrmander-Mihlin condition of any fixed degree, 
uniformly for all al and e2. Therefore, by any of the known Hrrmander-Mihlin 
type multiplier theorems for stratified groups, right convolution with K 1 and E1 

K~ is bounded on LP(G), uniformly in e 1 and ~2. This implies (4.5), since 

As a corollary, we shall obtain a weak Marcinkiewicz type multiplier the- 
orem for G. For Heisenberg groups, this had already been proved in [MRS], 
however by a somewhat different method. The proof of this corollary will also 
make use of the following 

Lemma 4.2 Let a > O, M E N. There exists a constant C = Cn,  a, M and 
N E N, such that each function g E CON(]- a,a[ n) admits a development into 
a tensor series 

o =  E ~ ® - . . ® ~ ,  
V=I 

where the 7j are in C~t( ] -  a, a[) and 

o o  

E Ile;llcM-'. llr~llcM < CllellcN. 
v = l  

Proof. This follows for instance easily from a Fourier series expansion of 9 
on ] - a , a [  n (compare [MRS]). [] 

Corollary 4.3 For N E N and m E CN(IR~_ × IR n) put  

[ (  a )~° ( O__~ ~1 [" d ~nm()~,# ) 
IImII(N) :=  sup sup ~ ~ . . . .  

There exists N E N such that i f  [[m[l(N) < e¢, then m( &P, U/i) is bounded 
on LP(G) for  1 < p < oo, with norms controlled by [[mil(N )- 

Proof. Choose ~/ E C ~ ( R )  such that t/ > 0, suppq C_ [1/4,4] and t / =  1 on 
supp g. Define qy and r~l in analogy with Zj and ~t, and put 

Mj, t := [m(tlj ® r~t)](A °, U/i)g . 

In order to control the kernel Mm = m ( ~ ,  U/i)6, we observe that 

Mm * ( goj * IPI ) = ( (pj * ~ll ) * Mj, t , 
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and thus by Proposition 4.1 and standard Littlewood-Paley theory it suffices to 
prove that the maximal operator 

J / (g )  := sup ]g * Mj, t[ 
j,1 

is bounded on La(G) for 1 < q < oc, with norms controlled by Ilmllw). Put 

rhj, t(2, #) := m(232, 211 ]AI . . . .  , 2 t " p , ) q o ( 2 ) 0 o ( p )  • 

Then, for every j and l, 

(4.6) ]]mj, lllc u <-[[ml](U). 

Fix M E N. By Lemma 4.2 and (4.6) there is an N E IN such that each 
rhj, t admits a representation 

.~ j . t (~ , . )  = E v,o v,, ~,. ~j,t (;t)~'js (#,). . .  ~j,~ (#,), 
v=l  

where each term is supported in [1/8, 8] "+1 and 

(4.7) E Itv~:~llcM v,, -__ • .. [[yj, t l[cu < Cllmll(/e) 
v 

Put 
v v,O - - j  RS, 1 : =  ]~j,l(2 ,5~)¢~ , 

Then 
M j , ,  = ER ,, * , . . . , s F . 

'v  

Moreover, for M sufficiently large, well-known functional calculus [H], [Ma] 
for A a yields uniform size estimates 

I(v~:°(~e)a)(x)l < cl t~5:°l lcMO + t x I )  - Q - I  , 

which in combination with (2.2) imply 

V Y,O 
(4.8)  ]g * IRy, AI =< ClIws,~IIcM~0(0),  

where ago denotes the anisotropic Hardy-Littlewood maximal operator on G 
(see [FS]). 

Similarly, if agl denotes the strong maximal operator with respect to the 
central variables ul , . . . ,  Un on G, then 

"~., V.I V.?/ 
(4.9) [g * [S)~'~ [ * . . . *  [S), 1 [[ <- C[[yj, t[lcu , • .-llvj ; I l cMag, (0) -  

Combining (4.7) to (4.9) yields 

Io * Mj, tl <= Cllmll(U)ag~(~O(O)) , 

hence 
~[(g) < Cllmll(N)ag,(ago(O)). 
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But ~gl and ./go are bounded on Lq(G), 1 < q < c~ [FS], [S], and thus 
the Corollary is proved. [] 

Let us finally turn to 92(f) .  

Proposition 4.4 For each p E]I ,+e~[  there exists a constant Cp > 0 such 
that 

Cp]lfllLv = < [192(f)[]LP = < Cpl Ilf[[LP , 

f E LPP(G). One may  choose c2 = 1. 

t'/30E1 n P r o o f  If e = ~ :1. q . . . .  , et, )j,t is an (n + 1 )-fold sequence of  numbers + 1, let 
us put 

0 1 
m~(2,/~) := ~ ~), ell . . ,  eT, Zj(2)Z/(P) • 

.hi 

A comparison with the proof of  Proposition 4.1 reveals that it here suffices 
to prove a uniform (in ~) estimate 

(4.10) Ilm~(a -1Le, U/i)fNLp <= Cp 1 ]l/ifLp • 

To this end, let n, be the multiplier 

n,(2,p) := ms ,# • 

Then clearly me( A- l~q  ', U/i) = ne( ZP, U/i). Moreover, one readily checks 
that 

IlmaII(N) < CN 

for every e, which easily implies also 

Iln ll(N) 5- 

Thus (4.10) is a consequence of  Corollary 4.3. [] 

5. Proof of Theorem 2.3 

By analogy with the proof of Corollary 4.3, we need here to consider the 
kernels 

Nj, t := [m(~j ® 0t)](A-1.L a, U/i)6 , 

with q as before. 
Observe that Nj, t = 0 if  j < 1. 
The main problem will be to derive precise size estimates for these kernels. 

However, even with these at hand, one still has to argue more carefully than 
in the proof of  Corollary 4.3 in order to obtain Theorem 2.3. 

Let us begin with this part of the proof, which will be based on an adapta- 
tion of  a method from [S] to the present setting of "discrete" Littlewood-Paley 
theory. If I E Z", with some slight risk of confusion II1 will denote the integer 
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1/1 : =  ll  + . . .  + I, E 7/; notice that Ill may be negative. Also, we put 

lmax := max l j .  
j=l,.,.,n 

Lemlna 5.1 Let w)~,t be the weioht 

wff, l(z,u ) := 2--m(j+lm~x)(1 + 2 ~  IZ[) 2m(1+~) f i  2-- / i (1  "~ 2l i luel )  1+~ . 
i=1 

Suppose there is some ~ > 0 and A > 0 such that 

(5.1) f [Nj, l(x)l=w~,t(x)dx < A 2 
G 

for every j ~ 2, l. Then for 1 < p < oo 

IIm(A-~ ~ ,  u/i)llz,,Lp < CpA . 

Proof By Proposition 4.4, we have 

IIm(Z-l-~, U/i)fIILp ~ Cp 1 

where 

I( \ ~/211 

285 

f j ,  l := f *(q~j*~t).  

By H61der's inequality and (5.1), 

[ f  j3 * NJ, l(x)l 2 = [f  f y, t(xy-1)Nj, l(y)dy[ 2 

< A2f  I f j  I ( x Y - 1 ) { 2 ~  dy. 
= , W),lty ) 

Assume now that p > 2 (the case p < 2 follows by duality). Then there 
exists 9 E L (p/2)' = L p/(p-2) with O > 0 and [I9]ILp/(p-2) = 1 such that 

2 f  [Im(A-~ Le' S/i)fll~p < c~ ~ l f  J'~ * gY'zl2 

hence, by Fubini's theorem, 

I lm(a - l~ ,  U/i)fllzL, < Cp A2 f f E [fj, l(xY -~ )12 ~ dy O(x) dx 
j , l  

Denote by ~ s  the following strono maximal operator on G: 

1 
JCs(g)(Y) := sup "2my f f Io(y(z, u))[ dzdu. 

rj>O r 0 1 ." "rn [zl<r0 [uil<ri 
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Then clearly 
1 

fg(X)w ~ dx < ~¢[s g(Y) .  , l ( y - l x )  = 

Since by [C] (here also the simple argument sketched in the introduction 
to [RS] would apply) ~ s  is bounded on Lq(G), 1 < q < oo, we obtain, again 
by H61der's inequality and Proposition 4.4, 

I l m ( A - l ' g " U / i ) f I ' 2 P <  C p A 2 f ( Y ~ ' f J ' I ( Y ) ' 2 )  ~ # ( u ) d y j , t  

< Cp A 2 llg2(f)l]2~ I].//~VltLp/(~-:) 

< CpA2IIf]I~ Ilg[I -~- P L p / ( p - 2 )  

= cpA211fL[~,. [] 

It remains to prove that the conditions in Theorem 2.3 imply the estimate 
(5.1) for some ~ > 0. This will be accomplished by means of the Plancherel 
formula (1.1). 

If p(z, u) is a gl-radial polynomial on G, it multiplies the subalgebra of 
radial Schwartz class functions of ~¢, and we can therefore define an operator 
0p by 

~ ( p f ) ( # , k )  =: Op(~f)(I.t,k), (!~,k) E (g~\{O}) × N, f C 6a n ~¢. 

If R is a function on (g~\{0}) × IN, we define translation operators zt, 
I E Z ,  by 

f R ( # , k + l ) ,  i f k + l  > 0 ,  
(z iR)(#,k)  := ~1. 0, else. 

Notice that the zt can be considered as ordinary translation operators, if we 
extend R to g~\{0} x Z by setting it 0 for k < 0. 

Straight-forward computations, based on well-known properties of Laguerre 
polynomials [E] yield 

(5.2a) O lzl2 = 2 ( ( 2 k  + m )zo - kZ_ l - -  ( k + m )z l ) , 

(5.2b) d-iu: = ~ + 2-~,2(m'ro + Icr_t - (k + rn)zl).  
0#j [/~I 

Let us denote by A the first order difference operator A := zl - z0. Then 
the following commutation relations between A,'rt and multiplication by k, 

(5.3) [zt, A] = 0, ['rt,k] = lzt, [A,k] = "q , 
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allow us to re-write (5.2) as 

- 1  2 
(5.4a) ~1~12 = -~(T_1kA + ((2m + 1)~0 - z _ l ) A ) ,  

287 

(5.4b) O--iuj = ~ -~-i((zo+z-1)kA+(mzl-(m-1)Zo-z_l)). 
O#j 21kt I 

I f  one applies these operators iteratedly, induction and (5.3) easily lead to 
the following lemma (we omit the details): 

L e m m a  5.2 
(1) For p E IN\{0} one has 

P 
OP = Ibt[ - p  ~ ap, v • ~ k V A P  +v ' lzl 2 

v=O 

where each ap, v • ~ denotes a finite sum of  terms atzt, at E IR. 
(2) Introducin9 auxiliary variables T1 . . . . .  Tn E IR, we have for q E IN 

~,.8,7,6 E bln 
~j+#j <2q 

T27'... T27nbq,~,!3,~,,6(p) .  l l-I l kl l Al l 
Oi a~ 

where each bq,a,13,r,6(p ) • ~ i s  a finite sum o f  terms bz(#)Tl, with bl E C~(g~\  
{0}) bein9 homogeneous of  deoree O, hence in particular bounded. 

Let us put (compare (2.1)) 

[ ~Nj, t(It, k )=(ra(r l j®~t ) ) (2k  +m,p) ,  k > O, 
raj, t(k,,u) := [. O, k < O, 

and let us denote by A also the ordinary difference operator on Z. With the 
aid of  Lemma 4.2 and the Plancherel formula (1.1) we shall now prove the 
crucial 

Proposition 5.3 For p E IR+, l E 7Z n and j > 2 we have 

(5.5) f f  I[( 1 + 2J+tm~x Izl2)2"(1 + 22qu~) . . . (1  + 22~"u])]PNj, t(z,u)12dzdu 

1 1 
c2mO'+lm~x)+lll ~ k~Z - ~  

(1 12 z' 0u, [)2Pro j, t(k, # ) z x f + [2JA[) 2rap ~ (1 + [2JAI + d#.  
i=1  

Before we enter the proof, let us remark that the estimate (5.5) can 
be reduced to the case l ---- 0 by means of  the scaling identity (2.3), if 
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dimg2 = 1. This reduction, which would simplify the argument consider- 
ably, will however fail in the general case, since the group of  "dilating" auto- 
morphisms of  G will in general be too small for this purpose. 

Let us put 

w(z, u) :=  221tlp[1 + (2 j+'n~x [z[2)2=P][(2 -2q + u~). . .  (2 -2t" + u2)] p , 

where again Imax = max lj. To prove Proposition 5.3, we have to show that 

f tw(x)Uy, l(X)l 2 ax 
G 

is dominated by the right hand side o f  (5.5). Moreover, it will suffice to prove 
this for p E N,  since the general case will then follow by interpolation. 

So, assume p E IN. By Lemma 5.2 and (5.3) we see that 
(5.6) 

2np--[~l ( ~ )  
Ow(z,u) = ~  ~ ba,~,a,v(It) • ~ 2 21lIp-21" el/~[-I~l o~ kVA v 

o t v=0 

2(m+n)p-let I ( 
+ E E C~,r,6,v(ll)" ? 2211lp+2(mplmax--I" ~)1~1 -~1~ t + = . ~ ) ~  

y v=0 O# ~ J 

× (2J)2~k~A2~ +v , 

where o¢ is the index set 

J : =  {or, r, 6 E N n : o~j ~ 2p,  ~j + 2~,j + 6j = 2 p } ,  

and where the "coefficients" o f  the b~,r,a,~(/~) • ~ and c~,r,~,~(p ) • ~ are bounded 
functions. Observing that [#i1 ~ 2 t~ on suppmj, t, one sees that 

(5.7) I/./[ '~' 2/max onsuppmj , l ,  

and hence in the first double sum of  (5.6) 

(5.8) 2 2 1 l l p - 2 l  " el#l-lal ~ 22111p-21 • ~'--I01lmax = 2 l • • ,  

s ince  2 1 l i p  - 2 l  • y = l • ~ + l • 6 a n d  1 • 6 < (Imax . . . . .  /max) • 6 = Imp, I'll. 
Similarly, in the second double sum 

(5.9) 22lllp+2(mplmax-I " Y)I#I -(lf[+2mp) ~ 2 t " ~ 

On supp m j, l one also has 

k + l  ~2s, 

in particular 

(5.10) k v ,-~ 2 vj, 

k + m - 1 ) 2(m_l) j 
k J 

(2J)2"pk v ~ 2~2,,p+v)J. 
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The statements (5.6) to (5.10) in combination with (1. I) imply the follow- 
ing estimate: 

(5.11) 
2dp-I~1 1 1 

f Iw(x)Nj, t(x)l 2 ax <_ C2 m(j+tm~)+ltl ~ ~ ~ ~2-37 
G o*EN n,otj < 2 p  v=0 

× fi(2JA)V (2  t " " O" ) O#~ mj, t(k,#)[ 2d#" 

An application of the following lemma to the terms in (5.11) will finally 
conclude the proof of Proposition 5.3. 

Lemma 5.4 Suppose that f = f (k ,  #)  is a square integrable function on the 
l.c. abelian 9roup Z x IR n. Let R, pl . . . . .  Pn > O, v, oq, . . . ,% E N be such 
that ~j < p, j = 1,... ,n, and v + I~1 ~ q, where q > np. Then, with 

OZl ~n 
P~ :=P l  " " P n ,  

( ~< <~< ~ 
E f I(R ; t p a. 

kEZ N n 

(1 " . )  2 
< C ~  f + [RAI)q-'PI-I(1 + IRA I + IpjO.ji)Pf(k, d~. 

kEZ F, n j = l  

Proof  By Plancherel's theorem for the group Z × P," this will follow from 
the estimate 

(5.12) 

r ~ i ' " r ~  "rv <= ~ ( l + r )  q-I:lp 1-I r f  = ( l + r ) q - n p f i ( l + r + r ) )  p ,  
JC_ { l,...,n} i e J  j = l  

with ri = p, lui[ and r = Rle i t -  1[, if ui and t denote the variables dual to #i 
and k, respectively. 

But, if r > 1 and J := {i : ri > r}, then 

r l l . . . r : , r V = r V + l ~ l ( ~ ) ~ l . . . ( ~ )  ~" 

- _  (r,). < rV+l~l r l  , , r /  
iEj 

= rV+[al-lJlP I I  r/p 
iE,q 

=< rq-lJlp I-I r f .  
iEJ 
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And, i f  r < 1, then 

r~ 1 . . . r ~ n r  v < (1 + r l ) P . . . ( 1  + r n )  p , 

and again this is bounded by  the right-hand side o f  (5.12). [] 

I f  we now choose p = ~ in Proposition 5.3, we obtain the following 
estimate of  type (5.1) as required in Lemma 5.1: 

(5.13) G f I&'t(x)12w Ax)ax < Csupj,   E2_ 1 

× f (1 + [2JAl)('+~)m i=,fi(1 + 12JA I + [2t~Ou, l)a-~mj, t(k,l.,) 2d/~, 

which by  Lemma 5.1 proves Theorem 2.3. 
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