
Comment. Math. Helvetici 61 (1986) 6 3 6 - 6 6 0  0010-2571/86/040636-25501.50 + 0.20/0 
© 1986 Birkh/iuser Verlag, Basel 

Bounded orbits of flows on homogeneous spaces 

S. G. DANI 

A well-known class of flows arises as follows: Let G be a semisimple Lie group 
and F be a lattice in G, that is, F is a discrete subgroup such that G/F admits a 
finite measure invariant under the action of G, on the left. Let (g,) be a 
one-parameter subgroup of G. The action of (g,) on G/F defines a flow. 
Necessary and sufficient conditions are known, thanks to the work of C. C. 
Moore, for such a flow to be ergodic (with respect to the unique G-invariant 
probability measure); (cf. [13]). Thus, for instance, if G is a noncompact simple 
Lie group with finite center then the action of (gt) on G/F is ergodic if and only if 
(g,) is not contained in a compact subgroup of G. 

When the flow induced by (g,), as above, is ergodic, the orbits of almost all 
points are dense in G/F. However, in general, all orbits of the flow are not dense. 

For instance, if G = SL(2, N), 1" = SL(2, 7/) and g, = _, then the flow as 

above is the geodesic flow associated to the modular surface; in this case there 
exist periodic orbits, divergent orbits and also many other types of orbits which 
are not dense. A similar phenomenon occurs for most homogeneous spaces for 
flows induced by one-parameter subgroups (g~) such that Ad gt is semisimple for 
all t (cf. [2]). The situation is somewhat different when Adg, ,  t • N are unipotent; 
we shall however not concern ourselves with that here (cf. [8] and [3] for details). 

In [2] we considered flows as above on noncompact homogeneous spaces G/F 
and studied their trajectories (one-sided orbits {g,gFIt->O}) which are either 
divergent (that is, eventually leave every compact subset of G/F) or bounded 
(relatively compact). It was shown, in particular, that for flows on SL(n, ~)/  
SL(n, 7/), n ~ 2 ,  induced by one-parameter subgroups of the form 
d iag(e- '  . . . .  e- ' ,  e ~ . . . . .  e~), where 3. is such that the determinant is 1, 
divergence or boundedness of a trajectory starting from gSL(n, 7/), g • SL(n, N), 
is equivalent to a certain system of linear forms associated to g, in a natural way, 
being singular or badly approximable (cf. [16] or [21 for definitions) respectively. 

In the particular case of n -- 2, g~ -- diag (e-', e'), g = p e 1 Y for some e • N, 

an upper triangular matrix p and y e F, the trajectory {g,gSL(n, Z) lt ~ 0} is 
divergent if and only if a~ is rational and bounded if and only if ~ is badly 
approximable (cf. Remark 2.6 for the latter). Using the latter assertion and a 
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theorem of W. M. Schmidt (cf. [1-5]) it was also deduced that for the flows on 
SL(n, ~)/SL(n, 7/) as above, the set of points on bounded trajectories is "large" 
in the sense that its Hausdorff dimension coincides with the dimension of 
SL(n, ~)/SL(n, 7/) as a manifold. We then raised the question whether an 
analogous assertion holds if G =SL(2,  R) and F is any lattice in G (not 
necessarily SL(2, 2v)) for the flow induced by diag (e-',  e'). In this paper we 
answer that question in the affirmative in the following more general form. (cf. 
Theorem 5.1 below). 

THEOREM.  Let G be a connected semisimple Lie group of ~-rank 1 and F 
be a lattice in G. Let (gt) be a one-parameter subgroup of G such that Ad gl has an 
eigenvalue (possibly complex) of absolute value other than 1. Then for any 
nonempty open subset g2 of G / F 

{gF ~ f21the (g,)-orbit of  gF is bounded} 

is of  Hausdorff dimension equal to the dimension of  G. 

Here G/F is understood to be equipped with a metric obtained as a quotient 
of a right-invariant Riemannian metric on G. In particular, the theorem implies 
that if M is a Riemannian manifold of constant negative curvature and finite 
Riemannian volume, then the set of line elements (x, ~), where x e M and ~ is a 
tangent vector of unit norm at x, such that the geodesic through x in the direction 
of ~ is bounded, forms a subset of full Hausdorff dimension in the unit tangent 
bundle (cf. Corollary 5.2). 

In the sequel, for convenience, we consider right actions of one-parameter 
subgroups (g,) on F\G rather than left actions on G/F. We first obtain a 
description of the set E+(F) of "endpoints" of the curves {gg, [ t >- 0} where g ~ G 
is such that {Fgg,[t>-O} is bounded in FkG (cf. Proposition 2.5); here 
"endpoint"  means the unique point on the Furstenberg boundary B = G/P, 
where P is a minimal parabolic subgroup, to which a curve as above converges, as 
t---~0o, in the Furstenberg compactification of G (cf. §§1 and 2 for details). 
Corollaries 1.5 and 1.7 proved in the course of the above, using boundary theory, 
seem to be of independent interest. 

In the particular case of G = SL(2, ~), F = SL(2, 7/) and g, = diag (e', e- ' ) ,  
E+(F) as above corresponds to the set of badly approximable numbers under a 
canonical identification of R U {~} with the Furstenberg boundary. (cf. Remark 
2.6). Thus E+(F) may be viewed as an object generalising the set of badly 
approximable numbers. 

We then determine the Hausdorff dimension of E+(F) employing the notion 
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of winning sets of (tr, fl)-games introduced by W. M. Schmidt, which was used by 
him to prove that the set of badly approximable numbers is of Hausdorff 
dimension 1. In §3 we prove a general result, Theorem 3.2, regarding winning 
sets of the (o~, fl)-games in R",  m - 1. In §4 we show that all nontrivial orbits of a 
certain abelian Lie subgroup (exp V as in §4 below) of positive dimension, on the 
Furstenberg boundary, intersect the set E*(F) in a set, which in V corresponds to 
a winning set for the (tr, fl)-game for any tr, fl such that 1 - 2 r e +  ocfl>0. This 
enables us to conclude that E+(F) has Hausdorff dimension equal to the 
dimension of the boundary. §5 contains the final deduction of the Theorem and 
the Corollary stated above. We conclude with some comments and questions. 

The author would like to thank Gopal Prasad, S. Raghavan and R. R. Simha 
for useful suggestions and references. 

§1. Preliminaries 

Let G be a connected semisimple Lie group of R-rank 1. We fix a 
one-parameter subgroup A = (exptY),~a, where Y is an element of the Lie 
algebra of G, such that the adjoint action of A (on the Lie algebra of G) is 
diagonalisable over R; G being of R-rank 1 such a subgroup is unique upto 
conjugacy. We denote by N and N -  the horospherical subgroups associated to A 
(relative to the order determined by Y) defined by 

N =  {n e G  ] (exp - tY)n(exptY)--+e as t---~oo} and 

N - =  (u e G I (exp tY)u(exp -tY)---~ e as t-~ ~} 

e being the identity element in G. Then N and N -  are connected Lie subgroups. 
We denote by P and P -  the normalisers of N and N -  respectively. Then P and 
P -  are parabolic subgroups of G and N and N-  are their unipotent radicals. We 
fix a maximal compact subgroup K of G and denote by M the centraliser of A in 
K; viz. the subgroup consisting of those elements of K which commute with all 
elements of A. We note that M normalises N. We also fix an element w of K such 
that waw-~=a -x for all a ~ A ;  such an element exists and the coset wM is 
unique. We recall the following standard facts (cf. [9] and [18]) which will be used 
frequently in the sequel. 

1.1. PROPOSITION. i)Iwasawa decomposition: G = N A K  = KAN; further, 
the map of N x A x K into G which takes (n, a, k) into nak, for all n e N, a e A 
and k ~ K, is a diffeomorphism. 

ii) Langlands decomposition: P = NAM = MAN 
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iii) Bruhat decomposition: G = (PwP) U P = (NwP) U P; further, the map of 
N into G / P  which takes n into nwP is a diffeomorphism of  N onto N w P /  
P = (G - P)/P.  

Let n be the Lie subalgebra corresponding to N. Then n is invariant under the 
adjoint action, denoted by Ad, of A and all eigenvalues of Ad (exp - Y) are in 
(0, 1). From this observation it is easy to deduce the following (well-known) 
lemma needed in the sequel. 

1.2. LEMMA.  I f  ti-~ oo then (exp - t iY )n (exp  tiY)--~ e uniformly on compact 
subsets of  N. I f  F is a compact subset of  N then I._J,~_o (exp - t Y ) F ( e x p  tY)  U {e} is 
compact. 

A sequence {gi}T=~ in G is said to be divergent, and we write gi---~ ~, if for any 
compact subset C there exists io such that gi e G - C for all i >- io. 

1.3. LEMMA.  Let {ui} be a divergent sequence in N -  and let ui = niaiki be 
the lwasawa decompositions, where ni ~ N, ai~ A and ki ~ K for all i. Let ti~ R be 
such that aj -l = exp tiY. Then ti---~ o¢. 

Proof. Let V = / ~  ~q, the lth exterior power (as a vector space) of the Lie 
algebra ,q of G, where l is the dimension of N. Let p be the lth exterior power of 
the adjoint (left) representation of G and let v0 be a non-zero vector contained in 
the one-dimensional subspace in V corresponding to the Lie subalgebra of N. It is 
easy to see that p(g)vo =vo for g ~ G  if and only if g e M N  and that 
p(exp tY)vo = e~vo for all t ~ ~ ,  where/~ is a fixed positive number. Let  II" II be a 
p(K)-invariant norm on V. Then for any k e K, a = exp tY  e A and n e N we have 

Ilp(kan)vo[I--e'llv011. In particular, IIp(u;')voll--e ~ '̀ tivoli for all i. Hence it is 
enough to show that IIp(u;')v011--, Since p ( N - )  consists of unipotent elements 
p(N- )vo  is a closed subset of V. Further,  since no non-trivial element of N -  fixes 
v0 under the action via p, the last assertion implies that the assignment 
u ~ p(u)Vo is a homeomorphism of N -  onto p(N- )vo  (the latter equipped with 
the subspace topology). Since {ui} and in turn {ui -l} are divergent sequences in 
N - ,  p(u71)Vo is a divergent sequence p(N-)vo .  Since the latter is a closed subset 
of V the last condition implies that IIp(u.')voll-, =, as desired. 

We recall that G / P  can be viewed as a boundary of  G/K.  Specifically, this is 
clone as follows (cf. [6] and [12] for motivation and details). Let  ~ be the space of 
probability measures on G / P  equipped with the weak* topology; a net {g~} in 
converges to /~ e ~ if Sfdl~---~ .[fdl~ for all continuous functions. Since G / P  is 
compact and second countable, ~ is also a compact (Hausdorff) second countable 
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space. The G-action on G / P  induces a G-action on ~ defined by g # ( E ) =  
#(g-~E) .  The action of K on G / P  is transitive and consequently there exists a 
unique K-invariant probability measure on G/P;  we denote this measure by m. 
The symmetric space G / K  is then viewed as a subset of ~ via the identification 
gK~--~gm for all g ~ G. Also G / P  is viewed as a subset of ~ by identifying each 
x e G / P  with the point mass di~ based at x. It is easy to see that the identification 
maps are (well-defined) G-equivariant homeomorphisms. It is well-known that 
G / P  is contained the closure of G / K  in ~ and further that when G is of ~- rank  
1, as in our  case, ( G / K )  t.J ( G / P )  is compact (cf. Lemma 1.4 below for the latter 
and Theorem 7 of [12] for the general case). 

In the sequel we use the following notation: A ÷ = { e x p t Y I t > O }  and 
A -  = {exp tY  I t < 0}. 

1.4. LEMMA.  i) f f  {g~} is a divergent sequence contained in N A  + then 
g~m ~ dip. 

ii) I f  {g~} is a divergent sequence in G then there exists a subsequence of  {g~m} 
which converges to di, for  some x ~ G/P;  hence ( G / K )  t.J ( G / P )  is compact. 

Proof. i) Let  {gi} be a divergent sequence in N A  ÷ and let v be any limit point 
of {gim} in ~.  We shall show that v = dip. Since ~ is compact, this would prove 
i). By passing to a subsequence we may assume that g~m ~ v. Let g~ = n~a~, where 
n~ e N and a,. c A  ÷. Again by passing to a suitable subsequence we may assume 
that either {ai} is divergent or ai.----~a for some a e A ÷ U  {e} and similarly that 
either {a~-lnia~} is divergent or ai-ln~ai~ h for some h e N. 

We claim that for x = nwP ~ N w P / P ,  where n ~ N, g~x---~ P unless n = (h) -1, 
with h as above (no exception if {ai-~n~a~} is divergent). Suppose this is not true, 
say for x = n w P ,  n e N ,  n ~ ( h )  -~. Since G / P  is compact, by passing to a 
subsequence we may assume that g~x---~n'wP ~ N w P / P  = (G - P) /P,  for some 
n' ~ N. Since gjx = n~ainwP = n~(a~na;-1)wP, by Proposition 1.1, iii) it follows that 
ni(a~na~l)---~n ' as i--*~. Now suppose first that {ai} is divergent. Then 
a[-ln"a~---~ e as i--~ ~ uniformly for n" in a neighbourhood of n' .  Since n~(a~na~-l)---~ 
n ' ,  this implies that (a~'~n~a~)n--oe as i--*~. But this is a contradiction since 
n ~ ( h )  -1. Next suppose that a~---~a as i--~0o. Then gin=ni(ainaT1)ai---~n'a, 
which is a contradiction since {g,.} is divergent. Hence the claim must hold. Since 
m ( P )  = m ( f i - ~ w P ) =  0, in view of the bounded convergence theorem validity of 
the claim implies that g~m ~ dip. 

ii) Now let {g;} be any divergent sequence in G. As in [12], by Cartan 
decomposition we may write gi as g~ = k~a~k~ for  some a~ e A +U  {e} and k~, 
k~ ~ K. By passing to a subsequence, we may assume that ki---~k e K. Then {a~} is 
divergent and hence by i) we have a~k~m = a~m---~ 6p. But the G-action on ~ is 
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continuous (cf. [12], Lemma 8). Hence gim = kia~k'm---~k6p = 6kp, so that ii) 
holds with x = kP.  

It turns out, as pointed out by the referee, that an appropriate analogue of (ii) 
in Lemma 1.4 holds more generally for negatively curved manifolds and also that 
a similar assertion holds for any measure on G / P ,  not just m. 

1.5. C O R O L L A R Y .  Let  {ui} be a divergent  sequence in N -  and fo r  all i let 
ui = niaiki be the lwasawa decomposi t ions,  where n~ ~ N,  a~ ~ A and k~ ~ K. Then 
n~ ~ e, the identity, as i ~ ~. 

Proof. It is well known and easy to see that N -  = w N w - ~ ;  thus for all i, ui can 
be written as w n [ w  -1, where {hi} is a divergent sequence in N. Hence 
u~m = w n ~ w - l m  = wn'lm---> wbp = 6wp, by Lemma 1.4, i). Also, by Lemma 1.3 
a~ -1 = exp trY, where ti-+ co. Hence aikim = aiwm = w(exp t i Y ) m  ~ wtSt, = tSwp 
by Lemma 1.4, i). We shall conclude from these two convergences that n~---)e 

as i ~ ~. Suppose this is not true. Then there exists a neighbourhood 121 of e in N 
such that n~ ~ g21 for infinitely many i. Let g2 be a neighbourhood of e in N such 
that g2g2-1cg21. Since uim---~6wp and aikim---*6~p there exists i0 such that 
uim(s'-2wP/P) >- ~3 and a~kim(g2wP/P)  >- ~. Let i --- i0 be such that n~ ~ s'-2 t. Then 
n/-~g2 is contained in N -  g2. Hence 

uim(  ( N - g2)wP / P)  = niaikim( ( N  - g2)wP / e )  >- niaim(ni-l  g2wP / P)  

= a i m ( g 2 w P / P )  >- z3. 

But since I 2 w P / P  and ( N  - I 2 ) w P / P  are disjoint subsets and u~m is a probability 
measure both cannot be assigned measure -> 32; the contradiction shows that the 
corollary must hold. 

Let  ~r:G---~N be the map defined by ~r(nak)= n for all n e N, a e A and 
k e K, every element of G being expressed uniquely as such by Iwasawa 
decomposition. 

1.6. LEMMA.  For any a ~ A ,  ~ t ( N - a )  = r r (aN- )  = a ~ ( N - ) a  -1. 

Proof .  Let a e A. Note that a normalises N -  and hence a N -  = N - a .  Now let 
n e ~r(aN-) .  Then there exist u e N - ,  b e A and k e K such that au = nbk.  Hence 
u = a - l n b k  = ( a - l n a ) ( a - t b ) k  so that a - l n a  = ~r(u) e zr(N-). Therefore  n 
a~r(N-)a  -1 for all n e : t ( a N - ) ,  so that 3 t ( a N - ) c a r ~ ( N - ) a  -1. Similar argument 
also yields the other  way inclusion. 

1.7. C O R O L L A R Y .  ~ ( N - A - )  is a bounded  subset  o f  N;  viz.  it has compact  

closure. 

Proof.  If g2 is a compact neighbourhood of the identity then by Corollary 1.5 
there exists a compact subset F of N -  such that ~ r ( N - - F ) =  g2; hence 
l r (N- )  c ~t(F) t_J ~2, which implies that ~ ( N - )  is bounded. Therefore  by Lemmas 
1.2 and 1.6, : t ( N - A - )  = (-J~A- a~r(N-)a  - t  is a bounded subset of N. 



642 S.G. DANI 

1.8. LEMMA. For any to>0 ,  :r (N-A-)  contains a neighbourhood £2 ore in 
N such that n N - A - K  f3 (exp t Y ) N - A - K  is nonempty for all n ~ f2 and all t such 
that It[ <~ to. 

Proof. Let tl >t0  and let D = {exptYi t ~ [ - t j -  to, - t ,  + to]}. Then D is a 
compact subset contained in the open set N - A - K .  Since G = NAK (lwasawa 
decomposition) is topologically a Cartesian product of the component subspaces, 
we can conclude from the above that there exists a neighbourhood s'2 of the 
identity in N such that K2DK is contained in N - A - K .  Passing to a smaller 
neighbourhood we may also assume 12 to be symmetric; that is, g2 = S'2 -~. Then 
for any n e Q and t e [-to,  to], N - A - K A n - ~ ( e x p t Y ) N - A - K  contains 
n- lexp  ( t -  tOY, and hence, in particular, it is nonempty; therefore n N - A - K  N 
(exp t Y ) N - A - K  is also nonempty. From the choice of 12 it is evident that it is 
contained in re(N-A-).  

§2. A characterisation of bounded trajectories 

Let the notation be as in §1. Recall that G is a connected semisimple Lie 
group of R-rank 1. Let F be a lattice in G; that is, F\G admits a finite (Borel) 
measure invariant under the action of G (on the right). For obvious reasons we 
assume F\G to be noncompact. In this section we obtain a characterisation of the 
set of x in G such that {Fx(exp tY) j t >- 0} is a bounded trajectory (that is, it has 

compact closure) i n / ~ G .  

2.1. LEMMA.  Let x ~ G and p ~ P be arbitrary. Then {Fx(exp tY) I t >- 0} /s 
bounded if and only if {rxp(exp tY) I t >- 0}/s  bounded. 

Proof. Let p = n a m ,  where n e N ,  a e A  and m e M ,  be the Langlands 
decomposition of p. Then Fxp(exp tY) = Fxnam(exp tY) = Fx(exp tY) {(exp - 
tY)n(exp tY)}am. Since (exp - tY)n(exp  tY)-+ e, the identity, as t--* ~, the 
relation evidently implies the Lemma. 

In view of the lemma it is enough for us to characterise the subset E+(F) of 
the boundary G/P defined by 

E+ ( r) = {xP ~ G / P I {Fx(exp tY) I t >i 0} is bounded}. 

For this purpose we recall a well-known fundamental domain for the F-action. 
For s e R  let A ~ = ( e x p s Y ) A + = { e x p t y [ t > s } .  A subset of the form ZA~K, 
where Z is a compact subset of N and s ~ R is called a Siegel set. We need the 
following result on fundamental domains, due to Garland and Raghunathan (cf. 
[7], Theorem 0.6; note that we consider the G-action on the right and hence must 
employ the inverses of the relevant subsets as in [7]). 
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2.2. PROPOSITION.  There exists a Siegel set XApK and a finite subset A of  
G such that the following conditions are satisfied. 

i) G = FA~,ApK 
ii) for any 3. e A, (3.-IF3.) n NM is a (cocompact) lattice in NM. 

iii) for any compact subsets D and D' of  N there exists o ~ ~ such that the 
following holds: if  3., 3.' • A and y ~ F are such that y3.DApK n 3. 'D'AoK 
is nonempty then 3.' = 3. and 3.-173. • NM. 

It may be noted that the proposition would continue to hold, for suitably 
modified ~ and p, if any 3. ~ A is replaced by an element of the form 73.P, where 
7 e F and p • P. However ,  any set A for which the proposition holds, for a 
suitable ,~ and s, is a set of representatives for a fixed class of double cosets of the 
form FgP, g • G. It may be worthwhile recalling that these double cosets consist 
precisely of elements g ~ G such that {Fg(exp tY) [ t >- 0} is a divergent trajectory 
in F\G;  namely, for any compact subset C of F\G there exists T-> 0 such that 
Fg(exp tY) ¢ C for t -> T. (cf. [2], Corollary 6.2). 

2.3. Remark. Let the notation be as in Proposition 2.2. Then there exists 
a • ~ such that the following holds: if 3., 3.' ~ A and g • F are such that either 
y3.XApK n 3.'NAoK or ~,3.NAoK n 3.'NAoK is nonempty then 3. = 3.' and 

3.-~73. • NM. 

Proof. In view of ii) in Proposition 2.2 and finiteness of A there exists a 
compact subset D of NM such that N M  = (NM n 3.-IF3.)D for all 3. • A. Hence 
for any s, 3.NAsK = 3.NMAsK = 3.(NM n 3.-IF3.)DAsK = (3.NM3. -~ O F)3.DA, K 
for all 3. • A. Let o >-- p be such that iii) of Proposition 2.2 holds for Z U D (2' as 
in Proposition 2.2, i)) and D in the place of D and D '  respectively. Now let 3., 
3 . ' •  A be such that 73.Y--ApK n 3.'NAoK is nonempty. Then by the preceding 
observation there exists 7' • 3.'NM(3.') -~ O F such that 7AY, ApK O 7'3.'DAoK is 
nonempty. By our choice of o this implies that 3.' = 3. and 3.-ly-1~,,3. e NM. But 
since 3.-~y'3. ~ N M  (as 3. = 3.'), this implies that 3.-iy~ e NM. A similar argument 
shows that if 73.NAoK n 3.'NAoK is nonempty for some 3., 3.' e A and 7 e F then 

3. = 3.' and 3.-~73. ~ NM. 
Through the rest of the section, in characterising bounded trajectories, we use 

the notation as in Proposition 2.2 and fix o • ~ ,  a - >  p for which Remark 2.3 

holds. 

2.4. PROPOSITION.  Let x • G. Then {Fx(exp tY)  [ t >- 0} is a bounded 
trajectory in F \ G  if  and only if  there exists s • R such that x(exp t Y ) ~  G -  
FANA~K for all t >- O. 
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Proof. Observe that G -  FANA~K is contained in F A X ( A p -  A~)K whose 
image in F\G  has compact closure. This implies the 'if' part of the Proposition. 
Next suppose that {Fx(exptY) l t  >-0} is bounded. Then evidently there exists 
s • R such that x(exp tY) • FAE(Ap - A~)K for all t -> 0. Further, without loss of 
generality we may assume s >- a. Suppose the proposition is not true; then there 
must exist t -> 0 such that x(exp tY) • FAZ(Ap - As)K N FANA~K. Hence, in 
particular, there exist ~., ~.' e A and 7 • F such that 7;~V~(Ap - A ~ ) K  fq ~.'NA~K is 
nonempty. Since s -> a, by Remark 2.3 this implies that ). -- ~.' and ;~-~TZ • NM. 
But then we find that X(Ap - A~)K f3 (;~-~7-~;~)NA~K = ~,(A~ - A~)K fq NA~K 
is nonempty, which is absurd by uniqueness of expression in Iwasawa decomposi- 
tion. Hence the proposition. 

2.5. PROPOSITION. Let ~. • A and let {g~} be an enumeration of  the 
countable set ~.-1FA - P. Let gi = n~wa~z~, where n~ e N, ai • A and z~ • NM, be 
their Bruhat decompositions. Then 

E+(F) = t..J N {ZnwP ln ~ sr(nia71a-1N-A-)} 
a E A  i=1 

Proof. Since for any s, ~ . (exptY)•FANAsK for all t>s ,  in view of 
Proposition 2.4, )~P ~ E+(F). Hence by Bruhat decomposition every x e E+(F) is 
of the form ~.nwP for some n ~ N. Using Proposition 2.4 and the fact that 
~.-~F~. f'l P is contained in NM we deduce that ~.nwP e E+(F) if and only if there 
exists s e R  such that for all t>-O, n w ( e x p t Y ) ~  (Jg~NAsK. Now, for any 
i = 1, 2 . . . . .  we have giNA~K = niwaiziNA~K = niwaiNA~K = n~wa~aNA+K, 
where a = expsY. Further,  since w~w -1 = ~-1 for all ~ e A  and wNw -l = N- ,  we 
have niwaiaNA+K = n~aTla-~N-A-K. Thus ;mwP e E+(F) if and only if there 
exists a e A  such that for all t->0, and i = 1 , 2  . . . . .  nw(exptY)¢  
n i a [ l a - l N - A - K ,  or equivalently, n ( e x p - t Y )  ~n~ai-~a-lN-A-K. If n ¢ 
~t(nia;-la-lN-A -)  = nia~-aa-l~r(N-A-)aai, or equivalently if aai(n[-ln)aFla -1 q~ 
~r(N-A-),  for any i, then the condition evidently holds. This shows that the set 
on the right hand side in the equation as in the proposition is contained in E+(F). 

For proving the other way inclusion we need the following observations. In 
view of Lemma 1.3 there exists a So e R, such that if u e N -  and u = n(exp tY)k, 
where n e N, k e K and t • • is the Iwasawa decomposition, then t -< So. Further, 
if u • N -  and b = e x p ( - s Y ) e A - ,  where s > 0 ,  and u b = n ( e x p t ' Y ) k  is the 
Iwasawa decomposition of ub, then b-~ub = (b- lnb)  (b -~ exp t 'Y )k  = (b-~nb) 
(exp (s + t ' )Y )k  is the Iwasawa decomposition of b-aub and hence s + t' -< So; in 
particular, t '  <-So. Secondly, by Remark 2.3, for any i, g~NAoK is disjoint from 
NAoK. Since gi = niwagz~ this implies that wa~NAoK is disjoint from NA~,K. In 
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particular, w(aiAo)w -1 must be disjoint from Ao. Hence, for any i, if tl e ~ is 
such that a~ -1 = exp t iY then t~ -< 2o. 

Now let n • N  be such that for all a • A  there exists i such that n •  
Jr(niai-Ja-lN-A-). We shall show then that for every b • A there exist an index i 
and t->0 such that n ( e x p - t Y )  • n~ai-~b-~N-A-K; as noted earlier, this would 
imply that ~.nwP ~ E+(F), thereby completing the proof of the proposition. Let 
b • A  be given. Choose a = expsY such that s ---so+ 2a and ab -~ • A  ÷. Let i be 
an index such that n • ~r(nia71a-IN-A -) =niaTla-l:r(N-A-)aa~. Then 
aa~n-7~na~a -1 • re(N-A-)  and hence there exist y • N - A - ,  a' • A  and k • K 
such that y = (aain~-lna?la-1)a'k. Then n(ai-~a-la ') = nia~la-iyk -l E 
n~ai- la-~N-A-Kcn~a71b-~N-A-K,  where the last inclusion follows from the 
fact that (ba -1 )N-A-K  = N- (ba -1 )A-K  c N - A - K  as (ba -~) = (ab-~) -1 • A- .  
Let ti and t' be such that a~ -~ = e x p t i Y  and a '  =e x p t ' Y .  By the observations 
made earlier, t~-<2a and t' -<So. Then ai-~a-la ' c A -  exp - (s -So  - 2a)Y. Since 
n(a~a- la ' )  • n i a ~ I b - l N - A - K  and s - so - 2o - 0, this completes the proof. 

2.6. Remark. Consider the particular case G = SL(2, R), F = S L ( 2 ,  Z) and 

Y =  diag (1, - 1 ) ,  so that exptY=diag(e t ,  e-t). Then P = / ( ~  b ) - - -  a- 1 a,b • 

:/:0} and G/P may be identified with ~ U {~}, via the R, correspondence a 

(a c bd )P~a /c '  w h e r e a / c i s t a k e n t ° b e ~ i f c = O ' S i m i l a r l y w e a l s ° i d e n t i f y G / K  

with the upper half-plane H ÷ via the usual action of SL(2, R) on H ÷, K being 
chosen to be the isotropy subgroup of i = ~/-1 .  The topology on the compac- 
tification G / K U  G/P  corresponds canonically to the usual topology on H÷t3 
(~ t_J {~}). In this case the identity is a cusp element (cf. [17] for a fundamental 
domain) and it is straightforward to verify that the set as on the right hand side of 
the equation in Proposition 2.5 is precisely the set of badly approximable 
numbers in ~ .  (It may be recalled that a real number x is said to be badly 
approximable if there exists 6 > 0 such that I x -  k/ll > 6/ l  2 for all integers k,l 
with l ~ 0 . )  Thus by Proposition 2.5, E+(SL(2,7/)) is the set of badly ap- 
proximable real numbers. 

§3. Winning sets of  (a,  ~) -- games 

In this section we prove a general result, Theorem 3.2 about winning sets of 
the (re, fl)-games introduced by W. M. Schmidt [14]. Applying it to the set E+(F) 
as in §2 together with a result from [14] enables us to conclude that E+(F) is of 
Hausdorff dimension equal to the dimension of G/P. 
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The game in question goes as follows: Let M and ~ be two players, X be a 
complete metric space and let m, f l e  (0, 1) = {t ~ R [ 0 < t < 1} be given. ~ starts 
the game by picking a closed ball B0 in X with arbitrary positive radius. Then 
picks a closed ball A, contained in B0 and having radius m times that of Bo. Next 

chooses a closed ball contained in A, of radius fl times that of A1 and so on; 
the game proceeds inductively by M choosing a closed ball Ak contained in B~_~ 
with radius m times that of Bk-~ and then ~ choosing a closed bali contained in 
Ak and having radius fl times that of Ak. Since X is a complete metric space there 
is a unique point of X which belongs to Ak for all k, and hence also to Bk for all 
k. A subset S of X is called an (m, fl)-winning set (for M) if, irrespective of what 
choices ~ makes during his turns, M can make his choices in such a way as to 
ensure that the point of intersection belongs to S; S is said to be an m-winning set 
if it is an (m, fl)-winning set for all f l e  (0, 1). Evidently X itself is always an 
(m, fl)-winning set for all m, fl ~ (0, 1). It turns out that if 1 - 2m + mfl <- 0 then X 
is the only (m, fl)-winning set (cf. [14], Lemma 5). On the other hand if 
1 - 2m + mfl > 0 then there exist proper subsets which are (m, fl)-winning sets (cf. 
[14], Theorem 3, for example). However, Schmidt shows (in particular) that in a 
m-dimensional euclidean space, that is, X = O~ '~ for some m -> 1, any m-winning 
set is "large" in the sense that its "Hausdorff  dimension" (see below for 
definition) is m (cf. [14], Corollary 2 to Theorem 6). 

We recall that the Hausdorff dimension of a metric space X is defined as 
follows (cf. [5] and [10] for motivation and general reference): For any ball U in 
X let r(U) denote the radius of U. For e > 0 let qg(e) be the class of open balls of 
radius less than e. For s -> 0 let 

h(s, e) = inf r(U,) ~ I Ui s ~(e) ,  i = 1, 2 . . . .  such that X = V Ui 

Evidently, as e decreases h(s, e) increases monotonically. The quantity h(s)= 
lim~._,0 h(s, e) (possibly ~)  is called the s-dimensional Hausdorff measure of X. It 
is easy to see that there exists a (unique) d - 0 (possibly ~) such that h(s) = ~ for 
all s < d and h(s) = 0 for all s > d; d is called the Hausdorff dimension of X. The 
Hausdorff dimension of a subspace of X is understood to be with respect to the 
induced metric; evidently, it is at most as much as that of X. We note that R "~ 
with the usual metric is of Hausdorff dimension m and that more generally any 
m-dimensional Riemannian manifold metrized by the Riemannian metric has 
Hausdorff dimension m. 

A slight modification of the proof of Schmidt's result alluded above yields the 
following. 
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3.1. PROPOSITION.  I f  S is an or-winning set in R ' ,  where tr • (0, 1) and 
m >-1, then for any nonempty open subset g2 of ~'~, S tq g2 has Hausdorff 
dimension m. 

It will hardly serve any purpose to give details of the proof  except to note that 
given 12 as above, for all sufficiently small/3 the sets C~(ij) and hence S* as in the 
proof  of Theorem 6 in [14] can be assumed to be contained in 12; the rest of  the 
proof  of  that theorem and Corollary 2 in [14] goes through word for word and 
implies Proposition 3.1 as above. 

In [14], Schmidt also proved that the set of badly approximable numbers is an 
(o~,/3)-winning set in R for any ~,/3 • (0, 1) such that 1 - 2tr + tr/3 > 0  (cf. [14], 
Theorem 3). In this section we shall prove a general result, Theorem 3.2, on 
(tr,/3)-winning sets in euclidean spaces. The idea of the proof is motivated by that 
of Schmidt's theorem. 

We consider R "  equipped with the usual Hilbert norm which we denote by 
I1" II. If x~, x2 • ~m and S~ and $2 are subset of R '~ then d(x~, x2), d(x~, $1), 
d(S~, $2) etc. denote the distances between the respective pairs, with respect to 

the norm; e.g. d(S~, $2) = inf {llx - ytl Ix • s1, y • $2}. For any subset S the 
thickness of S is defined to be 

r(S) = inf sup d(x - y, V)  
V x , y e S  

where the infimum is taken over all hyperplanes V in R ' .  
For x • ~ "  and r > 0, B(x, r) denotes the open ball of radius r with center at 

x. For any ball B, whether open or closed, we denote by z (B)  and r(B) the 
center and the radius of B respectively. 

3.2. T H E O R E M .  Let {S(p, t)} be a family of  subsets of  R "  (doubly) indexed 
over p • ~ and t • (0, 1). Suppose that for any compact subset C of R "  and 

• (0, 1) there exist M - 1, e • (0, 1) and a sequence {~p) of positive numbers 
such that the following conditions are satisfied: 

a) if p • ~ and t • (0, e) are such that S(p, t) f) C is nonempty, then ~p <- M and 
• (S(p, t)) <- ttp 

b) if  p , q • ~  and t • ( O , e )  are such that S (p , t )  f~C and S(q , t )  N C  are 
nonempty and l~rp <- rq <- I~-'rp, then either p = q or d(S(p, t), S(q, t)) >- 
e(rp + Tq) 

Let 

Then F is an (oc, ~3)-winning set for all o~,/3 • (0, 1) such that 1 - 2or + a~/3 >0 .  
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3.3. Remark. The proof below shows that given tr, fl ~ (0, 1) as above, ~ can 
ensure the point of intersection to be in the set F as above if conditions a) and b) 
are satisfied (for suitable choices of M, e and {~p}) in the particular case of 
C = B0, the closed ball chosen by ~3 to start the game, and I~ = (trfl) h, where h is 
the smallest integer such that (~/~)h < ½(1 -- 2C~ + O~fl). 

Though we have not put this condition, typically for each p, the sets {S(p, t)}, 
t ~ (0, 1)} may be thought of as a shrinking family. The following particular case 
which is less technical may be worth pointing out. 

3.4. C O R O L L A R Y .  Let {xp} be a sequence o f  (distinct) points in •m and let 
{rp} be a bounded sequence o f  positive numbers. Suppose that for  any p and q, 
p q: q, we have 

IIx, - xqll  >- V(rprq). 
Let 

Then F is an (oc, ~)-winning set for  all ol, ~ e (0, 1) such that 1 - 2o~ + ot~ > O. 

Proo f  For all p e N and 0 < t -- 1, put S(p, t) = B(xp, trp). Then ~(S(p, t)) = 
trp. Put ~p = rp. Since {rp} is bounded, condition a) of the theorem is satisfied 
irrespective of the compact set C. Now let g ~ (0, 1) be given. Choose e = I ~ / ~ .  
Let p and q be such that #rp <- rq <- ~-~rp and let t e (0, e). Then 

d(B(xt,, trp), n(xq,  trq)) = Ilxp - x ll - t(rp - rq) ~ ~/(rprq) - t(rp + rq) 

>_  /gr, - t ( r ,  + ra) >- - t)(r  + > e(r  + rq), 

which shows that condition b) is also satisfied. Hence the theorem implies the 
corollary. 

It is evident that the corollary would be true for various other expressions in 
the place of ~/(rprq). The particular expression is, however, significant in view of 
the following lemma. 

3.5. LEMMA.  Let ~ "  be viewed as a hyperplane in ~,~+l in a natural way. 
Let {xp} be a sequence in ~m. Let Dp be a sequence o f  balls in ~m+i such that the 
boundary o f  Dp, p ~ ~,  is tangential to R '~ at xp. Suppose also that the interiors o f  
the balls Dp, p ~ ~,  are pairwise disjoint and are all contained in the same 
connected component  o f  ~m+~ _ R" .  Let rp be the radius of  Dp. Then 

Ilxp - xqll  -> 2~/(rprq) 

for  all p ~ q. 
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Proof is immediate  from Pythagoras theorem! 

We note that the set F as in Theorem 3.2 or Corollary 3.4 could be of zero 
measure.  Applying Corollary 3.4 to the particular case when m = 1, {Xp} is an 
enumerat ion of all rational numbers ,  and rp = 1/l 2 if xp = k/l ,  where k and l are 
coprime integers and l 4: 0, in which case the condition in the Corollary is indeed 
satisfied, we recover the corresponding result of Schmidt; viz. 

3.6. C O R O L L A R Y .  The set of  badly approximable (real) numbers is an 
(re, fl)-winning set in R,  for any a,  f l e  (0, 1) such that 1 - 2tr + trfi > O. 

To prove Theorem 3.2 we need the following lemma. 

3.7. L E M M A .  Let a, f l e ( 0 , 1 )  such that 1 - 2 a + t r f l > 0  be given. Let 
0 = ½(1 - 2 a  + trfl) e (0, 1). Let h be a positive integer such that (olfl) h < O. Let 
k >-- 0 be arbitrary and let Bk be the closed ball chosen by ~ at the kth stage. Let V 
be a hyperplane and let I be a closed subinterval of  V ", the orthocomplement of  V 
in ~ m. Let l(1) be the length of I, a be the mid-point of  I and suppose that 

l(1) < d(z(Bk),  a + V) + Or(Bk) 

Then sg can play in such a way that Bk+ h is disjoint from I + V. 

Proof. Let L be the diameter  of Bk which is parallel to V"  and let xl and x2 
be the endpoints of L. Without loss of generality we may assume that 

d(xl ,  a + V) >- d(x2, a + V). ~ shall choose A~+~ to be the closed ball of radius 
o:r(Bk) which is contained in Bk and is tangential to the boundary of Bk at xl. Let 
YL be the point of a + V nearest to x~. Then evidently, 

Ilz(A~÷,)-y, II = llz(Bk)-Y~It + (1 - a)r(Bk) 

Let Bk+l be the ball of radius flr(Ak+l) contained in Ak+t chosen by ~ .  Let  Y2 be 
the point of intersection of z(Bk÷~)+ V and L. Then it is easy to see that 

IIY2 - Y~ n -> [Iz(A,+0 - y~[[ - (r(Ak+~) - r(B,+~)) 

= IIz(BD -Y,I} + (1 - o:)r(Ba) - (r(Ak+~) - r(B,+,)) 

= Ilz(Bk) -y~}} + 20r(Bk) = d(z(Bk),  a + V) + 20r(Bk). 

In particular we get that d(z(Bk÷~), a + V ) =  tlY2-Y~II >-d(z(Sk), a + V) + 
20r(B,)  > l(1) + Or(Bk) > l(I) - Or(Bk+~). Then the hypothesis of the L e m m a  is 

satisfied for Bk+~ in the place of  Bk. Now Ak+z may be chosen by the same 
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procedure used for choosing Ak+ 1 within Bk; and the process may be continued 
indefinitely. 

Suppose Ak+l, Ak+2 . . . . .  Ak+h are chosen by the above procedure, letting 
alternately 9~ choose the ball according to the rules of the game. We show that 
Bk+h N ( I +  V) is empty. From the construction we have d(z(Bk+h), 1+ V)>- 
d(z(Bk+h-1), t + V)>-. . • >- d(z(Bk+l), I + V) >- 1(I) + Or(Bk) > l(1) + 
r(Bk+h), since (o~fl) h < 0. Hence Bk+h and I + V must be disjoint. 

Proof of Theorem 3.2. Let o~,fl e (0, 1) such that 1 -2o¢+  a~fl>0 be given. 
Let Bo be the closed ball chosen by ~ to start the (a~, fl)-game. As before let 
0 = ½(1 - 2a~ + o~) e (0, 1) and let h be a positive integer such that (off) h < 0. 
Let/~ = (olfl) h. Let M-> 1, e e (0, 1) and {vp} be such that conditions a) and b) 
are satisfied for C=B0  and ~ as above. Let k0 be an integer such that 
/~k0 < min {el~r(Bo) -1, M-l} .  We then choose 

6 = ltk°+lr(Bo) 

Then 0 < 6 < e < 1. We shall show that ~ can play in such a way that the point of 
intersection does not belong to S(p, 6) for any p. To that end, we shall show 
inductively that he can play so that for any k >- O, Bkh does not intersect S(p, 6) 
for any p such that vp -/Z-k°+k. For k = 0 this holds because by condition a) and 
the choice of k0 we have vp-< M < ?t -k° for all p for which B0 n S(p, 6) is 
nonempty. Now let k be any positive integer and suppose that ~ has played upto 
(k - 1)hth stage so that B(k_l) h does not intersect S(p, 6) for any p such that 
Vp >-Iz -k°+k-~. To complete the inductive argument we only need to make sure 
that ~ can play (further) upto khth stage in such a way that Bkh does not intersect 
S(p, 6) for any p such that I~ -k°+k -< zp < ~-ko+k-1 We first show that there is at 
most one index p such that ~-ko+k<: ,Cp,~12--ko+k-1 and n(k_l)hNS(p, 6) is 
nonempty. If p and q are two such indices then we get d(S(p, 6), S(q, 6)) <-- 
2r(B<k-l~h) = 2ttk-tr(Bo) < 2e~ -k°+k --< e(zp + Zq), because of our choices; but 
since z~-lZq e ( / , , / t - l ) ,  the combined inequality together with condition b) in the 
hypothesis imply that p = q. 

If there is no index p such that ~.~ - k O + k  "~ "[p <-~ ~[~ - k ° + k - t  and B(k_l) h f') S(p, 6)  is 
nonempty then M can play at random until the khth stage, since the inductive 
assertion already holds. Otherwise let q be the unique index for which the 
conditions hold. Then we have z(S(q, 6)) -< 6~q = Izk°+lr(Bo)zq < #kr(Bo) < 
ol~k-lf(Bo) = Or(Btk-~)h). Hence there exists a hyperplane V such that S(q, 6) is 
contained in a set of the form I + V, where I is an interval in V ± of length less 
than Or(B(k-1)h). Hence by Lemma 3.7 M can play the next h turns in such a way 
that Bkh does not intersect S(q, 6), whatever be the choices made by ~ within the 
rules of the game. Together with the inductive hypothesis and the uniqueness of q 
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as above this means that Bkh does not intersect S(p, 6) for any p such that 
zp ___/~-ko+k, thus completing the inductive argument. 

It is evident that if M plays the game as above then the point of intersection 
does not belong to S(p, 6) for any p. Hence F is an (o~, fl)-winning set. 

3.8. COROLLARY.  Let the hypothesis and notation be as in Theorem 3.2. 
Then for any nonempty open subset g2 of ~" ,  F n g2 is of  Hausdorff dimension m. 

Proof. The theorem in particular implies that for any o~ e (0, ½), F is an 
re-winning set. The Corollary therefore follows from Proposition 3.1. 

§4. Bounded trajectories and Hausdorff dimension 

We shall now apply Theorem 3.2 to compute the Hausdorff dimensions of sets 
of bounded trajectories of flows as in §§1 and 2. 

Let the notation be as in §§1 and 2. We equip G with a Riemannian metric 
which is invariant under the left action of G on itself. Any Lie subgroup of G is 
equipped with the induced metric. The space G/P is canonically identified with 
K/M and is equipped with the metric obtained by projecting the metric on K. All 
Riemannian manifolds are considered as metric spaces canonically via the 
distance function corresponding to the Riemannian metric. 

4.1. THEOREM.  For any nonempty open subset I2 of  G/P, the Hausdorff 
dimension of E÷(F)n  ~ (cf. §2 for definition of E+(F)) coincides with the 
dimension of  G/P as a manifold. 

Proof. Let A e A and consider the map W :N-~  G/P defined by W(n) = ZnwP. 
Recall that ~p is a diffeomorphism of N onto the open submanifold A(G - P ) / P  
(cf. Proposition 1.1). In particular, W and the map W -1 defined on A ( G -  P)/P 
are locally Lipschitz maps. Since Hausdorff dimension is (obviously) unchanged 
under bilipschitz maps, in view of Proposition 2.5, it is enough to prove that if (in 
the notation of Proposition 2.5) 

X= U (N- ~.J ~r(nia~a-~N-A-)) (4.2) 
aeA i = I  

then for all bounded open subsets £2 of N, X O 12 has Hausdorff dimension 
m = dimension of N = dimension of G/P. 

Let n be the Lie algebra of N and let exp:n--~ N be the usual exponential 
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map. N is a simply connected nilpotent Lie group and exp is a diffeomorphism of 
n onto N. Let log:N--~ n be the inverse map. We view rt as ~ "  and equip it with 
the usual Hilbert norm with respect to a basis consisting of eigenvectors of 
Ad(exp Y). Recall that all eigenvalues of Ad(exp Y) are real and positive. Let  r/ 
be the largest eigenvalue of Ad(exp Y) and let 

V = {~ e n I Ad(exp Y)(~) = ~/~} 

Then V is an abelian Lie subalgebra of n invariant under Ad(exp Y). We shall 
show that for all x0 e N 

~a ( v -  O l°gx°st(nia~'a- 'N-A-)  (4.3) 

is an (a~, fl)-winning set for all tr, f l e  (0, 1) such that 1 - 2tr + trfl > 0. Since exp is 
a diffeomorphism, by Proposition 3.1 this implies that for all xoeN,  
(Xo 1 exp V ) f q X f ~  £2, where X is the set as in (4.2) and Q is any bounded 
nonempty open subset of N, has Hausdorff dimension l, provided it is nonempty. 
Since the natural quotient map of N onto N/exp  V is differentiable, by Theorem 
2.10.25 of [5] it follows that for all s < m the s-dimensional Hausdorff measure of 
X fq 12 is 0o; thus the Hausdorff  dimension is at least m. But since I2 is also of 
Hausdorff  dimension m this implies that X fq I2 is of Hausdorff dimension m, thus 
proving the theorem. 

It remains to prove the assertion about the set in (4.3), for which we proceed 
as follows. For t > 0 let tpt = exp ( - l o g  t/ log T/)Y. Then (Ad q0~-~)v = tv for all 
v e V a n d t > 0 .  We f i X X o E N a n d f o r i e N a n d 0 < t - < l p u t  

S(i, t) = log xost(nia~lq~71N-A -) N I1. 

We would like to estimate r(S(i, t)) (cf. §3 for definition). Fix i ~ ~ and 0 < t - 1 
and let vl, v2 ~ S(i, t). Then there exist Yl, Y2e s t (N-A-)  such that exp vj = 
xontailqG-lyfp,ai for j = l  and 2. Then exp(v2-vO=a,lcp;-ly{ly2q~,a i. 
Therefore  02 - vl = log (a?lep;-lyllyzcptai) = Ad a;-lcpf(logylly2). Thus (Ad aicPt) 
x (vl - v2) = logyi-ly2 • Let  

A -- sup (l l log yi-~Yal[ [Yl, Y2 ~ s t (N-A- )}  (4.4) 

which is finite since s t (N-A-)  is a bounded subset of N (cf. Corollary 1.7). Also 
we have (Ad aiq0,) (Vl - v2) = t-lrl-t'(vl -- v2) where,  as in §2, ti e R are such that 
a71 = exp tiY. Thus we get that II01 - 0211 ~ Ate', for all vl, v2 ~ S(i, t). Hence 
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T(S(i, t)) <-- At~l t' for all i • N and 0 < t < 1. For all i • N, put ~i = At/t'. We have 
noted earlier (see the proof of Proposition 2.5) that ti-< 20, where o is the 
constant as in Remark 2.3. Thus we get that T~ -< Arl 2° = M, say, and ~(S(i, t)) <- 
t~i for all i • [~, which shows that condition a) of Theorem 3.2 is satisfied for the 
sets S(i, t) (with constants independent of the compact set C involved in the 
condition). 

Now le t / t  • (0, 1) be given and let i and j be such t h a t / ~  - 3/-< # - ~ ; .  Since 
Tg = Arl" and Tj = Arff,, we have (log r/)lt; - tjl - - log/a.  Put to = - log /a / log  1/> 
0. Then by Lemma 1.8 there exists a neighbourhood £2 of the identity in N such 
that n N - A - K N ( e x p t Y ) N - A - K  is nonempty for all n E g2 and t • [ - t o ,  to]. 
Recall also that by Remark 2.3 the sets npwapNAoK, p • ~  are pairwise 
disjoint. In particular, n~a7 ~ (exp - crY)N-A - K A nja 71 (exp - o Y ) N - A  - K is empty 
and hence so is a71a jN-A-K fqa j ( exp  c rY ) (n71n j ) ( exp -oY)a71N-A-K .  
Since a71aj = exp (t~ - t i)Y and (ti - tj) • [- to,  to] we conclude that 
aj(exp ~rY)(nF~nfl(exp-crY)aT 1 does not belong to £2. Let r > 0  be such that 
expB(0, r)cg'2. Then n,~nj does not belong to a71exp - o Y  exp B(0, r) 
(exp oY)aj and hence log nT~nj does not belong to Ad(a71 exp -oY ) (B(O ,  r)). 

Now let A, o and r be as above and let e~ > 0 be such that Ad q~-ll(B(0, A)) c 
Ad (exp - o Y )  (B(0, r)). Note that such e~ exists since all eigenvalues of Ad q0; -1 
tend to 0 as t--->0. Further, we get that for all t • ( 0 ,  e~), Ad ¢pTt(B(0, A ) ) c  
Ad(exp -ÙY)(B(O,  r)). Now we claim that if i,j ~ N are such that/tl:~ --- rj - #-IT~ 
and t • (0, ez) then S(i, t) and SO', t) are disjoint: Let, if possible, the inter- 
section be nonempty. Then there exist z~ • aT~q~;-aJr(N-A-)q~ta~ and 
z2 • aT~cp;-l:r(N-A-)qgtaj such that xoniz~ = xonjz2. Then nTXnj = z~z2 ~ 
(a[-~q~7~:r(N-A-)cp,ai)(a~cpF~:r(N-A-)-acp,afl. Without loss of generality we 
may assume ti > t  j; then a[-~:r(N-A-)ai = st(a[-1N-A -) = :r(a;-~(aT~a~)N-A -)  = 
:r(a~N-(aT~a~)A -) c rc(aT~N-A -)  = aTX:r(N-A-)a~. Thus we get that 

n ~ n j  • (a~q~;-~r(N-a-)q~,a~)(aT~q~;-~r(N-a-)-~qgtaj) 

= a~qg;-~sr(N-A-)~r(N-A-)-xep,aj 

exp Ad a;acpT~(B(O, A)) c exp Ad a~X(exp - a Y )  (B(0, r)). 

Thus we find that log n ~ - ~ n l e A d a T ~ ( e x p - o Y )  (B(O, r)), which however 
contradicts the choice of r; hence the claim must hold. 

To complete the proof we shall find e • (0, e~) so that condition b) of 
Theorem 3.2 is satisfied. First we prove the following Lemmas. 

Recall, that ~ ( N - A - )  contains a neighbourhood of the identity in N. Hence 
there exists A' e (0, A), where A is as in (4.4), such that exp B(0, za') is contained 
in n ( N - A - ) .  
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4.5. LEMMA.  L e t  t, t '  > 0 be  such  that  4m2A2(A')-2t--<t' < 14. L e t  x~ 
(Ad a/-lqotl)(B(0, A)) a n d  x2 q~ (Ad a~-ltpc 1) (B(O,  A ' ) ) .  Then  

Ilxl  - x211 (m-' t 'a'  - ta )77 ' -°  

where ,  as be fore ,  m is the  d i m e n s i o n  o f  N .  

Proo f .  Let el . . . . .  em be an orthonormal basis of n consisting of eigenvectors 
of Ad exp Y and let ril . . . .  ,17,, be the corresponding eigenvalues. We may 
assume T/1 = r/. For sl . . . . .  sm > 0  let 

R(s 1 . . . . .  Sm) = { ~  ~ie, [l~il < s i  for all i} 

Then xl~(Ada~lqg;-1)R(A . . . . .  A ) = R ( A 1  . . . . .  A m )  where Ak,  k =  
1 . . . .  , m, are A times the eigenvalues of Ad a~-lqg~ -] corresponding to ek. On the 
other hand x2 does not belong to ( A d a i - l c p ~ ; l ) ( R ( m - l A  ', . . . .  m - l A ' ) ) =  

R ( m - t A ' I  . . . . .  m - l A ' ) ,  where A~, k = 1, 2 . . . . .  m are A' times the eigenvalues 
of Ada71tp~7 ~ corresponding to ek. Hence for some k = l  . . . . .  m the e~ 
coordinate of x l  - x2 is at least m-lA~, - Ak and hence Ilxl - x211 >- m-lA~ - Ak. 
Observe that if r/k =r /  then A'k = ~ f ' t 'A '  and Ak  = rlt'tA and the lemma would 
hold. We shall now uphold it in general. 

Since G is of R-rank 1, for any one-parameter subgroup whose adjoint action 
is diagonalisable over R,  the logarithms of the eigenvalues of the adjoint action of 
any nontrivial element of the subgroup, form a root system in ~ .  In particular, it 
follows that the only possible eigenvalue of Ad exp Y other than r/ is ~/r/ (a 
version of the lemma can also be proved without using this fact, if the condition 
on t' is modified su i tably-  but, for simplicity, we choose the present course). 
Thus if for some k = 1 . . . . .  m, r/k ~: r/ then m - l A ' k  -- Ak  = r f " 2 ( m - t A ' ~ / t  ' -- 

AX/ t )  >-- r f ' - ° ( m - l  A ' ~ / t  ' - AX/ t ) ,  since ti --< 2o for all i. Observe that m - l  A ' ( X / t  ' - 

t ' )  = m - l A ' X / t ' ( 1  - X/ t ' )  >- 2AX/t(1 - X/t'); since t' < 41, (1 -- X/t') --> ½(1 -- X/t) and 
hence we get m - l  A ' ( X / t  ' - t ' )  >_ A('V/t - t) and consequently m - ~  A 'X / t  ' - AX/ t  > - 
m - l A ' t  ' - At.  Hence for k as above we get m - l A ' k  -- Ak  >-- T l t ' - " ( m - I A ' t  ' -- A t )  as 
desired. 

For any i e ~ and t > 0 we put 

S ' ( i ,  t )  = log : t ( n i a ~ - l q g t l N - A  - )  = n iaT lcpT l~ ; (N-A- )¢p ta i .  

4.6. LEMMA.  F o r  any  c o m p a c t  subse t  C '  o f  n there  exis ts  a cons tan t  L > 0 

s u c h  that  i f  f o r  s o m e  i, S ' ( i ,  1)N C '  is n o n e m p t y  then  S ' ( i ,  1) is c o n t a i n e d  in 
B(o, L). 
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Proof. Recall that if t~ ~ E are such that a/-~ = exp t~Y then ti -< 20 for all i, 
where o is the constant as in Remark 2.3. Hence by Lemma 1.2 I._ff= ~ : r (aT~N-A - )  
is contained in a compact subset, say Q. Let Lt ->0  be such that (exp C ' ) Q  -1 is 
contained in exp B(0, L~). Let L > 0 be such that (exp B(0, L j ) ) Q  is contained in 
exp B(0, L). Let i be such that S'( i ,  1) ~ C' is nonempty; then so is exp S'( i ,  1) 
expC ' .  Hence there exists yoe:r (a~-~N-A - )  such that n ~ y o e e x p C ' .  Then 
n~ e (exp C ' ) y o  ~ ~ (exp C ' ) Q  -~ and hence logn~ e B(0, Lt). Then for any y 
:r(ai-~N-A - )  ~ Q we have log n~y e log (exp B(0, L O ) Q  ~ B(O, L) ,  which proves 
the lemma. 

We are now ready to verify condition b) of Theorem 3.2 for the family of sets 
S(i, t). Let /z  e (0, 1) be as before and let a compact subset C of V be also given. 
Let L > 0  be such that the conclusion of Lemma 4.6 holds for C ' =  
log Xo~(exp C). Since exp is a diffeomorphism and the metric on N is translation - 
invariant there exists c e (0, 1) such that 

c -~ IIlog yl - log y=tl ~ ]llog yVly2Jl >: c lllog y, - log y=ll (4.7) 

for all y~, Y2 e Xo exp B(O, L )  t3 Q - 1 Q ,  where, as in Lemma 4.6, Q is a compact 
set containing :r(a~-~N-A - )  for all i. Let A, A', r/, o, m and e~ be as before. 
Without loss of generality, we may assume e~ < ½, A' < 1 and A > 1. Now put 

e = ½c2(A-1A'm-1)2r]-°(1  + kt-1)-lel 

Recall that we have (already) chosen rl = At/t, for all i. Now let t e (0, e) and let 
i, j e ~ be such that/~r~ -< rj ---/~-~r~ and S(i, t) N C and S(j, t) fq C are nonempty. 
By our earlier discussion the first condition implies that S(i,  t ' )  and S(j, t ') are 
disjoint for t' e (0, e 0. In particular this implies that 

d(S( i ,  t), S(j,  t)) >- d(S( i ,  t), aS(i ,  t ' ) )  (4.8) 

for all t' ~ (t, el),  where a denotes the boundary of the set in question. Now let 
t' e (et - e, e0. Note that in particular t' > 4m2A2(A')-2e. Let 01 e S(i,  t) and 
v2 e aS(i ,  t '). Then there exist Yl ~ ~ ( a , t c P 7 1 N - A - )  and Y2 E a:t (ai - lq~:~N-A - )  
such that exp Vk =xoniyk for k = 1 and 2. Then by (4.7) we have I l v l -  v211 -> 
c Hlog (xoniyO-t(xoniy2)[I = c Hlogy~-lyEH >-c21110gy~ -logy211, since yl, y2~ Q. 
Since y z e  O:z(ai-~cPF~N-A-), log Y2 does not belong to (Ada71q~71)B(0, A')). 
On the other hand log Yl is contained in (Adai-~q~-~)(B(0, A)). Hence, 
by Lemma 4.5 I I l o g y l - l o g y 2 1 l > - ( m - a t ' A ' - t z ~ ) r f  -°.  Hence I l v l - v z l l  >- 
c2 (m- l t '  A ' -- tA)ll  t,-° = cZ A - l r i ( m - l t '  A ' - tA)rl -°.  Since t e (0, e) and t' > el - 
e, we have m - ~ t ' A  ' - tA >_ m- l ( e~  -- e)A' -- eA >-- m - ~ e l A  ' -- 2eA >- 5c-2(1 + 
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i~-')earl ° -  2cA >_ c-Z(1 + #-')eAT1 °. Hence I lv l  - v211 ~ e(1 + /~- ' ) r i  -> e(ri + 
Tj). Since v~ and vz were arbitrary elements of S(i, t) and 8S(i, t') we conclude 
that d(S(i, t). OS(i, t')) >- e(Ti + T/). Hence by (4.8), d(S(i, t), S(j, t)) >- e(r; + r/) 
for any t e (0, e), which shows that condition b) of Theorem 3.2 is satisfied for the 
sets S(i, t), i e ~,  0 < t < e. Hence by that theorem, for every xo e N, the set in 
(4.3) is an (a,/3)-winning set for all a,/3 e (0, 1) such that 1 -  2a  + a/~ >0 .  As 
noted before this implies the theorem. 

4.9. Remark. If G = SO(m, 1), the special orthogonal group of a quadratic 
form of signature (m, 1) and A = (exp tY) is a one-parameter subgroup such that 
Ad a, a e A, is diagonalisable over R then Ad (exp Y) has only one eigenvalue on 
the Lie subalgebra n of the Lie subgroup N as defined in §1. In this case, N is 
canonically isomorphic to ~ ' - ]  (via the exponential map) and the above proof 
actually shows that the set X defined by (4.2) is itself an (a~,/3)-winning set for any 
a , / 3 e ( 0 , 1 )  such that 1 - 2 c r + o ~ / ~ > 0 .  It turns out that in this case each 
~(n ia71a- lN-A -)  is an open ball and the condition as in Corollary 3.4 is 
satisfied. We refer the reader to [4] for a discussion in this regard (see also 
Corollary 5.2 below). 

4.10. Remark. Though for simplicity in the proof of Theorem 4.1 we chose V 
to be the eigenspace corresponding to the largest eigenvalue of Ad (exp Y), it is 
not difficult to modify the proof to show the following: If V is an abelian 
Ad (exp Y)-invariant Lie subalgebra of n such that the largest eigenvalue of 
Ad (exp Y) on V is also the largest among all eigenvalues, then for any Xo E N the 
set defined in (4.3) is an (0r,/3)-winning set for all a , /~e(0 ,  1) such that 
1 - 20r + aq3 > 0. This has to do with the fact that the conditions in Theorem 3.2 
involve thicknesses of sets and not diameters. It, however, does seem necessary 
to assume V to be abelian, since otherwise, in the computation for verifying 
condition a), we get various terms that cannot be controlled. We shall however 
not go into the details regarding these observations. 

§5. Bounded orbits of flows 

We can deduce the following conclusion about the set of bounded orbits of 
flows, rather than trajectories. 

5.1. T H E O R E M .  Let G be a connected semisimple Lie group o f  R-rank 1 
and let F be a lattice in G. Let G be equipped with a metric obtained as a quotient 
o f  a left-invariant metric on G. Let (g,) be a one-parameter subgroup such that 
Ad gl has an eigenvalue (possibly complex) o f  absolute value other than one. Then 
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for any nonempty open subset t2 of F\G the set 

{ Fg • I2 1 the (g,)-orbit of Fg is bounded} 

is of  Hausdorff dimension equal to the dimension of  G. 

Proof. Let (g,) be a one-parameter subgroup as in the hypothesis. Let 
g, = s,u,, t • ~, be the Jordan decomposition; here (st) and (u,) are one-parameter 
subgroups consisting of semisimple and unipotent elements respectively, (that is, 
the matrix for the adjoint action is semisimple or unipotent respectively) 
commuting with each other. Since Adg~ has an eigenvalue of absolute value 
other than 1, Ads, is non-trivial for all t ~ 0. Since G is of R-rank 1 such an 
element st does not commute with any non-central unipotent element. Since the 
center of G is discrete it follows that the one-parameter subgroup (u,) is trivial. 
Hence (g,) consists of semisimple elements. Then gt may be expressed as gt = ct 
d,, t • E, where (c,) and (d,) are one-parameter subgroups commuting with each 
other and such that (ct) is contained in a compact subgroup of G and (dr) consists 
of semisimple elements such that all the eigenvalues of A d d ,  t • E are real. 
Evidently, for any g • G, {Fg g, [ t • ~ } is bounded if and only if {Fgd, [ t • g~ } is 
bounded. Hence, in proving the theorem, we may without loss of generality also 
assume that all eigenvalues Ad gt are real. By conjugating by a suitable element 
we may assume (gt)= (exp tY), the one-parameter subgroup as in the earlier 
sections. 

We now use the notation as in §1. Also ~ : G ~ G / P x G / P  be the map 
defined by q~(g) = (gP, gP-). Let E÷(F) be the subset of G/P defined in §2 and 
let E-(F) be the subset of G/P-  defined analogously by 

E-(F) = {xP- • G /P-  I {Fx(exp - tY)l  t >-O } is bounded} 

It is obvious that for g • G ,  {Fgg , [ t •~}  is bounded if and only if ~ ( g ) •  
E÷(F) x E-(F). By Theorem 4.1, for any nonempty open subset ~÷ of G/P, the 
Hausdorff dimension of E+(F)n s'-2 ÷ equals the dimension of G/P. Similarly 
applying that result to (exp - t Y )  in the place of (exp tY) we conclude that for any 
nonempty open subset g2- of G/P- ,  E-(F) n g2- has Hausdorff dimension equal 
to the dimension of G/P-.  Since the Hausdorff dimension of the Cartesian 
product of two metric spaces is at least as much as the sum of the Hausdorff 
dimensions of the components (this follows from Theorem 2.10.27 of [5], for 
instance) we can conclude from the above that for any nonempty open subset 12' 
of G/P x G/P-  the Hausdorff dimension of E+(F) x E-(F) n I2' equals the 
dimension of G/P x G/P- .  Observe that P n P-(=MA in the notation of §1) is 



658 s.G. DANI 

of codimension equal to the dimension of G/P x G/P-.  Hence by the rank 
theorem it follows that the map • defined above is an open map. Now let g2 be a 
nonempty open set and g2' -- ~(f2). Then Q' is a nonempty open set and by our 
earlier observation E+(F) x E-(F) A g2' has Hausdorff dimension equal to the 
dimension of G/P x G/P- .  Since @ is differentiable, by Theorem 2.10.25 of [5] 
this implies that ~-I(E+(F) x E-(F)) fq f2 has Hausdorff dimension equal to the 
dimension of G. Since for any g ~ G, {Fggt [t¢ R} is bounded if and only if 
~(g) ~ E+(F) x E-(F) and F \G is equipped with a metric obtained as a quotient 
of the metric on G, the last assertion implies the theorem. 

5.2. COROLLARY. Let M be a Riemannian manifold of  constant negative 
curvature and finite Riemannian volume. Let S(M) be the unit tangent bundle of  
M; that is, 

S(M) = {(x, ~) [x  ~ M, ~ a tangent vector at x such that ]l~l] = 1} 

For (x, ~) e S(M) let y(x, ~) be the geodesic on M through the point x in the 
direction of ~. Let S(M) be equipped with the canonical structure of a Riemannian 
manifold. Then for any nonempty open subset g2 of  S(M) the set 

{(x, ~) e ~2 1 y(x, ~) is bounded in M} 

has Hausdorff dimension equal to the dimension of  S(M), viz. 2m - 1 where m is 
the dimension of  M. 

Proof. It is well-known (cf. [11], for instance) that S(M) as above can be 
realised as a double coset space F\G/C, where G = SO(m, 1), the orthogonal 
group corresponding to a quadratic form of signature (m, 1), F is a lattice in G 
and C is a compact subgroup of G; further, there exists a maximal compact 
subgroup K of G containing C such that M may be identified with F\G/K,  so that 
the canonical quotient maps of F\G/C onto I~G/K and of S(M) onto M 
correspond to each other. The geodesics on M correspond to the images of orbits 
of a one-parameter subgroup (gt) (viz. { FggtK [ t ~ • }, g ~ G) such that (Ad gt) is 
diagonalisable over R. Since G = SO(m, 1) is a simple Lie group of R-rank 1, Fis  
a lattice in G and K is a compact subgroup Theorem 5.1 implies that for any 
nonempty open subset g2' of I'~G, {Fg ~ f2' I {Fgg, K I t ~ R} is bounded in F\G} 
is of Hausdorff dimension equal to the dimension o f / ~ G ;  hence the image of 
that set in I~G/C has Hausdorff dimension equal to the dimension of S(M). But, 
by the above comments, for any nonempty open subset g2 of S(M) {(x, ~) e 
g21 y(x, ~) is bounded) is the image in I~G/C -- S(M) of a set as above, for a 
suitable open set Q' i n / ~ G .  Hence the Corollary. 
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COMMENTS AND QUESTIONS. i) It would be interesting to know 
whether the analogue of Theorem 5.1 holds for any Lie group G, closed subgroup 
H such that H\G admits a finite G-invariant measure and (g,) such that Ad g, is 
semisimple for all t. Using the same ideas as in §4 of [2] and a recent result of D. 
Witte (cf. [19] Corollary 4.13) it is easy to reduce the question to the case of a 
semisimple factor group G'  of G and a lattice F '  in G '  in the place of G and F 
respectively. If G '  is of R-rank-< 1 (for instance if G has no factor group of 
E-rank-> 2) then Theorem 5.1 applies and we get the desired analogue. Also, as 
noted in the introduction, by a Theorem of W. M. Schmidt [15] and the 
correspondence established in [2] for the flows on SL(n, R)/SL(n, Z) induced by 
one-parameter subgroups of the form diag (e- '  . . . . .  e -~, e ~t . . . . .  e ~) the set of 
points on bounded trajectories is of Hausdorff dimension equal to the dimension 
of the homogeneous space. For n -> 3, this is, of course, not covered by Theorem 
5.1, and suggests that the analogue sought after might indeed hold. 

ii) Let G and F be as in Theorem 5.1. But now suppose that Ad g, is unipotent 
for all t e R. Then (gt) is contained in a horospherical subgroup, say N, 
corresponding to a one-parameter subgroup (at) such that Ad at is diagonalisable 
over ~.  In [2] we proved that for geC, NgFis compact or dense in G/F 
according to whether {atgFIt >-0} is divergent or not. In the former case the 
orbit {gtgFIt e ~} is evidently bounded. It seems reasonable to conjecture that 
in the latter case also {g,gF I t e R } is bounded only if it is contained in a compact 
orbit of a proper subgroup H of G. 

iii) Corollary 5.2 suggests the question whether analogous assertion would 
hold for manifolds of variable negative curvature. 

REFERENCES 

[1] S. G. DANI, lnvariant measures and minimal sets of horospherical flows, Invent. Math. 64 (1981), 
357-385. 

[2] - - ,  Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. 
reine angew. Math. 359 (1985), 55-89. 

[3] - - ,  Dynamics of flows on homogeneous spaces: A survey, Proceeding of the conference 
Colloquio de Sistemas Dinamicos held at Guanajuato, Mexico in 1983; Sociedad Mat. Mexicana, 
1985. 

[4] - - ,  Bounded geodesics on manifolds of constant negative curvature, Preprint (available from 
the author). 

[5] H. FEDERER, Geometric Measure Theory, Springer, Berlin-Heidelberg-New York, 1969. 
[6] H. FURSTENBERG, A Poisson formula for semisimple Lie groups, Ann. Math. 77 (1963), 

335-386. 
[7] H. GARLAr~D and M. S. RAGHUNAT'aAN, Fundamental domains for lattices in R-rank 1 

semisimple Lie groups, Ann. Math. 92 (1970), 279-326. 
[8] G. A. HEDLUND, Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), 530-542. 
[9] S. HELGASON, Differential geometry, Lie groups and Symmetric Spaces, Academic Press, New 

York, 1978. 



660 S.G. DANI 

[10] W. HUREWICZ and H. WALLMAN, Dimension theory, Princeton University Press, Princeton, 
1948. 

[11] F. MAUTNER, Geodesic flows on symmetric Riemann spaces. Ann. Math. 65 (1957), 416-431. 
[12] C. C. MOORE, Compactifications of symmetric spaces, Amer. J. Math., 86 (1964), 201-218. 
[13] , Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154-178. 
[14] W. M. SCHMIDT, On badly approximable numbers and certain games, Trans. Amer. Math. Soc. 

123 (1966), 178-199. 
[15] , Badly approximable systems of  linear forms, J. Number Theory I (1969), 139-154. 
[16] , Diophantine approximation, Lect. Notes in Math., Springer, Berlin-Heidelberg-New 

York, 1980. 
[17] J. P. SERRE, A course on arithmetic, Springer, Berlin-Heidelberg-New York, 1971. 
[18] G. WARNER, Harmonic analysis on semisimple Lie groups 1, Springer, Berlin-Heidelberg-New 

York, 1972. 
[19] D. Wrrl'E, Measurable isomorphisms of unipotent translations of homogeneous spaces, Thesis, 

University of Chicago, 1985. 

School of Mathematics 
Tam Institute of  Fundamental Research 
Homi Bhabha Road 
Colaba, Bombay 400 005 
India 

Received November 13, 1985 


