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1 Introduction 

When fl is semisimple, Rosso [R1, Sect. A.II] defined a remarkable bilinear 
form on U = Uq(g) which is ad-invariant, compatible with triangular decompo- 
sition, and when restricted to the "toms" recovers the "Cartan" inner product. 
In a later paper, Rosso JR2] connects this form to Drinfeld's bilinear pairing. 
We observe that Rosso's form can be defined for any quantized Kac-Moody 
algebra. Moreover we relate it to Kashiwara's form and in particular obtain a 
more precise uniqueness property (Theorem 4.8). 

Section 5 of  this paper is devoted to computing the quantum Shapovalov 
determinant. As in the Kac-Moody case, one can determine the possible factors 
using a quantum Casimir operator (see [L2, Sect.6.1]). This gives a fairly com- 
plete description of the determinant's factorization (Conjecture 5.6, Conjecture 
5.7, Lemma 5.10). It leads to a new family of Verma submodules associated 
to roots of unity (even though q is an indeterminate) which have no analog 
either for 9 semisimple or q = 1. 

Our motivation for factoring the Shapovalov determinant was the following 
question of Drinfeld [DI, Question 8.1]. Assume that L is a simple highest 
weight U module with a specializable highest weight q~ : 2 E b~ (Sect. 6). 
Does L specialize to the corresponding simple highest weight U(9) module? 
For g semisimple, Lusztig ILl,  4.12] and Rosso [R1, Sect. C] showed that 
this is true when the highest weight of  L is integrable, whilst [DI, Sect. 8] 
resolved the nonintegrable case when 9 is semisimple. Drinfeld [D1, Question 
8.1] conjectured that this also holds when g is any Kac-Moody algebra. Us- 
ing the Shapovalov determinant, one can compute the sum character formula 
which is exactly the same as the classical formula for specializable weights. 

* Supported in part by a National Science Foundation Postdoctoral Fellowship 
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We conjecture that the quantum Jantzen filtration specializes to the classical 
one which would establish Drinfeld's conjecture. 

When 9 is semisimple, U admits a separation of variables theorem [J-L2]. 
Rosso's form plays an important role in describing the ad U module structure 
of  a certain associated graded algebra. By exploiting a deep orthonormality 
property of the Kashiwara form, relative to the crystal basis and the positivity 
of the Cartan matrix, we show that R restricted to certain subspaces of U is 
nondegenerate (Corollary 7.4). This result allows us to identify subspaces of 
U which map isomorphically to the endomorphism rings of the simple highest 
weight modules (Corollary 8.2). We also use (Lemma 8.5) the non-degeneracy 
of  the restricted form to define the "harmonic elements" which are analogs to 
the harmonic elements for the classical enveloping algebra. 

The second author would like to thank Shrawan Kumar for helpful discus- 
sions and Dan Farkas for advice on style and clarity. 

2 Background and definitions 

Our notat ion is based on [J-LI-3]; but will  be redefined as necessary. 
Let k denote a field of  characteristic zero and set K = k(q)  where q is an 

indeterminate. Let C denote a symmetrizable generalized Cartan matrix, and let 
7t = {~l, . , . ,~t} denote the corresponding set of  simple roots. We denote by 
9 the Kac-Moody algebra associated to C with triangular decomposition 9 = 
n - ® b ® n  +. Let A + be its set of positive roots, Q(r 0 = ~ i  Z~i the root lattice, 
and Q+(g) = ~ i  N~i. Order b* by 2 > ~ if 2 - y  can be written as a sum of 
simple roots with non-negative coefficients. Note that dim [9 = 2 1 -  n where 
n = rankC. Complete rc to a basis {~1 . . . .  ,~2t-n} of b* as in [K, Sect. 1]. By 
[K, 2.1], there is a nondegenerate inner product (,) on b*, so that Cij = (~v ,~ j )  
where ~v = 2o~i/(o~i,~i). Choose o9i : i = 1,2 . . . .  ,•, in [* so that (~v,~oj) = ¢~ij 
and let p denote their sum. Let P(rc) = ~--~i 7/,~oi be the weight lattice. 

The Hopf algebra U = Uq(9) is generated over K by elements xi, Yi, 1 
i < l a n d t i ,  t~ 1, 1 < i < 2 l - n  subject to 

(2.1) tixjt[-1 : q(~t,~J)xj; t iy j tF  1 : q-(~i,~j)yj 

(2.2) x iy j  - yjxi  = 60 (t2i - t72)  

(2.3) The ti commute .  

(2.4) The xi, 1 <_ i <= l (resp. Yi, 1 <- i <= l)  satisfy the quant ized  Serre 
relations (see f o r  example  [J-LI, Sect. 4].) 

The free abelian multiplicative group of  rank l generated by tl . . . . .  t2t-n is 
denoted by T. The algebra U is a Hopf algebra with comultiplication A, counit 
e, and antipode ~r given by 

(2.5) A(t i )  = ti ® ti; A ( t71 )  = t71 ® t~ -1 
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(2.6) A ( x i ) = x g ® t F ~  + t i ® x i ;  A ( y g ) =  y i®t~- l  + t i ® Y i  
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(2.7) e ( x i ) = e ( y i ) = O ;  e ( t i ) = e ( t ~ - l ) =  1 

(2.8) a(ti)  = t~-I; a( t7  l)  = ti; a(xi)  : - -q - (~ i '~ i )x i ;  a(y i )  = -q(~"~)Yi  

For a typical element b E U, we use the Sweedler notation A(b)  = bo) ® b(2). 
Using the Hopf  algebra structure, one can define an adjoint action, denoted by 
ad. (See for example [J-L1, Sect. 2].) The adjoint action of  the generators on 
a typical element b E U is given by 

(2.9) ( a d x i  )b  : x i b t  i - q - (a i '~ i ) t ibx i  

(2.10) (ad yi)b = yibti - q(~"~i)tibyi 

(2.11) (adt i )b  = tibti-t; (adtF1)b = tZlbti  

Let M be a U-module. A weight A of  M is an element of  the character group 
T* of  T for which there exists some non-zero m E M with tim = A(t i )m for 
1 _< i < 2l - n. The corresponding space of  weight vectors (or weight space, 
for short) is MA : { m  C Mltim = A(t i )m,  1 < i _< 2l - n}. A weight A is 
said to be linear if  there exists 2 E b* such that (2,~i) E 7/ and A(t , )  = q(;.,~i) 
for each i. In this case, we write A = q~ and set M A  = M ) .  Let U~ denote 
the 2 weight space of  U considered as a U module via the adjoint action. I f  
a C U is a weight vector for the adjoint action, then we write wt a for the 
weight o f  a. 

Define a group isomorphism from the additive group Q(n) to the multi- 
plicative group T by Z(~g) = tg. Note that if  a C U is a weight vector o f  
weight q'~ for the adjoint action, then z(f l)az(f l)  -1 = q(Zfl)a. It is sometimes 
necessary to replace K by its algebraic c lo su re / (  as in Sect. 5 and to extend 
T to Q ( n ) +  P(Tr) as in Sect. 8. This only modifies earlier sections in a trivial 
fashion. 

Let ~c denote the Chevellay antiautomorphism of  U over K defined by 

(2.12) ~c(xi) = Yi ,  tC(yi )  = Xi, K ( t i )  -~- ti . 

3 Kashiwara's bilinear form and related forms 

Set ei --~ xiti (resp. f i  = tiYi) and let G + (resp. G - )  be the subalgebra of  U 
over K generated by e i (resp. f i ) ,  1 < i < l. In this section, we consider the 
bilinear form on G -  introduced by Kashiwara, and a modification of  it. 

Recall (2.9), the action of  adxi on an element b C U. One checks from 
relation (2.2) that ( t4-1 ) 

( a d x i ) f  j : (~ij ~q2(~i-~,~i-)- 1 
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By induction on weight, it follows that ( a d x i ) G -  C_ G - t  4 + G - .  Then 
following Kashiwara [Ka, Sect. 3] we may define linear maps x~ and x;' on G -  
by 

( a d x i t Z l ) b  = (t2ix~'(b) - tZ2x~(b))t2 i 
q(~ i ,~ i )  - -  q - ( C t i , ~ i )  

Note that x ~ ' ( f j ) =  6ij = x~( f j ) .  (We use "xit71''  instead of  "xi" because 
Kashiwara uses a different set of  generators for U.) By [Ka, 3.4.5], they satisfy 

(3.1) ' ,, 2(~i,~,) " ' xixy = q J xj  x i . 

Kashiwara's form [Ka, 3.4.4] is the unique nondegenerate symmetric bilin- 
ear form ( , )  on G -  defined by 

(3.2) ( f  i f  , g) = ( f  ,x;(9))  

<1,1) = 1 

for f ,  9 E G -  and 1 < i _< l. Note that if a and b are weight vectors in G - ,  
then 

(3.3) (a,b) = 0 unless wta  = w t b .  

After Kashiwara [Ka, 5.2.2 (i)] one has 

Lemma 3.1 I f  f is a vector in G -  o f  weight - f l ,  and  9 E G - ,  then 

{ f  f i, g) = q-Z(/L~i)(f  ,x~'(g)) . 

For us x~ and x~' are not the most convenient maps. Thus, we define new 
endomorphisms e~ ~ and e~ of  G -  by 

(3.4) ( a d x i ) b =  " 4 e i (b) t  i - e~(b) 

for b E G - .  
Now assume that b is a vector in G -  of  weight -/3. Then 

2 t /  - -2  , 2 
q_(~,,~)(tix i (b)  - t i x i (b ) ) t  i 

(adx i )b  = q-{' i ' l~)(adxit7 l )b = : ~ )  - ~  

Hence 

(3.5) e ; (b)  = q(~i,~-~*~x;(b) 
q 2(~i '~ i )  - -  1 " 

One can similarly relate e~' and x~'. 
Set A(fl) = I]i(1 - q2(C~i'c~i)) ki where fl --- ~ i  k/~i E Q+(rt). We introduce 

a new bilinear form which we call the adjusted Kashiwara form on G -  by 
setting 

(3.6) (a, b)' = q(p'~) (a, b) 
A(fl) 
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where b E G -  is a vector of  weight - f t .  The following lemma describes some 
of  this form's  properties. 

Lemma  3.2 Let b be a vector o f  weight - f l  in G -  and a, a vector of  weight 
- f l - ~ .  Then for each I < i < l 

(i) q(~'-I~':")(b f i, a)' + (b,e~'(a))' = 0 

(ii) q(~i+~'~i)(f ib, a)' + (b, e;(a))' = 0 

Proof Fix i and set e = ei, f = f i ,  e" = e~', and e'  = e~. Using (3.6), we 
have q(~+//,~)+(p,/3+~) 

q(~+l~'~)(fb'a)' = A(fl + c~) ( fb ,  a) . 

By (3.2) and (3.5), the second expression above equals 

q(~+l~'~)+(P'/~+~) (b,x'(a)) = q(~+P'~)+(P'/~+~)-(~'~-~) ( -A(cQ) (b, e'(a)) 
A(fl + ~) A(fl + a) 

- -  - q ( P ' / ~ )  ( b ,  e ' ( a ) )  . 

Assertion (ii) now follows from (3.6). Assertion (i) is proved in a similar 
manner using Lemma 3.1. [] 

Remark. Clearly either (i) or (ii) and the normalization (1, 1)' = 1 determine 
this form uniquely. 

4 Bilinear forms on U 

Rosso [R, Sect. A.II] introduced an ad-invariant nondegenerate bilinear form 
on U for 9 semisimple compatible with the triangular decomposition o f  U. 
We investigate necessary and sufficient conditions for a bilinear form on U for 
any Kac Moody algebra g to satisfy these properties. More precisely, recall the 
definition of  G -  and G + (Sect. 3). There is an isomorphism of  vector spaces 

U ~ G-  ®K KT ®K G + 

via the multiplication map a®b®c ~ abc by [R, Sect. A.II Remarque following 
D~finition 5]. Let B be a non-zero bilinear form on U. We say that B is 
triangular provided 

(4.1) B(a-z(2)a  +, b - z (7 )b  + ) = B(a +, b-  )B(z(2), z(7) )B(a- ,  b + ) 

for all a - , b -  E G-;  a+,b + E G+; and z(2),z(7) E T. 
The form B is ad-invariant with respect to a set S if 

(4.2) B((ad a(l))b, (ad a(2) )c) = ~(a)B(b, c) 

for all a E S with A(a) = a(i) ® a(2), and all b,c E U. 



548 A. Joseph, G. Letzter 

Let U -  (resp. U +) be the subalgebra of  U generated by the yi, 1 < i < l 
(resp. xi, 1 < i <_ l). I f  B is ad-invariant with respect to T (resp. U - ,  U +, 
a one element set {b}), we say that B is a d T  (resp. a d U - ,  a d U  +, adb)  
invariant. 

Note that 1 is an element o f  G - ,  T, and G +. Hence if  B is a triangular, 
then 

(4.3) B(1, 1) = 5:1. 

We shall take B(1, 1 ) =  1. I f  B is ad t invariant, then 

(4.4) B((ad t)b, (ad t )c)  = B(b, c ) .  

In particular, if  b and c are weight vectors, then (4.4) implies that B(b, c) = 0 
unless wt b = - w t  c. I f  in addition, B is nondegenerate, then it must be non- 
degenerate on U_I~ x U# for all /3 E Q+(g) .  Combining this observation with 
property (4.1) yields: 

Lemma 4.1 Let  B be a triangular Jbrm on U nondegenerate on G -  x G ~ and 
G + x G - .  Then B is ad T invariant i f  and only i f  

(i) B(GZ~, G + ) = B(G +, GZ~ ) = 0 f o r  p 4= 7 

(ii) B is nondegenerate when restricted to T x T, G-_~ × G~, and G~ x G-_/~ 

f o r  all 13 in Q+(n). 

For Lemmas 4.2-4.7,  assume that B is a triangular nondegenerate bilinear 
form on G -  × G ÷ and G + x G -  which is ad T invariant. We investigate nece- 
ssary and sufficient conditions for B to be both ad U ÷ and ad U -  invariant. 
Most o f  the arguments involve manipulations ofx i ,  y~,ti, etc. To make it easier 
to read, we set x = x i ,  o~ = a i ,  t = ti, e = e i ,  f = f i, e' = e~, and e" = e~', 
with the understanding that the arguments work for any choice of  i between 1 
and l. 

Lemma  4.2 I f  B is a d x  invariant, then 

B(t-4m, t4s ) = q4mS(~, ~) = B(t4s, t-4m ) 

where m, s E 7l and m > O. 

Proo f  Assume B is adx invariant. Fix a nonnegative integer m. By [J-LI, 
3.11], t-4me 2m is a highest weight vector for the adx  action. Recall (2.7) that 
e(x) = 0. By the definition of  adx  (2.9), and ad-invariance (4.2), we have 

B((ad x )t--4rn e2rn, (ad t - I  )f2m+l t4s ) -F B((ad t )t-4m e2m, ( ad x ) f 2m+ I t4s ) = O . 

Since (adx)t-4me2ra = 0, the first summand is zero. Now taking q(~,~) = 
q(~,~)/2 one has 

(adx) f2m+lt  4s = al f2m(t  4 - q(~,~))t8m ,-4s + a2f2m+lt4.~e 



Rosso's form and quantized Kac Moody algebras 549 

where al and a2 are nonzero elements of  K. Hence, using (4.1), 

B(e2m, f2m)B(t-4m,(t4 _q(~.~)8m ).4s',t ) =  0 . 

By Lemma 4.1, Zm = B(e , fZm)@0. Thus B(t-4m,(t4 _ q(~,~)j,8m ~t4s~j 0, SO 

(4.5) B(t  -4m , t 4s+4 ) = --q(~,~)t~tr8m . . . .  4~ ,t'4s') 

for all nonnegative integer m. A similar argument shows that 

(4.6) B(t4s+4, t - 4m)  = _q(~,~)8~ B,  , t-4m\) 

for all integer m > 0. Recall that B(1, 1) = 1. By using induction on s and 
- s  in (4.5) and (4.6) the temma follows. [] 

In order to understand ad U ÷ invariance, we need some information about 
the action of  a d U  + on U. I f  b is a weight vector in G + of  weight fl and 
z(2) C T, then 

(*) (ad x )z( 2 )b = xz( 2 )bt - q-(~'~) tz( 2 )bx = ~( 2 )[ q-(;~'~)-(l~'~) eb - q(l~'~) be] . 

I f  a is a vector in G - ,  then recall (3.4): 

(ad x)a  = e"(a) t  4 - e' (a) . 

L e m m a  4.3 I f  B is adx  invariant, then 

(i) q~-I~'~)B(eb +, b -  ) + B(b  +, e " ( b -  )) = 0 

(ii) q(~+l~'~)B(b+ e, b -  ) + B(b +, e ' (b -  )) = 0 

(iii) q-(~+[~" ~)B(b- ,  eb + ) + B ( e " ( b -  ), b + ) = 0 

(iv) q(¢-~'~)B(b-,b+ e) + B(e~(b- ) ,b  + ) = 0 where b + E G+,b - E G - ,  wtb + 
=/~, wt b -  = - / ~ -  ~. 

Proo f  Fix m < 0. The ad x invariance of  B implies that 

B((ad x)t-4rob+, (ad t-t )b- ) + B((ad t ) t -4"b  +, ( a d x ) b - )  = 0 .  

By (*) and triangular decomposition, we have 

B(q(4m~-lL~)eb+, q(~' l~+~)b- )B( t  -4'n, 1 ) - B(q(l~'~)b+ e, q(~'~+~)b- )B( t  -4m , 1 ) 

+ B(q(Z'~)b+, e " ( b -  ))B(t -4m, t 4 ) - B(q (l~' ~)b + , e ' ( b -  ))B(t  -4m, 1 ) = O. 

By Lemma 4.1, the expression above simplifies to 

(4.7) q4m(~'~)+(~'~)B(eb+, b -  ) - q2(/~, ~)+(~, ~)B(b+e, b -  ) 

+ q4m(~'~)+([~'~)B(b+, e " ( b -  )) - q(l~'~)B(b +, e ' (b -  )) = 0 

Note that (4.7) holds for every m > 0. Hence, letting m vary in (4.7) 
yields (i) and (ii). A similar argument in which the order of  t-4mb + and b -  
in B( , ) is switched proves (iii) and (iv). [] 
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Note the similarity in Lemma 4.3 between (i) and (ii) and also between 
(ii) and (iv). This suggests that B is almost symmetric. More precisely, we 
have 

Lemma 4.4 I f  B is ad U + &variant, then 

B (b - ,  b + ) = q(P'~)B(b +, b -  ) 

where b + E G +, b -  E G- ,  wt b + = f l = - w t  b- .  

Proof  The lemma follows using induction on fl as in the proof of the similar 
statement in [R1, Sect. 2 Theorem 6]. [] 

Let /'4 be the subgroup of  T generated by the t 4 • i = 1,2 . . . .  , •. 

Lemma 4.5 I f  B is ad U + invariant, then 

B(r(2), z(7)) = q - l / g 0 , ' D  = B(z(7), z(2)) 

for  all T(2), r(7) E T4. 

Proof  By Lemma 4.1, there exist b + E G + and b -  E G-  with wt b + = fl 
and wt b-  = - f l -  ~ such that B(eb+,b-)#-O.  By adx  invariance 

B((ad x)r(2)b +, (ad t-~ )b-z(7))  + B((ad t)z(2)b +, (ad x)b-z(y))  = 0 .  

Note that B(z(2)b +, b-r (7 )e )  = 0 by triangular decomposition and Lemma 4.1. 
Hence using (4.1) as in Lemma 4.3, it follows that 

q(-~ +~'~) B( eb + , b -  )B(~(2), ~(7)) - q( Zl~+~'~) B( b + e, b -  )B(z(2), z(7)) 

+ q(~'~)B(b +, e " ( b -  ))B(z(2), t4r(7)) - q(~'~)B(b +, e ' (b-  ))B(r(2), z(7)) = 0 

Lemma 4.3 (i) and (ii) imply that 

B(eb +, b -  )[q-(X' ~)B(~()~), r('y)) - B(z(2), t4r(7))] = 0.  

By assumption, B(eb +, b - ) #  0 so the square bracket term vanishes. A similar 
argument which switches the order of  r(2)b + and b-z(7)  in B(, ) and uses 
Lemma 4.3 (iii) and (iv) proves the corresponding result for the first entry. 
An easy induction argument completes the proof. [] 

We are now ready to give necessary and sufficient conditions for B to be 
ad U + invariant. 

L e m m a  

(i) 
(ii) 

(iii) 

(iv) 
with wt 

4.6 B is ad U + &variant i f  and only i f  

q(~i-~,~i)B(ei(b + ), b -  ) + B(b +, e; '(b- )) = O, 

q(~i+l~,~i)B(b+(ei), b -  ) + B(b +, e~(b- )) = O, 

B ( a - ,  b +) = q(P' #)B(b +, a -  ), 

B(r(2),~(7)) = q-¼0,r) for  all 1 < i <_ l, b + E G + , a - , b  - E G -  
b + = - w t  a -  = - w t  b -  - ~ = fl, and z().),'c(7) E T4. 
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Proof  In view of Lemmas 4.3, 4.4, and 4.5 it remains to show that ( i ) - ( iv)  
imply that 

(4.8) B((ad x ) c -  r(2)b +, (ad t-1 )b-  ~(7)c + ) 

+ B((ad t ) e - r (2 )b  +, (ad x )b - r (7 ) c  +) = 0 

equals zero. In (4.8) we may assume that c - , c+ ,b  - ,  and b + are weight vectors. 
By Lemma 4.1, and triangular decomposition, both summands are zero unless 

(4.9) - w t e -  = w t c  + and wtb + = - w t b - -  

or 

(4.10) - w t c - + c ~ = w t c  + and wtb + = - w t b - .  

Assume that (4.9) holds with wt b + = fl and wt b-  ~ - f l -  ~. Then (4.8) 
equals 

[(q(~-~'~B(eb +, b -  ) - q(~+21~, ~)B(b+ e, b -  ))B(r(2), z(7) ) 

+ q(~'~)B(b +, e " ( b -  ))B(z(2), t4z(7)) 

- q(~'~)B(b +, e ' (b -  ))B(r(2), z(7))]B((ad t ) c - ,  (ad t-1 )c + ) 

which vanishes by (i), (ii), and (iv). A similar argument can be made under 
assumption (4.10). [] 

Define f ' ,  f "  C End G + through 

(ad y)b  : t4 f t ' ( b )  - f t ( b )  

for b c  G +. 
A straightforward calculation shows that for all b E U, 

(4.1 1 ) x((ad x)b)  = -q-(~'~)(ad y)~:(b) 

Hence for b C G-  we have 

f"(~c(b))  = -q- (~ '~)x(e"(b) )  

and 
f '  (~c(b ) ) = -q-(~ '~)x(e ' (b  ) ) 

Observe that U4 :-- G-T4G + is an ad U invariant subalgebra of U. 

Lemma 4.7 Assume B is ad U + invariant. Then B is ad U -  invariant i f  

(4.12) B(~c(a), x (b) )  = B(b, a) 

for  all a, b E U4. 

Proo f  By (4.11) and (4.12) the condition for ad U + invariance translates to 
the condition for ad U -  invariance. 
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Theorem 4.8 Up to a sign there is a unique triangular ad U+T invariant 
bilinear form B on U4 which is nondeyenerate on G + x G-  and G-  x G +. 
Moreover 

(4.14) B(a-z (2)a+,b-r (7)b  +) = q(p.va b+)(K(a+),b-),q-1/4(;.~.)(a-,K(b+)~, 

for  weioht vectors a - , b -  C G + and a+,b + E G +, and r(2) ,z(7)  E T4. More- 
over B satisfies (4.12) and is ad-invariant. 

Proof  For uniqueness it suffices to show that B is unique when restricted to 
G + x G - ,  G -  x G +, and T4 x T4. By Lemma 4.5: 

(4.15) B(z(2),-c(y)) = q - l / 4 ( 2 , y )  = B(z(y), z(2)) 

for all z (2) , r (y)  E 1"4. 
By Lemma 4.6(iii), B restricted to G -  x G + is the same as B evaluated 

on G + × G -  up to a power of  q. Thus it remains to note that Lemma 4.6(i) 
completely determines the evaluation of  B on G + × G -  by an easy induction 
on weights. 

Now consider the form B defined in (4.14). This form is triangular, and is 
nondegenerate on G + × G -  and G -  × G + since the adjusted Kashiwara form 
(,)~ is nondegenerate. Moreover it is clear that B is ad T invariant. 

To show that B is a d U  + invariant, we verify conditions ( i ) - ( i v )  of  Lemma 
4.6. Condition (iv) is immediate. By (4.14) and the symmetry o f  the adjusted 
Kashiwara form, 

B(a- ,  b + ) = q(p,wt b + ) ( a - ,  ~¢(b + )); = q(P' wt b + ) ( t c ( b  + ), a -  ) '  

= q(p, wt b + )B(b +, a -  ) .  

Hence (iii). By Lemma 3.2(i), we have 

B(eib +, b -  ) : (x(eib + ), b -  )' = (x(b + ) f i ,  b -  )' 

= -q-(~;-/~'~;)(x(b +), e~'(b- ))' = -q-(~i-t~'~i)B(b+, e;'(b- ) ) .  

Hence (i). Similarly Lemma 3.2(ii) gives (ii). 
Now 

B(x(b +), x ( a -  )) = q(p, wt x(a-))(K(b + ), a - ) '  

= q(p, wt tz(a- ) ) (a- - ,  K(b  + ) ) t  = B(a- ,  b +) .  

Similarly B( x( a -  ), x(b+))  = ( a - ,  x( b + ) y = (to(b+), a -  ) ' = B( b +, a -  ). Obvi- 
ously B satisfies (4.15) and then by triangularity (4.12) results. Hence by 
Lemma 4.7, B is ad U -  invariant. We have thus shown that B is ad U invariant 
which completes the proof. []  

Remark. One can check that the bilinear form a,b --~ (K(a),b); corresponds 
to the Hopf  algebra pairing between G + and G -  up to suitable normalization. 



Rosso's form and quantized Kac Moody algebras 553 

Hence formula (4.14) in Theorem 4.8 extends Rosso's result connecting R and 
the Hopf pairing in the semisimple case (JR2, Theorem 7]). 

If  we assume that 

(4.16) B(r(2), "c(]))) = q-1/4(LT) 

for all z(2),~(7) E T, then we obtain a unique form on U that generalizes 
Rosso's form to the Kac-Moody case. Furthermore, the nondegeneracy of ( , )  
implies that this form is nondegenerate on T and hence on U. In general, 
there is more than one choice of  bilinear form B on all of U which satisfies 
the conditions of  Theorem 4.8. Let /£ denote the algebraic closure of  K, and 
let s~ = 1,s2,...,Sr be a set of coset representatives for K[q . . . . .  tl]/T4. Since 
each G-siT4G + is ad-invariant it follows that B may be modified on each such 
summand. Hence the 

Theorem 4.9 For each {a~i[1 < i , j  < r} with aij E k and all = 1, there 
exists a unique triangular ad-invariant bilinear f o r m  B on G-K[ t l  . . . . .  tl]G + 
nondegenerate on G -  × G + and G + × G -  such that B(si ,s j )  = aij for  all 
1 <=i,j <=r. 

For the remainder of  this paper, we denote by R the unique nondegenerate 
ad-invariant bilinear form on U which satisfies (4.16). As in Theorem 4.8, we 
have 

(4.17 ) R(a -  z(2)a +, b -  ~(7 ) b+ ) = q(P" wt b + ) (tc(a + ), b -  ) ' q -  1/4(2, 7)(a-, x(b + ))' 

for weight vectors a - , b -  E G - ,  and a+,b + E G+,r(2) , r (7)  E T. 

5 The quantum Shapovalov determinant 

Shapovalov introduced a remarkable determinant for semisimple 9, whose fac- 
torization was completely described in [S]. The factorization was extended to 
the Kac-Moody case in [K-K] and to U for 9 semisimple, in [D-K]. In this 
section, we examine the factorization of the quantum Shapovalov determinant 
associated to U. The argument uses ideas from both [D-K] and [K-K], but there 
are some differences. We use Rosso's form, instead of a PBW type basis, to 
compute the highest and lowest degree terms. This is a significant simplifica- 
tion over [D-K]. A new difficulty in the quantum Kac-Moody case is that not 
all the obvious factors are irreducible. Here we are forced to use specialization. 

Set U> = ~ i  y iU + ~ i  Uxi. As in [J-L 1 ], we have a direct sum decom- 
position 

U = K[T] O U> . 

Let ¢p denote the projection of U onto the first summand KIT]. Given a weight 
q, choose bases {a~} (resp. {ain}) for the r/ (resp. - q )  weight space of U + 
(resp. U - ) .  Define the quantum Shapovalov determinant corresponding to q by 

det~ := det[~p(ai~c~n)]. 

Up to a nonzero scalar in K, it is independent of  the choice of  basis. 
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The next three lemmas compute the highest and lowest degree terms of  
detn. Let P(r/) denote the generalized Kostant partition function defined by 

P(rl) e~=  11 ( 1 - e f t )  -1 = : D  
+ 

r/EO+(re) flEamult 

+ 
where Amult denotes the set of  positive roots counted with multiplicities. 

Lemma 5.1 P(q)q = Ei~=, EflE~+ l, P(rl - ifl)fl. 

Proo f  This is an elementary combinatorial result and we indicate the proof  
for completion. It is clear that we may write 

E P(rl)e'U = 1-[ (1 - -  err) -1 
qEQ+O z) flEA+ul t 

where t may be considered as a free parameter. Differentiation with respect to 
t and setting t = 1 gives 

fl---eC D = E E ~ flP(~l) eifl+n 
E qe(q)  e ' l =  E ( 1 - e f t )  i= l  " 

Then the assertion results on equating coefficients of  e". 
The next lemma is about a property of  Rosso 's  form which will be used to 

determine the highest and lowest degree terms of  det,. Given r C K[t 4 . . . .  , t4], 
let r]]o denote the evaluation of  r at t 4 . . . . .  t~ = 0. The defining relation 

4 4 (2.2) implies that (p(eif  j )  C K[t 1 . . . .  ,tl] for each 1 =< i , j  <= I. By induction 
on weight, (p(ab) E K[t 4 . . . . .  t 4] for each a C G + and b C G -  and hence it 
makes sense to consider ~o(ab)llo. 

L e m m a  5.2 For all a c G + and b E G -  we have 

(5.1) ¢(ab)ll0 = R(a, b ) .  

Proo f  By definition R(a, b) = (K(a), b} for all a E G +, b C G - ,  so by the remark 
following Lemma 3.2, it is enough to show that q~(ab)llo = -q-(7"~)q~(ce'(b)) 
with ce = a and 7 = a + wt(c).  

Recall that e = xt and ( adx )b  = x b t -  q-(~,~)tbx. It follows that 

q~( ceb ) = q-(  ~' ~ ) q~( c( ad x )b ) 

which equals q-("~) ~p( ce" ( b ) t4-ce '  ( b ) ). Since ~o( ce" ( b )t4 ) llo = tp( ce" ( b ) llot411o 
= O, we have 

~o(ab)[Io = -q-(~,r)  q~( ce' ( b ) )l[ o 

as required. [] 

We now compute the highest and lowest degree terms of  det,.  Here, we take 
the usual degree function on K[T]:  the degree o f  ti is I for each 1 < i _< I. 
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For each # E Q+(n)  set 

tei q-2(~,~,) _ t/-2q2(~,~,) 
hi l~ = , q(~,,~,) -- q--(oq,ai) 

Set hi,0 = hi- Take hi, t, = 1 if/~ < 0. 

Lemma 5.3 The highest degree term of  det n is 

(i) I-Ii>__l l l f l ~ +  r(2fl) P("-i/~) and the lowest degree term is 

(ii) I-[i>=1 1]l~3+ "C(--2[J) p(n-ifl)" 
(iii) z(P(q)2r/)det  n c KT4 and has a nonzero constant term. 

(iv) det n is a polynomial in the hi,~ " p c Q+(zc), p < rl. 

Proof By [J-L1], the dimension of  the r/(resp. - q )  weight space of  U + (resp. 
U - )  is the same as that o f  the r/ (resp. - r / )  weight space of  U(rt +) (resp. 
U ( n - . )  In particular, dimx U + = P(q) = dimK U_- n. Therefore, det n r(P(q)2q) 

= det[cp(aila?_ , )r(zq)] .  

Note that a~z(r/) E G + and a~nz( ,  ) E G - ,  hence q~(a~a~n)r(2,) C KT4 for 
all i,j .  This establishes the first part o f  (iii). 

By Lemma 5.2, 

detnr(P(r/)2,)[[ o = det[(p(aind_n)z(Zr/)][[o = det[q(n'n)cp(ainz(rl)d_,z(rl))Ho] 

= det[q(n.n)R(ainz(rl), a~nz(q))] . 

which is non-zero by the non-degeneracy of  R. Hence (iii). 
For (iv) it is enough to establish the corresponding assertion for qg(ana_,) 

where a n (resp. a_n) is monomial in the xi (resp. Yi). We can write a n = an_~ix i 
and a_  n = Y-(n-m-~i)YiY-~s for each factor o f  yi in a_ n. Then 

q)(ana-n) = ~ qg(an-7,a-(n-m-~i)[xi, yi]a-m ) .  
s 

Each term in the above sum takes the form 

qg( an_uia_n_l,_~ihia_~ ) = hi,~q)( att_~ia_(n_~i) ) 

from which the required assertion follows by induction. Finally (i), (ii) follows 
from (i i i) , ( iv)  and Lemma 5.1. [] 

We now turn our attention to the factors of  the Shapovalov determi- 
nant. Drinfeld constructed a Casimir operator in [D2]; but this operator is in 
(the completion of) a larger algebra and was not applicable to non-integrable 
weights (see Lemma 5.4 below). Let ,~ be the completion of  U defined as fol- 
lows. Using the standard partial ordering on Q+(n), set A n equal to the direct 
sum of  the subspaces U~-K[T]U+,7 >->_ tl. Define ,,1 to be the inverse limit o f  
the U/A~ taken over the partially ordered set Q+(x). We modified Drinfeld's 



556 A. Joseph, G. Letzter 

Casimir to a Casimir semi-invariant I2 in A which satisfies 

t i - 2 X i Q  ~ -  t2i Oxi, OYi = Yif2t 4, f2~ = vf2 

for 1 < i < l and for all z E T. Since our paper was first communicated (July 
1993) Lusztig's book appeared giving this Casimir and so we refer to his book 
for details [L2, Sect. 6.1 ]. Whereas we had obtained f2 by a direct calculation, 
Lusztig obtains it by adapting the following method of Drinfeld [D2, Sect. 2]. 
Write the R matrix as ~ r~®r~' and set u = ~ a(r~')r~ which is more properly 
the element of the dual of the Hopf dual of U obtained by applying/~(tr ® 1 ) 
to the conjugate of R by the flip t. (Here # is just the multiplication map from 
U ® U to U.) Then [D2, Proposition 2.1] R being invertible implies that u is 
invertible. Also, tR commuting with all A(a), a E U, implies that conjugation 
by u is the square of  the antipode. This holds for any Hopf algebra with an R 
matrix; but in the present case the square of the antipode is also conjugation 
by z ( -4p) .  This gives a central element, namely z(4p)u. In order to stay in 
the completion /l one is obliged to use a quasi R matrix ([L2, Chapter 4] 
rather than the true R matrix as in Drinfeld [D2] and this leads only to a 
semi-invariant. For details see [L2, Sect. 6.1]. It is straightforward to check 
that 

(2y_ B = q-2(B,B)+4(P,~) y_Bf2z( 4fl) 

for each y_/~ E U -  of weight -/3 where /3 E Q+(=). 
Fix A E T* and let v be the highest weight generating vector of M(A).  

Since f2 E 1 + ~vEQ(~) U-vUv +, it follows that I2w = w for any highest weight 

vector w. Suppose that b E U -  with weight -/3 is such that by is another high- 
est weight vector in M(A).  The following lemma is immediate and provides a 
condition which /3 must satisfy. 

Lemma 5.4 A(z( -4 f l ) )q  -4(p'~)+2(~'~) = 1. Furthermore, suppose that each 
/3 E Q+(n) has the property that A(z ( -4 f l ) )# :q  4(p'~)-2(~'1~). Then M ( A )  is 
simple. 

Given a weight A E T*, define a symmetric bilinear form ~PA on U -  as in 
say [J-L1, 5.4]. One has tpa(a,b) = A(qg(•(a)b)). By [J-L1, 5.4], kertpA is the 
maximal proper submodule of  M(A).  Thus A(det,) = 0 if and only if M ( A )  
has a highest weight vector of  weight Aq -~ with fl < 7. 

Set + - • 1}. Take Qir~(~)_{TcQ+(~)17=r/3 flEQ+(rt), r E N + implies r = 
+ IN + 4m th 7 E Qir~(n), m E and ~ a root of unity. Then ~(7) - ~q-(p,r)+~(r,~') 

is irreducible in /~  T and every irreducible factor of z(4/~) - q - 4 ( p , / ~ ) + 2 ( / L / ~ )  . 

fl E Q+(zc) takes this form. Let Hr, m,¢ be the hypersurface defined by the above 
irreducible (Laurent) polynomial. 

By Lemma 5.3(iii), det, #:0. Let H be an irreducible component of its 

zero variety. By Lemma 5.4 taking each A(ti) E ~;* arbitrary and the previous 
remarks it follows that H lies in the union of the H~,m,~ with m7 < ~/. However 
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this is a finite set and so H must equal one of  them. This determines the 
possible irreducible factors of  det,.  

By Lemma 5.3(iv), det~ E KT4 up to units. Since U is defined over Q(q)  
we can further assume that det, E ~(q)T4 (up to units). For each s E IN +, let 
~ denote the set o f  primitive s roots o f  unity. We conclude that 

Proposition 5.5 Up to units in F; T every fac tor  o f  det~ has the form 

1-I (z(4fl) - ~q-4(p, fl)+2m(fl, fl)) 

+ 7Z IN + f o r  some fl E Qi r r ( ) ,  m E with mfl < q and s a divisor o f  m. 

We can describe the factors in det, corresponding to ~ = 1 through spe- 
cialization. Let A denote the localization of  k[q, q - l ]  a t  the prime ideal (q - 1). 
Let 0 denote the A subalgebra of  U generated by x~, yi, t~l ,  1 < i < l. As in 
say [J-L2, 6.11 ], 

(5.3) 0 ®A/(q  - 1) ~- U(.q) ®k ktT] 

where the images of  xi, yi, hi : i = 1,2 . . . .  , ( ,  in the left hand side form 
the canonical generators of  g and where the elements in T are central after 
specialization and satisfy t/4 = 1. 

Set U~ = (£ ®A A/(q  - 1). We tensor again: 

(5.4) U1 ®~[r] k [ T l / ( t i -  III ~ i < 1) ~ U ( g ) .  

We call the process of  tensoring twice using (5.3) and (5.4) the specialization 
o f  0 at q = l. 

By Lemma 5.3(iv), det, specializes to a polynomial detl, in the hi " i = 
1,2 . . . . .  ( (which could be zero). However  it is also clearly the correspond- 
ing Shapovalov determinant for U(g)  determined in [K-K, Theorem 1] to be 
given by 

(detln)(2) = U H ( 2 ( 2 + p ,  f l ) - m ( f l ,  fl)) e(n-m/~) 
m >  l flEA + 

for all 2 E b*, up to a non-zero scalar. 
For ff ~= 1, the factors in the conclusion of  Proposition 5.5 specialize at q = 1 

to non-zero scalars. When ~ = 1, these factors become zero and since detl~ 4: 0, 
it was in fact appropriate to first divide each by q -  1. Then each such factor 
evaluated on 2 E b* gives the term 4(2 + p, r )  - 2m(fl, fl). Let mult 7 denote 
the multiplicity of  7 E Q+(z )  in A + (with the convention that mult 7 = 0 if 
~ ~ + ) .  

Set Ai + = 4 + N Q+(n).  By [K, Prop. 5.5] one has A + = INAi + O A +. We 
have proved the following conjecture for the case ~ = 1. 

Conjecture 5.6 The fac tor  v(4fl) - ffq-4(p, fl)+2m(~,fl), fl E Ai +, m E N + in det n 
occurs with multiplicity (~,l,~,~r=l mult(rfl))  P ( ~ / -  mr) .  
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Remark. It can happen that (fl, fl) = 0. Then the above result should be taken 
to mean that the resulting factor occurs with multiplicity 

~ ( ~ m u l t ( r f l ) ) P ( q - m f l ) .  
m=l rtrn,~r=l 

Taking account of Lemma 5.3 we would have the following result, which 
we state as 

Conjecture 5.7 Up to a non-zero scalar 

det, = 11 11 (T(2fl) - -  q - 4 ( P ' f l ) + 2 m ( r i ' r i ) ' ~ ( - - 2 f l ) ) P ( r t - m r i )  . 

m=l riGA + mu t 

By careful reworking of the argument in [K-K] we can establish an aver- 
aged version of this conjecture (Lemma 5.10) which, in particular, asserts the 
presence of factors from Conjecture 5.6 at ~ ~ 1. When one of these remain- 
ing factors vanishes on A, we obtain Verma submodules of M ( A )  which are 
unexpected since they do not occur in the quantum semisimple case, and have 
no analog for the classical Kac-Moody algebras. The analysis is sketched in 
the lemmas below. 

Extending k we may assume" it to contain •. Fix positive real numbers 
ui; i = 1,2 . . . .  , # linearly independent over Q. 

Lemma 5.8 Fix m E 1N +, ( E ~s. Then for  each ~ E Q+(Tt) isotropic (resp. 
non-isotropic) there exists A E T* such that A(T(4fl)) = ~q-4(p, ri)+Zm(ri, ri) 
implies fl E ff~ (resp. fl = ~). 

Proof  The general case will be easily deduced from the case m = 1, ( = 1. 
Up to a renumbering of the simple roots we may write 

O~ = ~ riO~i : r i E IN +,  s ~ • .  
i=1 

Choose 2 E P(n) such that 

j=i+l 

Then 2(2 + p,c~)= (7,~). Defining A E T* through 

{ qO'~i)exp ± (ui - u i - l )  1 <_ i <_ s 
A(  ti ) = ri 

q(~"~i)expui i > s 

with u0 = us, gives the required result. [] 
+ For each ~ E Qirr(~), let dn,¢,m(O~ ) denote the multiplicity of the factor 

z(2~) - ~q-4(P'~)+2m(~'cO'c(-2~) occurring in det~. 
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+ Lemma 5.9 Fix m ¢ IN +, ~ E ~ , ,  ~ ~- Qirr(~). There exist integers C~,,n(~) 
independent of  rl such that 

(i) 

if ~ is isotropie, 

(ii) 

if  ~ is non-isotropic. 

dn,¢,m(a) : ~ c¢,,n(~c)P(tl - m a )  
m = l  m = l  

dn,~,m(0~) = C~,m(a)P(q -- mcx) 

Before proving Lemma 5.9, we need to define the quantum Jantzen filtra- 
tion. The definition is very similar to the classical, and we will take a closer 
look at this filtration in Sect. 6. 

Definition 5.1 Let A be an element in T* and let S be an indeterminant. 
Denote by M(AS p) the U ®x K(S) Verma module with highest weight AS p 
and highest weight vector v. As in say [J-LI,  5.4], there is a contravari- 
ant form Y = ~,~ ASP on M(AS p) uniquely determined by the normalization 
o~(v,v) = 1. (In fact ,~(av, bv) = ¢PASt,(a,b) = ASP(cp(~c(a)b)) for a,b E U- . )  
Proposition 5.5 implies that M(ASP) is simple and so ~ is nondegenerate. Set 

I~I(AS p) = U®K K[S]v and mi(AS p) = {m C i~I(ASO)I Y ( a , m )  E (S-1)iK[S] 
for all a C ~I(AS°). Let Mi(A) be the image of Mi(AS p) in the U Verma 
module M(A)  using the identification of  lQ(AS p) ®K K[S] with M(A). The 
modules Mi(A) are called the Jantzen  filtration for M(A). 

Proof of  Lemma 5.9 Choose A through the conclusion of  Lemma 5.8. Then 
as in the classical case [J, Satz 5.2] one obtains 

(3O OO 

d~,~,,,(~) = ~ dimMi(A)Aq-~ 
m = l  i = 1  

(5.5) 

if 7 is isotropic and 

c ~  

(5.6) d,,~,,,(~) = ~ dim Mi(A)Aq-,I 
i = 1  

if  c~ is non-isotropic. 
Suppose c~ is non-isotropic. It follows from Lemma 5.4 and Lemma 5.8 

that either M(A)  is simple and the right hand side of  (5.6) is zero, or 
M(Aq -'n~) is a simple submodule of  M(A)  and every simple submodule takes 
this form. Hence Mi(A) is C~,m,i(~) copies of  M(Aq-m~). Setting C~,m(Ct) = 
~"~i>=] C(,m,i(~) and noting that dimM(Aq-m~)4q-, = P ( ~ -  m~), (ii) results 
from (5.6). 

Suppose ~ is isotropic. Although M(A)  need not have finite length, it 
follows by weight space decomposition [K, 9.6, 9.7] that the "Jordan-H61der" 
factors [M(A/) : L(A")]  are well-defined and form a triangular matrix with 
ones on the diagonal. Take m ¢ IN. By Lemma 5.4 and Lemma 5.8 it follows 
that [M(Aq -m~) : L(A') ]  = 0 : unless A' = Aq -n~ " n >= m. In particular 
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using [ • ] to denote Grothendieck group representatives we can write 

[Mi(A)] = ~ b~,n,i(~)[L(Aq-"~)] , for s o m e  b~,n,i(o~) E N , 
n=l  

CX3 

= ~ C(,s,i(~)[M(Aq-S~)], for some c~,s,i(c~) E 7/. 
s = l  

Setting c¢,~(ct) = ~i>=1 c(,~,i(~), we obtain (i) from (5.5). [] 

Let ~(m) denote the set of m th roots of unity. By Lemma 5.5 one has 
dq,~,m(C~) ~- 0 unless ( E ~(,,). 

Lemma 5.10 For all rn E IN +, ~ E Q+~(rc) one has 

C(,m(O~)= ~ r(mult ro~). 
( E ',~(,.n) rim 

Proof Comparison of top order terms in det, gives by Lemma 5.9, Lemma 
5.3(i) and Lemma 5.1, that 

oo oo 
E E 2~C¢,m(°~)P(tl- mcQ = 2qP(r/) = Z E 2~P(r / -  m~).  

m = l  ~G~(m ) ctEQ+rr(g) m=l  ct6A+mult 

The linear independence of  the functions r / ~  P(q - r )  : /~ E ~ ( n )  completes 
the proof. [] 

Conjecture 5.6 is equivalent to C¢,m(~t) = ~d,,,¢r=l mult rc~. Since we al- 
ready know that this holds for ~ = 1, it follows from Lemma 5.10 that it also 
holds if ~ is a real root (since then mult r~ = 0 for r > 1). This recovers in 
particular the result in [D-K, Proposition 1.9] for g semisimple. (Of course the 
real root case can be obtained directly from the case ~ = 1.) More interest- 
ingly, Lemmas 5.3 and 5.5 imply that Conjecture 5.6 also holds for imaginary 
roots with respect to factors corresponding to m being prime. We remark that 
to prove the conjectures it is enough to show that c¢,m(~) ~ C¢,m(a), when the 
multiplicative order of ~ is greater than the order of ~. 

6 The Jantzen filtration and specialization 

In this section, we consider the connection between the Jantzen filtration and 
Drinfeld's problem discussed in the introduction. In this it is convenient to 
assume that 2 E I)~ := (2 E b*l(2,~ v) E 7/, V~ E A}. The more general 
case 2 E I9~ := {2 E I~* [(2,~ v) E Q, V~ E A} can be similarly handled by 
including appropriate fractional powers of  q. 

The quantum sum character formula can be computed as in the classi- 
cal case using the factorization of the Shapovalov determinant. Recall the 
definition of  the Jantzen filtration given in Definition 5.1. With r an in- 
determinate, a similar cons~uction using 2 + rp gives the Jantzen filtration 
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mn(~,) of the U(g) Verma module m(2) (See [J, Sect. 5] and [K-K].) Set 
+ {~t + ~) C IN + } where we are counting the appro- Am,it(2) = ~ Amult(rc) t (2 + P, 

pilate positive roots with multiplicities. Recall that b is the Cartan subalgebra 
of 9 and D* is its dual. One has the 

Proposition 6.1 For all 2 E b~ 

(i) ~ , > 0  chm"(2) = ~EA+mult().) chm(s~- 2) 

(ii))-~,>0 chM'(q  ~') = ~ m +  it(.~) chM(q ~=" ~')" 

Proof Assertion (i) is just [K-K] in the Kac-Moody case and [J, 5.3] in the 
semisimple case. The proof of (ii) is exactly the same as in [J, 5.3] except one 
uses the quantum Shapovalov determinant. Here we remark that the principal 
ideal domain k[r] is replaced by the principal ideal domain K[S] and p is 
the ideal generated by S -  1. So the factor in the quantum Shapovalov form 
(qiSP)z(4fl)_ ~q-4(p,#)+2m(l~,B) has nonzero p-adic evaluation if and only if fl E 

+ Z]mult(,*7[) and ~ = 1 and in this case has p-adic evaluation equal to one. Note 
that since the factors with ~ :1 = 1 have zero p-adic evaluation, the information 
given in Conjecture 5.6 for ~ = 1 is enough to compute the sum character 

+ formula. In particular the exponent of  the above factor for fl E Amult(}L) and 
= 1 matches up with chM(s3 • ~) taking multiplicities into account. Thus 

(ii) follows as in the classical case [J, 5.2, 5.3]. [] 

Intuitively one expects the Jantzen filtration of M'(q  J') to be coarser than 
that of m"(,~). Then the above sum rule would force equality throughout and 
imply that L(2) = M(q2)/Ml(q ~) specializes to ~(2) = m(2)/ml(2). Unfortu- 
nately we cannot directly compare Mn(q ;') and m"(2) since Mn(q ~') is defined 
over k(q). In order to proceed it is necessary to deal simultaneously with the 
two indeterminates q, S. 

Let A (resp. B) denote the localization of the polynomial algebra k[q - l] 
(resp. k[q - 1,(S - 1)/(q - 1)]) at its augmentation ideal. Of course A is 
just the algebra defined in Sect. 5 and identifying r with ( S -  1 ) / ( q -  l) it 
follows that B/(q - 1 )B is just the localization C of k[r] at its augmentation 
ideal. Let UA (resp. UB) be the A (resp. B) subalgebra of U ®k(q) k(q,S) 
generated by Xi, Yi, ti i~ : 1 < i < f over A (resp. B). Then UA identifies with 
U of Sect. 5. Let MA(q ~) (resp. MB(q~SP)) denote the UA (resp. UB) Verma 
module with highest weight 2 (resp. q;~SP). The localization of the polynomial 
algebra K [ S -  1] at its augmentation identifies with B[(q - 1) - I ]  and then 
MB(q;S p) ®B K [ S -  1] identifies with the Verma module M(q~S p) which is 
used (Sect. 5) in constructing the Jantzen filtration of M(q~). Now let U(g)c 
denote the C-subalgebra of U(g) ®k k(r) generated by a Chevalley basis for 
g and me(2 + rp) the Verma module for U(g)c with highest weight 2 + rp 
which is used [J, Sect. 5] in constructing the Jantzen filtration of m(2). One 
checks that MB(q~S p) ® B/(q - 1)B identifies with me(2 + rp). This gives us 
the required means for comparing Jantzen filtrations. 

Consider the Shapovalov forms defined on the [ weight submodules of 
MB(qZSP). These are free finite rank B modules and the forms take values 
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in B. Consequently they can be viewed as being given by an n × n matrix 
with values in B. For each such form the corresponding form on I(I(q;'SP) is 
obtained by inverting q - 1 and the Jantzen filtration on M(q  ~) restricted to 
that l) weight subspace is obtained by diagonalizing the form (see below) and 
extracting powers of  (S - 1) exponents. On the other hand the corresponding 
form on me(2 + rp) is obtained by specialization at q = 1 and the Jantzen 
filtration on m(2) on that b weight subspace is obtained by diagonalizing the 
form (see below) and extracting powers of  r exponents. It is clear that the 
Jantzen filtrations coincide if  and only if all such exponents coincide. A simple 
lemma of  commutative algebra given below shows that this is further equivalent 
to the forms already diagonalizing over B. 

It is convenient to replace q - 1 by t. Then A = kit]0, B = k[r, t]0 where 
the zero subscript means localization at the augmentation ideal. Given a non- 
degenerate A-bilinear form ~o on A n one may find A bases {ei}n=l, {fi}n=l of  
A" such that q~(ei, f j )  = 0 if  i + j  and q~(ei, f i )  = t e~ for some (i E IN. One 
says that q~ is diagonalized and the (i are the exponents o f  the form which can 
be assumed to be increasing. Then their i th partial sum (1 + (2 + " "  + (; is 
just  the largest t power dividing all the i x i minors of  tp viewed as a matrix 
with respect to any pair o f  bases. This result for the more difficult case of  an 
arbitrary principal ideal domain can for example be read off from [Lal,  XV, 
Sect. 2, Theorem 5 and Lemma 3]. 

The corresponding result for B fails. On the other hand the diagonalization 
in the above sense o f  such a form over any commutative domain can always 
be achieved if  at each step there is after dividing out rows or columns by 
common elements a matrix entry which is a unit. This observation makes the 
case of  a local principal ideal domain, for example A particularly trivial. 

Let ~o be a non-degenerate bilinear form on B n. One can recover a local 
principal ideal domain from B in two different ways. First, invert t that is form 
B[t -1] = k(t)[r]o. Let kl < k2 <_- . . .  < kn be the corresponding (generic) 
exponents of  tp over the above localization. Second, form B/tB and let (1 < 
#2 < " '"  _-< (n be the corresponding (special) exponents of  ~o. From the 
previous characterization of  exponents it is immediate that we have inequalities 
on the partial sums kl + k2 + . . .  + ki ~ (1 q- (2 q- "'" q- (i rather than the 
stronger assertions ki < (i which seemed more intuitive and when inserted 
into the Jantzen sum rules of  6.1, namely 

(*) kl + k 2  + . . .  + k n  = ( 1  q- ( 2  -'~- "" " -~ ( n  

give the required equalities ki = fi. In fact the correct result is the following. 

I . emma 6.2 Assume ( , )  holds. Then the following are equivalent 

(i) ki = Ei for  all i. 
(ii) q~ can be diagonalized over B. 

Clearly (ii) implies ki < (i for all i and hence (i) by ( , ) .  Conversely 
suppose (i) holds. Fixing bases we can view ~0 as given by an n × n matrix 
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with entries in B. By the characterization of  exponents it follows that each entry 
is divisable by r kl in B[(q - 1) - l ]  and hence in B. Dividing out say columns 
by this factor one can assume kl = 0 without loss of  generality and one further 
obtains at least one matrix entry, say a, not divisable by r. Equivalently a has 
a non-zero image in B/rB. Set t = 0 in all such matrix entries. I f  they all 
become divisable by r then one must have f1 > 0 contradicting the hypothesis 
of  (i). Consequently there is at least one matrix entry not contained in the 
maximal ideal o f  the local ring B and which is hence a unit. By our previous 
observation this process eventually gives (ii). D 

It is easy to give an example of  a form ~o not satisfying the equivalent 
conditions of  the temma. For example take n ~- 2 and q~ to be given by the 

matrix \ ~ t i" One easily calculates its generic exponents to be 0, 2 and its 

special exponents to be 1, 1. This example shows that one cannot immedi- 
ately use 6.1 to deduce a positive answer to Drinfeld's problem. Moreover this 
example is serious from the point o f  view of  trying to gain some extra infor- 
mation on the Shapovalov forms to show that they could be diagonalized over 
B. Identifying Homs(B" ,B)  with B n identifies a B-linear form with an element 
of  End8 B 'z. One can expect using ~I(2) theory to show that each such form 
can be factorized as a product o f  B-linear transformations depending either on 
r (coming from ~I(2) theory) or only on t (coming from relating different 
~1(2) subalgebras). However  the above example admits such a factorization, 
namely 

7)(; 0)(: 0)(0 0)(; 

Finally we note below that for g semisimple Drinfetd's isomorphism gives 
a Jantzen filtration for MA(q ~) • )~ E b~ which specializes to that o f  m(2). 

Let u be an indeterminate and identify A = k[q - 1]0 with a subalgebra of  
k[[u]] by taking q = exp u. For each k subspace (resp. A module) V let V[[u]] 
denote the u-adic completion of  V ®k k[[u]] (resp. V ®A k[[u]]) called simply 
the completion of  V. Consider the algebra ~J over k[[u]] generated as an al- 
gebra complete in the u-adic topology by the xi, Yi, and the space b in which 
the torus element t/ is identified with exp Uhi and the hi in b corresponds to ~i 
via the Killing form. After Drinfeld [D2, Prop. 4.3] one has an isomorphism 
1L l -% U(g)[[u]] which gives rise to an embedding UA[[u]] ~ U(g)[[u]] where 
ti becomes exp uhi. Now set S = qr and X = (S - 1)/(q - I ). It is straightfor- 
ward to show that B is a subring of  C[[u]]. Realizing the generators xi, yi, t~ 1 
of  U in U(g)[[u]] gives an A-algebra embedding ff : UA ~-+ U(g)[[u]] 
which extends to a map ~ of UB = UA ®A B into ( U ( 9 ) O k  C)[[u]] by 
7t(~_~ ui®bi) = ~ ~(ui)bi. To see that 7 j is also an embedding, we may "clear 
denominators" and assume that bi is equal to X i. Injectivity follows because 
U(g)[[u]] Nk[X]  = k and this implies that the X i are linearly independent over 
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U(g)[[u]]. Let v~ be a highest weight vector for mc(2+rp). Then as an element 
of mc(2 + rp)[[u]] it is also a highest weight vector with respect to UB and 
hence generates a highest weight module whose completion is mc(2 + rp)[[u]] 
and hence must itself coincide with the Verma module MB(q3~S p) for Us. Let 
m~(2 + rp) denote the filtration of  mc(2 + rp) defined by r-adic evaluation [J, 
Sect. 5] of the Shapovalov form. Note that the form ~p is preserved under Drin- 
feld's embedding. Recalling the notation of definition 5.1 one has, as above, 
that )~'l(q~SP)((u)) = mc(2 + rp)((u)) and so h~l(q;~S ;) fq mic(2 + rp)((u)) = 
Mi(q2SP). 

Since k(u)[S-  1]0 is a principal ideal domain over which the T weight 
submodules of  z~l(q2S p ) are torsion-free and finitely generated (as in say 
[J-L1, 5.10(i)]), it follows that M(q2SP) is a direct sum of T weight submod- 
ules which are free and of finite rank. Consequently mc(2 + rp)((u)) is simply 
the direct product of these weight submodules extended over k((u))[S - 1]0. 
Since the contravariant form respects weight decomposition Mi(q;~S ;) and 
m~(2 + rp)((u)) are similarly related and hence so are their specializations 
at S -  1. In particular M(q z) N mi()~)((u)) = Mi(q2). Now define MA(q 2) 
to be the UA submodule of m(2)[[u]] generated by the image of v), and 
Mj(q ~) = MA(q ~) n mi(2)[[u]]. Trivially Mj(q ~) specializes at u = 0 to mi(2), 
whilst Mj(q~')[t -1] = Mi(q )~) by the previous result. Thus our stated aim is 
achieved. 

Either directly or through the lemma we conclude that the Shapovalov 
forms on Ms(q2S p) can be diagonalized over B in the semisimple case and we 
suggest that this must also hold in the Kac-Moody case. It motivates the study 
of adapted bases effecting this diagonalization. In the semisimple case these 
adapted bases are prescribed by the Drinfeld isomorphism which separates out 
the r and q (or u) variable. 

7 A nondegeneracy theorem 

In this section, we assume that U is the quantized enveloping algebra associated 
to a semisimple Lie algebra ft. Here ~ denotes the complex field; but may also 
be taken to be any subfield stable by complex conjugation and then an extension 
of the latter. 

One of the nice properties of Kashiwara's form is that his crystal basis is 
"practically" an orthonormal basis for it. More precisely, take the base field 
k to be Q and let (~[q](q) denote the localization of Q[q] at the prime ideal 
generated by q. Let (L,B) denote the crystal basis for G- .  (See [Ka, Sect. 2] 
for definitions.) In particular, L is a free ([~[q](q) module such that LQff~[q](q) 
Q(q) = G-  and B is a basis for L/qL. By [Ka, 5.1.2], the restriction of ( , )  
to L takes values in ff~[q]~q~, and hence we may obtain a ~-vatued from ( , ) [0  
by evaluation at q = 0. By [Ka, Sect. 7], we can lift B to a basis ~ of L such 
that the image of ~ in L/qL is B. 

Theorem 7.1 [Ka, 5.1.2 (iii)] B is an orthonormal basis for (,)10. 
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Now let the base field k be ~ .  Given an ordered pair 4 = (fl,7) c Q+(n)  x 
Q+(z)  define 

~(4)  = {bz(2)K(b')]b,b' c ~ ,  wt(b) = - f l ,  wt(b ')  = -7 ;  2 E Q(n)} .  

Set g~ = U¢M(4) and note that M is a ~ (q )  basis for U. Define a IR(q) 
antiautomorphism of U by 

~:* ( ~ a~,v~ = ~ ~ c ( v )  
k, vE~  f vE,~ 

where "-" denote complex conjugation extended to ~(q) .  
Consider two vectors v and w in ~ with v = bz(2)K(b') and w = 

cr(q)x(e'). We write v ~ w if b = c and b' = c ' .  
Let v be the q-adic valuation on ~(q) .  In particular, if  f -- qmg where g has 

no poles or zeros at q = 0, then v ( f )  = m. Equivalently, q-~(f)f]o4:0 where 
"[0" denotes evaluation at q = 0. Furthermore, if  s < v( f ) ,  then q-Sflo = O. 
Set v ( f )  = oo, if  f = O. 

Lemma 7.2 

(i) Assume 41 = (fll,7~) and 4z = (f12, Y2) are ordered pairs in Q+(rc) x 
Q+(rc), v E ~(~1) and w c M(42). I f4 !  +42, then R(v,K*(w)) : O. 

(ii) Suppose that v,w E ~(~)  with v = bz(2)K(b') and w = c"c(rl)rffc'). 
Set N(4) : (p, fl) + (p, fl + 7)- Then 

ql/4(;~,n)_N(~)R(v, tc.(w))lo = { ; i f  v ~  w 
otherwise. 

Proof Since R is triangular, we have 

(7.2) R(v, tc*(w))) --- R(K(b'), c')R(z(2), r(q))R(b, to(c)). 

By Lemma 4.1, (7.2) equals zero unless 41 = 42. This proves assertion (i). 
Assume that ¢1 = 42. By (4.17), and the definition o f  the adjusted 

Kashiwara form (3.6), we have 

q -  1/4(.~, t/)÷U(~) 
R(v, tc*(w)) -- (b', c ')(b, c ) .  

A(fl)A(7) 

By definition, A(fl)10 = A(7)]0 = 1. Hence by Theorem 7.1 

1 if v ~ w  [] 
ql/4(g'n)--N(OR(v'K*(W))IO = 0 otherwise. 

We have the following nondegeneracy condition for R. 

Theorem 7.3 Assume that g is semisimple and k = ~. For each a E U non- 
zero, there exists an integer s such that q-'R(a, K*(a))]0 is a strictly positive 
real number. 
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Proof Write a = ~ a~ where ¢ C Q+(r0 × Q+(rt) and a¢ lies in the span of  
~(~).  According to Lemma 7.2(i), 

R(a,K*(a))=~R(a~,x*(a~)) 

Then in view of Lemma 7.2(ii) we may assume that only one ~ appears in the 
sum, so we may write a = ~ a v v  where a~ lies in C(q) and v E ~(~). Set 
Suppa = {v C ~(~)]a,  #=0}. 

Now 

R(a, ~:*(a)) = ~ avdwR(v, K*(w)) 
t?~ W 

Let s = min~,weSuppa{V(av)+ V(aw)+ v(R(v, x*(w)))}. We show that this mini- 
mal value s is only achieved on the diagonal contributions (i.e., when v = w.) 

We already know by Lemma 7.2(ii) that 

v(R(v,K*(w))) >= --1/4(2,q) + N(~) ,  

with a strictly inequality exactly when v 7c w. 
Since the Cartan inner product is positive definite on Q(Tt), we have 

(2,2) + (q,q) -> 2(2,q) .  

Thus if v ~ w we have 

2[v(av) + V(aw) + v(R(v, K*(w)))] > 2[v(av) + V(aw) - 1/4(2,17) + N(¢)] 

> [v(av) + v(av) - 1/4(2, 2) + N(~)] + [V(aw) + V(aw) - 1/4(q, q) + N(~)] 

> 2s.  

Next suppose that v --~ w but vg=w. Then 2+q .  In this case ( 2 , 2 ) +  
(q, q) > 2(2, q), whilst by Lemma 7.2(ii), vR(v, x*(w)) = -1/4(2,  q) + N(¢). 
Thus the above argument gives again the required inequality. Finally 

q-SR( a, ~c*(a))[0 = E q-SavgtwR(v, tc*(w))]0 
~ W 

- - S  a - '~ = ~ q  vavR(v,x (v))[0, by the above. 
V 

Yet by Lemma 7.2(ii) each non-zero term in the above sum equals (qV(a~')av]o) 
(q-v(av)av[o), which is a positive real number. [] 

Now let V be a subspace of U such that x*(V) c_ V. (Since x* is an 
antiautomorphism of U of  order 2, this is equivalent to h:*(V) = V.) If a E V, 
then Theorem 7.3 implies that R(a,x*(a))~eO. Thus we have 

Corollary 7.4 Assume that g is semisimple and k = IF.. Let  V be a subspace 
o f  U such that tc*(V) G V. Then Rlv is nondegenerate. 
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8 Applications to the locally finite part of U 

In this section, we continue to assume that g is semisimple and for the mo- 
ment that k = ~. The structure of the locally finite part of U is investigated 
extensively in [J-L1] and [J-L2]. Here, we consider the additional information 
Corollary 7.4 provides. 

Define the locally finite part of U to be F = (a E Uldim~c(ad U)a < oo}. 
The set F is an algebra ([J-LI, Corollary 2.3]) which is "large" inside U 
([J-L1, Theorem 6.4]). 

We can completely describe the set T n F  as follows. Let P+(n)  = ~ i  ]N~oi 
denote the set of  dominant integral weights. Set R+Qt) = -4P+(r t )N Q0z). By 
[J-E1, Lemma 6.1], F f3 T = z(R+(x)) .  

We have the following direct sum decomposition of F([J-L2, Theorem4.12]) 

(8.1) F =  (~ (adU)z(~).  
)~ER+(n) 

Moreover, we can completely describe the ad U module structure of each 
summand in the right hand side of (8.1). Let L(2) denote the simple U module 
with highest weight qi. Note that ). E R+(Tz) implies - 1 / 4 2  E P+(g). So -1 /42  
is a dominant integral weight and the corresponding simple module L( -1 /42)  
is finite dimensional. By [J-L2, Corollary 3.5], we have an isomorphism of 
ad U modules for each 2 E R+(zt): 

(8.2) (ad U)z()O ~ Endx L ( - 1 / 4 2 ) .  

The proof of (8.2) does not explicitly give the isomorphism map. The 
argument depends on the following observations. Given a subspace S of F, let 
S ± = {a E FIR(a,s)  = 0 for all s E S}. For all ,~. E R(zt) we have ([J-L2, 
Corollary 3.3]) 

(8.3) [(ad U)z(2)]J- = AnnF L ( -  1/42) 

and ([J-L2], 3.5) 

(8.4) dimK(ad U)r(2)  = dimK End L ( -  1/42). 

On the other hand, there is a natural map from (ad U)z(2) to End L( -1 /42)  
by the action of  U on L(-1/42) .  Namely, an element a E (ad U)r(2) is sent 
to the map La where La(v) = av for each v E L(-1/42) .  (In other words, La 
is left multiplication by a.) In [J-L2, Remark 3.5], it is conjectured that this 
map is an isomorphism from (ad U)r(2) onto EndL(-1/42) .  Using Sect. 7, 
we shall show this is true. 

Let 2 be any element in Q0z). In order to apply Corollary 7.4 to (ad U)z(2), 
we must show that it is invariant under ~:*. As in (4.11) we have for each 
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l < i < l  

(8.5) tc*((adxi)a) --- tc*(xi ati - q-(~" ~i)ti axi) 

--- tilc*(a)yi - q-(~i, ~i) yiK*(a)t i 

= -q-(~i'~i)(ad y i )x* (a ) .  

Each element in (ad U)z(2) can be written as a finite linear combination 
of elements of the form (adb)z(2) where b is a product in the x~s and y~s, 
1 < i < l. Since ~c*(z(2)) = z(2), then by (8.5), it follows that K*((ad b)r(2)) 
is also contained in (adU)z(2).  Hence tc*((adU)z(t))  c (ad U)z(2). By 
Corollary 7.4, we now have (extending scalars to prove the general case). 

Theorem 8.1 Assume that g is semisimple. The restriction o f  the Rosso form 
to (ad U)z(2) is nondegenerate for  any 2 E R+(n). 

Recall that (ad U)z(2) C_ F for 2 C R+(n); the conclusion of Theorem 8.1 
is equivalent to 

(8.6) (ad U)z(2) M ((ad U)z().)) -L = 0.  

By (8.3), it follows that (ad U ) r ( 2 ) M A n n F L ( - 1 / 4 2 )  = 0 for all 2 C R+(rt). 
Hence, the map a ~-~ La is injective. The dimension equality in (8.4) now gives 
us  

Corollary 8.2 Assume that g is semisimple. For 2 E R+(rE) the map a H La 
is an isomorphism o f  (ad U)z(2) onto EndL(-1/4) .  

Remark 8.3 It is unclear what happens when we drop the assumption that g is 
semisimple. The proof for Theorem 8.1 fails in general because the argument 
for Theorem 7.3 requires the bilinear form ( , )  on Q(rc) to be positive definite. 

In [J-L2], an analog of Kostant's Separation of Variables Theorem is proved 
for the quantized enveloping algebra. The core of the classical theorem is that 
S(g) is isomorphic to a tensor product over k of the ad U(g) invariant elements 
and an ad U module, usually referred to as the "harmonics", which is realized 
as the subspace of S(g) orthogonal to the ad U(g) invariant elements of S(g*) 
under the bilinear pairing on S(g*)x S(g). (See [Ko, Sect. 1] for details.) In the 
quantum case, the "harmonics" are not completely determined. Using Rosso's 
form, we make a choice that parallels the classical one. This requires a base 
field to admit complex conjugation so that K* is defined. 

We need to define two objects used in [J-L2]. The first is the simply 
connected quantized enveloping algebra U. Note that Q(n) c P (n )  and set 
7/" = z (P(n) )  ~ T. The algebra U is generated by U and 7 ~ such that 
/.) ~ U -  ® K[7 ~] ® U + as vector spaces over K and 

"C(,~)X/'C(/~) -1  = q(~i '2)Xi; Z ( j , ) y i z ( } ~ )  - t  = q--(~i,)~)yi . 

One can also make 0 into a Hopf algebra by setting e(z(2)) = 1, A(z(2)) = 
• (2) ® ~(2), and ~r(z(2)) = "c(2) - l  for all 2 E P(n). 
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The reason we introduce U is that the Quantized Separation of Variables 
Theorem [J-L2, Theorems 7.3 and 7.4] does not apply to the smaller algebra 
U (see [J-L2, Ex 5.5]). Note that all the results in the preceding sections of 
this paper also apply to /). In particular, we can define Rosso's form on t.)- 
where we allow ~()0 and ~(~) in (4.16) and (4.17) to be any elements in /~. 
Of course the statements in this section also apply to 0 where we replace 
R+0z) with -4P+(~)  and F with/~ = {a C Oldiml((ad U)a < oo}. Note that 
K* extends to an antiautomorphism of U by setting ~:*(r(2)) = ~(2) for all 
,:(,1,) e T. 

The second object of interest is a graded algebra associated to U. Define 
an ad U invariant filtration using degree where 

degxi = deg yi = 1 

deg ti = -deg  t~71 = - 1 

for 1 < i < l. (See [J-L2, 2.2] for more precision.) Consider the associated 
graded algebra of U for this filtration. We use the notation [aq for the "top 
symbol" or "graded image" of an element a E U-. Similarly, this notation can 
be used for sets so that [/)q is just the associated graded algebra of O. Note 
that the adjoint action preserves degree and hence [U] inherits an ad U action 
(see [J-L2, Sect. 2]). 

Now x* preserves degree and hence induces an antiautomorphism on [U] 
which we also denote by ~*. Then 

(8.7) ~* [al = [K*(a)q 

For each 2 c -4P+(n) ,  we have the following equality and isomorphism of 
ad U modules ([J-L2, Lemma 4.5]). 

(8.8) [(ad U)T(2)] = (ad U)[r(2)]  ~ (ad U)r(2) .  

Furthermore, by [J-L2, 4.10], 

(8.9) IF] = ~)  (ad U)[z(),) 1 . 
).E--4P+(n) 

Note that an immediate consequence of (8.8) is: for each a E [(ad U)z(2)], 
there exists a unique b E (ad U)z(2) such that [bl = a. Indeed if bl and be are 
two such elements then deg (b l -  b2) is strictly less than deg bl. Yet [ b l -  b2] E 
[(ad U)z(2)q -- (adU)[r(2)q,  whose non-zero elements are homogeneous of 
degree equal to deg 3(2). This forces [bl -b2] = 0 and so b~ = b2.  We conclude 
that R induces an ad-invariant bilinear form [R 1 on [(ad U)v(2)q, defined by 
[Rl([al,  [ b ] ) =  R(a,b). It is non-degenerate by (8.8). Extend [R] to IF] by 
making (8.9) an orthogonal direct sum. We have the following graded version 
of Corollary 7.4. 

Lemma 8.4 Let V be a subspace of  [(ad U)v(2) 1 such that ~¢*(V) c_ V. Then 
[R~ Iv is nondegenerate. 
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Proof. Recall that x*((ad U),(2))  = (ad U)z(2). Let W be the unique subspace 
of'(ad U)r(2) such that [W 1 = V. Then ~c*(W) C_ (ad U)z(2). By (8.7) 

rK*(W)l = ~*[Wl = ~ , ( v )  c_ v .  

Hence, x*(W) C_ W. Since rR](ra], [b]) = R(a,b) for all a,b in W, it follows 
from Corollary 7.4 that JR]iv is also nondegenerate. [] 

We use the graded Rosso's form to construct the "harmonic" elements 
of [fi]. Let Z denote the set of ad U invariant elements of U. Then [Z 7 is 
the set of ad U invariant elements of both IU] and IF]. Let I be the ideal 
in IF] generated by the homogeneous elements in [Z] with positive degree. 
Set 1(2) = I f3 I(ad U)~(2)]. The harmonics can be any graded ad U module 
complementing I in rF1 (see [J-L2, 7.3]). Set 

H(2) = {a E [(ad U)v(2)l][Rq(a,I(2)) = 0} 

for 2 in -4P+(r0  and 

H = ~ H(2)  = {a E [Pql[Rl(a,l) = 0}. 
2E--4P+(u) 

Lemma 8.5 For each 2 E -4P+(u) ,  

(8.10) [(ad U)T(2)~ ~ H(2) q3 I (2) .  

as ad U modules. 

Proof. To show (8.10), it is sufficient to show that [R 1 is nondegenerate when 
restricted to 1(2). 

Since ~c* is an antiautomorphism of U, it follows that tc*(Z) = Z. Thus, by 
(8.7), ~c* [Z] = [Z]. Since K* preserves degree it follows easily that K*(I(2)) C 
1(2). Then by Lemma 8.4, [R] restricted to 1(2) is nondegenerate. The proof 
follows. [] 

Let ~I(2) be the ad U submodule of (ad U)z(2) such that [IH(2)l = H(2). 
Set 

• I =  @ ~-i(~). 
2E--4P+(n) 

By Lemma 8.5 it follows that H is a complement to I in [/~7- Since each 
[(ad U)z(2)] is a homogeneous component of rfi], we have that H is a graded 
submodule of IF]. Thus by [J-L2, Proposition 7.3] and [J-L2, Theorem 7.4]. 

Theorem 8.5 The map h ® y ~ hy is an isomorphism of  H ®K [Z~ onto ~P1, 
and the map b ® z ~-, z is an isomorphism of  K-I ®x Z onto ft. 
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