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1 Introduction 

Symplectic homology associates to an open subset U of a suitable compact 
symplectic manifold M and real parameters 0 < a < b symplectic homology 
groups S~a'b)(M~ U). These groups measure the symplectic properties of  U as a 
subset of  M. 

Symplectic homology was introduced by the second and the third author 
in [11] for open sets in I~ 2n and it was applied in [12] among other things to 
the symplectic classification of  open ellipsoids and polydisks. In [3] the first 
three authors extended the construction to certain compact symplectic manifolds 
M with contact type boundary and their open subsets. For properties of  such 
"convex manifolds" see in particular [7, 15]. We also would like to mention that 
historically the importance of symplectic convexity was pointed out for the first 
time by A. Weinstein in [18] for periodic orbit problems. There he doesn't  call it 
convexity but introduces the notion of contact type. For this aspect of  convexity 
we refer the reader to the recent book [14]. 

In the present paper we are going to use the construction in [3] to study the 
question what information the interior of  a symplectic manifold knows about its 
boundary. This is a very important question in symplectic topology. It comple- 
ments another important question. Namely what does the boundary contain about 
its interior. Very interesting results concerning the two questions can be found 
in [2, 8, 9, 13]. 

For the technical background to our results we refer the reader to the papers 
[3] and [11]. 

We assume (M, ~v) is a compact symplectic manifold with contact type bound- 
ary OM. This means that there exists an outward pointing transversal vector field 
r/defined on an open neighborhood of OM in M such that the Lie derivative of  ~v 
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with respect to ~1 satisfies L,Tw = a;. Equivalently (setting A := i , ~  := ~(~, .)) 
there exist a 1-form A on a neighborhood of  OM such that dA = ~c and AA(dA) "-1 
is a volume form on OM which determines the orientation of  OM induced from 
the orientation w" on M.  The 2-form w induces on OM a canonical line bundle 
SaM --~ OM via the formula 

.-.~ := {(x, v) C T(OM) [ ~o(v, w) = 0 for all w E Tx(OM)}. 

The line bundle ~ o M  is naturally oriented as follows. Choose a Hamiltonian 
H defined near OM which is equal to 0 on OM and whose outward normal 
derivative on OM is positive. The Hamiltonian vector field Xn defined by 

ixnw : =  o3(XH, .) = dH 

gives a nowhere vanishing section of  S~oM ~ OM and hence an orientation of 
S(oM. We shall restrict our considerations to the following two cases: 

A. The symplectic form w vanishes on 7r2(M), and the first Chem class cl 
vanishes for pullback bundles u*TM ~ S 2 and [u] E 7r2(M). 

B. The symplectic form ~ is exact, i.e. the 1-form A = inw near aM extends to 
a 1-form on M satisfying dA = w everywhere. 

In case A, we denote by ~a the collection of  all periodic orbits of .~.~,~ on 
OM which are contractible in M. Any element x E ~a is a T-periodic smooth 
immersion x : [0, T] ~ OM which solves the equation ~ = -X (x ) ,  where X is 
the so called Reeb vector field defined by 

ixA= 1 and ixdA=O. 

Here A is the 1-form given by A = inw. With an x E ~ we associate two 
numerical invariants. We choose a positive parametrisation x : S 1 ~ OM of 
x E ~ and take an extension u : D ~ M of x to a disk D.  Now define 

A(x) := - f o  u*w 

In view of  the assumption [w] t~2(M)= 0 this integral does not depend on the 
choice of the extention u and will be called the action of x. 
Next we associate with x a well- defined Maslov type index, indRs(X). This 
index, due to Robbin and Salamon, [17], is a generalisation of the well-known 
Conley-Zehnder index [4]. Assume that x : [0, T] ~ OM is a T-periodic solution 
of  the Reeb vector field X, ~ = - X ( x ) .  We linearize this equation along the orbit 
x to obtain a path of  symplectic maps 

~(t)  : Tx(o)M --~ Tx(t)M. 

Here we extend the linearisation, which apriori is only defined in T(DM) in the 
normal direction as the identity map. Then, the map ~(t)  sends X(x(O)) onto 
X(x(t)), ~7(x(O)) onto rl(x(t)) and 
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~x(O) := kerA(x(O)) 

onto ~x(,) = kerA(x(t)). We will call x E Wa a nondegenerate periodic orbit if the 
map 

k~(T) I ~x(O) : ~x(O) ~ ~x(O) 

does not have 1 in its spectrum. 
We choose a disk map u : D --~ M extending x, i.e. x(t)  = u(e2"it/r), for 
0 <~ t ~< T, and a symplectic trivialisation /3 : u*TM ---, D × ~2,. Consider 
symplectic maps F(t)  : ~2, __~ ~2~ determined by 

F(t)  =/3(e2~it/r)(~(t))(~(1)) - t .  

According to [17] we can associate with a path F a Maslov type index #(F)  
which, as it will be shown in section 3, is an integer if x E ~ is nondegenerate 
in the above sense. Moreover, this index is independent of the choices involved 
in view of the condition on cl. Hence indRs(x) = #(F)  E Z is a well defined 
invariant of a nondegenerate perodic orbit x E ~A. 

We define the action spectrum,/~A(OM) by setting 

,,~A(OM) := {(A(x), indRs(X)) Ix  E ~ , A ( x )  # O} C ~ x Z, 

each pair counted with multiplicity. 

The importance of the action spectrum was recognized by Ekeland and Hofer 
in the construction of symplectic invariants for open sets in the symplectic vector 
space C ' ,  [5, 6]. It is now considered an important ingredient in the study of 
symplectic rigidity. 

In case B we fix the 1-form A and and denote by ~ the collection of all 
periodic trajectories of ~ on OM. If x E ~ then its action is defined by 

A(x) := - f s  ~ x*,X. 

and the action spectrum in this case is 

, ~ ( O M )  := {A(x) tx  E ~ }  C ]$. 

Note that in both cases we also count multiple covered periodic trajectories. 
In section 3 we shall define in the situation of case A symplectic homology 
groups s[ka'b)(M,J) with coefficients in Z2. Here 0 < a < b or a < b < 0, 
k E Z and J is a suitable almost complex stucture defined in the interior of 
M. In the case B we get groups s[.a'b)(M,J) without the Z-grading. We could 
also define groups with coefficients in arbitrary groups based on  the resolution 
of orientation questions for families of certain linear Fredholm operators in [10]. 

Our main result is the following 
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Theorem 1.1 Assume in the situation A or B that all elements of Y,~ or 
are nondegenerate. Then for a E ]R \ {0} the symplectic homology groups 
S[.~-~'a+e)(M , J )  become independent of  e and J if e is sufficiently small. We de- 
note them by sa. (M). If(a,  k) q{ ~ a f o r  all k E ~ or a f[~ ~n,  then Sa(M) = {0}. 
l f  (a,k)  E ~ a  has multiplicity n then it gives rise to n copies of Z2 in S~(M) 
and n copies in S~+I(M). I f  a E ~/~B has multiplicity n then Sa(M) = 2n • Zz. 

As a corollary we obtain the so-called "stability of the action spectrum". For 
a compact manifold M with boundary OM we denote by M the set M \ OM. 

Theorem 1.2 Let M and N be compact symplectic manifolds with contact type 
boundary which both satisfy assumption A or B. Assume that all elements of 
~A(M) and ~a(N), respectively Ui~(M) and ~ ( N ) ,  are nondegenerate. Let 
~: 191 --* 1V be a symplectic diffeomorphism of the interiors which in case B 
we assume to be exact symplectic (i.e. O* tz - )~ is exact, where )~, t~ are the fixed 
1-forms on M and N ). 

Then 

.J~A(OM) = .~A(ON) resp. 

•/~B(0114) = ~:~B (ON). 

Proof Consider case A. It follows from the construction of the symplectic ho- 
mology groups that ~: induces an isomorphism 

s~a'a)(M,J) ~ S[ka'b)(N, (D¢)o J o (D~b)-I). 

This implies that S~(M) '~ S~(N) for all a E ~ \  {0}. But according to Theorem 
1.1 the groups Sk a give us complete knowledge of the action spectra of the 
boundaries. Hence ,~A(OM) = ~,~A(ON). For case B note that since ~b is exact 
symplectic, it takes periodic solutions to periodic solutions with the same action. 
The argument now works as in the previous case. 

2 Local Floer homology 

In this section we are going to show that a periodic solution of a time-independent 
Hamiltonian system splits under a small time-dependent perturbation into two 
solutions, and that the Floer homology of these two solutions is the homology 
of S 1. 

In [4] C. Conley and E. Zehnder introduced an index indcz (x) E Z for nonde- 
generate periodic solutions. We will make use of a generalisation due to J. Robbin 
and D. Salamon ([17]). They associate with every periodic solution a half inte- 
ger indRs(X) which agrees with - i n d c z  in the nondegenerate case. We briefly 
recall their construction. Consider ~2n with coordinates (q~, . . . ,  q , , p l , . . . , P , )  
equipped with the standard symplectic form Wo = Zdqi A dpi. Let A(t ), t E [a, b] 
be a smooth path of Lagrangian subspaces. For each to we define a quadratic 
form Qto on A(to) as follows. Take a Lagrangian complement W of A(to). 
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For v E A(to) and t near to define w(t)  E W by v + w ( t )  
Qto(v) := ~ It=to w0(v, w(t)) is independent of the choice of W. 

Now fix a Lagrangian subspace V and define 

S k ( V )  

S(V) 

E A(t). Then 

:= {L I L = Lagrangian subspace of II~ 2n, dim(LN V)  = k}  

:= 0 Zk(V). 
k=l 

Homotope A to a path having only regular crossings with Z(V). This means that 
whenever A(t) E S ( V ) ,  the quadratic form F, : =  Qt IA(t)nv is nonsingular. 

The Maslov index of the path A(t) is then defined as the half integer 

1 1 
#(A, V) := ~ sign/ ' ,  + ~ sign Ft + ~ sign Fb, 

A(t)E E(V) 

where sign is the signature of a quadratic form, the number of positive minus 
the number of negative eigenvalues of the quadratic form. 
If ko : [a, b] ~ Sp(2n) is a path of symplectic matrices, then the graphs of ~(t), 
9r(~(t)) ,  form a path of Lagrangian subspaces in the symplectic vector space 
(~2n • ]~2n ((-w0) ® w0). We define the Maslov index of the path ~' by setting 

/z(~) := #(gr(~) ,  A), 

where A is the diagonal of IR 2n • IR 2'z. This index /z has the following nice 
properties, for details see [17]: 

1. Two paths of symplectic matrices are homotopic with end points fixed if and 
only if they have the same index. 

2. For each k every path in Sp~(2n) := {~P I ~' = symplectic, gr(~P) E Zk(A)} 
has index zero. 

3. If ~ : [a, b] ~ Sp(2n) and a < c < b then #(fro =/z(~ Ira,el) +/z(ff' Itc,b])- 
4. If ~, ~ '  are paths in Sp(2n), Sp(2n') respectively, then/~(ff' ® ~ ' )  =/z(kO) + 

/z(~'). 
Assume now that (M, w) is a symplectic manifold such that for every map u : 

S 2 ~ M the number Cl(u*TM)[S 2] vanishes. Here ct is the first Chern number 
of the complex bundle u*TM. Let H(t ,  x)  be a Hamiltonian which is 1-periodic 
in the t-variable and XM, be a Hamiltonian vector field defined by ix,,, w = dHt. 
Assume that x : S  1 ~ M is a contractible 1-periodic solution of k = Xn,(x). 
Denote by Ot the flow of X m. Then the tangent map D~t(x(O)): Tx(o)M --~ 
Tx(t)M is symplectic. Choose u : D ---, M so that x( t )  = u(e2~it), where D 
is a unit disk in C. We take a symplectic trivialization of u*TM, denoted by 

: u*TM --~ D × JR 2n, and consider the path of symplectic matrices in ]~2n, 
/" : [0, 1] ~ Sp(2n), given by 

F(t  ) = k~(e2~rit)(D~bt(x(O)) )k~(1) -1 . 
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We define the generalized Conley-Zehnder index of the 1-periodic orbit x by 
setting 

indRs(x) := #(F).  

One easily verifies that, in view of our assumption on c~, this definition is inde- 
pendent of the choices involved. 

We say that a 1-periodic orbit x of the Hamiltonian vector field XI~, is nonde- 
generate if 1 is not an eigenvalue of the map D~pl(x(O)) : Tx~o)M ~ Tx(o~M. In 
this situation indns(X) is an integer and is equal to - indcz(x), where indcz(X) 
stands for the Conley-Zehnder index. If  H is time-independent and x a non- 
constant 1-periodic then it is necessarily degenerate because x( t  - a), a E ~ ,  
are also 1-periodic solutions. We call such an x transversally nondegenerate if 
the eigenspace to the eigenvalue 1 of the map D~pj (x(0)): Tx(o)M ~ Tx(o)M is 
one-dimensional. Equivalently, in the above notation, this means that 9r0P(1)) E 
El(A). From the definition it is clear that if x is transversally nondegenerate then 

indRs(x ) ~[ Z. 
Now we define the local Floer homology group of a transversally nondegen- 

erate 1-periodic orbit $ of the Hamiltonian vector field X14. For this we take a 
sufficiently small neighborhood U of $(S t) in M. In particular U should not 
contain any other 1-periodic solution except $ and its translates $(. + t). That 
such a neighborhood U exists follows from the fact that $ is transversally non- 
degenerate. 
Let J be an almost complex structure on U which is compatible with w in the 
sense that (-, .) = w o (J × Id) defines a Riemannian metric on M. We introduce 
the space of time-dependent perturbations 

~ - ~ : = { h  E C ~ ( S  1 × U , ~ ) t [ V h ( t , x ) l <  1 f o r a l l ( t , x )  E S  l × U } ,  

where V denotes the gradient with respect to the variable x and I'l the norm 
with respect to /', "). For h E , ~  and 6 > 0 define He := H + tSh. For generic 
h E , ~  and small t5 > 0 all 1-periodic solutions x will be nondegenerate and 
hence indRs(X) E Z. 
Let Ck(J,H6) be the Z2 vector space with basis the 1-periodic solutions of  
k = XHe (t, x) in U with indRs (x) = k. Given periodic solutions x - ,  x + of  indices 
k, k - 1 define 

J g ( x - , x + , J , H 6 ,  U)  :=  { u : ~  × S 1 ~ U I Us +J(u )u t  + VH6(u)  = O, 

u(s, ')  ~ x + a s s ~ + ~ } .  

Note the occurence of U in the definition of J ~ ( x - , x + , J , H 6 ,  U). 
As we shall see below the following is true. For 6 small enough and generic 

h and J we obtain a boundary operator 

0k:Ck ~ Ck-1 linear 

x "-* Z ( O k x , y ) ' y ,  
ind(y )=k - 1 

where (O~x,y) is the number rood 2 o f  points in ~.(x ,y ,J ,H,~) / I I~  ( ~  acts on 
by translation in s). 
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The local Floer homology groups of  ~ are 

HF~°C(£) := ker(0k)/im(0k+l) 

and, as we shall see below, are independent of  the choices involved. We begin 
with 

L e m m a  2.1 Assume that Y, is a transversally nondegenerate 1-periodic orbit of 
XH and U is an open neighborhood of £(S 1) which does not contain any other 1- 
periodic orbit of XH. Then for any open neighborhood V which satisfies ~(S l) C 
V C U there exists ~5o > 0 such that for any 0 < ~ < 6o we have 

1. All 1-periodic solutions of Jc = XH~(t,x) in U are contained in V . 
2. All u C u fg(x- ,x+,J ,H~,  U) are contained in V . 

Moreover, the local Floer homology groups HFI°C($ ) are well-defined and inde- 
pendent of  J and h E ~ .  

Proof (1) We argue by contradiction. Assume that there exist a neighborhood 
V such that Y(S l) c V C V c U, sequences tSn --~ 0 and {xn } of  1-periodic 
solutions of  x'n(t) = XH~,(t,xn) such that x,(S 1) C U but x,(t~) ~ V for some 
tn E S l . It follows by the compact Sobolev embedding H1,2(S 1) --~ C°(S 1) that 
there is a subsequence o f  {x~ }, still denoted by {x, }, and y such that x,  --~ y 
in C°(S 1) and p(t) = XH(y(t)). Since ~ and its translates are the only 1-periodic 
solutions of  XH contained in U we have that y(S j) C V. On the other hand 
xn(t,) --~ y(7) f[ V for some ? C S 1. This contradiction proves the first part of 
the lemma. 
(2) From the proof of (1) we know that each 1-periodic solution x of  XH6 is 
H 1'2-close to a translate of  ~ if 6 is small. We define the energy of  the periodic 

orbit x by 

/o' • (x) = A(x)--  He(t,x)dt. 

We span in a small cylinder Z bounded by x and 2. With the proper orientation 
o f  Z we have 

A(x) = A(Y~)- f z  03  ~ 

where A($) is fixed. 
Now assume that for some neighborhood W of  ~(S l) we would find a se- 

quence 6, ~ 0 and u, E ,~,/g(x Z , x+,, J, H~,, U) not contained in W. By shifting 
in the s-variable we can achieve that u,(0,-)  is not contained in W. We have by 

+ ~(b+-)  for some a,  b E S 1 . Hence A(x+~)-A(x~ -) ---+ O. ( 1 ) , x . -  ~ ~ ( a + . ) , x .  --, 

On the other hand by the well-know compactness results u, converges in C1~ 
to some u. Since u,,(O,S l) is not contained in W the same is true for u. But 
since A(x +) - a(x~-) --* O, u must be independent of  s, u(s, t) = x(t) for some 
1-periodic solution x of~t = X~t(x). The only such solutions are translates of  S, 
so u is contained in W, and we have a contradiction which proves (2). 
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To prove the last part of  the lemma note that (2) ensures that all elements 
u E d~g(x - , x+ ,J ,H~ ,  U) are bounded away uniformly from the boundary of  
U. Since 7r2(U) = 0, no bubbling off of  holomorphic spheres can occur. Hence 
all the usual Floer homology constructions work and the lemma follows. 

The lemma allows us to calculate the local Fioer homology by choosing nice 
data (J ,  h). 

Let ~ be an / - fo ld  covered 1-periodic orbit which means that l E I~ is the 
maximal natural number such that $(t + ~) = )70). We choose a Morse function 
h0 on S l having exactly two critical points, a minimum at 0 and a maximum at 
1//2. Define the function h on :7 (S l) by h (t,)7 (s)) = ho(ls - It) and extend it to the 
neighborhood U in a suitable way. We will describe this extension in the proof of  
the following proposition. This perturbation destroys the critical circle and gives 
rise to two obvious solutions of  :t = XH~ (t, X), H~ = H + 6h, namely x -  (t) = :7(t) 
and x+(t) = $(t  + ~)  which correspond to the minimum and maximum of h0. 

Proposition 2.2 For h as above and 6 sufficiently small, x + and x -  are the only 
1-periodic solutions of  J¢ = XH~ (t, x ) in U. They have indices 

1 
indRs(X +) = indRs(Y) :t: ~ ,  

and the boundary operator is trivial: O(x ÷) = O(x- )  = O. 
Thus the local Floer homology HF~°C($ ) is Z2 in dimensions 

k = indRs(:7) + 1//2 

and zero otherwise. 

Remark. The proposition shows that HF1.°c(Yc) is just the ordinary homology of  
S 1 shifted in dimension by indRs(£) - 1/2dim(S1). A similar result should also 
hold for more general critical manifolds in place of S 1 

Proof The proof of  the proposition will be divided into four steps. 
1. Since the normal bundle of  ~(S 1) in M is trivial (because it is orientable), 
there exists a diffeomorphism ~ : Uo ---* U1 of  an open neighborhood Uo C M 
of  :7(S l) onto an open neighborhood U1 C S 1 x I~ 2n-1 of  S 1 x {0} such that 
~*wo = w. Here S 1 x I~ 2n-1 is equipped with the form wo = Sdqi  A dpi in 
coordinates (ql, P l , . . . ,  qn, Pn), ql E S i, (Pl, q2, P2, . .  •, Pn) E I~ 2n- 1. Under this 
transformation the periodic orbit g corresponds to ~(£(t))  = (tt, O) C S l × i~2~-t 
and the Hamiltonian function H corresponds to H o ~b -1 which will be still 
denoted by the same letter H.  We will make another change of  variables. 
Define a Hamiltonian function K : Ul ~ II~ by K(q l ,p l ,  • • .) = - l  Pl. It generates 
the flow At(ql ,Y)  = (ql - l t , y )  on S 1 x 11~ 2n-1. If  x( t )  is a 1-periodic solution 
of  ~ = XH~(t,X) then :~(t) = At o x(t)  is a 1-periodic solution of  :t = Xft~(t,x), 

where I216(t,x) = H6(t ,A[-l(x))  + K(x) .  Gradient lines in the Floer complex 
are transformed in a similar way. Hence we obtain an equivalent system in 
which the unperturbed Hamiltonian /4 has critical points all along S 1 x {0}. 
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Also note that after this transformation the unperturbed Hamiltonian H becomes 
time dependent. The solutions t F-~ £(t + a) correspond to constant solutions 
t H (la,O). In particular, the orbits x -  and x + become constant solutions (0,0) 
and (1/2, 0). 

In this new situation we can define the perturbation h simply as 

h(ql ,Y)  := ho(ql). 

The perturbation/~ is time-independent, but it becomes time-dependent when we 
transform back to the original situation: 

h(t, ql, Y) = ] l ( A t ( q l ,  Y)) 

= ho(ql - lt). 

And so we have h(t ,~(s))  = ho(ls - lt), in accordance with its previous descrip- 
tion. 

We shall suppress the ~ in/-16,/t and 2 from our notation, assuming that we 
have already performed the described transformations. 

2. Since Xnr = 0 on S 1 × {0}, all 1-periodic solutions of £ = Xt46(t,x) 
in a neighborhood Ul of  S 1 × {0} will be small and therefore contractible in 
S 1 × ]~2n--l. So we can lift them to loops in ]~2n. Set E := HI'2(SI ,~ 2n) and 
G := L2(S l, Nzn) and consider a smooth nonlinear operator F : E ~ G given by 

F(x)  := - J 0 £  - V H ( x )  = -JoUc - XH(X)), 

where V H  is the gradient with respect to the standard inner product in ]]~2n and 
J0 is the standard symplectic matrix //°, '°> ) 

J0  ~- " -  " 

(o '0) 
Let N = F -  t (0) be the subspace of constant solutions x~ (t) = (la, O) C tR x N2n- 1, 
a E IIL We linearize F at x~ to obtain an operator A := DF(xa): E --, G. The 
operator A is Fredholm of index 0 and its kernel coincides with N. Viewed as 
an unbounded operator on G, A is self-adjoint. If W denotes the LZ-orthogonal 
complement of  N in G, then the above remarks imply that 

A Iwne:W n E  ~ W 

is an isomorphism. 

In particular, there exists a constant c > 0 such that IIDF(xa)" YIIG >- cHYI]E 
for all a C ~ and y E W fq E. 

Now define f : E  ~ G by f (x )(t ) = hP(x(t )). Recall that h(q l , y  ) = ho(qt) for 
(ql ,Y)  E I~ × I[~ 2n - l .  

Then 
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f (xa)(t) = h '  (xa(t)) = (h~(la), O) 

and so f (Xa)  E N .  We write an arbitrary element of  E near N as xa + y with 
y E W A E,  and calculate 

(F  + 6f)(Xa + y )  = r ( x a )  + DV(xa)  " y + 6f(xa) + tSDf(xa) " y + O(lly 112,.~), 

where F(xa)  = O, DF(xa)  " y E W and f ( x a )  E N .  This yields 

t[(F + 6f)(Xa +y)HL 2 ~ c]]Y[le + 6l~(Xa)llc - 6c'lly[[e + o(llyll~) 
>_ c"[[yllE + ~l[f(xa)llL~ 

if ~ > 0 and Ily lit are sufficiently small. 
Thus (F+6f ) (xa+y)  = 0 if and only i fy  = 0 a n d f ( x a )  = 0. On the other hand from 
Lemma 2.1 we know that for small 6 all 1-periodic solutions of  .t = X u e ( t , x )  
are H 1.2-close to N.  

Consequently, the only l-periodic solutions are xa(t)  with h~(la) = 0, hence 
X + o r x - .  

3. Now we calculate the generalized Conley-Zehnder indices of  x -  = (0, 0) 
and x + = (1/2,0).  To do this consider the flow ~bt of  :t = X , ( t , x )  and its 
linearization 

~ ( t )  := D ~ t ( a , O ) : ~  2~ - *  ]~2n 0 ~ t <~ 1, 

where a = 0 or 1/2. It gives a path of  symplectic matrices on (~2",w0) starting 
at the identity I and ending in Spl(2n) .  Since 

X H , = 0  o n S  l × { 0 } C S  l x ~ 2 " - l  

and the matrices ~P(t) are symplectic, it follows that 

kV(t)el = er  and ~*(t)e2 = e2, 

where ~P*(t) is the transpose of  ~P(t) and el, e2 are the first and the second vector 
of the standard basis in ~2n. Let #(if') be the Maslov index of  the path ~'. 
Denote by ~Pr(t) and ~ ( t )  the linearizations of the flows of  

J¢ = Xl-l~(t,x) and Jc = Xrh(X). 

Hence 
~6(t )  = e 6h~'(a)tJ°B , 

where B = d i a g ( 1 , 0 , . . . ,  0). The paths k~e(t) and k~(t)~6(t) are homotopic with 
endpoints in Spo(2n). The homotopy between these two paths is given by 

L(s,  t) = ~tsr(t)~(l_s)6(t) 

for ( s , t )  E [0, 1] x [0, 1]. I f  6 > 0 is small enough, then the path s --~ L(s ,  l) 
belongs to Spo(2n). To see this note that by the variation of  constants formula 
we have 

gtr(t ) = gt(t ) + 6R(t ). 
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The term R(t) can be written as R(t) = -h~'(a)Ro(t)+R1 (t), where Ro(t) is given 

by 

Ro(t) = (k~(s)',el}k~(t)gs-l(s)ezds 

and R~(t) --, 0 as 6 --~ 0. Assume now that our claim does not hold. Then we 
find sequences s~ --~ so, 6~ --~ 0 and X~ ~ ~2.  with Ix~l = 1 such that 

Therefore 

~o(1)Xk - X k  = -sk6kR(1)Xk - (1 - sk)6kh~)'(a)~t(1)JoBXk 

-sk  (1 -- sk )62h~l(a)R(1 )JoBXk. 

From this we get that Xk --* :J:el since ker(~(1) - I )  = ]~el. On the other hand, 
taking an inner product of  both sides with e2 and then passing to the limit we 

obtain 

+soh~'(a)(Ro(1)el, e2) = ~(1 - so)h~'(a)(~(l)JoBei, e2). 

From the formula for/2o we compute (R0(1)el, e2) = 1, and since (~(1)JoBel,  e2) = 
- 1  we see that -soh~'(a) = (1 - so)h~'(a). This gives a contradiction and shows 

that L(s, 1) E Spo(2n) for all s E [0, 1]. 
In particular, taking s = 1 we see that x -  and x + are nondegenerate solutions of 

~t =XH6(t,x) for all 6 > 0 small. 
By using the homotopy 

s+ l  
K0(s, t) = L(s, f~t+l) if t ~< -~--, 

s+l  L ( 2 t - l , 1 )  if -5- ~<t 

together with the fact that L(s, 1) E Spo(2n), for s C [0, 1], and properties ( l ) ,  
(2) and (3) of  the Maslov index, we conclude that 

Another homotopy 

u(~,~) = u ( ~ ) .  

S k~(s2~t+l)~6(st) if t <~ s_~._.!l, 
KI(S, t) 

kO(1)~((s +2) t  - (s + 1)) if s+l q - < ~ t .  

for (s, t) E [0, 1] × [0, 1] with the properties of  the Maslov index imply that 

tz(~'~) = a(~)  + a(~,(1)~).  

Hence to show the index formula it is enough to compute # ( ~ ( 1 ) ~ ) .  For  this we 
will use the definition of  the index. We abbreviate M(t)  = ko (1 )~ ( t )  and define 

A(t) = { (X ,M( t )X)  i X  E ~zn}. 

A defines a path of Lagrangian subspaces of  (~2n ® Rzn, ( -w0)  G w0). One easily 

sees that A(t) n A = {0} for t E (0, 1] and 
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A(0) n A = {(X, X) I X = (x, 0) E ~2n, x E ~} 

Put W = { . (X, -#(1)X)  ] X E II~Zn}. Then W is a Lagrangian complement of  
A(0). For X = ( X , X )  E A(0) N A we define a vector @(t) = (w(t), - # ( 1 ) w ( t ) )  E 
W with w(t)  satisfying 

X - #(1)w(t)  = M(t ) (X  + w(t)).  

For such @(t) we have X + z~(t) E A(t). After differentiating the formula for 
w(t)  at t = 0 we obtain that w(0) = ~6h~t(a)e2. Now we have 

((-Wo) • ~o)(X, @(t)) = - 2 x  @2, w(t)} 

which after differentiating at t = 0 gives 

d 
ao(X)  = ~ 1,---o ((-w0) • wo)(X, ~(t))  = - 6 h g ( a ) x  2. 

Therefore, 

{ i i f h ~ ' ( a ) < 0 ,  
# ( ~ ( 1 ) ~ )  = _ i f  h~'(a) > 0 

which shows that indRs (x =i=) = indRs (2 )  4- 3 2" 
4. In this step we prove the statement about the boundary operator. 

Using the notation of  step 2, we consider u ~ , / / ~ ( x - , x + , J , H ~ ,  U)  as a differ- 
entiable curve u: l~ --~ E,  s ~ u(s), satisfying 

u'(s) = F (u(s)) + 6f  (u(s)) .  

Note that from Lemma 2.1 it follows that SUps~la'(s)l and SUpse~lly(s)bi,,~s,) 
converge to zero as 6 ~ 0. Writing u(s)  = Xa(~) + y(s)  with Xa(~) E N and 
y(s)  E W the above equation becomes 

Xa'(s) + y (s) = F(xa(s)) + 6f  (Xa(s)) + DF(xa(s)) " y(s)  

+~Df(xa(s)) " y(s)  + 0 (lly(s)ll2., =<s,)) , 

where Y(xa(s)) = O, f(Xa(,)) E N and DY(xa(s)) • y(s)  E W.  Collecting together 
the terms in N and in W and taking the L 2 norm over I~ x S 1 we obtain 

Ilxo, - 6f(xa)ll~<m×s,) + Ily' - DF(xa) .  2 e 2 YllL=<~×s,) ~< Ilyllm,~(~×Sl) 

with e > 0 becoming arbitrarily small as ~ --* O. 

In step 2 we showed that for every s E It~, 

DF(xo(~))lwne : W ME ~ W 

is an isomorphism. Moreover, as 6 ~ O, at(s) becomes small in the supre- 
mum norm, which implies that ~s (DF(xo(~)) gets small in the operator norm on 
~ ( W  N E,  W) Thus we can apply Proposition 3.14 of [16] to obtain 
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NY' - DF(xa )  " yllL~¢~×s,) ~- c[lYlIH,,2¢e×s,) 

with some constant c > 0. Combining the last two estimates we get, for e < c 2, 

IlXa' - ,Sf(xa)ll~ + (c 2 - e)lly[l~,,~ ~ o .  

Hence y = 0 and xa, - 6 f  (xa) = O. 
Consequently, the only solutions are the usual gradient lines u ( s , t )  = 

(a(s ) ,O)  E S 1 x ]~2n-i with a l ( s )  = 6ho'(a(s))  and a( s )  --~ O, respectively 
1 ~, as s --~ -4-oo. Since there are exactly two gradient lines on S 1 connecting the 
minimum and maximum of 6h0, the boundary operator between x -  and x ÷ is 
zero (recall that we use Z2 coefficients), and the proposition is proved. 

3 Symplectic homology 

We shall give a definition of  symplectic homology groups s[a'b)(M, J )  which is 
slightly different from [3] and more adapted to the present situation. We are only 
going to deal with case A. The only difference in case B is that we do not have 
well-defined Conley-Zehnder indices. At the end of  [3] it has been explained 
how one can still define relative indices and carry out the same construction. 

We call a smooth Hamiltonian H : S 1 × M --~ ( -  0% 0] admissible  if H (t, x) = 
0 for x in some neigborhood of  OM,  and if every 1-peridodic solution of  ~ = 
X H ( t , x )  with 

fo l H ( t , x ( t ) ) d t  < 0 

is nondegenerate. 

Let ~,~ be the space of  almost complex structures defined in the interior of  M 
which has been introduced in [3]. A pair ( J , H )  with J E ~ "  and H admissible 
is called an admissible pair if 0 is a regular value of  the Fredholm section 

u ~-~ us + J ( t , u ) u t  + V H ( t , u ) ,  

for more details see [11]. Fix a ] E ~,@ and let Ad( ) ,  M) be the set of  admissible 
pairs (J,  H )  where J = 3 near the boundary OM. We introduce a partial ordering 
on Ad(J,  M)  by 

(J1,H1) ~< (J2,H2) 44' H l ( t , z )  <<. H 2 ( t , z )  for all ( t , z )  E S 1 X M . 

Let 

P a ( H )  k := x: S 1 _~ M contractible 1-periodic solution of 

/o' ~c = X H ( t , x )  l H ( t , x ( t ) ) d t  < O, 

• H(x) _> a, indas(x) = k} ,  
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where the energy of a periodic orbit x, ~n(x),  is defined as 

~H(x)=- foY,*W- fo~H(t,x(t))dt 

for some extension ~ of x to a disk D. We get vector spaces 

xEP.iH) k 

and boundary operators Ok: C~ (J, H) --~ C~_ i (J, H) defined by 

Ok(x)= E (Okx,y) " y, 
yEP.(H) ~-I 

where (Ok x, y) is the number mod 2 of points in . /~ (x ,  y, J ,  H) /E .  
I f a  < 0 the boundary operator will not satisfy Ok o0k+l = 0 because of gradient 

lines connecting elements of Pa (H)k to solutions with f l  H (t, x)dt = 0. But if 
we take either 0 < a < b or a < b < 0, in the quotient C~(J,H)/Cbk(J,H) 
solutions with f¢~ H(t,x)dt = 0 (and hence ~H(x) = 0) will either not appear or 
be zero, and thus the induced operator 

C ~ / C  b --o. C~_l/Cb 1 

will satisfy 

Let 

0 ,  o 0~+l = 0.  

S~a'b)(J ,H) := ker(Ok)/ im(&+l) 

be the associated homology groups. For (JI,H1) ~ (J2,H2) we have induced 
maps 

a(&, H2, gl, HI): S~ a'b)(J2, Hi) ~ S~ a'~)(J1, HI). 

So we can pass to the direct limit over Ad(J, M) as (J,  H )  ~ - o ¢  to obtain the 
symplectic homology groups 

sIka'b)(M, ] )  :=  li__~s[ka'b)(J, H).  

These groups are invariant under symplectic diffeomorphisms of the interior in 
the following sense. Let (M, 0114) and (N, ON) satisfy the conditions of Theo- 
rem 1.2 and ~b: A;/ --+ b/ be a symplectic diffeormorphism. If  J E ~ ( N ) ,  then 
~b*J defined by ~b*J(x) = TO(x) -lo J (~b(x)) o T~(x) is an element of ~ ( M )  
and 

S~a,b)(M,~b*3) ~ s[ka'b)(N,J). 

Now we are going to relate certain symplectic homology groups to periodic 
trajectories on the boundary. 

Recall that there exists an outward pointing, vector field ~ near 034 satisfying 
Low = w. The flow (~t)-r<t<xO of r/yields a diffeomorphism ~b: ( - r ,  0] × OM 
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W onto some neigborhood W of 034. Let Ws := ~ , ( O M )  and ~-: W --+ ( - r ,  O] 
be the function defined by ~-Iw~ = s. The restriction of A = i,~w to Ws is a contact 
form with contact bundle ~ = ker(A]w ,) and Reeb vector field X E TW, defined 
by 

ix dA[w ' = 0  and ixA = 1. 

It will be useful to rescale as follows. Let ~ = e-~-~, ~ = e-~A, X = eTX.  Denote 
by ~t the flow of ~ and let W~ := ~ (OM)  and ?: if" ~ ( - ? , 0 ]  be the function 
defined by ?[~, = s. Finally let ~ t  be the flow of -)~. 

One easily verifies that ~t preserves d~, A and dA. The vector field X is 
uniquely characterized by the conditions .~ E ker(d?), i~ dAlker(d÷) = 0 and 

i2~ A = 1, and so it is also preserved by ~t. Hence we obtain 

~-~b,d (^  o.~;) . . . .  O~bs (--)~'(.~;)) -,~'(~ .~'~t), 

and, by the uniqueness of the flow, this implies that 

Since ,~;  is the Reeb flow for A, it clearly preserves Ala,,, ( and 3~. The above 
formula implies that it also preserves 7). 

Now let x E ~ be a positively parametrized periodic trajectory on OM of 
period T = fs ,  x* A, perhaps multiple covered. We fix a parametrization (up to 
the choice of x(0)) by requiring Jc = - T .  X (x ) .  

With x as above, the linearized system along x defines a path of symplectic 
maps D,'~)t(x(O)), 0 << t <~ 1, satisfing 

O'~t" (x(O)): Tx¢o)M ---' Tx(t)M 

and mapping ~7 (x(0)) to ,~ (x(t)), O(x(0)) to ( l (x( t ) )  and (x(0) to ~xu). The orbit 
x is called nondegenerate if the restriction 

D,3¢~ (x(O)): ~x(o) ~ ~x(o) 

does not have 1 in its spectrum. Take an extension u : D --~ M of x and 
symplectically trivialize u*TM --, D.  In view of our condition on cl the induced 
trivializations for x * T M  ~ S 1 are homotopic and independent of the choice of 
the extension u. Hence take such a trivialization 

ff" : x * T M  ~ S l X ~ 2n 

and write ~(t) for the map 

¢ ( t )  : T~(t)M ~ ~2~. 

Now define 
indes (x) = indgs (~ ( t )  o D ,~ ; ( x  (0))o k~ - 1 (0)). 
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Then by our previous discussion ind/cs(x) is a well-defined invariant of the 1- 
periodic orbit x. 

Let 4): ( - ? ,  0] --+ ~ be a smooth function and consider the Hamiltonian 

H = 4 ) . ~  

defined on W. It generates the Hamiltonian vector field XH which is given by 
the formula XH = -4) ' (?)X.  It follows that if 4)'(~) = T for some ~ C ( - ~ ,  0], 
then a2(t) = ~ o x(t) is a 1-periodic solution of the equation :t = Xt4(x). 

The vector field X/t generates a flow which is given by ,~ t¢  = ,54~¢,0~)t" Like 

the flow ,~tt, it preserves ~ and ~7. To calcuiate D ~  H.  ~ we use once again the 
formula 

Differentiating the above formula with respect to s at s = 0 we get 

D ~ t " "  ~ = ~(~,~t H) + 4)"('~)t (- .~(~.~tu)) .  

Hence with respect to the splitting 

T~(oM = II(( - )~ (~(t)))  • ~ ( 2 ( t ) )  • ~ ( , ) ,  

the mapping D . ~  t¢ (~2(0)) : T~(o)M :-4 T~(oM has the following matrix form 

1 4)"(g)t 
0 1 

0 

0) 
This shows that a2 is transversally nondegenerate (in the sense of section 2) if and 
only if  x is nondegenerate and 4)"(~) ~ 0. A similar calculation like in section 2 
gives the following index formula 

1 if4)"(~) < 0, 
if  gb"(~) > 0. indl,.s(~) indRs(x) + 

Now let us consider smooth functions 4): ( - ~ ,  0] -4 It~ of  the following form: 
there exist numbers - ~  < rl < r2 < r3 < r4 < 0 such that: 

• 4) ------ m for some negative constant m on ( - ? ,  rl] 

• 4)" > 0 on  (rl ,  r2) 
• 4)(s) =ps+q  for some constants p ,  q > 0 on [r2, r3] where p is not the period 

fs I x'J,  of any periodic trajectory on OM 
• 4)" < 0 on (r3,/'4) 
• 4) ---- 0 on  [r4, 01. 



--? rl 
I I 

r2 r3 r4 
[ 
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m 

We extend the Hamiltonian H = 4 ° ~ on I~ to all of M by putting H -- m on 
M \ I ~  z. 

The Hamiltonian vector field X~ has of course plenty of constant solutions 
with energy - m  and 0. Any periodic trajectory x on OM with period T between 0 
and p gives rise to two 1-periodic solutions Xl, x2 of XH corresponding to the two 
values Sl C (rl, r2) and s2 E (r3, r4), where ¢ has slope T. By the assumption on 
¢~" these solutions are transversally nondegenerate and have indices indas(x)=t= ½. 
Moreover XH does not have any other 1-periodic solutions except those just 
described. 

Near any nonconstant solution xi we perform a small time-dependent per- 
turbation of H as in section 2. The solution xi splits into two nondegenerate 
1-periodic solutions x~  corresponding to the maximum and minimum of a Morse 
function h0 on S 1 . They have indices indRs(xi)+ ½ and energy 4~  (xi)-6 max(h0), 
respectively ~SH(X~) -- 6 min(h0), and they generate the local Floer homology 
nl,°C(xi) = Z2x i- 0 ~2 x+. 

By another small perturbation we remove the degenerate constant solutions in 
M \ (rl, 0] × OM, leaving a finite number of nondegenerate 1-periodic solutions 
with energy near - m  (and carrying the homology of M). 

The resulting Hamiltonian is admissible. We denote by Ad(J, M) the collec- 
tion of all admissible pairs (J ,  H)  E Ad(J,  M) with H as above. Here J E 
is a fixed almost complex structure. 
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Ad(J ,  M)  is a cofinal subset of  the partially ordered set Ad(J ,  M). This 

means that for any ( J , H )  E A d ( J , M )  there exists a (JI ,H1) E A d ( J , M )  with 
(J1 ,Hl)  ~< ( J , H ) .  In view of this property we can calculate the symplectic 

~ 

homology by taking the direct limit only over the subset Ad(J ,  M).  
Let ( a ,k )  E . /~A(OM) be of  multiplicity n. Thus there are n distinct 

nondegenerate periodic trajectories x (D, . . .  , x  (n) on 0114 with A(x  (i)) = a and 
i n d a s ( x  (i)) = k. Assume first that there are no (a, l)  E ~ A ( O M )  with I ~ k. 

Choose e > 0 small enough such that there are no other elements of./gA (OM) 
with action in [a - 2e, a + 2e]. 

If  (H,  J )  E ~ ( J ,  M )  is small, the maximal slope p of  H will be larger than 
the periods of x ° ) , . . .  ,x  (") . 

As described above, each periodic trajectory x on OM with period strictly 
less than p gives rise to four 1-periodic solutions x~ ,  x2 ~ with actions 

~bt~(x +) = a ( x )  - cb(si) - 6max(h0) 

~H(Xi-)  = a ( x )  - 49(si) - 6min(h0) 

and indices 

indRs(x 1 )  = i ndRs (x ) -  1 

indRs(x~) = indRs(x2-) = indRs(x) 

indas(x~) = indRs(x) + 1. 

As H decreases, ~t4(Xl i )  --* +c~ and q~H(xf)  --~ A(x) .  The actions of  the 
solutions in M \ (rl, 0] × OM also tend to +cx~. So eventually the 1-periodic 
solutions of  XH with action in [a - ~, a + e) will be exactly x2 0)±, . • • ,~2-(n)i" In 
other words, 

i=1 

_(i)± I f  for arbitrarily small 6 there would exists gradient lines between some .x 2 

and x2 q)+, i ¢ j ,  then in the limit we would obtain a nonconstant gradient line 
having the same action at both ends, a contradiction. Hence for small 6 there are 
no gradient lines between x~ i)+ and x q)±,  i ~ j .  Therefore 

• ff[a--e'a+e)(l H )  ~ loc (i) i ) -  " o ,  , - ,  = H F .  (X 2 )= ZzX~ O~2X2 0)+ 
i--1 i=l 

- - - 4  

by Proposition 2.2, for ( J , H )  E A d ( J , M )  and 6 > 0 sufficiently small. If  

(J i ,Hi )  E A d ( J , M )  with (J1,H1) <~ ( J 2 , H 2 )  then they can be connected by 
a monotone homotopy (Js ,Hs)  1 <~ s <~ 2, such that no XHs has a 1-periodic 
solution with action in [a - 3E/2, a - E/2] U [a + e/2, a + 3e/2]. In the language 
of  [3], the "gap" 9(Hs,  [a - e, a + e)) _> e /2  for all s. We take a sequence 
1 = S 1 ~ S 2 ~ . , .  ~ S I - "  2 with d(Hs i ,Hs l , )  < e/2  for i = 1 , . . . , l  - 1, 
where d is the distance defined in [3]. It follows from the results in [3] that the 
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homomophism a(J2, H2, Jl, Hi) is equal to the composition of the small distance 
isomorphisms cr(Js,÷~ , Hs , ,  , Js, , Hs, ). 

An indirect argument as above shows that if [si+l - sil is small, then there 
cannot exist a flow line between solutions x2 q)± of Hs, and x2 (k)~: of H~,+~ with 
j ¢ k. Thus a(Js,+,,H~,÷l,J~,,Hs,) must map each x2 ~>+ to x~ ~+ and x20~- to xz ~)-.  
Hence the same is true for ~r(J2,/42, JI, Hi). 

This knowledge of the homomorphisms a(J2, H2, J1, H1) implies that the sys- 

- :(i)± of the directed .Ai)+ for (J, H) E Ad(J, M) give rise to basis elements -~2 t e m  ~t 2 

limit with indices indRs(;~2 (i)-) = k and indRs($2 (i~+) = k + 1. Hence 

[a-e,a+¢) { i  ~ ifj=k Sj (M,J )  = ~ ifj  = k+l 
otherwise. 

Finally, if there are (a, kj) E, Jga(0M) for various kj E Z, one shows again that 
no flow lines exist between solutions corresponding to different (a, kj). So each 
(a, kj ) gives a contribution as above to the symplectic homology St.a-"a+')(M, J) ,  
and Theorem 1.1 is proved. 
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