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Abstract:  Hartigan (1972) discusses the direct clustering of a matrix of data into 
homogeneous blocks. He introduces a stepwise divisive method for block cluster- 
ing within a certain class of block structures which induce clustering trees for both 
row and colunm margins. While this class of structures is appealing, the stopping 
criterion for his method, which is based on asymptotic theory and the assumption 
that the individual elements of the data matrix are normally distributed, is quite 
restrictive. In this paper we propose a permutation-based algorithm for block clus- 
tering within the same class of block structures. By using permutation arguments 
to decide where to split and when to stop, our algorithm becomes applicable in a 
wide variety of cases, including matrices of categorical data and matrices of 
small-to-moderate size. In addition, our algorithm offers considerable flexibility in 
how block homogeneity is defined. The algorithm is studied in a series of simula- 
tion experiments on matrices of known structure, and illustrated in examples drawn 
from the fields of taxonomy, political science, and data architecture. 
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1. Introduction 

A block clustering problem is one in which a data matrix is to be parti- 
tioned into homogeneous rectangular blocks after reordering the rows and the 
columns. The objectives of the analysis are to identify blocks or clusters of 
similar data values, to identify clusters of similar rows and columns, and to 
explore the relationships between the marginal (i.e., row and column) clusters 
and the data blocks. Besides block clustering, this technique has also been 
called block modeling, and direct or two-way clustering in the literature (Ara- 
ble, Boorman and Levitt 1978; Hartigan 1972, 1975, 1976). 

Data amenable to block clustering methods arise in many fields includ- 
ing taxonomy (Hartigan 1972; Sokal and Sneath 1965), political science 
(Deutsch and Martin 1971; Hartigan 1976), ecology (Lambert and Williams 
1962; Schmid 1984), and business (Breiger, Boorman and Arable 1975). In a 
simple taxonomy example, the rows of  the matrix concern species, the 
columns concern characteristics, and the matrix entries denote whether, or to 
what extent, the species corresponding to that row exhibits the characteristic 
corresponding to that column. 

A wide variety of procedures have been proposed for finding patterns in 
data matrices. The procedures differ in the patterns they seek, the types of 
data to which they apply, and the assumptions on which they rely. (See Adel- 
son, Norman and LaPorte 1976; Arable and Boorman 1982; Bock 1979; Brei- 
man, Friedman, Olshen and Stone 1984; De Soete, DeSarbo, Fumas and Car- 
roll 1984; Gilula 1986; Goodman 1981; Govaert 1977; Greenacre 1988; 
Heiser and Meulman 1983; Hill 1974; Holland and Leinhardt 1981" Hubert 
1974; Hubert and Golledge 1981" Wang and Wong 1987; and Wong 1987.) 
Our algorithm is a modification of an algorithm introduced in Hartigan (1972) 
and based on stepwise binary splitting. The next few paragraphs introduce 
the required terminology and give a brief description of Hartigan's proposal. 

At the k-th step of  the procedure, the original data matrix has been 
divided into k blocks (to start, there is one block formed by the matrix as a 
whole). Either one of the k blocks will be split (by rows or by columns) into 
two new blocks, or the procedure will stop. In order to decide whether to 
split and, if so, where, each of the existing blocks is analyzed. Hartigan uses 
the sum of squares about the mean as a measure of block heterogeneity, and 
the reduction in sum of squares to assess potential splits. Let B be an existing 
block with n rows and m columns; let R (C) be the row (column) set of B and 
let b be the mean of the values in B. Suppose B is split by columns into B 
and B ; B and B will have the same row set R. Let their column sets, 
column dimensions and means be C and C , m  and m ,and  b and b , 
respectively. Note that C u C  = C and m + m = m. The reduction in 
sum of squares about the mean associated with this split is denoted RSS and 
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Figure 1. Fixed and Free Splits. 
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given by 

RSS = n r n ' ( b ' - b )  2 + n r n - ( b - - b )  2 (1) 

Of  all possible column splits of B, the best split is that one which maximizes 
RSS; similarly for row splits of B. 

The best row or column split of a given block B may result in a struc- 
ture which can not be contiguously represented following reordering of the 
rows and columns. For example, consider Figure la with k = 3. 

It is impossible to split the lower block into one subblock consisting of 
columns 1 and 3 and the other of columns 2, 4, and 5 and represent the struc- 
ture contiguously. Even when contiguous representation is possible, a split 
may not permit unambiguous interpretations as partitions on the row and 
column margins. For example, in Figure l b the first two rows define the 
column partition PI = ({1,2},{3,4,5}), and the second two rows define the 
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column partition P2 = ({2},{ 1,3,4,5}), and P1 and P2 are not hierarchically 
related. To preserve marginal trees for the rows and columns, Hartigan intro- 
duces the notion of  "fixed splits." For example, in Figure lc the dotted line 
is a fixed split and it is interpreted as implying that if the lower block is split 
by columns then it must be split at the dotted line. Hence in Figure lc there is 
only one allowable column split in the lower block; namely, the fixed split. 
The best row split of  the lower block and the best row and column splits of  
the upper two blocks are determined in the usual way by maximizing the RSS 
over all binary splits. Figure ld illustrates four fixed splits at the seventh step 
as dotted lines. Any split which is not fixed is called a "free split." 

Hartigan defines the best split of a block B as that split which maxim- 
izes a weighted RSS where the weighting factor serves to make free and fixed 
splits comparable. The best overall split is analogously defined as that split 
which maximizes the weighted RSS over all k existing blocks. The procedure 
stops when 

�89 RSS 1 + RSS2 
S S 3 / N  3 > , (2) 

N1/rt  + N2 

where N1 is the total number of  rows and columns involved in free splits, N 2 
is the total number of fixed splits, N 3 is the total number of  entries in the 
matrix minus the number of blocks, RSSI is the total reduction in sum of 
squares resulting from free splits, RSS2 is the total reduction in sum of 
squares resulting from fixed splits, and SS3 is the total within blocks sum of 
squares. If inequality (2) does not hold, then the best overall split is per- 
formed and the algorithm continues to step k + 1. The weighting factor and 
the stopping criterion are derived by assuming that the entries within each 
block are independent and identically distributed (lid) according to a normal 
distribution, and that all of the blocks are large enough to appeal to asymp- 
totic results about the order statistics from Gaussian samples. 

The structures produced by this method are appealing because they per- 
mit interpretation of  the blocks according to row and column partitions. 
However, the reliance on asymptotic normal theory limits the validity of  the 
approach to certain matrices of numerical data. We conclude this section 
with a brief description of  the data set which motivated our research - -  one 
for which the normality assumption is clearly inappropriate. In Section 2 we 
describe our algorithm giving particular attention to the motivation behind the 
permutation distribution and to the use of this distribution to define a rule for 
selecting the best overall split and a stopping criterion. Section 3 illustrates 
the method on several real examples, and Section 4 reports the results of  
simulation experiments designed to assess the algorithm's performance on 
matrices of  known structure. The final section indicates some areas of current 
and future research. 
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Example 1: The following example from the field of data architecture design 
is discussed in detail in Duffy, Fowlkes and Kane (1987). At the top or stra- 
tegic level, data are viewed as a valuable corporate resource and the goals of 
data architecture design are to use this resource efficiently by organizing data 
into subject databases. As part of  a strategic design effort for a generic 
operating telephone company, a data matrix consisting of  99 rows 
corresponding to high-level functions and 23 columns corresponding to high- 
level objects was created. Examples of functions are 'service order formula- 
tion', 'circuit status reporting', and 'vendor invoice processing'; examples of  
objects are 'customer', 'circuit', and 'service.' The entries in the matrix were 
1 or 0 according to whether the function associated with that row did or did 
not require access to information about the object corresponding to that 
column during execution. One of the questions of interest was to identify and 
interpret clusters of  homogeneous blocks within this matrix. Figure 2 shows 
the original function-object interaction matrix with ones represented by solid 
dots and zeros represented by blanks. 

2. A Permutation-Based Block Clustering Algorithm 

In this section we describe our block clustering algorithm. The 
rationale behind the permutation distribution approach is discussed first, fol- 
lowed by the stopping rule and tile split selection criterion. The section con- 
cludes with some comments on implementation issues. 

2.1 The Permutation Distribution as a Reference 

For ease of exposition, the following discussion is phrased in terms of 
free column splits of a block B; the analysis of free row splits is completely 
analogous. Fixed splits are handled similarly, as explained below. Given a 
heterogeneity reduction measure (e.g., the reduction in sum of squares about 
the mean) let )Vo denote the best (largest) reduct,ion attainable by a column 
split of B. In order to assess the value of )Vo, we need to know what values of 
the reduction measure could be expected under a null model of no structure in 
block B. Hartigan used an lid Gaussian model with large block size as the 
null model; we would like an alternative null model that does not require 
either parametric assumptions about the entries or large block size. Our null 
model assumes that, conditionally on the entries present in the block B, all 
possible permutations of these entries within the block are equally likely. 
This assumption is sometimes called exchangeability, and reflects the idea 
that any block structure present is captured in the way the entries are arranged 
in the different rows and columns. With the exchangeability assumption, we 
can assess the value of )Vo by determining how large it is with respect to the 
set of  values corresponding to all the permutations of the entries in B. 
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Figure 2. Function-Object Interaction Matrix before Block Clustering. 

More specifically, let n and m be the number of  rows and columns, 
respectively, of  the block B. Let R = R(n,rn) denotc the set of  all permuta- 
tions on {(i,j): 1 < i < n, 1 _< j < m }. For each permutation (y in R, compute 
the best reduction in heterogeneity, ~, (•), that can be obtained with a column 
split of  the block obtained by applying the permutation cy to B. Note that 
)~o = X ( i d ) ,  where id is the identity permutation. Following the usual 
approach to permutation-based inference, the more extreme ?~o is relative to 
{~, (c): ~ e R}, the more important the associated split is considered. (Note 
that it is essential for this comparison that )~ (c~) be the best reduction in 
heterogeneity in the permuted block.) We define the importance of the best 
column split s of  B, c~ (s) as 
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O~ (s) = Pr  (~. (~) > ~o) + �89 Pr (~. (o) = ~o) , (3) 

where ~ is uniformly sampled from R. For a fixed column split s of block B, 
which divides the column set C of B into C" and C" ,  the calculation of c~ (s) 
is similar. Again, r is sampled uniformly from R, but now ~, (cy) is defined as 
the reduction in heterogeneity for the given fixed split s on the rearranged 
data. With this definition of ~ (cy), the importance of the split is again given 
by (3). 

There is one situation in which the permutation method can not be used 
to compute the importance value for a split. This situation arises when we 
consider the free split of a block that has only one row or only one column. 
In this case, the values ~. (c) are constant over all permutations in R. If the 
data are numerical and our measure is the reduction in sum of squares, one 
(non-parametric) way to assess the value of ~ is to think of the data in the 
block as coming from a probability distribution and test that distribution for 
bimodality by comparing the observed wdue of ~ with the largest value of 
reduction in sum of squares that can be expected from a unimodal distribu- 
tion. The rationale for this procedure is the intuition that the reduction in sum 
of squares is expected to be smaller for unimodal distributions than for bimo- 
dal distributions. It can be shown (see Appendix 1), that ifX 1 . . . . .  X~ are an 
iid sample from a unimodal density fsupported on an interval [a,b] and if the 
measure of interest is the largest reduction in sum of squares attainable by 
dividing the sample into two subsamples, then the measure is asymptotically 
maximized (as n ---) oo) when f i s  a mixture of a point mass at a and the uni- 
form distribution on [a,b]. Therefore, one can use the mixture distribution as 
a reference to evaluate the magnitude of ~ .  In our implementation, for the 
sake of simplicity, we use the uniform distribution on [a,b] as the reference, 
estimating the values of a and b from the data in the block, by their maximum 
likelihood estimators. In the case of categorical data, the problem of n x 1 
and 1 x m blocks is handled similarly, by using as a reference the uniform dis- 
tribution on the set of modes present in the block. 

The assumption of exchangeability and the ensuing permutation-based 
inference are commonly used tools in statistics for deriving procedures which 
are not dependent upon parametric assumptions. Besides the natural appeal 
of this approach in the context of block clustering, it also has the advantage 
of allowing the use of measures of reduction of heterogeneity other than the 
reduction in sum of squares. This increased llexibility further widens the 
domain of applicability of the permutation-based algorithm. 

For example, with categorical data taking values in the set {1 . . . . .  r}, 
let f(B) = (fl(B) . . . . .  f~(B)) be the frequency vector of values 1 . . . . .  r in 
block B; that is, j~(B) = (number of entries in B with value i) / nm ,  and 

j~(B) = 1. If split s divides B into B and B , one heterogeneity reduction 
i---1 
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statistic based on the discrepancy between f (B ' )  and f ( B " )  is 

r 

) ~ ( s ) = w ( B  , B  ) ~ ,  I)~(B ) - ~ ( B  ) I , (4) 
i=1 

where w(B ' ,  B") is a nonnegative weight. When w(B" ,B") = 1, (4) agrees 
with both the total variation and Prohorov (Billingsley 1968, p. 238) distances 
between f (B ' )  and f (B" )  when they are viewed as discrete probability mass 
functions on 1 . . . . .  r (see Appendix 2). 

2.2 The Stopping Criterion 

At the k-th step of the algorithm, let Qk contain the best free splits by 
column and row of all blocks plus all fixed splits. For each split s in Qk, sup- 
pose that the importance level o~(s) has been computed according to the 
recipe given in the previous section. 

We stop splitting when them is no split s in Q~ with 

c~ (s) <_ c,.~ (5) 

where the sequence {oq, c~2 . . . . .  } of cutoff points is given a priori. The 
sequence c~k should decrease as k ---) ~o because with larger k there are more 
possible blocks to split. Tile rate at which C~k decreases controls the degree of 
fine structure in the resulting block pattern. The choice c~k = .5 k reflects the 
concept that for k independent blocks the probability of any of the k blocks 
yielding a split that is better than expected by chance is 1 - 2 -k. 

We have experimented with other geometric sequences of the form 
c~k = ot~, for Ro in [.5, .75], and suggest that in applications a few choices of 

be tried. There are two major reasons for favoring geometrically decreas- 
ing o~l, (over other sequences decreasing more slowly). First, in most applica- 
tions it is the large trends and patterns in the block structure that are particu- 
larly illuminating, and second, the larger the otk, the greater the possibility 
that fine patterns in the block structure result from chance. 

2.3 Split Selection 

If the stopping criterion is not met, then at least one of the splits in Qk 
satisfies (5). Of the splits satisfying (5) we execute the one with the largest 
value of X, (s), with ties broken arbitrarily. That is: of the splits with enough 
importance, we execute the one that maximizes the reduction in hetero- 
geneity. 
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2.4 Implementat ion Issues 

Two implementation issues will be briefly discussed here: first, finding 
the best free split by row or column of a given block B, and second, calcula- 
tion of the importance level ot (s). 

2.4.1 Finding the Best Free Split 

Suppose that we are looking for the best free column split s of an n x m 
block B into blocks B" and B". In principle, one should consider all 2 m-1 - 1 
possible splits of  the column set C, of B. However, in certain cases, one can 
analyze a considerably smaller set of splits. If the data are numerical and the 
measure of heterogeneity being used is the sum of squares about the mean, 
then Hartigan (1972) showed it is sufficient to order the columns of B in 
increasing order of column sum, and consider only the rn - 1 possible splits 
which preserve this order. (Note that ties between column sums can be bro- 
ken arbitrarily since a tie leads to two splits with identical values of  the 
reduction statistic and hence identical importance levels.) For matrices of  
categorical data, when the measure of reduction in heterogeneity is given by 
(4), and when the number of modes is two, a similar reduction in computation 
is possible. In this case it suffices to order the columns in increasing order of  
occurrence of one of the modes. The best column split will again be one of  
the m - 1 possible splits of the ordered columns. To prove this, it is enough 
to see that when there are two modes the formula in (4) reduces to 

~ , ( s ) = 2 w ( B ' , B " )  I f l ( B ' ) - f l ( B " )  I , (6) 

and then notice that for each value of m, this expression is maximized when 
the columns with the fewest occurrences of mode 1 are on the same side of 
the split. 

For numerical data, when measures of heterogeneity different from the 
sum of squares are used (the sum of absolute deviations around the median, 
for example), the method of  ordering the columns by sums and then consider- 
ing only m -  1 splits does not necessarily provide the largest reduction in 
heterogeneity. Similarly, when the frequency-based measure given in (4) is 
used and the number of modes r is greater than two, there does not seem to be 
a way to order the columns so as to guarantee finding the best column split 
after evaluating only r n - 1  splits. To reduce the computation, a lexico- 
graphic ordering technique can be used which does not necessarily find the 
best split, but hopefully finds a split that is close to best. This method 
involves ordering the columns lexicographically with respect to the alphabet 
consisting of the r modes in decreasing order of their frequency within block 



74 D.E. Dully and A.J. Quiroz 

B. For example, if r = 3, n = 5, m = 3, and the three columns of the block 
are: column 1 = [2 1 1 2 2], column 2 = [3 1 2 3 2], and column 3 = [1 2 1 2 
1], then the frequency alphabet is 2,1,3 because 2 is the most frequently 
observed mode (7 occurrences) and 3 is the least frequently observed mode (2 
occurrences). Ordering the columns lexicographically with respect to this 
alphabet, we have column 1 first, column 3 next, and column 2 last. (In this 
small example the best column split, which separates columns 1 and 3 from 
column 2 and has value .8 for mcasurc (4), does respect the lexicographic 
ordering; this will not always happen.) 

2.4.2 Calculation of c~ (s) 

Once the reduction in heterogeneity ~ due to a fiee or fixed split s of 
the block B has been found, we need to compute c~ (s) in order to assess the 
potential split. One way to approach the problem is to look at (5) as a deci- 
sion problem; sample permutations from R and compute the respective values 
of ~, (c) until there is enough evidence either to reject or accept (5). Another 
method of attack is to obtain an approximate value for ~ (s) through simula- 
tion. A straightforward Monte Carlo implementation involves sampling uni- 
formly from R, and computing ~. (~) for each sampled permutation ~. In con- 
trast, a Markov chain simulation method considers a Markov chain with state 
space R and transitions defined by transposing two randomly-chosen entries 
of B; that is, if we start at state cy I (uniformly randomly chosen from R), then 
state c2 either differs from o5 by having exactly two entries transposed or 
c~2 = CYl. (The latter occurs if the entries choscn to be transposed were identi- 
cal.) For each state ci in the Markov chain, we compute the corresponding 
value ~. (cYi) and keep a count of how many of these are smaller than ~ in 
order to decide whether (5) holds. We run the Markov chain long enough so 
that the probability of being in any state approaches 1/ I RJ where I RI 
denotes the cardinality of set R. Bounds lbr the number of steps necessary 
for the distribution of ci, the i-th permutation observed in the Markov chain, 
to be within a given distance of the uniform distribution on R have been 
given by Diaconis and Shashahani (1981). Using their results as guidelines, 
we let the Markov chain on R run for 50 + 10 N log (N) steps, where N = m n  
is the size of the block B. 

The use of Markov chains to simulate uniform distributions over com- 
binatorial sets has been around for a while. Aldous (1987) mentions some of 
the early applications. The key notion is that a Markov chain is set up with 
transitions corresponding to minimal changes (i.e., transpositions) that can be 
made to any element of the state space. Aldous also addresses the question of 
how long the chain must be run to guarantee that the observed average of a 
real-valued function defined on the state space is close to the actual mean of 
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the function under the uniform distribution. Aldous considers a much more 
general class of combinatorial sets and takes an algorithmic approach which 
leads to conditions which guarantee polynomial time accuracy. 

In our context, the use of the Markov method has the advantage that the 
calculations necessary to compute )~ (cYi) can be used to speed the calculation 
of ~, (cy,-+t); for instance, if the columns of the block are ordered (by column 
sum) with respect to ~i, then they are 'almost ordered' with respect to c~i+l. 
The fact that we are simulating a realization of the Markov chain via random 
transpositions to get the value of c~ (s) makes the outcome of our algorithm 
random. Our empirical study of the behavior of the algorithm (Section 4) 
shows that the variability of the output of the algorithm is very small; our 
examples (Section 3) show how this slight variability can be used to help 
assess the structures in a data matrix. 

3. Examples 

In this section three examples are analyzed with the block clustering 
algorithm. For each example, several choices of C~o, the fraction governing 
the geometric cut-off sequence, were tried and, for each choice of cr the 
algorithm was run five times with different seeds governing the Markov chain 
simulation method. 

Example 1 (cont.) Figure 3 shows the results of applying the 
permutation-based algorithm with heterogeneity reduction given by (1) and 
Oto = .75 to the function-object interaction matrix from the data architecture 
design problem. Again, ones are represented in the figure by solid dots and 
zeros are represented by blanks. The marginal trees are drawn in the right 
and bottom margins of the figure. In this clustering there are 15 blocks with 
four row clusters and eight column clusters. For the 14 splits performed, the 
values of the reduction statistic (1) and the importance ot (s) were (19.1, 0), 
(43.0, 0), (10.9, 0), (10.9, 0), (4.4, 0), (7.6, 0), (.7, .05), (18.3, 0), (2.0, 0), (.9, 
0), (.5, 0), (2.8, .03), (1.0, 0), and (1.3, 0) respectively, for the run plotted. In 
general, it is our experience that over half the ot (s) values on a given run are 
zero, implying that no rearrangement yielded a split with as large a value of 
the reduction statistic. 

Figure 3 depicts a very large and complex set of data. Although con- 
siderations of length and comprehensibility preclude a detailed discussion of 
its analysis, we would like briefly to comment on several points. First, we 
want to point out that the data analyzed in this example motivated our 
research. Procedures based on assuming normality are clearly inappropriate 
because of the binary nature of the data; the permutation approach, on the 
other hand, proved both appropriate and practical. Our algorithm divides the 
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Figure 3. Function-Object Interaction Matrix After Block Clustering. 

matrix into blocks which differ according to the density of ones, and which 
highlight some of  the key relationships in the data. For example, the first 
three columns correspond to the product, assignment inventory, and sub- 
assembly inventory objects, all of which are concerned with the logical parts 
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that comprise the telephone network. The upper left block identifies a large 
group of functions which need access to most of these objects. Just below the 
upper left block is a small block with only one solid dot. The rows in this 
block correspond to four functions which all deal with the circuit which pro- 
vides service to a customer. These four functions, with one exception, do not 
need to know about the lower level of objects which comprise the circuit. 
One way to assess our approach is to compare Figure 3 with Figure 2. The 
display in Figure 2 is the best solution that the subject-matter experts were 
able to come up with when they tried to uncover block structure by reordering 
the rows and columns of the matrix by hand. 

Example 2. Hartigan (1976) presents data on the dentition of 32 West 
Coast mammals. For each mammal, the numbers of top and bottom canines 
(TCAN, BCAN), top and bottom incisors (TINC, BINC), top and bottom 
premolars (TPRM, BPRM), and top and bottom molars (TMOL, BMOL) are 
given, producing a 32 x 8 matrix. The 32 mammals come from seven phylo- 
genie orders: Marsupalia (abbreviated M; 1 species represented), Insectivora 
(I; 4), Chiroptera (CH; 9), Lagomorpha (L; 1), Rodentia (R; 4), Carnivora 
(CR; 10), and Artiodactyla (A; 3). One reason to include this example is that 
there is an objective standard to compare to the row partition, namely, the 
phylogenic classifications. Of course, we would not hope to reproduce phylo- 
genic classi fications based on dentition data alone, but we would expect some 
correspondence between our row partition and the phylogenic orders. 

Figure 4 shows the results of applying the algorithm with heterogeneity 
reduction given by (1) and Oto = .70. The two dotted lines in Figure 4 denote 
the following: in repeated runs with different seeds, either the dotted split on 
the left associated with rows RABBIT and GREY SHREW, and columns 
TCAN and BCAN was performed, or the two dotted splits on the right associ- 
ated with rows LYNX, MOUNTAIN LION, and SEA OTTER were per- 
formed. It was never the case that all three dotted splits were performed 
because doing so would violate the row partition. Thus, doing severn runs 
with different seeds not only aids in assessing the stability of the clustering, 
but can also point out additional features. For the 13 solid splits shown, the 
values of the reduction statistic (1) and the importance (3) for the run plotted 
were (129.2, 0), (26.2, .19), (15.6, .003), (16.9, .003), (4.12, 0), (18.6, 0), (7.5, 
.014), (1.5, 0), (2.8, 0), (2.0, 0), (7.4, 0), (2.0, 0), and (1.6, 0), respectively. For 
the three dotted splits, the values were (1.8, 0), (14.1,0), and (5.0, .03). 

In Figure 4, the 32 mammals are divided into eight groups: 

Group 1: MOUSE, JUMPING MOUSE, GOPHER, SQUIRREL. 
Group 2: PALLID BAT. 
Group 3: RABBIT, GREY SHREW. 
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MOUSE (R) 0 

JUMPING MOUSE (R) 0 

GOPHER (R) 0 

SQUIRREL (R) 0 

PALLID BAT (CH) 1 

RABBIT (L) 0 

GREY SHREW (I) 1 

LONG-TONGUED BAT (CH) 1 

FREE-TAILED BAT (CH) 1 

BROWN BAT (CH) 1 

RED BAT (CH) 1 

SHREW (I) 1 

LYNX (CR) 1 

MOUNTAIN LION (CR) 1 

SEA OTTER (CR) 1 

SEA LION (CR) 1 

FUR SEAL (CR) 1 

RIVER OTTER (CR) 1 

MINK (CR) 1 
MARTEN (CR) 1 

RACCOON (CR) 1 

WOLF (CR) 1 

PIPISTRELLE (CH) 1 

ELK (A) 1 

LEAF-NOSED BAT (CH) 1 

SHREW MOLE (I) 1 
MYOTIS (CH) 1 

SILVER-HAIRED BAT (CH) 1 

DEER (A) 0 

GOAT (A) 0 

MOLE (I) 1 
1 OPOSSUM (M) 

Figure 4. Number of Teeth 
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by Mammal Species and Tooth type. 
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Group 4: 

Group 5: 
Group 6: 

Group 7: 

Group 8: 

LONG-TONGUED BAT, FREE-TAILED BAT, BROWN BAT, 
RED BAT, SHREW. 
LYNX, MOUNTAIN LION, SEA OTTER. 
SEA LION, FUR SEAL, RIVER OTI'ER, MINK, MARTEN, 
RACCOON. 
WOLF, PIPISTRELLE, ELK, LEAF-NOSED BAT, SHREW 

MOLE, MYOTIS, SILVER-HAIRED BAT, DEER, GOAT, 
MOLE. 
OPOSSUM 

For most species, there are distinctions between the number of canines, 
molars, and other teeth, and this situation is reflected in the two series of 
splits which completely separate the columns into canines, molars, and oth- 
ers. Of the six blocks on the right involving molars, two serve to help identify 
the carnivores by the few molars they have, one serves to help identify the 
marsupial by its large numbers of molars, and the remaining three are, with 
the exception of  one entry, homogeneous blocks of 3's. Of the five blocks on 
the left involving canines, the first block helps identify the rodents by the fact 
that they have no canines; most of the rest of the species have one each of  top 
and bottom canines. The rodents are further identified by their small counts 
of incisors and premolars. The carnivores with one exception (WOLF) fall 
into Groups 5 and 6 and are distinguished by having a total of four or fewer 
molars. The camivores in Group 5 have slightly fewer molars and slightly 
more incisors and premolars than those in Group 6. The opossum, the only 
marsupial, is identified by its large number of top incisors and molars. The 
one-column block formed by the column corresponding to TINC and the rows 
corresponding to Groups 6 and 7 has been split off primarily because of  its 
broader range of  values (0 to 3) compared to the values in the neighboring 
block formed by the same rows but by the columns corresponding to BINC, 
TPRM, and BPRM. 

Example 3. Hartigan (1972) presents data on votes cast at the United 
Nations during 1969-1970; 19 countries and 14 resolutions are considered. 
He gives brief descriptions (1972, p. 125)of the resolutions; we have used his 
numbering scheme to label the resolutions with added words to indicate the 
subject. The votes are coded: 1 = Yes, 2 = Abstain, 3 = No, and 4 = Absent. 
Figure 5 presents the clustering obtained with the frequency-based hetero- 
geneity reduction (4) and C~o = .70. It should be noted that our implementa- 
tion of reduction measure (4) for this case of r = 4 modes relied on the lexico- 
graphic ordering mentioned in Section 2.4 to reduce the computation. This 
ordering is independent of the way in which the four modes are coded. The 
exact clustering in Figure 5 was obtained each of the five times that the algo- 
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x 

,-.,~T, O ,x'%,,Y" .x"~5-_ .' ,-_.' .x'~-,-,~ .,b~ .,b~ ,-,5"-O', -x" ,t--~ x-- c.,- x c.,- ,---' 7-' o"-  x ~ ,,x ,,x ,p o"  

FRANCE 1 1 1 2 3 3 1 2 

SWEDEN 1 1 1 3 3 3 1 2 

ALBANIA 1 1 3 3 1 3 1 1 

UNITED A R A B R E P  1 2 1 1 3 1 3 1 

KENYA 1 4 1 1 3 1 3 1 

UNITED KINGDOM 1 1 1 3 1 3 1 3 

NORWAY 1 1 1 3 3 3 1 3 

USA 1 1 3 3 1 3 1 3 

YUGOSLAVIA 1 2 1 1 3 1 3 1 

NEW ZEALAND 1 1 3 3 1 3 1 1 1 

DAHOMEY 1 1 3 2 1 1 3 1 2 

SENEGAL 1 1 2 1 1 1 3 2 2 

TANZANIA 1 4 1 1 3 1 3 1 3 

SYRIA 1 2 1 1 3 1 3 1 3 

MEXICO 1 1 3 2 1 1 1 3 1 

VENEZUELA 1 1 3 1 1 1 2 3 1 

BRAZIL 1 1 3 1 1 3 1 3 1 

USSR 1 3 1 1 3 2 2 2 3 

BULGARIA 1 3 1 1 3 2 2 1 3 

Figure 5. 
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UN Votes by Country and Resolution. 

rithm was run with different seeds. For the run plotted, the values of the 
reduction statistic (4) and the importance (3) for each of the six splits were 
(3.8, 0), (4.7, 0), (3.5, .003), (3.9, 0), (2.9, .02), and (2.7, 0), respectively. 

The main feature of Figure 5 is the presence of four completely homo- 
geneous blocks. The first homogeneous block includes all countries and 
corresponds to a resolution calling for eased tensions in Korea. This was 
apparently such a vague, innocuous resolution that everyone could agree on 
it! The three resolutions titled 2-HUNG, 3-HUNG, and 4-HUNG serve to 
divide the 19 nations into three homogeneous groups: a large group consist- 
ing of  western European countries, the United States, and several other coun- 
tries which voted no on all three resolutions; a medium-sized group consist- 
ing of three Latin American countries plus Syria and Tanzania which 
abstained; and a small group consisting of the Soviet Union and Bulgaria 
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which voted yes. These three resolutions concern a series of changes, called 
the Hungarian amendments, to a statement which would expel South Africa 
from the UNCTAD (United Nations Conference on Trade and Development). 

4. Simulation Experiments 

In this section we describe the results of a series of simulation experi- 
ments designed to study the behavior of the algorithm on matrices of known 
structure. We distinguish between two types of experiments: null experi- 
ments in which the data matrices are generated with lid entries, and non-null 
experiments in which the data matrices are generated with a specific block 
structure in mind. The null experiments are designed to explore the degree to 
which the algorithm "finds" block structure only because the algorithm sets 
out looking for such structure. We believe that this is an important question 
which should be asked of any clustering procedure. The null matrices gen- 
erated will, generally, have no block structure (although by chance some null 
matrices will have fairly definite block patterns), and the algorithm should 
terminate quickly after finding very few blocks (ideally, none). Null experi- 
ments are denoted B 1 for one block. 

In contrast, the non-null experiments explore the ability of the algo- 
rithm to uncover an intentional pattern of blocks. (Again, because of the ran- 
dom generation mechanism used, some matrices will exhibit the intended pat- 
tern more clearly than others.) Here we discuss results for two very simple 
block patterns: a 2-block pattern denoted B2 and a 4-block pattern denoted 
B4 (see Figures 6a and b). For each non-null experiment we consider two 
levels of  separation between the blocks representing an easier and a harder 
case. 

More specifically, Table 1 lists the various cases considered and a 5- 
letter code for each case. The entries in each cell of the table are (i) the 
parameter settings for blocks 1,2 .... and (ii) the code consisting of one letter 
denoting the distribution followed by 'BI ', 'B2'  or 'B4'  for the type of exper- 
iment and ending with 'S I '  or '$2'  for the degree of separation. (See Figures 
6a and b for the numbering and position of blocks in the non-null cases.) In 
the non-null experiments S1 represents blocks that are more separated and 
easier to distinguish; in the null experiments $1 represents the lower variance 
case. Note that for continuous responses, two distributions are considered, 
while for binary responses we need only consider the Bernoulli distribution. 
For each case (i.e., each cell of Table 1) we generated four matrices of the 
given type with dimension 24 x 12. The algorithm was then run five times on 
each matrix with different seeds for the Markov chain simulation method; for 
uniform and normal data we used heterogeneity reduction (1) while for Ber- 
noulli data we used (4). In all cases c% = .5. 
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a) Design of "B2" b) Design of "B4" 

columns columns 
1-6 6-12 

1 2 
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4 

rows 
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rows 
17-24 

c) Pattern found d) Pattern found 
for "NB4" and "UB4" for "BB4S1" 

columns columns columns columns 
1-6 6-12 1-6 6-12 

rows 
1-8 

rows 
9-16 

rows 
17-24 

rows 
1-12 

rows 
13-24 

Figure 6. Designs and Patterns for Simulation Experiments 

4.1 Summary of Results 

Table 2 provides some summary measures of the algorithm's perfor- 
mance. Note that each row of this table is based on 20 applications of the 
associated algorithm - -  four matrices of the associated type times five runs 
per matrix. Columns 2 through 4 of Table 2 give the minimum, maximum, 
and average number of splits. Column 5 gives the number of times (out of 
four matrices) that all five runs of the algorithm produced the exact same 
result, and Column 6 gives the difference between the average number of 
splits performed by the algorithm and the number of splits designed (i.e., the 
difference between Column 4 and third character in the problem code minus 
one). 
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Null Non-Nail 
Dis~'b~tion B| B2 B4 

(O J )  

(0,2.) :UBISI (0,2) :UB2.SI (1.2) :UB4SI 
(2.4) (2.3) 

Uniform (2.4) 

(a,b) = (0,1.5) 

(0,5) :UBIS2 (0,1.5) :UB2S2 (1,2.5) :UB4S2 
(1,2.5) (2,3.5) 

(3.4.5) 

(0,1) 

(0,I) :N'BISI (0,I) :N'B2S l (2,1) :NB4SI 
(1.1) (4,1) 

Normal (6,1 ) 

Oa. o) = (0.1) 

(0,2) :NBI $2 (0,l) :N'B2S2 (I.I) :NB4S2 
(!,!) (2,1) 

(3.1) 

.05 
.! .35 

.25 BBISI :BB2SI :BB4SI 
.9 .65 

Bernoulli .95 

p = .15 
.25 .40 .5 :BBIS2 :BB2.S2 :BB4S2 
.75 .6O 

.85 

Table ! 

Design of Simulation Experiments 

Focusing first on the null experiments, we see that the average number 
of  splits ranges from .5 to 1.9. The overall average (for all null experiments = 
' B I ' )  is 1.37 with no systematic effects resulting from distribution (uniform = 
'U '  vs. normal = 'N '  vs. Bernoulli = 'B ' )  or variability level ( ' S I '  vs. '$2') .  

Considering the 2-block case ( 'B2 ' )  the average number of  splits 
ranges from 1.60 to 2.60. The minimum number of  splits is one in all cases 
and the intended split was always the first split performed. The overall aver- 
age number of  splits is 1.92 with the averages over the distribution types 
being 1.78 for 'U' ,  1.68 for 'N' ,  and 2,30 for 'B' .  

Lastly, for the 4-block (' B4') examples, the range of  average number of  
splits is 1.55 to 6.25 with a striking difference between the categorical cases 
(Bernoulli) with an average of  2.45 and the continuous cases (uniform and 
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Difference of Avg. 
Number No. of Splits 

Problem Min. No. Max. No, Avg. No. Fully Performed to No, of 
Code of Splits of Splits of Splits Consistent Splits Designed 

UB1S1 0 3 1.35 2 1.35 

UB 1 $2 1 3 1.65 3 1.65 

NB 1S 1 0 4 1.75 3 1.75 

NB 1 $2 0 2 1.00 4 1.00 

BB1S1 0.55 .55 

BB 1S2 1 3 1.90 2 1.90 

UB2S1 1.60 

1.95 UB2S2 

.60 

.95 

NB2S1 1 4 1.75 1 .75 

NB2S2 1 3 1.60 2 .60 

BB2S 1 1 4 2.60 2 1.60 

BB2S2 1 4 2.00 3 1.00 

UB4S1 5 6 5.10 2 2.10 

UB4S2 6 7 6.25 4 3.25 

NB4S1 5 6 5.30 3 2.30 

NB4S2 2 7 5.50 2 2.50 

BB4S 1 3 4 3.35 3 .35 

1.55 BB4S2 - 1.45 

Table  2 
Results  of  S imulat ion  Exper iments  
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normal) with an average of 5.54. In the uniform and normal cases, the struc- 
ture found is basically that shown in Figure 6c. In the Bernoulli case with 
greater separation ( 'SI ' ) ,  the algorithm performs an average of 3.35 splits 
(usually as shown in Figure 6d), but when the separation is small ( '$2 ')  the 
algorithm performs on average one less split and misses part of the intended 
pattem. 

Column 5 of  Table 2 addresses the consistency of the results with 
respect to the random numbers governing the Markov chain simulation 
method. For 65% of the matrices generated, five runs with different seeds 
produced identical results (full consistency). For almost "all the other 
matrices, the results were hierarchically consistent in that runs would differ 
only by the addition of a split or two. 

It is worth noting that the randomness inherent in the Markov chain 
simulation method can be used informally to assess the 'strength' of the block 
structure. For example, when two hierarchically related solutions occur, then 
the common splits indicate structure that is strongly present. The occurrence 
of solutions that differ greatly should lead an analyst to reconsider the 
appropriateness of block clustering methodology in the given application. In 
conclusion, the algorithm exhibited good ability to detect the structure 
present in the matrices and to stop soon afterwards. The algorithm also 
shows quite credible consistency with respect to the randomness inherent in 
the Markov chain simulation method. 

5. Extensions 

The permutation-based algorithm can be extended in several directions. 
First, the algorithm can be applied with virtually any measure for hetero- 
geneity reduction. Besides the two measures illustrated here, we have done 
some preliminary work with entropy-based measures for categorical data 
based on a suggestion due to Joop Kemperman (Duffy and Kemperman 1990). 
For the entropy measure the best column (or row) split of a block B takes the 
form of a separating hyperplane in the space of frequency vectors f (B), and 
tools from computational geometry may be helpful in writing an efficient 
implementation (Edelsbrunner 1987). With continuous responses, obvious 
alternatives to the reduction in sum of squares about the mean are an L1- 
based measure involving summed absolute deviations about the median, or a 
measure based on a robust estimate of  variance. More generally, multidimen- 
sional matrix entries can be accommodated if reasonable heterogeneity 
reduction measures can be derived and implemented. 

As presented, our algorithm finds block structures within Hartigan's 
class of structures which preserve marginal trees for both the rows and 
columns. We have investigated an alternative maximal class which permits 
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all binary splits at any time. A major limitation of this maximal class is the 
difficulty in displaying the results. An intermediate class which restricts to 
structures which can be displayed as contiguous blocks appears to be a 
promising area for research. 

In order to assess the importance of a split s, we use simulation to cal- 
culate an approximation to ot (s). Recent advances in statistical computing, 
specifically, network-based algorithms for exact permutational inference (see 
Mehta, Patel and Gray 1985 and the refcrences therein), have dramatically 
reduced the computational demands for some permutation calculations. 
Extensions of  these ideas may make exact calculation of cc (s) practical. 

The algorithm we propose, like many stepwise techniques, behaves in a 
"greedy"  fashion; at each step the algorithm chooses the optimal course of 
action without any consideration of how this choice may affect future steps. 
In particular, the algorithm may stop when perhaps, if it instead performed a 
less important split at the current step, intercsting structure could be found in 
subsequent splits. One interesting approach to this difficulty would be to per- 
mit the algorithm to pursue a less important split with small probability based 
on an external random mechanism. A more ambitious approach would be to 
derive an algorithm which looks one step (or, more generally, m steps) ahead 
before making decisions about splitting or stopping. 

Appendix 1 
Asymptotic Maximum of RSS for Unimodal Densities 

In this Appendix, we show that the reduction in sum of squares from 
the best split is asymptotically maximized over the space of unimodal densi- 
ties with support [a ,b]  when the density is a mixture of a point mass at a and 
the uniform density on [a,b].  The argument proceeds in a step-wise fashion: 
start with an arbitrary density f a n d  successively define densities based on f 
which are simpler in structure and for which the reduction in sum of squares 
is at least as large. 

Let F be the family of unimodal densities on [a ,b]  and, without loss of  
generality, let a = O, b = 1. Consider f � 9  F and 0 < x < 1. Asymptotically, 
for the sum of squares about the mean, calculating X(s) for a split s which 
divides [0,1] into [O,x) and [x, 1] is equivalent to computing 

1 x 1 

R Of, x )  = I ( t  - m o ) 2 f ( t ) d t  - I (t  - m l ) 2 f ( t ) d t  - I (t  - m2) 2 f ( t ) d t  
0 0 x 

where 
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mo = t f ( t )d t ,  m l  = Pl  o t f  ( t )d t '  m 2 -  

x 1 

Pl  = ! f ( t ) d t  and P2 = x~ f ( t ) d t "  

Straightforward calculation shows that 

R ( f , x )  = p l p 2 ( m l  - m 2 )  2 . 

1 I 
- - -  I t f ( t ) a t ,  

P2 x 

, , q )  Let x = x  be the best split point for f ; i.e., 
R * Q') -- R O e, x*) > R (f, x) for all x ~ (0,1 ). Our interest focuses on 

arg sup [ R * ( f ) : f ~  F} ; 

i.e., the density f ~  F which maximizes R*(f). Since the set F ~ of bounded 
continuous unimodal densities is dense in F, it is sufficient to find 

arg sup {R*( f ) : f~  F ~  (A.1) 

�9 .if) Let f ~ F ~ and without loss of generality assume x = x is to the 
right of  the mode o f f  Definef l  by: 

f l ( t )  = 
( ~ ,  O < t < x* 

P2 �9 
l - x *  ' x < t < l  

* * * * )  
Then, p 1 O e l , x * ) = P l ( f , x  ) ,Pz(f l  ,x ) =p2(f ,x  ) , rn l ( f l  ,x = m l ( f , x * ) a n d  
mzff l  ,x*) > m2(f,x*) implying that R ( f  1 , x ' )  > R(f ,x*) .  If the mode of f is at 
0, then there exists y, 0 < y < x*, such that f(O)y + a(x* - y)  = p 1. Define 

f(0a), 0 _< t < y 
f 2 ( t ) =  y < t < l ,  

and note that fl and f2 have identical values of P l ,  P2, and m 2, but *) * 
m l ( f 2 , x * ) < - m l ( f l , x * ) .  HenceR(f2 ,x  >R(. f l ,x  ). 

If, on the other hand, the mode o f f ,  denoted y, is greater than 0, then 
define 
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f 2 ( t )  = 
f b = _ly. I f (u )du ,  0 < t < y 

0 

I f ( t ) ,  y < t < x * .  
a ,  x < t <  1 

Since f i s  monotonic in [y,x*), there exists z ,y  < z <x* such that 

x 

f (y)(z  - y )  + f (x ' ) (x*  - z) = ~ f ( t )d t .  
Y 

Since f (y)  > f (x*)  > a, the function f3 defined by: 

I~(y ! O < t < y  
, y < t < z  

f 3 ( t ) =  If(x ), z._<t<X* 
[a ,  x < - t -  < 1 

is in F. Further, R0r3 ,x ' )  _> R(f2 ,x*) > R(fl ,x*) 
are identical for f l ,  f2, and f3 while mlOC3 ,x* 
Next let 

holds since p l , p 2 ,  and m2 
) -< ml(f2 ,x*) _< ml ( f l  ,x*). 

f 4 ( t )  = [ ~--b + 1__ {if(y) _ a)(z - y) + OC(x ") - a)(x* - z)} , 0 _< t < y 
Y 

y < t < l  

Again, P l ,  P2, and m2 are constant while ml decreases so 
R ( f  4 ,x*)  >- ROe3 ,X*). 

The previous two paragraphs imply that it is sufficient to find the max- 
imum value of R( f5  ,x*) for densities of the form 

f s ( t ) =  [~', y<t<lO<t<Y 

with0 < y  <x*.  I fa  > b, then we increase the value of R by moving some of 
the mass of f ( t )  for t < y to the left. That is, let 0 < z < y and define 

f6(t) = 

c - b  + V ( a - b ) ,  O<t  <z  
Z 

b,  z < t < l ,  
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then R(f6 ,x*) >_ R(f5 ,x*). This shifting of mass to the left can be continued 
implying that R(f7 ,x*)>_R(f,x*)= R*(f) where f7 = ctSo + ( 1 - 0 0 U  with 
0_< c~< 1, So the point mass at 0, and U the uniform density on [0,1]. A simi- 
lar analysis for the case a _< b in f s  yields the same result. 

Hence the expression in (A. 1) is equivalent to 

arg sup {R*( f ) : f  = O~8o + (1 - o 0 U }  . 

Numerical calculation yields c~* = .382 = x* and the mixture 
f* = c~* 8o + (1 - cz*)U is the density in F for which R*(f*) is maximal. 

Appendix 2 
Justification of (4) 

Let P" = f (B ' )  and P "" = f (B" )  and consider P" and P "  as discrete pro- 
bability mass functions on f2 -- { 1 . . . . .  r}. Equip ~ with the discrete metric 
and let A denote a generic subset of f~ and AC the complement (in f~) of A. 
F o r a  _cs define P (A)= ~ fi(B'),  P"(A)  = ~ ( B  ), and A t = {xe  ~ :  

i~A i~A 

I x - y l  < e f o r s o m e y c A } .  Note tha tA E = A i f e < l a n d A  E = ~ , i f e >  1. 
The Prohorov distance between P and P �9 is defined by: 

p(P , P " ' ) = i n f { e > O : P ' ( A ) < P " ( A E ) + e  forall A_cf2} 

= i n f { I > e > O : P ' ( A ) - P " ( A ) < e  forall A c _ ~ }  

= • ~ . ( B ' ) - f i ( B - ) )  
i~C 

: Z 05(B")-U,(B')) 
i~C" 

=K 

where C = {i e f~ :~(B ' )  >~ (B" )}  . 

The second to the last equality follows because 

Z f i ( B  ) = ~]f,.(B ) = 1. 
i i 

Similarly, the total variation distance between P and P is given by: 

z ( P ' , P " )  = sup {A c ~ "  IP ' (A) -P" (A) I  + IP'(AC)-P"(AC)I } = 2K 
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Lastly, note that when w(B" , B ) - 1 then ~ (s) as given in (4) equals 
z(P ,P ) which cquals 2p(P , P  ). 
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