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Abstract 

We compute constrained equilibria satisfying an optimality condition. Important examples 
include convex programming, saddle problems, noncooperative games, and variational inequali- 
ties. Under a monotonicity hypothesis we show that equilibrium solutions can be found via 
iterative convex minimization. In the main algorithm each stage of computation requires two 
proximal steps, possibly using Bregman functions. One step serves to predict the next point; the 
other helps to correct the new prediction. To enhance practical applicability we tolerate numerical 
errors. © 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V. 
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1. In t roduc t ion  

Numerous problems in physics, optimization, and economics reduce to find a vector 

x* satisfying a fixed point condition 

x* ~ argmin{F(  x* ,x)  1 x ~ X } .  (1.1) 

Here X is a nonempty compact convex subset of E := R", this space being endowed 

with the standard inner product < . , - >  and the associated norm I1" It. Moreover, the 

bivariate function F:  X X X ~ ~ is convex in its second co-ordinate. 
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Our purpose is to solve (1.1). Usually that enterprise is well founded since solutions 
- henceforth named equilibria - are indeed available under general conditions: 

Proposi t ion 1.1 (Existence of equilibrium). Suppose X is nonempty compact convex, 
and that F( x, y) is jointly lower semicontinuous, separately continuous in x, and convex 
in y. Then (1.1) admits at least one solution. 

Proof.  The lower semicontinuity and convexity of F(x ,y )  in y imply, since X is 

compact convex, that the correspondence X ~ x ~ A(x)  := argmin{ F( x, y) l y ~ X} has 

nonempty convex values. Given any sequence (x~,y k) ~ ( x , y )  with y k ~  A(xk), then 

for arbitrary ~ E X, F( x, y) < liminf F( xk, y k) < l iminfF(xk,~)  = F (x ,~ ) .  Therefore, 

y E A(x), i.e., A has closed graph, and, by Kakutani's theorem, there exists a fixed 

point x* E A ( x * ) .  [] 

For computational reasons, related to convergence, we shall consider only a distin- 

guished subclass of  equilibrium problems: 

Definition 1.2. Problem (1.1) is said to be monotone if for every equilibrium x* and 
vector x ~ X we have 

F( x,x* ) < F( x , x ) .  (1.2) 

Problems fitting (1.i) and satisfying (1.2) abound, as illustrated by important 

examples in Section 2. A prominent case - included there - helps to advertize the 
subsequent development, and to provide a useful perspective. Namely, given a mapping 

m : X ~  E, let F ( x , y ) =  ( m ( x ) , y -  x) .  Then x* satisfies (1.1) iff it solves the varia- 
tional inequality 

( m ( x * ) , x - x ~ : ) > O  forall  x e X ,  (1.3) 

see [19]. Moreover, in this case (1.2) would follow from quasi-monotonicity with 

respect to equilibrium, this notion meaning that ( ,n(x) ,x  - x * ) > 0, Vx E X. A fortiori, 

(1.2) holds under customary monotonicity: ( re (x)  - m(x ~ ), x - x ~ ) > 0, Vx, x* ~ X. 
Then proximal point algorithms converge well, but suffer frequently from being hard to 
execute [4,6,28]. 

This motivates us to consider here new versions of  proximal-like algorithms, espe- 
cially adapted to the unifying framework (1.1). The proposed procedures are naturally 
inspired by the iterative scheme 

x k+l ~ a rgmin{F(x~,x)  l x ~ X},  (1.4) 

known to be rather unstable. Therefore, to stabilize the iterations - or to regularize the 

underlying data - we shall invoke proximal-type penalty terms. Appropriate terms of  

this sort - prominent in many recent studies [9,10,12] - are so-called Bregman 
distances [7]. Whatever penalty term we use, a prime feature of  proximal point methods, 

in their original form, is the ambition to predict and update in one single shot. Clearly, 
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doing so tends to be difficult or costly. Therefore, in the main algorithm, we shall 

divorce these two aspects from each other. Indeed, a main novelty here, extending 
earlier ideas introduced by Antipin [ I -3 ] ,  is the double regularization undertaken at 
every stage: First, we predict the next iterate; thereafter, using the new prediction, we 

update the current point. In both operations, for the sake of practical applicability, we 
shall tolerate approximate evaluations of  the objectives. The algorithms are stated in 

Section 3, and Section 4 contains the convergence analysis. 

2. Examples 

To motivate and justify the study of (1.1) we offer here a list of  problems, all 
ubiquitous, and all complying with the form (1.1). 

Convex minimizat ion.  Let F ( x , y )  = f ( y )  with f : X  ~ ~, convex. Then x * solves (1.1) 
iff x* ~ argmin{f(x)  I x ~ X}. In this instance (1.2) holds by definition. 

Convex-concave saddle problems.  Let X = X~ 5< X 2 be a product of two nonempty 
compact convex sets, both contained in Euclidean spaces. Posit F ( x , y ) =  L(y~, x 2) - 

L ( x l , y  2) with x =  (x l ,x2) ,  y = (Yl,Y2),  and suppose the "Lagrang ian"  L : X - o  ~ is 
convex-concave. Then x* solves (1.1) iff x ~ is a min-max saddle point of L. The 
monotonicity condition (1.2) is automatically satisfied in this case as well [27]. 

Noncooperative games  in strategic form.  Generalizing saddle problems, suppose each 
individual i ~ l  ( I  finite), seeks, without cooperation, to minimize his private cost 
Fi(x)  = Fi(x_i ,x i )  with respect to own strategy x i in a compact convex subset X i of 
some real Euclidean space. Here x_~ := (x,),~ t - i  is short notation for actions taken by 

i ' s  adversaries, and his cost Fi (x_ i , x  i) is convex in x r Let F ( x , y ) =  ~,iFi(x_i,Yi). 
Then x* = ( x i * ) ~  X := 1-I X i solves (1.1) iff x* is a Nash equilibrium, that is, iff 

xj * minimizes F / ( x ~ / , x _ i )  s.t. x i ~ X  i f o r a l l i ~ l .  

This concept dominates in game theory [25], and provides a framework for exploring 
collective consequences of  individual rationality. Clearly, it is quite demanding, requir- 
ing correct predictions about rival behavior, and optimal responses. So, rather than 
taking equilibrium for granted, a sound defence for the use of  this concept must rest on 
arguments showing that such outcomes will eventually emerge under repeated play 
somehow. The many mechanisms at work then - including imitation, learning, evolu- 
tion, and stepwise adjustments - are far from being understood, see [14,15,17,29]. It is 
clear, however, that any relevant process would hinge upon two key parts: the formation 
of beliefs, and the updating of strategies. As will be seen, one algorithm, proposed 
below, has the merit of  treating these two things separately and explicitly. 
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Admittedly the monotonicity hypothesis (1.2) is fairly stringent in the context of  
games. Nonetheless, the class satisfying (1.2) is sufficiently large to merit special 
attention, and more rich than might first be imagined. 

Definition 2.1 (Convex-concave games). A noncooperative strategic form game, as 
described above, is said to be convex-concave if its Ky Fan function 

K ( x , y )  := F ( x , x )  - F ( x , y )  = ~i(Fi( x) - Fi( x_i,Yi) } 

is convex-concave. 

In such games equilibria may be found using saddle point algorithms, see [16,30]. 

What is important here is that these games tend to satisfy (1.2). 

T he o rem 2.2 (Convex-concave games are monotone). Assume the game is convex-con- 
cave with F( x,y)  continuous in y. Then condition (1.2) holds. 

Proof. We claim that 

- OK( x , x ) / O y  c OK( x , x ) / O x  for every x E X, (2.1)  

where the partial differentials are taken in the sense of convex analysis. To verify (2.1) 
pick any two points x °, x j ~ X, together with a number a ~]0,1[, and let x ~ := (1 - 
ot)x ° + a x  ~. The convexity of K in its first argument yields 

( 1 - a ) K ( x ° , : ) + a X ( x ' , x  °) >_K( : , x  °) =0. 

Divide by ee and let a $ 0 to obtain 

l i m ~ , ~ 0 c t - t K ( x ° , x  a) + K( x ' , x  °) >_ O. 

By concavity of  K in the second argument, for every g ~ OK(x°,x°) /Oy it holds 
that 

lim,~j, o a - t K (  x° , x  ~) <_ ( g , x  I - x ° ) .  

Thus, combining the last two inequalities, K ( x l , x  °) >_ ( -  g ,x  I - x ° ) ,  saying that 
- g  ~ OK(x°,x°)/Ox. This verifies (2.1). Returning now to the main argument, suppose 

x* is a Nash equilibrium. Since K ( x ' , x ' ) = O ,  it follows that K ( x * , x * ) =  
supy~ x K( x* , y) = O. 

Consequently, there exists a partial supergradient g* ~ OK(x* ,x*) /Oy  such that 
( g * ,x  - x* ) _< 0 for all x ~ X. Now (2.1) implies - g  * ~ OK(x* ,x* )/Ox, Finally, 
the desired condition (1.2) follows from the subgradient inequality 

K ( x , x * ) > K ( x ~ , x ' ) + ( - g * , x - x * ) = ( - g * , x - x * ) > _ O .  [] 

Proposition 2.3. Suppose Fi( x) = ~j~ i( Ai jx j ,x  i) -~-f i (xi)  "{'- hi( x i) with f,.(x i) twice 
differentiable, l f  the block matrix having f:'( x i) in diagonal entry i and A ij in entry ( i , j )  
is positive semidefinite, then the game is convex-concave. 
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Proof .  Simply observe that K ( x , y ) =  ( A x ,  x )  + Y'.i{f/(xi)-f/(Yi)} - ( A x , y )  where A 

is the block matrix (A u) with A ,  = 0 for all i ~ I. Since this function K has a positive 

semidefinite Hessian in x, it must be convex with respect to that variable. Concavity in 

y is immediate. [] 

Example 2.4. An important instance of  noncooperative games is the classical oligopoly 

model of  Cournot [ l l ] .  That model remains a workhorse within modern theories of  

industrial organisation [32]. Generalizing it to comprise n different goods, it goes as 

follows: Firm i e I produces the commodity bundle x i E R", thus incurring convex 

production cost ca( x i) and gaining market revenues ( p ( E j  xi), x i ). Here p(~qx j )  is the 

price vector at which total demand equals the aggregate supply Eixj .  Suppose this 

inverse demand curve is affine and "slopes downwards" in the sense that p(Q)  = a - 
SQ where a ~  R ~ and S is an n X n positive semidefinite matrix. Then, letting 

F i = ci(x  i) - ( p (~ . j x j ) , x i ) ,  the resulting Cournot oligopoly is convex-concave. [] 

Proposition 2.3 and Example 2.4 point to important games having bilinear interac- 
tion. By this notion is meant that individual cost has the format mentioned in Proposition 

2.3, with .fFR~i ~ ( - c o ,  + ~] proper convex lower semicontinuous, and h i arbitrary. 

Proposition 2.5. Suppose the game has bilinear interaction with ~.i{ ~ j  ~ i ( A ij x j, x i) + 
f,( xi)} convex. Then the game itself is convex-concave. In particular, this happens when 

fi( xi) = (A i i x i ,  x i )  / 2  + ( bi,x i) with A = ( Aq)  positive semidefinite. [] 

As is well known, noncooperative games - subsuming single-agent optimization and 

saddle problems as special cases - are related to: 

Variational inequalities. Let X ~ x - *  M ( x ) c  E be a correspondence with nonempty 

compact convex values. Then, letting F ( x , y )  = s u p { ( m , y -  x ) [ m  ~ M(x)}, we get via 

yon Neumann's  minimax theorem that x* solves (1.1) iff 3 re(x* ) E M ( x *  ) such that 

(1.3) holds. In this case (1.2) would follow if M were quasi-monotone at equilibrium 
x" in the sense that inf{(m,x - x* ) ] m ~ M(x)} >_ 0 for all x ~ X, see [18]. 

Successive approximations. Related to variational inequalities (1.3) is the following 

optimization procedure. Given m:X--* R", a nonnegative number p,, and an n X n 

positive semidefinite matrix H ( x )  for every x ~ X .  In this case, letting F ( x , y ) =  
( m ( x ) , y  - x )  + t~( y - x , H ( x ) (  y - x)) ,  we have that x* solves (1.1) iff ( re(x* ) ,x  - 
x ~ ) + t x ( x - x * , H ( x * ) ( x - x ' ) ) > _ O  for all x ~ X  iff (1.3) holds. Indeed, if 

( m ( x * ) , x  ° - x* ) for some x ° E X, consider the point x ~ := (1 - a ) x  ° + ~ x *  with 
cr E [0,1 [, thus obtaining 

( m ( x * ) , x  ' ~ - x *  ) + p , ( x  ' ~ - x  ~ , H ( x * ) ( x  ~ -  x ' ) )  

= (1 - a ) { ( m (  x* ) , x  ° - x ' >  + (1 - o t ) , u , < x ° - x  * , H ( x * ) ( x ° - x * ) ) }  
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for o~ sufficiently close to 1. We note that (1.2) is satisfied iff 

( m ( x ) , x - x * >  >_ l a . ( x - x * , H ( x ) ( x - x ~ ) >  for all . r E X .  (2.2) 

Suppose therefore, that m is differentiable and m'( ~ ) -  p.H(x) is positive semidefi- 

nite for all ~:E [x ,x  ~ ]. Then (1.2) holds because, using the mean-value theorem, (2.2) 

follows from 

(m( x ) , x  - x" ) 

= ( m ( x * ) , x - x * ) + ( m ( x ) - m ( ) t " ) , x - x * >  

> ( m ( x )  - m ( x * ) , x - - x  ~ > = ( x - . r *  , m ' ( ~ ) ( x - x * ) )  

for some ~ E [ x ,x"  ] 

= ( x - x * , [ m ' ( ~ s )  - I.*H(x) + t x H ( x ) ] ( x - x * ) )  

>_ < x -  x* , lxH(  x ) (  x -  x" ) ) .  

3. The algori thm 

This section advocates two procedures to solve (l.1). Both amend (1.4). Our 
motivation is that (1.4) - derived directly from (1.1) - has three potential drawbacks, all 

OO" a be~,~,m~, to be rectified. 
First, it is unreasonable, and not very practical, to insist that argmin in (1.4) be 

located exactly at every stage k. Rather one should tolerate small errors e k > 0 in 

extremal values - at least during early phases of  the computation. 
Second, there is some myopia in (1.4): Specifically, at stage k, instead of  considering 

F(xk,x) ,  one might form a prediction x k+ of the upcoming point x k + l  and rather 

minimize F( x~+,x). 
Third, but no less important, the argmin operation - whether executed exactly or not 

- may cause instabilities. To mitigate this we add a nonnegative penalty for x ~+~ 

deviating from the x k. 
These considerations lead us to replace (1.4) by a more stable and flexible algorithm: 

Algori thm, Star t  at arbitrary x ° E  X, and update  iteratively, for k =  0 ,1 , . . .  until 

convergence, by the rule 

x k+' E ~ -  argmin{akFk(x k+,x) + D ( x , x k ) ]  x E X}. (3.1) 

Several remarks are needed to make (3.1) well defined and comprehensible: 
As said, e k > 0 is an error tolerated when evaluating minimal values at iteration k. 

For asymptotic accuracy we require that 

:C E2/2 < (3.2) 

Such errors e~ not withstanding, the constraint x E X is always enforced, and tacitly 

assumed to be easy. 
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• The other real parameter o~ k in (3.1) is positive and bounded away from 0 and 
+ ~ .  It permits judicious weighing of the objective against the penalty term. Both 
sequences {ek}, {a~} can be selected rather freely. Indeed, all hypotheses concerning 
these sequences are purely technical, and satisfied by construction. 

• The intermediate and "predic t ive"  point x k÷ figuring in (3.1) is determined in 
two possible ways, depending on the quality of predictions. One, utterly demanding 
scenario, is naturally named perfect foresight, meaning that 

xk+ := Xk+ I (3.3) 

Another, more reasonable and less taxing arrangement, amounts to tolerate imperfect 

foresight. Specifically, we select then 

xk+ ~ ~k -- argmin{ akF~( xk, x) + D( x ,xk)  l x ~ X}.  (3.4) 

• The penalty function D in (3.1), (3.4) is a so-called Bregman distance [7] given by 

D ( x , y )  := tp (x )  -- ~ ( y )  - ( ~ ' ( y ) , x - y )  (3.5)  

where ~p is a differentiable strictly convex function defined on a neighborhood of X. 
We shall require that ¢, has a Lipschitz continuous gradient. Specifically, there must 
exist a positive constant L such that for every error e >_ 0 considered in the sequel we 
have 

x E X ,  d i s t ( X , y ) < e l / 2  =, I [ t p ' ( x ) - q / y ) [ l < t [ [ x - y l l .  (3.6) 

Since X is compact, (3.6) holds whenever ~p is twice continuously differentiable. 
Note that D(x,y) ,  as defined in (3.5), is non-negative, and strictly convex differen- 

tiable in its first argument whenever x is sufficiently close to X and y ~ X. Moreover, 
D(x , y )  = 0 ¢* x = y. We assume that for any sequence {x ~} in X it holds 

x * ~ x  ~ D ( x , x  k ) -*O (3.7) 

as well as 

x*--,x, (3.8) 

Evidently, the customary and convenient choice tp=[1.112/2 yields L =  1, and 
D ( x ,  y)  = II x -  y]12/2, satisfying (3.7) and (3.8). Other examples of Bregman distances 
and similar penalty terms are found in [5,9,10,12,13,21,22,31]. Many of these papers 
explore algorithms of the sort (3.1) and (3.3), or akin to this procedure. 

4. Convergence  

For the convergence analysis of (3.1) we shall need three lemmata. 

L e m m a  4.1. Suppose the function h:E ~ R U { +~} is lower semicontinuous proper 
convex. Let X be a nonempty closed convex subset of E such that r idom h A ri X=g Q, 
and select an arbitrary fixed vector ~ X. Suppose the function ~b in (3.5) is 
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real-valued 
Specifically, for a given number c >_ 0, we suppose that (3.6) holds. Then, with 

x+~ c -  argmin{ h( x) + D ( x , ~ ) l x ~ X } ,  

we have for some 6 ~ [0, c] and all x E X, 

h( x) + O( x,~ ) 

> h ( x  +) + O ( x + , ~ )  + O ( x , x  + ) - 6 -  (L  + 1 ) ( c -  6) t /Z l lx -x+l l .  
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convex on an open set containing X, with Lipschitz continuous gradient. 

(4.1) 

(4.2) 

Proof. The c-optimality (4.1) of x + implies that 

O~ c -  &[h + D ( ' , ~ : )  +lx] (X+) ,  (4.3) 

where e - 0 denotes the c-subdifferential operator, and I x is the convex indicator of X, 
that is, I x ( x ) =  0 when x ~ X, +oc otherwise. Applying the c-subdifferential calculus, 
excellently exposed in [20], to (4.3), there exist, by the domain qualification ri dora h A 
ri X 4= Q3, approximate subgradients 

s , ~ , - O h ( x + ) ,  s ~ 2 - O D ( . , ~ ) ( x + ) ,  s ~ - ~ l x ( x + ) ,  

with 

81 , C  2 , C  3 2> 0 ,  C I "+" C 2 -J- 8 3  = ~ ' ,  and s~ jr_ S 2 -'1- S 3 = 0 .  (4.4) 

In turn, 

st e c, - Oh(x +) 

s 2 ~ C  z - & D (  ,se)(x +) 

h( x) >__ h( x+ ) + ( s , , x -  x+ ) - c, forall  x; (4.5) 

s 2 = S  2 - ¢ ' ( ~ : )  for someS 2 ~ C  z - o ~ 0 ( x  +); 

(4.6) 

(4.7) S 3 E S 3 - - C 3 I x  x +) =~" ( s 3 , x - x + ) < c 3  f o r a l l  x ~ X .  

(3.5) yields the three-point identity [10] 

D( x , l ~ ) = D (  x+,~ ) + D ( x , x  +) + ( O'( x + ) -  ~ b ' ( ~ ) , x - - x + ) .  

Adding the latter to inequality (4.5) we arrive at 

h( x) + D( x,~ ) > h( x +) + D ( x + , ~ )  + D ( x , x  +) 

+ (s, + , / / (x +) - , / , ' (  ~ ) , x -  x + ) - c , ,  ( 4 . 8 )  

valid for all x ~ X. Considering now the inclusion S 2 E c 2 - &b(x +) figuring in (4.6), a 
theorem of Br~nsted and Rockafellar [8] (see alternatively Theorem XI.4.2.1 in [20] 
ensures the existence of a vector y satisfying 

IIx + -  yll-< c~/2 and I I q / ( y )  - s211 ~ ~.~/2. ( 4 . 9 )  

We shall use these facts to underestimate the next to last term of (4.8) - that is, the 
inner product mentioned there - as follows: First observe via (4.4) and (4.6) that 

s, + ~ ' ( x  + ) - ,/,'(~) = s, + s 2  + s3 + ~ , ' ( x  + ) - s2 - s3 = ~ ' ( x  +)  - s 2  - s 3 .  
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Therefore, invoking (4.9) and (4.7) in that order: 

<s, + e , ( x  +) - e ' ( ~ ) , x -  x+> 

= ( e , ( x + ) - e , ( y )  

>_ - { l i e ' ( x + ) - , / , ' (  

>__ - { L ~ / 2  + ~U}II 

Finally, returning to (4.8), 

~2=C-- ~. [] 

+ e ' ( y )  - $ 2 - s 3 ,  x - x + )  

y ) l l  + l i e ' ( y )  - s211} l lx -  x+ll - < s 3 , x -  x + > 

x - x + [ i  - ~ 3 .  

the desired inequality (4.2) follows with 6 = s 1 + 6 3 and 

L e m m a  4.2. Suppose the function h: E -* ~ U { + ~c} is lower semicontinuous proper 

convex. Let X be a nonempty closed convex subset of  E such that ri dom h r3 ri X # O. 

Suppose the function e in (3.5) is real-valued convex on an open set containing X, with 

Lipschitz continuous gradient. Then, 

x* ~ a r g m i n { h ( x ) + D ( x , x * ) [ x E X }  ~ x* Eargmin{h (x )  l x ~ X } .  

Proofi  For the implication " ~  " use Lemma 4.1 with e = 0 and # = x* = x ÷ to have 
h(x)  + D(x ,  x* ) > h(x * ) + D( x* ,  x* ) + D( x, x* ), whence h(x)  > h (x"  ) for all x E 
X. 

Conversely, when h ( x ) >  h (x* )  for all x ~ X, (3.5) and the convexity of ~b yields 
D(x ,  x* ) > D( x*,  x* ) = 0 so that h(x)  + D( x, x* ) > h( x* ) + D( x* ,  x* ) for all x E X. 
[] 

The final lemma is easily proven, or derived from more general result of  Robbins and 
Siegmund [26]. 

L e m m a  4.3. Let {a,}, {bk}, {ck} be three sequences of  nonnegative numbers such that 

F.kb k < +oc and ak+ t < a~ + b k - c k for all k. Then {ak}converges, and EkCk < +oo. 
[] 

After these preparations we are ready to state a first convergence result. For this 
assume henceforth that the hypotheses of Proposition 1.1 and condition (1.2) are all 

satisfied. 

T h e o r e m  4.4 (Convergence under perfect foresight). Any sequence {x k} generated 

according to algorithm (3.1), (3.3) converges to a solution of (1.1). 

Proof .  The assumptions of  Lemma 4.1 hold for any function h ( x ) =  a k F ( x  k+ l,x). 

Therefore, invoking (4.2) in situation (3.1), letting x =  x* be any equilibrium, x ~+= 
x~+t, and # = x  k , w e g e t  

ol, F( xk+ ',x *) + D( x* ,x k) 

_> ,~, F(x*+ ',x '+ ' )  + D(x*+ ',x ') + D ( x * , x  ~+')  - ~, 

- ( L +  1 ) ( e l ,  - ,sk) ' /211x * - x ' + ' l l  
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for some 6kE[0,ek] .  Appealing to the monotonicity condition F(xk+~,x*)<_ 
F( xk+ ~,xk+ i) it follows that 

O( x* ,x  ~ ) 

> O ( x k + l , x  *) + O ( x *  ,x k+t ) - 8~-  ( g  + l ) ( ak  -- a , )a / ' - I I x  * - x~+Xll. 

Use now the boundedness of X, condition (3.2), and Lemma 4.3 with 

a, := D(.r* ,x*),  b , ~ : = a , + ( L +  1 ) (ek - f , , , )* /2 [ Ix  ' ' - . , . *+ ' I t ,  

c, := D(X*+ l ,x*) ,  

tO assert that D ( x "  ,x*) converges, and E D ( x  k+ ~,x ~) < +:c. 
Let x be any accumulation point of  {x*}. Then, for some subsequence K of  integers 

we have lim~.~,r cr ~. = ~ >  0, and limk~ h. xk = x. Since D(xk+1,x~)--* 0, we also get, 

via (3.8), that lira k e i< xk+ i = x. Thus, passing to the limit along K in (3.1) we obtain 

x ~ argmin{ a F ( x , y )  + D ( y , x )  l y ~ X } .  (4.10) 

By Lemma 4.2 this implies x E argmin{ F( x, y) l y  ~ X}, whence x solves (1.1). 

The upshot is that {x k} clusters to a solution x ~ : = x of (1.1). Knowing already that 

D(x~ , x  k) converges, we obtain, via (3.7), that D ( x " , x  k) ~ 0 .  Consequently, again 

relying on (3.7), the entire sequence {x k} converges to x" [] 

If F( x, y) = f (  y) with f : X  ~ ~ convex, and all ek = 0, then the implicit algorithm 

(3.1) and (3.3) - first developed by Martinet [24] - requires few assumptions, but is, in 
general, rather hard to implement. By contrast, (3.1) and (3.4) being far more tractable, 

needs a 

H y p o t h e s i s  on s m o o t h n e s s .  There exists a constant A > 0 such that on X it obtains 

I IF (x  + A x , y  + Ay) -- F( x ,y  + Ay)  - F (  x + Ax ,y )  + F( x,y)ll 

< 2 A { D ( x , x  + A x ) D ( y  + Ay , y ) } ' / 2  

This rather strange smoothness condition simplifies when g, = II [ [2/2,  to 

[IF( x + A x , y +  a y) - F( x , y +  aly) - r (  x + ,Ax,y) + F ( x , y ) l l  

_< All ~Axllll ~ay[[, 

which holds when F is twice continuously differentiable. We can now state the main 

result: 

Theorem 4.5 (Convergence under imperfect foresight). Suppose that 0 < inf a k < 
sup o~ < I / A  where A satisfies the smoothness condition. Then any sequence {x k} 

generated according to algorithm (3.1), (3.4) converges to a solution of" (1.1). 
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Proof. The assumptions of Lemma 4.1 hold when applied to h ( x ) =  %F(xk,x) .  
Therefore, invoking (4.2) in situation (3.4) we get 

cekF( xk,x  k+ l) + D( xk+ ' ,x  t) 

> ee kF( x k,x k+ ) + D( x k+,x t) + D( x t+ ' ,x  k+ ) - 6k+ 

- ( L  + 1)(~ t -  6t+) ' /2llx t+'  - xk+ll 

for some 6k+E [0,e,]. Likewise, using now h ( x ) =  %F(xt+,x) ,  situation (3.1) im- 
plies, again via (4.2), that for any solution x* to (1.1) we have 

~ F (  x*+,x" ) + D( x°,x  t) 

:> oe, F( xk+,x t+ ') + D( xt+ ' ,x  ')  + D( x* ,x '+') - fit 

- ( L  + 1 ) (e  t - 6,) ' /=llx * - x k+ '11 

for some 6~ ~ [0 ,gj .  Adding the last two inequalities we have 

at{F (x* ,x  t+ ') - F( x i+,x  t+ ') - F( x t , x  t+ ) + F( xt+,x* )} + D( x* y , x  t) 

>_D( x * , x  t+ ') + D( xk+,x t) + D( xt+ ' ,x  t+ ) - 6k+- 6 k 

- ( L  + 1){(~ t - 6,+)VZllx k+' -x*+l l  + (~,  - ak)'/211 x* - x*+ ~11}. 
(4.11) 

Now invoke the smoothness condition and (1.2), in that order, to get 

2A%{D(  x *+,x k ) o (  xk+I,x k+)}'/2 

> %{F( x t , x  t+ ') - F( xk+,x k+') - F( x t , x  k+ ) + F( xk+,xt+ )} 

> oet{F (xk ,x  k+') - F ( x t + , x  *+') - F ( x t , x  t+) + F(xk+,x  *)}. 

Combining this last string of inequalities with (4.11) it follows that 

2 a a t { D ( x k + , x k ) D ( x  k+',x*+)} '/2 + D ( x * , x * )  

> O ( x * , x  t+ ' )  + D( xt+,x*) + D( x*+ ' ,x  *+ ) - 6k+- r3 k 

- ( L +  1 ) { ( ~ , -  6t+) ' /mllx t+ '  -x*+l l  + ( . ~ -  6,)'/211x ~= - x*+ ill}, 

whence 

O ( x * , x  t)  >__ o (  x '  ,x t+ ') + {D( x*+,x t ) ' / 2  A a t O  ( x ,  +,,x,  +), /2} '  

+{1 - (Ao~, , )2}D(**+ ' ,x t+)  - 6 , + -  6, - ( c  + l) 

× { ( E ~ -  6,+ ),/21ix, +' - x *  +ll+ ( e , -  6 ,) t /2l lx* - x  ~+tll}. 

We rely now on the boundedness of X, condition (3.2), and Lemma 4.3, letting 

a, := V( x* ,x t ) ,  

b t := 6 ,++ 6it + (L + 1){(g t - 6,+)'/211x t+' --x*+ll 

+ ( ~ , -  at)'/211 x" - x*+ ~11}, 
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and 

Ck:={D(xk+,X k) '/2 A a k D (  x k+ ' , x  k+ ) ' /2} 2 + l - ( A a k )  2 D(  x k+ ' , x  k+ ) ,  

to assert, since A a  k < 1 for all large k, that D ( x *  ,x  k) converges, and 

- + { ,  - ( 

< -t- ~ .  

In particular, D ( x  k+ l,Xk+) ~ 0 and D(xk+,x  k) -~ O. Let x be any accumulation 

point of {x~'}. Then, for some integer subsequence K we have lim k ~ K ak = a > 0, and 
via (3.8), 

limke x x k = limkE K xk+= limkE r x ~+ ~ = x. 

Passing to the limit along K in (3.1) we arrive at (4.10). From there onwards the same 
arguments furnishes the desired conclusion. [] 

Clearly, in (3.4) one might use a another sequence (ek+} of nonnegative errors, 

possibly different from {ek}, but also satisfying (3.2). 
When f : X ~  ~ is convex differentiable, ek = 0 ,  and F ( x , y ) =  ( f ' ( x ) , y - x ) ,  step 

(3.1) assumes the form ( f ' ( x k + ) , x - - x k + t ) > O  for all x ~ X ,  reminiscent of the 
extra-gradient method of Korpelevich [23]. 
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