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Abstract 

Because of the many important applications of quadratic programming, fast and efficient 
methods for solving quadratic programming problems are valued. Gotdfarb and Idnani (1983) 
describe one such method. Well known to be efficient and numerically stable, the Goldfarb and 
Idnani method suffers only from the restriction that in its original form it cannot be applied to 
problems which are positive semi-definite rather than positive definite. In this paper, we present a 
generalization of the Goldfarb and Idnani method to the positive semi-definite case and prove 
finite termination of the generalized algorithm. In our generalization, we preserve the spirit of the 
Goldfarb and Idnani method, and extend their numerically stable implementation in a natural way. 
© 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V. 
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1. Introduction 

Quadratic programming has a long history and a multitude of application areas. In 

recent years, quadratic programming methods have become increasingly important 

because of their relevance to algorithms for solving general nonlinear convex program- 

ming problems (see, for example, the methods discussed in [12,9,30,16,17,21-23,26,27], 

and more recently [19]). Lin and Pang [18] give a thorough survey of quadratic 

programming methods. 

Quadratic programming methods in the class known as active-set methods have had 

significant success. They are usually more memory efficient than methods of other types 
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and often enjoy finite termination. Fletcher [9] describes a number of active-set methods, 
while Goldfarb and Idnani [14] present a dual-active-set method for strictly convex 
problems. Their extensive computational experience shows their algorithm to be fast as 
well as efficient. Powell [24] implemented the Goldfarb and Idnani method, including an 
extension to cope with ill-conditioned problems, and found it to compare favourably 
with other approaches [25]. The Goldfarb and Idnani method has some other useful 
features: it requires no costly first phase to determine a feasible starting point, since it is 
a dual feasible rather than a primal feasible method; and it is amenable to specialization, 
as the inverse shortest paths algorithm of Burton and Toint [4] and the active-set-on-a- 
graph algorithm for network optimization [1-3] and multicommodity flows [10,3] attest. 
Its importance as a method with wide applicability is confirmed by Stoer [28], who 
develops a related algorithm for solving linear least squares problem. However like a 
large proportion of quadratic programming methods, the Goldfarb and Idnani dual~ac- 
rive-set method only solves positive definite problems, whereas in practice, problems 
may often be positive semi-definite. (Note that in the context of linear least squares 
problems, Stoer's method does avoid the assumption of strict convexity of the objective 
function.) In this paper we show how the Goldfarb and Idnani dual-active-set method 
can be generalized to solve positive semi-definite problems. Our primary purpose is 
theoretical: our generalization is intended to provide a theoretical basis for specializa- 
tions, such as that given in [2,3], in which the ability to solve semi-definite problems is 
highly desirable. However we do give some indication of how issues arising in a 
practical implementation might be addressed, and describe a numerically stable imple- 
mentation which is a natural extension of that given by Goldfarb and Idnani. 

The original dual-active-set method of Goldfarb and Idnani [14] solves the positive 
definite quadratic programming problem (PDQPP) described below: 

min -~x'r Qx + pr x 

subject to CV x >l b 

where Q is a symmetric positive definite matrix, ff x is also subject to equality 
constraints, the algorithm can be modified appropriately without difficulty. For simplic- 
ity, we will not include equality constraints here. 

The problem we will be able to solve with the generalized method is called the 
positive semi-definite quadratic programming problem (SDQPP), and is the same as the 
PDQPP except that Q may now be positive semi-definite. To make the problem easier 
to handle we will require it to be in a special form: 

def 
min f ( x ,  y) = ½x 'rQx+prx+pVy 

(x. y) 

subject to C V x + D r y ~ b  

where the matrix Q is now positive definite, with dimension equal to the rank of the 
original matrix. The variables x and y are the partitions of the original variables into 
"quadratic" and "l inear"  parts. In a network optimization problem with arc-separable 
costs, this can be achieved naturally by a re-ordering of the arcs in the network [2,3]. 
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The constraint matrix is also partitioned accordingly. We also require that D have full 

row rank, for reasons discussed in Section 3.2. Note that this does not entail any loss of 
generality: any SDQPP which is bounded below may be written in the above form, 

where Q is positive definite and D has full row rank. Section 3.1 gives a fuller 
discussion of this point. 

In Section 2 we briefly describe the original dual-active-set method for solving the 
PDQPP. In Section 3 we describe conditions under which the equality subproblem 
generated by the SDQPP will have a unique solution, and note that these conditions 
imply that an initially empty active set may no longer be possible. We then show how to 

determine an initial active set. Step directions for the SDQPP are derived and we prove 
finite termination of the algorithm in a manner analogous to the proof given in [14]. 

From this proof, it emerges that under certain conditions, step directions cannot be 
determined using the method analogous to that in [14]. In Section 4 we show how step 

directions may be determined under these special conditions, and present the complete 
algorithm. We also indicate how a numerically stable implementation can be obtained as 
a natural extension of that given by Goldfard and Idnani. 

2. The dual-active-set method of Goldfarb and ldnani 

The dual-active-set method proceeds by solving quadratic equality programs. Given 
active set ~¢, the set of indices of the active constraints, the positive definite quadratic 
equality program P D Q E P ( d )  is 

rain ½xVQx + pTx 

subject to C~x = bs,, 

where C~¢ and bse are just the columns and entries of C and b respectively with indices 
in z¢. We will use this notational device throughout this section. In addition, we will use 
x\~i~ to indicate x with the jth entry removed. For notational convenience, we will 
confuse a constraint in ,~¢ with its index in d :  if constraint i ~.W is the ruth constraint 
in d ,  then for A E ~1~'~ we will write h i instead of A,,,. 

The basic form of the dual-active-set method for the PDQPP is given below, where 
the vector A is the dual multiplier of the constraint equations. 

Set s¢ ~ ~3, x ~ solution of the PDQEP(d ) ,  and A ~ 0. 
while 3 a primal infeasible constraint j do 

Set A + ~ 0. 
Find primal-dual direction (z, r) and step length t x > 0 so that 
(x + tlz, ( ~ ' ) +  t1(~r)) solves the PDQEP(~ ¢ tO {j}). 
if z = 0 and r ~< 0 then STOP (the problem is infeasible). 
while z = 0, or some dual variable would become dual infeasible, 
i.e., A~, - tlrT~ 0 do 

Find the largest step t 2 >i 0 possible without violating dual feasibility. 
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Set k *-- index of dual variable which becomes 0. 
Set x ~ x + t 2 z  and ~ ¢ ~ ¢ \ { k } .  

Set A k *-- O, A s / ~  A s / -  tzr \{k~,  and A +~- A++ t 2. 
Find primal-dual direction (z, r)  and step length t~ > 0 so that 
( x  + t l z ,  ( ~ : )  + t l ( ] r ) )  solves the PDQEP(za¢ U {j}). 

enddo 
Set x *-- x + t I z ,  A s / u  {j} ~ (~e ' )  + t l ( ~ ' )  , and ~ '  ~ ,~  U {j}. 

enddo 

The condition z = 0 indicates that the addition of j to the active set ~ would result 

in the columns of Cs/ becoming linearly dependent. Throughout the algorithm, linear 
independence of the active constraints is maintained. Dual feasibility is also maintained, 

i.e. A >~ 0 at all times. The algorithm proceeds by activating primal infeasible con- 
straints, where each activation might involve some deactivations to ensure dual feasibil- 
ity, or linear independence of the active constraints. After each activation, (x,  Ag) 
solves the PDQEP(~) .  Proof of finite termination follows from the fact that each 
activation causes a strict increase in objective function. 

To find the step direction (z, r), Goldfarb and Idnani use the Moore-Penrose 
generalized inverse of C:¢ given by 

C ~ = ( C ~ Q - ' C ~ , ) - '  ~ C~,QT - ,  

and the operator 

H s/ = Q -  ' ( I - C s/ C.~ ) . 

The initial solution of the PDQEP(¢) is given by x = H.~,p, where H s / =  Q- t  initially. 
The dual direction is 

r = C~ cj 

and the primal direction is 

z = H ~ , c j  

where c: is the jth column of C. The step length is given by 

bj - c f  x 

tl = CfZ 

provided z 4= 0. When A ~ , -  t~r ~ 0, the maximum step length possible without violat- 
ing dual feasibility is 

t 2 = min . 
i~a~¢', ri> O 

This minimum is achieved by some k E ~ ,  which is the index of the dual variable which 
becomes zero. 

Goldfarb and Idnani do not actually compute C~, or H~¢ explicitly, but store 
numerically stable factorizations. Each activation or deactivation simply involves a rank 
one update of the factorizations. 
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3. Step directions for the positive semi-definite case 

In this section, we show how to determine step directions in the positive semi-definite 
case. In doing so, we find that in addition to maintaining linear independence of the 
active constraints, we must maintain the rank of the submatrix of the active constraint 

matrix which corresponds to the " l inear"  variables in the partition. It is not obvious 

how to maintain this condition. In this section we prove that it is possible, and in Section 
4.1 we describe a method of doing so. 

3.1. Determining the special form of the SDQPP 

We will show that it is possible to write any SDQPP in the special form we require. 

Consider the general SDQPP: 

subject to ~T.~ >1 b, 

where ~', /~ ~ R q+r, Q is a (q +/") x (q +/ ' )  symmetric positive semi-definite matrix 
with rank q, (~ is a (q +/ ' )  x c matrix, b ~ R c and q, Y, c > 0. 

Firstly, we will show that it is possible to separate the problem into a "quadratic 
part" and a "linear part".  This will create a problem which is in some sense "partially 
separable". The advantages of dealing with partially separable problems are discussed 
by Conn et al. in [6], and have been clearly demonstrated in a variety of contexts (see, 
for example, [5,7,29]). 

In what follows, we will use the notation X,,, to denote an n × m matrix X, and x,~ 
to denote a vector x e R". Since (~ is symmetric positive semi-definite, there exists an 
orthogonal matrix P such that 

P T O'P = ( QO 0)0 

where Q is a q x q positive definite matrix. Replacing ~" by 

Xql ) def = p-~- 

t Yr, 
everywhere in the SDQPP, we obtain the equivalent problem: 

min ½xTQx + pv x + kTy 

subject to CTx +/~Ty >/b, 

where 

Ph = P ' p  and bye = P C. 

It only remains to show that i f / )  does not have full row rank, then we can obtain an 
equivalent problem which does. Suppose /9 has row rank l < 1. Without loss of 
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generality, we may re-order the rows of 6 ,  ~ and .7 so that the first l rows o f / 5  are 
linearly independent. Let 

E(T_/I c = DTc and o'(f_t~l = PTI. 

Then D has full row rank and each row of  E is linearly dependent on the rows of D, 
i.e., there exists Fcr_ ~ such that E = FD. Now provided the SDQPP is bounded below, 

the dual to the SDQPP has a non-empty feasible set, i.e. {,~: D ~  = t5} ~ 9, and so 
(Jr = F 0 also. Now to transform the problem to our required form, we let 

z(~_t)l = yf~ a n d y = ) + F T L  

Then DTy =/5T.7 and pTy = tST.7. Consequently, the problem below is equivalent to the 
SDQPP: 

min ~xTQx + pT x + pTy 

subject to CT x + DT y >~ b 

which is exactly the form of problem we require. 

As is shown by the above discussion, the transformation of the SDQPP to the special 
form we require presents no theoretical difficulty. However to transform an arbitrary 
SDQPP by numerical methods may not be straightforward. In particular, to numerically 
determine the rank of 0 and compute the orthogonal matrix P may be difficult. Certain 
classes of problem may fall naturally into the required form: network flow problems 
[2,3] are an important example of such a class. In general, techniques such as those 
discussed in [20,15,13], and more recently [8], will be needed to make the transformation 
practicable. 

3.2. Solvability of the equality program 

Consider the equality subproblem in the positive semi-definite case, the SDQEP(.~¢): 

min f (  x, y )  
T T subject to C.~, x + D~ y = b j .  

This problem has a unique solution only if (C~, D~)  has linearly independent rows, and 
if D~ has rank equal to the dimension of the " l inea r "  variable y. We will call this 
dimension I. Of course, it is only possible for D.~, to have rank l if it has full row rank; 
hence our requirement, discussed in the previous section, that D have full row rank. We 
will assume that the problem is not positive definite, i.e. / >  0. (Otherwise we may 
revert to the original method.) 

Proposi t ion 1. The SDQEP(..~¢) has a unique solution for evet3' choice of bse, p and p 
(land only if I ~ 1  >i g, (C~, D~,) T has fi~ll column rank, and the rank of D~¢ is l. 

Proof. Note firstly that if d = ~ then the SDQEP(z~¢') either has no finite minimum, or 
infinitely many solutions. So I za¢l > 0 is a necessary condition for a unique solution. By 
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standard duality theory results, the SDQEP(~¢) has a unique solution if and only if there 
exists unique x, y and a ~ R Iwl such that 

c T  x .]_ T _ D~y - bse, (1) 

Q x + p - C  a , A = 0 ,  and (2) 

p - D a ,  A=O. (3) 

Eqs. (1) through to (3) hold if and only if 

C T D x 0 b,e 

where the above 3 × 3 block symmetric matrix is denoted by W. So the SDQEP(z~¢) has 
a unique solution if and only if W is nonsingular. Now W is nonsingular implies that W 
has full column rank, so (C~¢ D~, 0) T has full column rank. Hence (C~ D~,) T has full 
column rank. W must also have full row rank, so (0 0 D~/) must have full row rank, i.e. 
D~, must have full row rank. But Do~, is an l × l zV' I matrix, so it must be that I ~¢1 > l 
and the rank of D.~, is 1. 

To prove the converse, we note that if (C~¢ D~,) T has rank [ ,.¢g[ then 

0 it Ds e = C~ Q - ~ C~ + D~ Dse 

also has rank I ~ l  and so is invertible. Let R~, = d~f(C~Q- I C~ + D~,D~,)- J. Since D~ 
has full row rank, D~Rs~D ~ must be invertible. Let S~, be the inverse. Note that both 
R~ and S~ are symmetric. Now to prove the nonsingularity of W it suffices to prove 
the nonsingularity of 

lffd____e f T --I oT 

D~ o 

which is obtained by adding the CTQ-~-fold of the first row of W to the third row, 
dropping the first row and colunm, and then permuting the resulting two rows and two 
columns. The inverse of ~ is explicitly given by 

S.eD~,Rs~ I t -  Sac ] 

so we can deduce that W is invertible and has inverse of the form 

where 

(o-, ( ) c~,= o o ,/~-1 C~Q -1 0 
0 I t 

B~' = ( ( g ~ - ' ) " 1 "  (g t -  ' )"2)  ( C ' Q -  ' 0  It0) , and 4~.= (g ' - ' ) , . , .  tz. 
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In Section 3.4 we discuss G~, and B~, further, since these matrices play an important 
role in the algorithm we develop. The matrix (ap.-l)~.~ is also used directly in the 
algorithm, as will be seen in Section 4.2. 

3.3. The initial active set 

The first point that emerges from Proposition 1 is that the initial active set can no 
longer be empty. It is necessary to start with an initial active set which will meet the 
conditions of Proposition I and which results in a feasible initial dual variable. 

To satisfy the minimal requirements of the initial active set, we need to find ~¢ with 
I,.~¢l = l and D~, nonsingular. The latter condition implies that (C T D T) will have 
linearly independent rows. Now, from Eq. (3), the dual solution to the SQDEP(~ ¢) will 
be given by D~, lp, so the problem of finding an initial active set becomes the problem: 

Find ~ so that 

(i) 1~¢1 = t, 
(ii) D~ is invertible, and 
(iii) D~ ~p >/O. 

This is equivalent to the problem solved in the first phase of the simplex method for 
finding an initial basic feasible solution of a linear programming problem. In this case, 
the linear programming problem would be a problem in A with feasible region given 

by: 

D A = R , and A >~ O. 
This may be solved by any of the usual methods employed for the first phase of the 
simplex method. If this feasible region is empty, then since it is actually the feasible 
region for the dual to the SDQPP, the SDQPP must be unbounded. 

3.4. Matrices for step directions 

In this section, we discuss the matrices B~, and G~,, which are analogous to the 
matrices C~, and H~, of Section 2. They can be expressed explicitly using the matrices 
R~, and Ss¢ from Proposition 1: 

d e f  [ / 
B~=[(IlseI--RsIDTS~D~,)R~,CTQ-' RscDTSst) 

and 

def(Q-'(II~,I--CsgRst(I,~,-DTS~eD~Rse)CTQ - '  ) -Q- 'CstRsgDTS~ I 
G~= 

-SgD~RscCT.Q -l S~, - I L J" 

Recall that both R~ and S~, are symmetric. Clearly G~, is also a symmetric matrix. 
Note that if the problem is actually positive definite, so that l = 0, Ds,, and S~¢ are not 
defined, and R~, = (CTQ - IC~,)-l, then B~, and Gs¢ do revert to the original C~ and 
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In what follows, we will, to a large extent, be imitating the results given in [14] by 
Goldfarb and Idnani for the positive definite case. Here we will be showing why these 
results hold for the new matrices defined above. We claim that, with the modifications 
discussed in Section 4.1 and with the initial active set found as in Section 3.3, the 
SDQPP may be solved by the algorithm given in Section 2, with the matrices C~, and 
H~, replaced everywhere by B a, and G~, respectively. 

For notational convenience, we will from this point onwards be omitting the 
subscripts ~'. To avoid confusion, we will let N be C~ and M be D~,. We will also 
omit the subscript indicating the dimension of an identity matrix. In general, this 
dimension can be inferred from the context. 

The following properties of the matrices B and G will be of use: 

G is positive semi-definite, (4) 

( n T m r ) G ( n ) = o  =0 ( n )  is in the column space of ( N ) ,  (5) 

(Q ~ ) G = I - ( N ) B ,  (8) 

and 

O(o 
The properties (6), (7) and (8) all follow directly from the identity 

('o 0) W_IW = l 
Iis¢ I 

(9) 

(n  T m T 0T)w -1 

and so 

#T  T)w = 

(o) O 
0 (10) 

using W as defined in Proposition I, and property (9) follows easily from (6) and (8). 
Property (4) follows from (9) and the positive definiteness of Q. To prove property (5) 
holds requires somewhat more effort. We firstly observe that if 

(nT mT)G( n ) 

then 
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where (oe /3 ~')T is the unique solution of 

(o) W ~ = 

which is equivalent to 

Q a  + NT ( n 
My = m 

NTtr + MT/3 0 

From (10) we can deduce that 

_ ,~  TQ,~ + 2~,~(NT,~ + MT/3) = 0 
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( l l )  

(12) 

(13) 

(14) 

(15) 

(16) 

and only if 

Gl7f( x, y) = 0 

and 

A= BVf( x, y). 

Proof. ( ~ )  From (2) and (3) we have that 

y, 

and so 

A = B V f ( x ,  y) 

by (7). Also 

G V f ( x , y ) = G ( N ) A  from (15) 

= 0 by (6). 

( ~ ) Conversely, 

~ \ lvt l ) 

and so o ~ T Q a = 0  since from (11), using the last row of W, it must be that 
NTa + MT/3 = 0. Consequently ot = 0 since Q is positive definite. Thus from (12), we 
have that 

m M T  ' 

i,e. (n m) 7 is in the column space of (N M) T. 
The matrices B and G encapsulate the optimality conditions of the SDQEP(off) as 

shown in the following proposition. 

Proposition 2. Primal variables ( x, y) and dual variable A satisfy Eqs. (2) and (3) if 
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=-(Qo 00) G V f ( x ' y ) + V f ( x ' y )  b y ( 8 )  

= V f ( x ,  y) from (13). [] 
We will now prove finite termination of the dual-active-set method for the SDQPP. 

This is just the method given in Section 2 with matrices C£, and H~, replaced by B and 
G, and with the initial active set found as in Section 3.3. The original method is also 
modified to handle the possibility that while some constraint is being activated, a 
deactivation causes M to lose rank. M must have full row rank in order to compute the 
step directions in the way described in Section 2. However step directions can still be 
found, as is shown in the proofs below. A method of finding them is described in 
Section 4.1. 

The following definition is used throughout the proof. 

Definition 1. A triple (( x, y), za¢, j )  is said to be a V(violated)-triple if M ÷= deeDse u ~Jl 
has rank l, (N + M+) T has full column rank, where N+=defC~,u{ D, 

s j (x ,  y) < 0 

where si(x, y)=defc~x + d ~ y -  b e is the slack in the ith constraint, 

st(x,  y )=O,  Vi~za¢, (17) 

G + ITf(x,  y) = 0, and (18) 

a + ~fB + V f ( x ,  y) >t O, (19) 

where G+=defG~,o{k and B+=derB~,u{D. 

In the dual-active-set method, throughout the activation of some constraint j, the 
triple ((x, y), ,,~, j)  is always a V-triple. The following lemma shows that if we start 
with a V-triple, and move a short distance along the primal-dual step direction 
((z, w), r) defined by the B and G matrices, then the result is again a V-triple. It also 
shows that if we take a step of length 

dee Sj( X, y )  

" - + a f t "  

then we reach a solution of the SDQEP(srI U {j}). 
Lemma 1. Let (( x, y), d ,  j) be a V-triple and consider points of the form 

where s > 0 and 

= c  d, (21) 
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Then 
c+ vf(~, y)=0, 
Si(X , y )  = 0 ,  V i ~ ' ,  and 

S + V f ( ~ , y ) = ~ + + s  1 

where 

and 

(') s;(i, y) =sj(x, y) +s(z T w T) dj " 

Proof. The following can be proved directly from definitions: 

and 

= 

Now 

G+Vf(x'y)=G+Vf(x'y)+sG+( Qz)O by(27) 

=,o+(;/(7) 
= 0 by ( 6 ) ,  

and for each i ~ .~¢, 

Si( ~, y)~--'Si(X , y) +s(c~ dTi )( Z ) 

= 0 by ( 6 ) .  

In addition, 

by (18) and (28) 

by (17) and (21) 

8+vf(~, y) =8+ Vf(x, y) +sB+(QoZ ) 

= X + + s ( l r  ) by (7). 

Eq. (26) follows straight from the definitions. [] 

by (27) 

by (19) and (28) 

(22) 
(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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It is obvious from (4), (5) and the definition of a V-triple that 

/ (z T w T) dT)a > 0  (30) 

and so from (26) in the above lemma we can see that s < t I if and only if sy(~', y)  < 0 
and s = t I if and only if s i ( i ,  y)  = 0. Now by Proposition 2, we have that if s = t I and 
B + 17f(~-, y)>~ 0 then (~', y)  solves the SDQEP(~CU {j}). Otherwise, there is some 

largest s = t  2 < t  t with B + V f ( 2 ,  y ) > / 0  and with some component of A + - t 2 r  
decreased to zero. If k ~ ~¢ is the constraint corresponding to this component, and 
( i ,  y)  is given by (20) with s = t 2, then ((2,  y), ~¢\{k}, j )  is a V-triple. This is 
proved in the following theorem. However we first prove that M~\ck ) must have full 
row rank, which is a necessary condition for ((2", y), aaC\{k}, j )  to be a V-triple. 

L e m m a  2. 
A++ tl(q r) 

satisfy: 

t 2 = min = 
iE~¢, ri>O ~ r i J r k 

+ has full  row rank. Then M~,\{k} 

Let  (( x, y),  .~g, j )  be a V-triple, r be defined by (25), and suppose that 

O, where A + is defined by (19). Let t 2 and the constraint k be chosen to 

(31) 

Proof.  We have that 

M + ( l r )  = 0  from (28) 

and r k > 0 from (31), so 1( / 
d k = - -  d 1 -  Y~. rid i • 

rk ie.~,{k} 

Hence the column space of  M is contained in the column space of + M~,\ik}, so rank 
+ + has full (M)  ~< rank(M~,\{~}). But rank (M)  = l, so rank (M~,\{k)) = l and thus M~,\{kl 

row rank. [] 

Theorem 1. Given (( x, y), 3g, j )  a V-triple and r defined by (25), /f A + -  t lr  >~ 0 set 

s = tl; otherwise set s = t 2 and define k according to (31). Define ( i ,  ~) by (20) and 

(21). Then 

Sj( i ,  y )  ~ Sj( X, y)  (32) 

and 

f (  -~, y )  >~f( x ,  y ) ,  (33) 

with f ( ~ ,  ~ ) = f ( x ,  y)  i f  and only i f  s =  t 2 = O, or A~f = 0 and z =  O. Furthermore, i f  
s =  t 2 then ((~:, ~), ~¢\{k}, j )  is a V-triple. In addition, if s = t I then ( i ,  ~) solves 

the S D Q E P ( ~  U { j}). 
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Proof.  The inequality (32) follows directly from Lemma 1 via (26) and (30). Now from 
the definition of ( 2 , ) ) ,  

f (  2, y) - f (  x, y) = s(z T w T) Vf( x, y) + ½s2zTaz. 

Since f ix ,  y), .s¢\{k}, j )  is a V-triple, G + 7 f ( x ,  y)  = 0 and hence 

( N ÷ ) B +  Vf( x, y )= M+ Vf( x, y) 

M ÷ M dj hf " 

Consequently 

c t  + 
= G  dt hj from (6) 

and hence (c;) 
(z T wT)V:(x, Y)=V( y d7)C at 

So 

.(c') f (2 ,  ) ) - f ( x ,  y )=sh f ( c ' f  d~')G~d j +½s2zTQz>~O (34) 

by (5) and the definition of a V-triple, and since s >~ 0 and Af >~ 0 by (19). Now t I > 0, 
since from ((x,  y), ~ ,  j )  a V-triple we have that st(x, y) < 0. Also 

dT~G [ cJ (c: ldt)>o 
by (4), (5) and the definition of  a V-triple, so f ( 2 ,  ~ ) = f ( x ,  y)  if and only if 
s = t 2 = 0, or h f  = 0 and z =  0. We will now prove that if s = t z then ( ( ~ ' , ) ) ,  d \  
{k}, j)  is a V-triple. Firstly, is is clear from (30) and the subsequent discussion that 
sj(2, ~) < 0. It is also obvious from (23) that si(2, Y) = 0 for all i ~.~¢\{k}. Note that 

+ + + 
by Lemma 2, Mg\tk I has full row rank, so G~\tk 1 and Bs:xlk} can be defined. From 
(22) and (24) we have that 

SO 

= 

= 0  

by (6) 
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by the definition of  t 2. Also 

(;) B~c\{k]Vf( x', Y) = A~{,} + t 2 \{k} 

= ( B + V f (  2,  ~) ) \ ( , )  

>I0 

+ ( A~[ - t2rk) B~\(k } d\ by (7) 

by (24) and the definition of k 

since t 2 is chosen so that B ÷ Vf(2 ,  ~)/> 0. This completes the proof that ((2, ~), , ~ \  

{k}, j )  is a V-triple. Now if s = t  1 then B + V f ( 2 ,  y)~> 0 by Lemma 1 and the 

definition of  t I. Setting the new dual variable A~ u ( j /=  B÷ Vf(2 ,  .~), we thus have dual 

feasibility. In addition, (2 ,  ~) and A~,uU I satisfy the optimality conditions for the 

S D Q E P ( J  D {j}) by (22) and Proposition 2. We also have primal feasibility by (23) and 

since sj(2, ~) = 0 by (26) and the definition of ft. Hence (~', Y) and A ~ u u )  solve the 

S D Q E P ( ~ U  (j}). [] 

In order to prove finite termination of the algorithm, we require that the objective 

function be non-decreasing at each step, and be constant for at most a finite number of  

steps in succession. Theorem 1 shows that if we start from a V-triple, then our step will 

not decrease the objective function. However, if s = t 2 = 0, or k + = 0 and z = 0, then 

the objective function will be constant (otherwise it will increase). These two conditions 

under which the objective function will be constant can occur only a finite number of  
+ 

times in succession since from (29) we see that 2t; can only be zero as long as s = 0, 

which can only occur if s = t 2 = 0, but each time s = t 2 = 0 we can remove a constraint 
from the active set to obtain a new V-triple; clearly this can be done at most a finite 

number of  times. Thus Theorem 1 alone would be sufficient to furnish a proof of finite 
termination of the algorithm, provided that at the start of each activation ((x, y), ae, j )  

is a V-triple. If  ((x,  y), a¢, j)  is not a V-triple at the start of some activation, then since 
(x,  y)  solves the SDQEP(o~), it must be that (N + M+) v does not have full column 

rank, i.e. (cj d )  v is in the column space of (N  M)  T. In this case, (z  w) v = 0 by (6). If  

r ~< 0 then A~, - sr >1 0 for all s > 0, so the dual problem is unbounded and hence the 

primal problem is infeasible. Otherwise, some constraint k will be dropped from the 

active set so that ((x,  y), aC\{k}, j)  is a V-triple. This is proved in the theorem below. 
In this case there is no change in the objective function, since the deactivation does not 

change the primal variables. 

Theorem 2. Let ( x, y) and )t solve the SDQEP(,.~') and let j fk ag be a constraint with 
s j (x ,  y) < 0 and (cj dj) "r in the column space of  (N  M) T. I f  some component of  r 
defined by (25) is positive, we can drop constraint k from the active set, where k is 
determined by 

- -  = m i n  , 

r k ic,.¢* ¢, ri> 0 r i ] 

to give ( (x ,  y), aaC\{k}, j )  a V-triple. Otherwise we must declare the problem to be 
infeasible. 



16 N.L. Boland/ Mathematical Programming 78 (1997) 1-27 

Proof. Suppose that r ~< 0 and the SDQEP(,~¢ tO {j}) is feasible. Then there exists some 
feasible solution 

of the SDQEP(,a¢ U {j}). So s i ( i ,  ~) = 0 and hence 

it: .:/(:)>0. 
Now since (c] dj)V is in the column space of (N M) "r, it must be that 

by (25) and (7), so 

rV(N "r M ' r ) ( z )  > 0. (37) 

But si(~', ~) = 0 and si(x, y) = 0 for all i ~ so' so 

which contradicts (37). Thus the SDQEP(,.~ ¢ to {j}) must be infeasible. 
+ + T If r4~ 0 then we have k defined by (35) with r k > 0. Now (N.~,\lk} M~,\{k}) has full 

column rank from (36) and since (N M) r has full column rank. From (36) we have that 

( ) =  {(  ) ( c i ) }  (38) c k 1 c) _ E ri dl 

which can be used to show that the column space of M is contained in the column space 
of M~,\{k/. Since M has full row rank, it must be that M~,\lk} does too. We have that 
si(x, y) = 0 for all i ~sC\{k} since (x, y) solves the SDQEP(.~¢). From Proposition 2, 
we also have that 

d i rt. iE.~'x,{k} 

() (c) 
Cj _ E ri d~ 
d i iE~"x{k} 

Ns~\lk} A k) + 

M~k{k} 

and so 

(7,) B~\{k}I7f( x, y) = + - -  ~> 0 
r k 1 

by (7) and (35). 
V-triple. [] 

by (38) 

Also G~\{k}lTf(x, y ) =  0 by (6). Hence ((x, y), ,~e\{k}, j)  is a 
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If (x,  y) solves the SDQEP(~¢) before some activation, say constraint j is to be 
activated, and if (7,  ~) is the solution after activation, so (~, ~) solves the SDQEP(~¢ 

U {j}) where ~ c_~¢, then f(~' ,  ~ ) > f ( x ,  y) by Theorems 1 and 2. Furthermore, such 

an (~', ~) will be reached in a finite number of steps, since each time h + -  tlrT~ 0, s is 
set to t 2 and a constraint is dropped from the active set; the active set is finite so this can 

only occur a finite number of times. So an active set can never re-occur, and since there 
is only a finite number of possible active sets, the following theorem must hold. 

Theorem 3. The algorithm will solve the SDQPP, or indicate that it has no feasible 
solution, in a finite number of steps. 

4. The dual-active-set method for positive semi-definite quadratic programming 

In Lemma 2 we showed that during an activation it was impossible for M + to lose 

rank. However in the original Goldfarb and Idnani method, the step direction would be 
determined using B and G, not B + or G +. Unfortunately, we cannot guarantee that M 
will not lose rank after the deactivation of some constraint. If this occurs we cannot 
calculate B or G and hence cannot obtain step directions using these matrices. Instead 
we "look ahead" by calculating the primal-dual solution of the SDQEP(~/U {j}) using 

B +, G + and ((qt+)-I)t .  t, and obtain the step direction from the difference between this 
solution and the current variables. In the following section we show how this can be 
done and prove that we can still guarantee finite termination of the algorithm. In Section 
4.2, we present the complete dual-active-set method for positive semi-definite quadratic 
programming and illustrate its operation using a small example. Finally, we indicate 
how one might proceed towards a numerically stable implementation of the method. 

4.1. The look-ahead method for deactivation 

From results in Section 3.2, it can be seen that if (~, .~) and A solve the 
SDQEP(,~¢ U {j}) then 

( y )  =(B+)Tb~,uD]-G+( p ) (39) 

and 

"A=B + Vf( ~, ~). 
If (x,  y) and A + are the current variables, we choose the step directions 

and 

tl 

where 

t,  = - V "  (40) 
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(Below we give efficient formulae for calculating these directions.) The step length t z 

can be calculated as before from r and A +. Using these step directions and step lengths, 
the algorithm can proceed as before. We will prove that the same results hold for these 
step directions as hold for the original directions, and so guarantee finite termination of 
the modified "look-ahead" algorithm. Note that during an activation, the "look-ahead" 

method only comes into effect after a deactivation, so we must have ((x, y), ,a¢, j )  a 
V-triple by the theorems in the previous section. 

Lernrna 3. The step length t I is non-negative,  and  i f  t I is zero then -A is feasible,  i.e. 

Proof. B + is defined in terms of two submatrices, which we will call B~- and B~-, i.e. 
B += (B~ B~). Similarly, G + is defined in terms of three submatrices, which we will 

call G~.,, G+I,2 and G~. 2, i.e. 

a + ~  1,1 . 

(o72) T o ; :  

Using these submatrices, we have that 

V b + G + ~ ' = ( B 1  +) , ~ u { j ) - G l , l P  - t .2P, 

and 

_ "rb  _ G + G + y = ( B ~ )  .~¢u{j3 ( 1.2)TP- 2.2 P 

from (39). We can find a similar form for x and y from the definition of a V-triple: 

I , ~ P -  ].2P, 

and 

= - -  2,2 P 

where 

fl = e'f x + d ] y.  

Hence 

+ r  0 
~ ' - x = ( B t )  ( ~ )  (41) 

where 

3 =  - s j ( x ,  y ) > O .  

Now 

vf(y, y) -8+Vf(x, y) 
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by (41), so if y is the j th row vector in B~ ,  then 

tj = -Aj - h f  = ~yQy'r >t 0 

since Q is positive definite and 6 > 0. [] 

The results developed in the above lemma show us how we may efficiently update 
the primal and dual variables in " l ook -ahead"  mode. From above, using B, G and 

(~-~)1.1 updated after j has been added to the active set, we see that 

~ - - A  += -- Sj( X, y ) (  aI-t- ¿) l , le  j 

since (aP'-l)l, l = B 1 Q ( B t )  T, and 

2 (BTej  I 

where e j E  [~1.¢l is the unit vector for constraint j. Efficient factorizations of B and 
( ~ - l ) t .  1 are given in Section 4.3. 

If  we are given a V-triple ((x,  y), ,~¢', j) ,  and calculate t t = 0 from (40) then since 
(2 ,  ~) solves the SDQEP(,.~¢ U {j}) (by definition) and ] ~> 0 (by the above lemma), we 
can add j to Ja¢ and set (2 ,  ~) and A to be the new variables. In the case that t~ > 0, we 
obtain new variables as described in the following theorem, which parallels Theorem 1. 

T h e o r e m  4. Given ( (x ,  y), ~¢, j),  a V-triple, and step directions and step lengths as 
defined above, with t I > O, i f  A + -  t i r  >~ 0 set s = t~; otherwise set s = t 2 and set k to 
be the constraint chosen to deactivate. Then 

# ( 2 ,  y )  >_.#(x, y )  

and 

f ( 2 ,  ~) >~f(x ,  y )  

where 

Furthermore, if s = t 2 then ((.~, .9), ~¢\{k},  j )  is a V-triple. In addition, i f  s = t I then 
(2 ,  .9) solves the SDQEP(,,~¢ U {j}). 

Proof .  Since sj(2,  ~) = 0 we have 

sj( 2, 33) = 1 - s j ( x ,  y ) ,  (42) 

so because s >~ 0 and sj(x,  y ) <  0, it must be that sj(2,  .9)~ s j (x ,  y). Now 

i 2 T f ( 2 , . 9 ) - f ( x ,  y ) = s ( z  -r w V ) V f ( x ,  y ) + 2 s  Z a z  
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and 

Vf( x, y) = M+ A + 

from the properties of a V-triple. Also 

(zT wT) M+ = ,-T 

and hence 

s 
f ( ~ ,  -9) - f ( x ,  y ) =  ~ 6 A f  + ½s2z+Qz 

which is non-negative, since tl, ~ > 0, S, A; >~ 0, and Q is positive definite. 
To prove that if s = Q then ( ( .~ , ) ) ,  :~' \{k}, j )  is a V-triple, we firstly note that 

since & < tz, si(.~, -9) < 0 by (42). It is also obvious that si(.9, -9) = 0 for all i ~ .~ ' \ {k} .  
The following can be proved directly from definitions: 

and 

Vf( ~, -9) = Vf( x, y) + t2( Qz ) 

= ( N : ) ( A + +  Q ( l r ) ) .  

Hence 

+ +(,) = + - b y  ( 6 )  G~\{k}Vf( x, -9) (Ak Qrk)G~\{k} d k 

= 0  

from the definition of t 2 and k. Also 

( / + (') + + --rk{kl +(A-~-Qrk)B~/\{k } dk BsJk{k)Vf( .~, .9) = Ak{k} + t z 1 

= A~{~} + t 2 \{k} by the definition of k 

>/0 

from the definition of t 2. This completes the proof that ((.~, -9), ~ ' \ { k } ,  j )  is a V-triple. 
Now if s = t~ we have that (~,  -9) is just ( ~ , ) ) ,  which is defined to be the solution 

of the SDQEP(.~'t.A {j}). [] 

This theorem, together with the theorems in Section 3.4, furnish proof of finite 
termination of the dual-active-set method with look-ahead deactivation which we present 
in the section below. 
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4.2. The dual-active-set algorithm 

In this section, we present the dual-active-set-method with look-ahead deactivation 
for solving positive semi-definite quadratic programming problems. The theorems given 
in Sections 3.4 and 4.1 prove finite termination of this algorithm. An implementation 

issue with this algorithm is the selection of the primal infeasible constraint to activate. 
Like Goldfarb and Idnani, we suggest selecting the maximally primal infeasible con- 

straint, i.e. the constraint with the most negative s f x ,  y). Results for network optimiza- 
tion problems given in [2] as well as those of  Goldfarb and Idnani for the positive 
definite case, testify to the efficacy of this strategy. 

4.2.1. The algorithm 
The dual-active-set method with look-ahead deactivation is presented below. 

Find initial 5g as described in Section 3.3 and calculate B, G and (~-i)~.~. 

_ a n d  X , - -  Set (y) ~ (8~b~,) ( ~ - I ) l , l  b.~, + 
while =lj with s j (x ,  y)  < 0 do 

Set A ~ (~), lookahead ~ FALSE and deactivating ,,-- FALSE. 
Set (~) ~ G(~)  and r ~ B(~).  
if  (z) e 0 then set t I ~ -s j~x ,  y ) / (cTz  + dVw) 
else if r ~< 0 then STOP (the problem is infeasible) 
if Q.) = 0 or A + f i(- f)  ~ 0 then deactivating ~ TRUE. 
while deactivating = TRUE do 

Set t 2 ~ m i n ~  ~,. ~,> 0{Ai/r~} and set k ~ 5 g  to be the constraint which achieves 
this minimum. 

Set (~) ,,-- (~) + t2(~), A ~ A\~k~ + tz(-%,~0, and .a¢ ~ ..~¢\ {k}. 
if rank ( D ~ )  < l then 

Set lookahead ~ TRUE and ..~' ~..~¢ U {j}. 

Update B, G and (~-~)~,~ to reflect the exchange of  constraints k and j in the 
active set. 

else if  lookahead = FALSE then 
Update B, G and (qt-t)t,~ to reflect the removal of  constraint k from the active 
set. 
Set (~) ~- G(~ )  and r ~ B(~) .  
if (~) :# 0 then 

Set t I ~ - s j ( x ,  y ) / (c~z  + d~w). 
if A + tt(--t r) >~ 0 then deactivating ~ FALSE. 

else if r ~< 0 then STOP (the problem is infeasible). 
else 

Update B, G and (XV-I)LI to reflect the removal of  constraint k from the active 
set. 

endi f  

if lookahead = TRUE then 
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Set p ~  - s t ( x ,  y)(q : - l ) l . t e  ~ and t] ~ / . t j .  
i f  tj > 0 then  

x-- zB~ei~ 
Set (~) ~ - s f l x ,  y ) / t l te~ef  and r *-- - ( 1 / t l ) p \ { j  ]. 

else (t I = 0) 
X \/BTIej'~ 

Set (~.) ~ (y) - st(x, Y)~B~ef and A ~ A + Ix. 
endif  

if t i = 0 or A + ti(-~ r) >1 0 then deactivating ~- FALSE. 

endif  

enddo 

if t I > 0 then set ( ; )  ~- (~) + t,(~) and A ~ A + t](l~). 

if lookahead = FALSE then  

Set ,~' ~ , ~  O {j} and update B, G and ( ~ -  I)Li tO reflect the addition of  j to the 

active set. 

endif  

enddo 

Notice that if it is desired, the look-ahead method could be used throughout the 

algorithm, except in the event that the constraint to be added to the active set is linearly 
dependent on the already active constraints. 

4.2.2. A sample problem 
We will illustrate the operation of  the positive semi-definite dual-active-set algorithm 

using the following example: 

rain x~ + x 2 

subject to x~ + x  2 >/ 1, and 

x] + 2 x ~  >~ 2. 

The feasible region and lines of constant objective function for this problem are shown 

in Fig. 1. Clearly the solution for this problem is at x~ = 0.25 and x 2 = 0.875. The 
minimum value is 0.9375. The values of  the current primal variables at each stage of  the 
algorithm are indicated in Fig. 1. 

Consider how the algorithm would operate on this problem if the initial active set is 

3a¢= {1}. B, G and ( ~ - I ) l .  I are calculated: 

( )  B = ( 0  I ) ,  G = 2 ~ 
1 1 ' 

--5- 5- 

Primal and dual variables are computed: 

(') = , and A = ( 1 ) .  

I N o w s 2 ( x , y ) = - 5  < 0 so j =  2 and we set 

1 

and ( g ' - ' ) , . ,  = (0) .  



N.L. Boland/ Mathematical Programming 78 (1997) 1-27 23 

iiiiiiiiiiiiiiii.iiiii.ii i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii~iiiiiiii. 

- 1 7 i " . - i i ' i - i - - i ' ~ i .  . . i - ~ ' - ~ i .  1 1 1 1 1 - 7 ' . 1 ' 1 ' i . . . . . ' . . . . .  
. . . . .  , . ~ 1 . -  . , . . . ,  . -  - ,  . . , " , ~ . .  , . . . , . . . . . . . . . . . . . . . . . . . . . . . . .  

• - I f ,  , , -  ' - - . , . .  , . -  • - x - . , . .  - . . . - . . . - . . . . . .  - . - . . . . . . - .  

~ ! ' i i i i i i i i i i i l l  i i i i i i i i i i i i i i l)kiii i i i i i i i i i i i i i i i i i i i i i i i l l l i i i i l l l l 
~ + 2 ~ = 2 ~  /" ~ i - "  ~,r .-. ' . , - - ' . \ ' . - . ' . ' . . . . ' - - . . ' . ' . - . - . ' . .  

, . ~ ,  • > ~  , . . . . - . \  • . . . . .  • , , . . . . . . . . . . .  

' / ~ - - ,  - . .  - k . , - - ~ . - - i - i - i - i - . - . . i - i - i - . . . -  
/ / 

/ /~," 0.75 
/ / /  

/ / / / /  .0-.~ 

( ~( I I , f  

- - / 1  I / /  

/ / 
/ / 

/ / 

- . -:- .  - " " ~ - i i x i - i i - i \ i - i i i ?  • i . . . .  i-i- " -?-',-.<-.- . . . \ . . . . . . . . . . . . . . . .  

. . . , . . . ~ . .  ~...- . . - . . . . -  , i ~ . i . . . .  .. 

- - ,  -.2\1.2.2-i.i.i.i.2.2-1.2 

• \ • . . - .  

z~ + :~2 increas ing  > 

i i i i i i i i '  I feasible region 

lines of cons tan t  ob jec t ive  funct ion  

Fig. 1. The feasible region and lines of  constant objective function for the sample problem. The primal 
variables at each step of the algorithm are indicated. 

Also  lookahead is set to FALSE,  (') F =  ( 2 ) .  tw! I 
7 

Since  ( z  w) ~ 0 we  set t I = -s2(x, y)/(cyz + dTw) = I. N o w  t I > 0 and 

- 1 ) 9 0  
l 

so it must be that some dual variable will become infeasible as a result of  making 

constraint 2 active. To determine how far we should m o v e  in the current direction we 

compute 

rain [ A--Zs / 1 
f 2 =  

iE~  ¢, r,> O ~ ri J = -2 



24 N.L. Boland/ Mathematical Programming 78 (1997) 1-27 

and set k =  I. Moving the primal and dual variables in the current direction, and 
removing k from the current active set, we get 

() 3 
7 

and .~ = 0- Now the rank of D~ is 0 which is less that l = 1, so we set lookahead to 

be TRUE, add j to ~ so that ~ ' =  {2}, and update B, G and ( g r  J)l,l: (, ,) ( ') B =  0 ~ , G = , , , and ( g r - n ) , . , = ( 0 ) .  
4 

Since lookahead is now TRUE, we calculate ~ = (0) and t I = 0. Noting that s2( ¼, -}) 
- -  I 4, we set the primal and dual variables to be: 

x 5 + = 7 and A = . 
Y = -3 4 -4 B~(1) 

This solution is primal feasible, so the algorithm terminates with the optimal solution. 

4.3. Towards a numerically stable implementation 

Our primary purpose in this paper is to show that, in theory, the Goldfarb and Idnani 
dual-active-set method can be generalized to the positive semi-definite case. However 
we feel that some discussion of the issues involved in a practical implementation of the 

method is warranted. This discussion is not intended to be complete or exhaustive; in 

fact we expect there to be many ways of effecting a practical implementation of the 
method we have presented. We include the material in this section only to indicate that it 
is possible to express the necessary matrices by way of  numerically stable factorizafions. 

We do not intend that this be the most efficient or effective representation. 

The method we presented in the previous section relies on the complicated matrices 
B and G to compute the search directions. In practice, these matrices are unlikely to be 
useful as computational tools. However we can express them in terms of matrix factors 

obtained from numerically stable factofizations which are analagous to those described 
by Goldfarb and Idnani. These factorizations are based on a Cholesky factofization 

Q = EL T (43) 

of the positive definite symmetric matrix Q, a QR factorization 

Q2, Q22 ( ~ )  (44) 

of the (l + q) x m matrix 

and a QR factorization 
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of the q × m matrix 

U = R-TMT = Q21~v. (47) 

L is a q × q lower triangular matrix, R is an m × m upper triangular matrix, ~9 is a 

(q + l) × (q + l) orthogonal matrix, partitioned so that Qll has q rows and m columns, 
is an l × l upper triangular matrix, and Q is an m × m orthogonal matrix, partitioned 

^ def 
so that QI has l columns, where m = I ~¢1. Using (43)-(47), we obtain 

R = R - I R  -T and S = / ~ - l R  - r ,  
and hence that 

and 

1 

L - T ( I q - -  011020TQTI)L -1 - - L - T 0 t l Q I  ~ - T  
a= 

1 ^ 

This can be simplified slightly if we store and maintain V L =defL-'rQt I and V 2 =da  

~ - ~ 0 T  rather than Q,l and Q,, since 0l ,  only ever appears in conjunction with L - r  
and ~T only ever appears in conjunction with ~ - i .  

4.4. Relationship with a primal  active set method applied to the dual problem 

As Fletcher [9] observes, the dual iterates produced by the Goldfarb and Idnani 
method are identical to those that would be produced by applying a primal active set 
method (such as those described in Chapter 10.3 of [9] or in [11]), to the dual problem. 
The key differences are in the implementation. 

Difficulties caused to a primal active set method by degeneracy of the constraints in 
the equality problem are avoided in the Goldfarb and Idnani method because the only 
constraints in the dual problem are the nonnegativity constraints; these cannot lead to 
degeneracy. This property would appear to fail in the case of the semi-definite problem 
we wish to solve, where the dual constraints are DA = p  and A/> 0. In this case the 
equality problem solved by a primal active set method to determine the dual step tt  
would be 

min ½ I t T ( c T Q - ' C ) i t  -- (CTQp + b)Tlx 

subject to Dit  = 0, 

tz i = O V i ~.~g 

which is equivalent to 

1 T T -1 ( N T Q p  + bs:)Ti t~ min 2it~e(N Q N ) i t ~ - -  
/ 

subject to Mits¢ = 0. 

It is not obvious that these constraints could not become degenerate. However, noting 
that a primal active set method applied to the duaI problem is always in " look-ahead" 
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mode, we see that Lemma 2 in effect proves exactly that: degeneracy of  the constraints 

in the dual equality problem is still avoided. 

We observe that the algorithm we have presented preserves the property that the dual 

iterates produced correspond to those that would be produced by a primal active set 

method applied to the dual problem. Again, the benefits of  the implementation we 

present are, in comparison, commensurate with those of the Goldfarb and Idnani 

method. 

5. Conclusions 

We have presented a very natural extension of  the Goldfarb and Idnani dual-active-set 

algorithm for positive definite quadratic programming which enables positive semi-defi-  

nite problems to be solved. Matrices analogous to those used by Goldfarb and Idnani for 

determining search directions were defined, and new initial conditions for the algorithm 

were developed. These conditions meant that there needed to be, in some sense, a 

" l ower  bound"  on the active set, as well as the "uppe r  bound"  already encountered in 

the original method. In the original method, (and also in this one), the constraints in the 

active set must be linearly independent; our new conditions imply that the constraints in 

the active set must span a certain subspace. In order to maintain this condition, we 

introduce a new method of obtaining search directions, the " l o o k - a h e a d "  method. We 

have proved in this paper that the resulting algorithm will terminate in a finite number of  

iterations with the solution to the positive semi-definite programming problem. Although 

we do require that our problem be in a special form, we have shown that this not a 

restrictive requirement. In addition, we have indicated that the matrices we use to 

determine search directions are amenable to numerically stable implementation. 
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