
Mathematical Programming 78 (1997) 1-27

A dual-active-set algorithm for positive
semi-definite quadratic programming

N . L . B o l a n d *

Department of Matheraatics, University of Melbourne, Parkville, VIC 3052, Australia 1

Received 1 February 1993; revised manuscript received 12 March 1996

Abstract

Because of the many important applications of quadratic programming, fast and efficient
methods for solving quadratic programming problems are valued. Gotdfarb and Idnani (1983)
describe one such method. Well known to be efficient and numerically stable, the Goldfarb and
Idnani method suffers only from the restriction that in its original form it cannot be applied to
problems which are positive semi-definite rather than positive definite. In this paper, we present a
generalization of the Goldfarb and Idnani method to the positive semi-definite case and prove
finite termination of the generalized algorithm. In our generalization, we preserve the spirit of the
Goldfarb and Idnani method, and extend their numerically stable implementation in a natural way.
© 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

Keywords: Quadratic programming; Positive semi-definite; Convex optimization; Active-set method

1. Introduction

Quadratic programming has a long history and a multitude of application areas. In

recent years, quadratic programming methods have become increasingly important

because of their relevance to algorithms for solving general nonlinear convex program-

ming problems (see, for example, the methods discussed in [12,9,30,16,17,21-23,26,27],

and more recently [19]). Lin and Pang [18] give a thorough survey of quadratic

programming methods.

Quadratic programming methods in the class known as active-set methods have had

significant success. They are usually more memory efficient than methods of other types

" Supported in part by ATERB, NSERC and the ARC.
1 Much of this work was done in the Department of Mathematics at the University of Western Australia and

in the Department of Combinatorics and Optimization at the University of Waterloo.

0025-5610/97/$17.00 © 1997 The Mathematical Programming Society, Inc.
Published by Elsevier Science B.V.
PI1 S0025-561 0(96)00069-X

2 N.L. Boland/Mathematical Programming 78 (1997) 1-27

and often enjoy finite termination. Fletcher [9] describes a number of active-set methods,
while Goldfarb and Idnani [14] present a dual-active-set method for strictly convex
problems. Their extensive computational experience shows their algorithm to be fast as
well as efficient. Powell [24] implemented the Goldfarb and Idnani method, including an
extension to cope with ill-conditioned problems, and found it to compare favourably
with other approaches [25]. The Goldfarb and Idnani method has some other useful
features: it requires no costly first phase to determine a feasible starting point, since it is
a dual feasible rather than a primal feasible method; and it is amenable to specialization,
as the inverse shortest paths algorithm of Burton and Toint [4] and the active-set-on-a-
graph algorithm for network optimization [1-3] and multicommodity flows [10,3] attest.
Its importance as a method with wide applicability is confirmed by Stoer [28], who
develops a related algorithm for solving linear least squares problem. However like a
large proportion of quadratic programming methods, the Goldfarb and Idnani dual~ac-
rive-set method only solves positive definite problems, whereas in practice, problems
may often be positive semi-definite. (Note that in the context of linear least squares
problems, Stoer's method does avoid the assumption of strict convexity of the objective
function.) In this paper we show how the Goldfarb and Idnani dual-active-set method
can be generalized to solve positive semi-definite problems. Our primary purpose is
theoretical: our generalization is intended to provide a theoretical basis for specializa-
tions, such as that given in [2,3], in which the ability to solve semi-definite problems is
highly desirable. However we do give some indication of how issues arising in a
practical implementation might be addressed, and describe a numerically stable imple-
mentation which is a natural extension of that given by Goldfarb and Idnani.

The original dual-active-set method of Goldfarb and Idnani [14] solves the positive
definite quadratic programming problem (PDQPP) described below:

min -~x'r Qx + pr x

subject to CV x >l b

where Q is a symmetric positive definite matrix, ff x is also subject to equality
constraints, the algorithm can be modified appropriately without difficulty. For simplic-
ity, we will not include equality constraints here.

The problem we will be able to solve with the generalized method is called the
positive semi-definite quadratic programming problem (SDQPP), and is the same as the
PDQPP except that Q may now be positive semi-definite. To make the problem easier
to handle we will require it to be in a special form:

def
min f (x , y) = ½x 'rQx+prx+pVy

(x. y)

subject to C V x + D r y ~ b

where the matrix Q is now positive definite, with dimension equal to the rank of the
original matrix. The variables x and y are the partitions of the original variables into
"quadratic" and "l inear" parts. In a network optimization problem with arc-separable
costs, this can be achieved naturally by a re-ordering of the arcs in the network [2,3].

N.L. Boland / Mathematical Programming 78 (1997) 1-27 3

The constraint matrix is also partitioned accordingly. We also require that D have full

row rank, for reasons discussed in Section 3.2. Note that this does not entail any loss of
generality: any SDQPP which is bounded below may be written in the above form,

where Q is positive definite and D has full row rank. Section 3.1 gives a fuller
discussion of this point.

In Section 2 we briefly describe the original dual-active-set method for solving the
PDQPP. In Section 3 we describe conditions under which the equality subproblem
generated by the SDQPP will have a unique solution, and note that these conditions
imply that an initially empty active set may no longer be possible. We then show how to

determine an initial active set. Step directions for the SDQPP are derived and we prove
finite termination of the algorithm in a manner analogous to the proof given in [14].

From this proof, it emerges that under certain conditions, step directions cannot be
determined using the method analogous to that in [14]. In Section 4 we show how step

directions may be determined under these special conditions, and present the complete
algorithm. We also indicate how a numerically stable implementation can be obtained as
a natural extension of that given by Goldfard and Idnani.

2. The dual-active-set method of Goldfarb and ldnani

The dual-active-set method proceeds by solving quadratic equality programs. Given
active set ~¢, the set of indices of the active constraints, the positive definite quadratic
equality program P D Q E P (d) is

rain ½xVQx + pTx

subject to C~x = bs,,

where C~¢ and bse are just the columns and entries of C and b respectively with indices
in z¢. We will use this notational device throughout this section. In addition, we will use
x\~i~ to indicate x with the jth entry removed. For notational convenience, we will
confuse a constraint in ,~¢ with its index in d : if constraint i ~.W is the ruth constraint
in d , then for A E ~1~'~ we will write h i instead of A,,,.

The basic form of the dual-active-set method for the PDQPP is given below, where
the vector A is the dual multiplier of the constraint equations.

Set s¢ ~ ~3, x ~ solution of the PDQEP(d) , and A ~ 0.
while 3 a primal infeasible constraint j do

Set A + ~ 0.
Find primal-dual direction (z, r) and step length t x > 0 so that
(x + tlz, (~ ') + t1(~r)) solves the PDQEP(~ ¢ tO {j}).
if z = 0 and r ~< 0 then STOP (the problem is infeasible).
while z = 0, or some dual variable would become dual infeasible,
i.e., A~, - tlrT~ 0 do

Find the largest step t 2 >i 0 possible without violating dual feasibility.

4 N.L. Boland/Mathematical Programming 78 (1997) 1-27

Set k *-- index of dual variable which becomes 0.
Set x ~ x + t 2 z and ~ ¢ ~ ¢ \ { k } .

Set A k *-- O, A s / ~ A s / - tzr \{k~, and A +~- A++ t 2.
Find primal-dual direction (z, r) and step length t~ > 0 so that
(x + t l z , (~ :) + t l (] r)) solves the PDQEP(za¢ U {j}).

enddo
Set x *-- x + t I z , A s / u {j} ~ (~e ') + t l (~ ') , and ~ ' ~ ,~ U {j}.

enddo

The condition z = 0 indicates that the addition of j to the active set ~ would result

in the columns of Cs/ becoming linearly dependent. Throughout the algorithm, linear
independence of the active constraints is maintained. Dual feasibility is also maintained,

i.e. A >~ 0 at all times. The algorithm proceeds by activating primal infeasible con-
straints, where each activation might involve some deactivations to ensure dual feasibil-
ity, or linear independence of the active constraints. After each activation, (x, Ag)
solves the PDQEP(~) . Proof of finite termination follows from the fact that each
activation causes a strict increase in objective function.

To find the step direction (z, r), Goldfarb and Idnani use the Moore-Penrose
generalized inverse of C:¢ given by

C ~ = (C ~ Q - ' C ~ ,) - ' ~ C~,QT - ,

and the operator

H s/ = Q - ' (I - C s/ C.~) .

The initial solution of the PDQEP(¢) is given by x = H.~,p, where H s / = Q- t initially.
The dual direction is

r = C~ cj

and the primal direction is

z = H ~ , c j

where c: is the jth column of C. The step length is given by

bj - c f x

tl = CfZ

provided z 4= 0. When A ~ , - t~r ~ 0, the maximum step length possible without violat-
ing dual feasibility is

t 2 = min .
i~a~¢', ri> O

This minimum is achieved by some k E ~ , which is the index of the dual variable which
becomes zero.

Goldfarb and Idnani do not actually compute C~, or H~¢ explicitly, but store
numerically stable factorizations. Each activation or deactivation simply involves a rank
one update of the factorizations.

N.L. Boland / Mathematical Programming 78 (1997) 1-27 5

3. Step directions for the positive semi-definite case

In this section, we show how to determine step directions in the positive semi-definite
case. In doing so, we find that in addition to maintaining linear independence of the
active constraints, we must maintain the rank of the submatrix of the active constraint

matrix which corresponds to the " l inear" variables in the partition. It is not obvious

how to maintain this condition. In this section we prove that it is possible, and in Section
4.1 we describe a method of doing so.

3.1. Determining the special form of the SDQPP

We will show that it is possible to write any SDQPP in the special form we require.

Consider the general SDQPP:

subject to ~T.~ >1 b,

where ~', /~ ~ R q+r, Q is a (q +/") x (q +/ ') symmetric positive semi-definite matrix
with rank q, (~ is a (q +/ ') x c matrix, b ~ R c and q, Y, c > 0.

Firstly, we will show that it is possible to separate the problem into a "quadratic
part" and a "linear part". This will create a problem which is in some sense "partially
separable". The advantages of dealing with partially separable problems are discussed
by Conn et al. in [6], and have been clearly demonstrated in a variety of contexts (see,
for example, [5,7,29]).

In what follows, we will use the notation X,,, to denote an n × m matrix X, and x,~
to denote a vector x e R". Since (~ is symmetric positive semi-definite, there exists an
orthogonal matrix P such that

P T O'P = (QO 0)0

where Q is a q x q positive definite matrix. Replacing ~" by

Xql) def = p-~-

t Yr,
everywhere in the SDQPP, we obtain the equivalent problem:

min ½xTQx + pv x + kTy

subject to CTx +/~Ty >/b,

where

Ph = P ' p and bye = P C.

It only remains to show that i f /) does not have full row rank, then we can obtain an
equivalent problem which does. Suppose /9 has row rank l < 1. Without loss of

6 N.L. Boland/Mathematical Programming 78 (1997) 1-27

generality, we may re-order the rows of 6 , ~ and .7 so that the first l rows o f / 5 are
linearly independent. Let

E(T_/I c = DTc and o'(f_t~l = PTI.

Then D has full row rank and each row of E is linearly dependent on the rows of D,
i.e., there exists Fcr_ ~ such that E = FD. Now provided the SDQPP is bounded below,

the dual to the SDQPP has a non-empty feasible set, i.e. {,~: D ~ = t5} ~ 9, and so
(Jr = F 0 also. Now to transform the problem to our required form, we let

z(~_t)l = yf~ a n d y =) + F T L

Then DTy =/5T.7 and pTy = tST.7. Consequently, the problem below is equivalent to the
SDQPP:

min ~xTQx + pT x + pTy

subject to CT x + DT y >~ b

which is exactly the form of problem we require.

As is shown by the above discussion, the transformation of the SDQPP to the special
form we require presents no theoretical difficulty. However to transform an arbitrary
SDQPP by numerical methods may not be straightforward. In particular, to numerically
determine the rank of 0 and compute the orthogonal matrix P may be difficult. Certain
classes of problem may fall naturally into the required form: network flow problems
[2,3] are an important example of such a class. In general, techniques such as those
discussed in [20,15,13], and more recently [8], will be needed to make the transformation
practicable.

3.2. Solvability of the equality program

Consider the equality subproblem in the positive semi-definite case, the SDQEP(.~¢):

min f (x, y)
T T subject to C.~, x + D~ y = b j .

This problem has a unique solution only if (C~, D~) has linearly independent rows, and
if D~ has rank equal to the dimension of the " l inea r " variable y. We will call this
dimension I. Of course, it is only possible for D.~, to have rank l if it has full row rank;
hence our requirement, discussed in the previous section, that D have full row rank. We
will assume that the problem is not positive definite, i.e. / > 0. (Otherwise we may
revert to the original method.)

Proposi t ion 1. The SDQEP(..~¢) has a unique solution for evet3' choice of bse, p and p
(land only if I ~ 1 >i g, (C~, D~,) T has fi~ll column rank, and the rank of D~¢ is l.

Proof. Note firstly that if d = ~ then the SDQEP(z~¢') either has no finite minimum, or
infinitely many solutions. So I za¢l > 0 is a necessary condition for a unique solution. By

N.L. Boland / Mathematical Programming 78 (1997) 1-27 7

standard duality theory results, the SDQEP(~¢) has a unique solution if and only if there
exists unique x, y and a ~ R Iwl such that

c T x .]_ T _ D~y - bse, (1)

Q x + p - C a , A = 0 , and (2)

p - D a , A=O. (3)

Eqs. (1) through to (3) hold if and only if

C T D x 0 b,e

where the above 3 × 3 block symmetric matrix is denoted by W. So the SDQEP(z~¢) has
a unique solution if and only if W is nonsingular. Now W is nonsingular implies that W
has full column rank, so (C~¢ D~, 0) T has full column rank. Hence (C~ D~,) T has full
column rank. W must also have full row rank, so (0 0 D~/) must have full row rank, i.e.
D~, must have full row rank. But Do~, is an l × l zV' I matrix, so it must be that I ~¢1 > l
and the rank of D.~, is 1.

To prove the converse, we note that if (C~¢ D~,) T has rank [,.¢g[then

0 it Ds e = C~ Q - ~ C~ + D~ Dse

also has rank I ~ l and so is invertible. Let R~, = d~f(C~Q- I C~ + D~,D~,)- J. Since D~
has full row rank, D~Rs~D ~ must be invertible. Let S~, be the inverse. Note that both
R~ and S~ are symmetric. Now to prove the nonsingularity of W it suffices to prove
the nonsingularity of

lffd____e f T --I oT

D~ o

which is obtained by adding the CTQ-~-fold of the first row of W to the third row,
dropping the first row and colunm, and then permuting the resulting two rows and two
columns. The inverse of ~ is explicitly given by

S.eD~,Rs~ I t - Sac]

so we can deduce that W is invertible and has inverse of the form

where

(o-, () c~,= o o ,/~-1 C~Q -1 0
0 I t

B~' = ((g ~ - ') " 1 " (g t - ')"2) (C ' Q - ' 0 It0) , and 4~.= (g ' - ') , . , . tz.

8 N.L. Boland/Mathematical Programming 78 (1997) 1-27

In Section 3.4 we discuss G~, and B~, further, since these matrices play an important
role in the algorithm we develop. The matrix (ap.-l)~.~ is also used directly in the
algorithm, as will be seen in Section 4.2.

3.3. The initial active set

The first point that emerges from Proposition 1 is that the initial active set can no
longer be empty. It is necessary to start with an initial active set which will meet the
conditions of Proposition I and which results in a feasible initial dual variable.

To satisfy the minimal requirements of the initial active set, we need to find ~¢ with
I,.~¢l = l and D~, nonsingular. The latter condition implies that (C T D T) will have
linearly independent rows. Now, from Eq. (3), the dual solution to the SQDEP(~ ¢) will
be given by D~, lp, so the problem of finding an initial active set becomes the problem:

Find ~ so that

(i) 1~¢1 = t,
(ii) D~ is invertible, and
(iii) D~ ~p >/O.

This is equivalent to the problem solved in the first phase of the simplex method for
finding an initial basic feasible solution of a linear programming problem. In this case,
the linear programming problem would be a problem in A with feasible region given

by:

D A = R , and A >~ O.
This may be solved by any of the usual methods employed for the first phase of the
simplex method. If this feasible region is empty, then since it is actually the feasible
region for the dual to the SDQPP, the SDQPP must be unbounded.

3.4. Matrices for step directions

In this section, we discuss the matrices B~, and G~,, which are analogous to the
matrices C~, and H~, of Section 2. They can be expressed explicitly using the matrices
R~, and Ss¢ from Proposition 1:

d e f [/
B~=[(IlseI--RsIDTS~D~,)R~,CTQ-' RscDTSst)

and

def(Q-'(II~,I--CsgRst(I,~,-DTS~eD~Rse)CTQ - ') -Q- 'CstRsgDTS~ I
G~=

-SgD~RscCT.Q -l S~, - I L J"

Recall that both R~ and S~, are symmetric. Clearly G~, is also a symmetric matrix.
Note that if the problem is actually positive definite, so that l = 0, Ds,, and S~¢ are not
defined, and R~, = (CTQ - IC~,)-l, then B~, and Gs¢ do revert to the original C~ and

N.L. Boland / Mathematical Programming 78 (1997) 1-27 9

In what follows, we will, to a large extent, be imitating the results given in [14] by
Goldfarb and Idnani for the positive definite case. Here we will be showing why these
results hold for the new matrices defined above. We claim that, with the modifications
discussed in Section 4.1 and with the initial active set found as in Section 3.3, the
SDQPP may be solved by the algorithm given in Section 2, with the matrices C~, and
H~, replaced everywhere by B a, and G~, respectively.

For notational convenience, we will from this point onwards be omitting the
subscripts ~'. To avoid confusion, we will let N be C~ and M be D~,. We will also
omit the subscript indicating the dimension of an identity matrix. In general, this
dimension can be inferred from the context.

The following properties of the matrices B and G will be of use:

G is positive semi-definite, (4)

(n T m r) G (n) = o =0 (n) is in the column space of (N) , (5)

(Q ~) G = I - (N) B , (8)

and

O(o
The properties (6), (7) and (8) all follow directly from the identity

('o 0) W_IW = l
Iis¢ I

(9)

(n T m T 0T)w -1

and so

#T T)w =

(o) O
0 (10)

using W as defined in Proposition I, and property (9) follows easily from (6) and (8).
Property (4) follows from (9) and the positive definiteness of Q. To prove property (5)
holds requires somewhat more effort. We firstly observe that if

(nT mT)G(n)

then

10

where (oe /3 ~')T is the unique solution of

(o) W ~ =

which is equivalent to

Q a + NT (n
My = m

NTtr + MT/3 0

From (10) we can deduce that

_ ,~ TQ,~ + 2~,~(NT,~ + MT/3) = 0

N.L. Boland / Mathematical Programming 78 (1997) 1-27

(l l)

(12)

(13)

(14)

(15)

(16)

and only if

Gl7f(x, y) = 0

and

A= BVf(x, y).

Proof. (~) From (2) and (3) we have that

y,

and so

A = B V f (x , y)

by (7). Also

G V f (x , y) = G (N) A from (15)

= 0 by (6).

(~) Conversely,

~ \ lvt l)

and so o ~ T Q a = 0 since from (11), using the last row of W, it must be that
NTa + MT/3 = 0. Consequently ot = 0 since Q is positive definite. Thus from (12), we
have that

m M T '

i,e. (n m) 7 is in the column space of (N M) T.
The matrices B and G encapsulate the optimality conditions of the SDQEP(off) as

shown in the following proposition.

Proposition 2. Primal variables (x, y) and dual variable A satisfy Eqs. (2) and (3) if

N.L. Boland / Mathematical Programming 78 (1997) 1-27 11

=-(Qo 00) G V f (x ' y) + V f (x ' y) b y (8)

= V f (x , y) from (13). []
We will now prove finite termination of the dual-active-set method for the SDQPP.

This is just the method given in Section 2 with matrices C£, and H~, replaced by B and
G, and with the initial active set found as in Section 3.3. The original method is also
modified to handle the possibility that while some constraint is being activated, a
deactivation causes M to lose rank. M must have full row rank in order to compute the
step directions in the way described in Section 2. However step directions can still be
found, as is shown in the proofs below. A method of finding them is described in
Section 4.1.

The following definition is used throughout the proof.

Definition 1. A triple ((x, y), za¢, j) is said to be a V(violated)-triple if M ÷= deeDse u ~Jl
has rank l, (N + M+) T has full column rank, where N+=defC~,u{ D,

s j (x , y) < 0

where si(x, y)=defc~x + d ~ y - b e is the slack in the ith constraint,

st(x, y)=O, Vi~za¢, (17)

G + ITf(x, y) = 0, and (18)

a + ~fB + V f (x , y) >t O, (19)

where G+=defG~,o{k and B+=derB~,u{D.

In the dual-active-set method, throughout the activation of some constraint j, the
triple ((x, y), ,,~, j) is always a V-triple. The following lemma shows that if we start
with a V-triple, and move a short distance along the primal-dual step direction
((z, w), r) defined by the B and G matrices, then the result is again a V-triple. It also
shows that if we take a step of length

dee Sj(X, y)

" - + a f t "

then we reach a solution of the SDQEP(srI U {j}).
Lemma 1. Let ((x, y), d , j) be a V-triple and consider points of the form

where s > 0 and

= c d, (21)

12 N.L. Boland / Mathematical Programming 78 (1997) 1-27

Then
c+ vf(~, y)=0,
Si(X , y) = 0 , V i ~ ' , and

S + V f (~ , y) = ~ + + s 1

where

and

(') s;(i, y) =sj(x, y) +s(z T w T) dj "

Proof. The following can be proved directly from definitions:

and

=

Now

G+Vf(x'y)=G+Vf(x'y)+sG+(Qz)O by(27)

=,o+(;/(7)
= 0 by (6) ,

and for each i ~ .~¢,

Si(~, y)~--'Si(X , y) +s(c~ dTi)(Z)

= 0 by (6) .

In addition,

by (18) and (28)

by (17) and (21)

8+vf(~, y) =8+ Vf(x, y) +sB+(QoZ)

= X + + s (l r) by (7).

Eq. (26) follows straight from the definitions. []

by (27)

by (19) and (28)

(22)
(23)

(24)

(25)

(26)

(27)

(28)

(29)

N.L. Boland/ Mathematical Programming 78 (1997) 1-27 13

It is obvious from (4), (5) and the definition of a V-triple that

/ (z T w T) dT)a > 0 (30)

and so from (26) in the above lemma we can see that s < t I if and only if sy(~', y) < 0
and s = t I if and only if s i (i , y) = 0. Now by Proposition 2, we have that if s = t I and
B + 17f(~-, y)>~ 0 then (~', y) solves the SDQEP(~CU {j}). Otherwise, there is some

largest s = t 2 < t t with B + V f (2 , y) > / 0 and with some component of A + - t 2 r
decreased to zero. If k ~ ~¢ is the constraint corresponding to this component, and
(i , y) is given by (20) with s = t 2, then ((2, y), ~¢\{k}, j) is a V-triple. This is
proved in the following theorem. However we first prove that M~\ck) must have full
row rank, which is a necessary condition for ((2", y), aaC\{k}, j) to be a V-triple.

L e m m a 2.
A++ tl(q r)

satisfy:

t 2 = min =
iE~¢, ri>O ~ r i J r k

+ has full row rank. Then M~,\{k}

Let ((x, y), .~g, j) be a V-triple, r be defined by (25), and suppose that

O, where A + is defined by (19). Let t 2 and the constraint k be chosen to

(31)

Proof. We have that

M + (l r) = 0 from (28)

and r k > 0 from (31), so 1(/
d k = - - d 1 - Y~. rid i •

rk ie.~,{k}

Hence the column space of M is contained in the column space of + M~,\ik}, so rank
+ + has full (M) ~< rank(M~,\{~}). But rank (M) = l, so rank (M~,\{k)) = l and thus M~,\{kl

row rank. []

Theorem 1. Given ((x, y), 3g, j) a V-triple and r defined by (25), /f A + - t lr >~ 0 set

s = tl; otherwise set s = t 2 and define k according to (31). Define (i , ~) by (20) and

(21). Then

Sj(i , y) ~ Sj(X, y) (32)

and

f (-~, y) >~f(x , y) , (33)

with f (~ , ~) = f (x , y) i f and only i f s = t 2 = O, or A~f = 0 and z = O. Furthermore, i f
s = t 2 then ((~:, ~), ~¢\{k}, j) is a V-triple. In addition, if s = t I then (i , ~) solves

the S D Q E P (~ U { j}).

14 N.L. Boland/ Mathematical Programming 78 (1997) 1-27

Proof. The inequality (32) follows directly from Lemma 1 via (26) and (30). Now from
the definition of (2 ,)) ,

f (2, y) - f (x, y) = s(z T w T) Vf(x, y) + ½s2zTaz.

Since f ix , y), .s¢\{k}, j) is a V-triple, G + 7 f (x , y) = 0 and hence

(N ÷) B + Vf(x, y)= M+ Vf(x, y)

M ÷ M dj hf "

Consequently

c t +
= G dt hj from (6)

and hence (c;)
(z T wT)V:(x, Y)=V(y d7)C at

So

.(c') f (2 ,)) - f (x , y)=sh f (c ' f d~')G~d j +½s2zTQz>~O (34)

by (5) and the definition of a V-triple, and since s >~ 0 and Af >~ 0 by (19). Now t I > 0,
since from ((x, y), ~ , j) a V-triple we have that st(x, y) < 0. Also

dT~G [cJ (c: ldt)>o
by (4), (5) and the definition of a V-triple, so f (2 , ~) = f (x , y) if and only if
s = t 2 = 0, or h f = 0 and z = 0. We will now prove that if s = t z then ((~ ' ,)) , d \
{k}, j) is a V-triple. Firstly, is is clear from (30) and the subsequent discussion that
sj(2, ~) < 0. It is also obvious from (23) that si(2, Y) = 0 for all i ~.~¢\{k}. Note that

+ + +
by Lemma 2, Mg\tk I has full row rank, so G~\tk 1 and Bs:xlk} can be defined. From
(22) and (24) we have that

SO

=

= 0

by (6)

N.L. Boland / Mathematical Programming 78 (1997) 1-27 15

by the definition of t 2. Also

(;) B~c\{k]Vf(x', Y) = A~{,} + t 2 \{k}

= (B + V f (2, ~)) \ (,)

>I0

+ (A~[- t2rk) B~\(k } d\ by (7)

by (24) and the definition of k

since t 2 is chosen so that B ÷ Vf(2 , ~)/> 0. This completes the proof that ((2, ~), , ~ \

{k}, j) is a V-triple. Now if s = t 1 then B + V f (2 , y)~> 0 by Lemma 1 and the

definition of t I. Setting the new dual variable A~ u (j /= B÷ Vf(2 , .~), we thus have dual

feasibility. In addition, (2 , ~) and A~,uU I satisfy the optimality conditions for the

S D Q E P (J D {j}) by (22) and Proposition 2. We also have primal feasibility by (23) and

since sj(2, ~) = 0 by (26) and the definition of ft. Hence (~', Y) and A ~ u u) solve the

S D Q E P (~ U (j}). []

In order to prove finite termination of the algorithm, we require that the objective

function be non-decreasing at each step, and be constant for at most a finite number of

steps in succession. Theorem 1 shows that if we start from a V-triple, then our step will

not decrease the objective function. However, if s = t 2 = 0, or k + = 0 and z = 0, then

the objective function will be constant (otherwise it will increase). These two conditions

under which the objective function will be constant can occur only a finite number of
+

times in succession since from (29) we see that 2t; can only be zero as long as s = 0,

which can only occur if s = t 2 = 0, but each time s = t 2 = 0 we can remove a constraint
from the active set to obtain a new V-triple; clearly this can be done at most a finite

number of times. Thus Theorem 1 alone would be sufficient to furnish a proof of finite
termination of the algorithm, provided that at the start of each activation ((x, y), ae, j)

is a V-triple. If ((x, y), a¢, j) is not a V-triple at the start of some activation, then since
(x, y) solves the SDQEP(o~), it must be that (N + M+) v does not have full column

rank, i.e. (cj d) v is in the column space of (N M) T. In this case, (z w) v = 0 by (6). If

r ~< 0 then A~, - sr >1 0 for all s > 0, so the dual problem is unbounded and hence the

primal problem is infeasible. Otherwise, some constraint k will be dropped from the

active set so that ((x, y), aC\{k}, j) is a V-triple. This is proved in the theorem below.
In this case there is no change in the objective function, since the deactivation does not

change the primal variables.

Theorem 2. Let (x, y) and)t solve the SDQEP(,.~') and let j fk ag be a constraint with
s j (x , y) < 0 and (cj dj) "r in the column space of (N M) T. I f some component of r
defined by (25) is positive, we can drop constraint k from the active set, where k is
determined by

- - = m i n ,

r k ic,.¢* ¢, ri> 0 r i]

to give ((x , y), aaC\{k}, j) a V-triple. Otherwise we must declare the problem to be
infeasible.

16 N.L. Boland/ Mathematical Programming 78 (1997) 1-27

Proof. Suppose that r ~< 0 and the SDQEP(,~¢ tO {j}) is feasible. Then there exists some
feasible solution

of the SDQEP(,a¢ U {j}). So s i (i , ~) = 0 and hence

it: .:/(:)>0.
Now since (c] dj)V is in the column space of (N M) "r, it must be that

by (25) and (7), so

rV(N "r M ' r) (z) > 0. (37)

But si(~', ~) = 0 and si(x, y) = 0 for all i ~ so' so

which contradicts (37). Thus the SDQEP(,.~ ¢ to {j}) must be infeasible.
+ + T If r4~ 0 then we have k defined by (35) with r k > 0. Now (N.~,\lk} M~,\{k}) has full

column rank from (36) and since (N M) r has full column rank. From (36) we have that

() = {() (c i) } (38) c k 1 c) _ E ri dl

which can be used to show that the column space of M is contained in the column space
of M~,\{k/. Since M has full row rank, it must be that M~,\lk} does too. We have that
si(x, y) = 0 for all i ~sC\{k} since (x, y) solves the SDQEP(.~¢). From Proposition 2,
we also have that

d i rt. iE.~'x,{k}

() (c)
Cj _ E ri d~
d i iE~"x{k}

Ns~\lk} A k) +

M~k{k}

and so

(7,) B~\{k}I7f(x, y) = + - - ~> 0
r k 1

by (7) and (35).
V-triple. []

by (38)

Also G~\{k}lTf(x, y) = 0 by (6). Hence ((x, y), ,~e\{k}, j) is a

N.L. Boland/ Mathematical Programming 78 (1997) 1-27 17

If (x, y) solves the SDQEP(~¢) before some activation, say constraint j is to be
activated, and if (7, ~) is the solution after activation, so (~, ~) solves the SDQEP(~¢

U {j}) where ~ c_~¢, then f(~' , ~) > f (x , y) by Theorems 1 and 2. Furthermore, such

an (~', ~) will be reached in a finite number of steps, since each time h + - tlrT~ 0, s is
set to t 2 and a constraint is dropped from the active set; the active set is finite so this can

only occur a finite number of times. So an active set can never re-occur, and since there
is only a finite number of possible active sets, the following theorem must hold.

Theorem 3. The algorithm will solve the SDQPP, or indicate that it has no feasible
solution, in a finite number of steps.

4. The dual-active-set method for positive semi-definite quadratic programming

In Lemma 2 we showed that during an activation it was impossible for M + to lose

rank. However in the original Goldfarb and Idnani method, the step direction would be
determined using B and G, not B + or G +. Unfortunately, we cannot guarantee that M
will not lose rank after the deactivation of some constraint. If this occurs we cannot
calculate B or G and hence cannot obtain step directions using these matrices. Instead
we "look ahead" by calculating the primal-dual solution of the SDQEP(~/U {j}) using

B +, G + and ((qt+)-I)t . t, and obtain the step direction from the difference between this
solution and the current variables. In the following section we show how this can be
done and prove that we can still guarantee finite termination of the algorithm. In Section
4.2, we present the complete dual-active-set method for positive semi-definite quadratic
programming and illustrate its operation using a small example. Finally, we indicate
how one might proceed towards a numerically stable implementation of the method.

4.1. The look-ahead method for deactivation

From results in Section 3.2, it can be seen that if (~, .~) and A solve the
SDQEP(,~¢ U {j}) then

(y) =(B+)Tb~,uD]-G+(p) (39)

and

"A=B + Vf(~, ~).
If (x, y) and A + are the current variables, we choose the step directions

and

tl

where

t, = - V " (40)

18 N.L. Boland/ Mathematical Programming 78 (1997) 1-27

(Below we give efficient formulae for calculating these directions.) The step length t z

can be calculated as before from r and A +. Using these step directions and step lengths,
the algorithm can proceed as before. We will prove that the same results hold for these
step directions as hold for the original directions, and so guarantee finite termination of
the modified "look-ahead" algorithm. Note that during an activation, the "look-ahead"

method only comes into effect after a deactivation, so we must have ((x, y), ,a¢, j) a
V-triple by the theorems in the previous section.

Lernrna 3. The step length t I is non-negative, and i f t I is zero then -A is feasible, i.e.

Proof. B + is defined in terms of two submatrices, which we will call B~- and B~-, i.e.
B += (B~ B~). Similarly, G + is defined in terms of three submatrices, which we will

call G~.,, G+I,2 and G~. 2, i.e.

a + ~ 1,1 .

(o72) T o ; :

Using these submatrices, we have that

V b + G + ~ ' = (B 1 +) , ~ u { j) - G l , l P - t .2P,

and

_ "rb _ G + G + y = (B ~) .~¢u{j3 (1.2)TP- 2.2 P

from (39). We can find a similar form for x and y from the definition of a V-triple:

I , ~ P -].2P,

and

= - - 2,2 P

where

fl = e'f x + d] y.

Hence

+ r 0
~ ' - x = (B t) (~) (41)

where

3 = - s j (x , y) > O .

Now

vf(y, y) -8+Vf(x, y)

N.L. Boland / Mathematical Programming 78 (1997) 1-27 19

by (41), so if y is the j th row vector in B~ , then

tj = -Aj - h f = ~yQy'r >t 0

since Q is positive definite and 6 > 0. []

The results developed in the above lemma show us how we may efficiently update
the primal and dual variables in " l ook -ahead" mode. From above, using B, G and

(~-~)1.1 updated after j has been added to the active set, we see that

~ - - A += -- Sj(X, y) (aI-t- ¿) l , le j

since (aP'-l)l, l = B 1 Q (B t) T, and

2 (BTej I

where e j E [~1.¢l is the unit vector for constraint j. Efficient factorizations of B and
(~ - l) t . 1 are given in Section 4.3.

If we are given a V-triple ((x, y), ,~¢', j) , and calculate t t = 0 from (40) then since
(2 , ~) solves the SDQEP(,.~¢ U {j}) (by definition) and] ~> 0 (by the above lemma), we
can add j to Ja¢ and set (2 , ~) and A to be the new variables. In the case that t~ > 0, we
obtain new variables as described in the following theorem, which parallels Theorem 1.

T h e o r e m 4. Given ((x , y), ~¢, j), a V-triple, and step directions and step lengths as
defined above, with t I > O, i f A + - t i r >~ 0 set s = t~; otherwise set s = t 2 and set k to
be the constraint chosen to deactivate. Then

(2 , y) >_.#(x, y)

and

f (2 , ~) >~f(x , y)

where

Furthermore, if s = t 2 then ((.~, .9), ~¢\{k}, j) is a V-triple. In addition, i f s = t I then
(2 , .9) solves the SDQEP(,,~¢ U {j}).

Proof . Since sj(2, ~) = 0 we have

sj(2, 33) = 1 - s j (x , y) , (42)

so because s >~ 0 and sj(x, y) < 0, it must be that sj(2, .9)~ s j (x , y). Now

i 2 T f (2 , . 9) - f (x , y) = s (z -r w V) V f (x , y) + 2 s Z a z

20 N.L. Boland / Mathematical Programming 78 (1997) 1-27

and

Vf(x, y) = M+ A +

from the properties of a V-triple. Also

(zT wT) M+ = ,-T

and hence

s
f (~ , -9) - f (x , y) = ~ 6 A f + ½s2z+Qz

which is non-negative, since tl, ~ > 0, S, A; >~ 0, and Q is positive definite.
To prove that if s = Q then ((.~ ,)) , :~' \{k}, j) is a V-triple, we firstly note that

since & < tz, si(.~, -9) < 0 by (42). It is also obvious that si(.9, -9) = 0 for all i ~ .~ ' \ {k} .
The following can be proved directly from definitions:

and

Vf(~, -9) = Vf(x, y) + t2(Qz)

= (N :) (A + + Q (l r)) .

Hence

+ +(,) = + - b y (6) G~\{k}Vf(x, -9) (Ak Qrk)G~\{k} d k

= 0

from the definition of t 2 and k. Also

(/ + (') + + --rk{kl +(A-~-Qrk)B~/\{k } dk BsJk{k)Vf(.~, .9) = Ak{k} + t z 1

= A~{~} + t 2 \{k} by the definition of k

>/0

from the definition of t 2. This completes the proof that ((.~, -9), ~ ' \ { k } , j) is a V-triple.
Now if s = t~ we have that (~, -9) is just (~ ,)) , which is defined to be the solution

of the SDQEP(.~'t.A {j}). []

This theorem, together with the theorems in Section 3.4, furnish proof of finite
termination of the dual-active-set method with look-ahead deactivation which we present
in the section below.

N.L. Botamt/ Mathematical Programming 78 (1997) 1-27 21

4.2. The dual-active-set algorithm

In this section, we present the dual-active-set-method with look-ahead deactivation
for solving positive semi-definite quadratic programming problems. The theorems given
in Sections 3.4 and 4.1 prove finite termination of this algorithm. An implementation

issue with this algorithm is the selection of the primal infeasible constraint to activate.
Like Goldfarb and Idnani, we suggest selecting the maximally primal infeasible con-

straint, i.e. the constraint with the most negative s f x , y). Results for network optimiza-
tion problems given in [2] as well as those of Goldfarb and Idnani for the positive
definite case, testify to the efficacy of this strategy.

4.2.1. The algorithm
The dual-active-set method with look-ahead deactivation is presented below.

Find initial 5g as described in Section 3.3 and calculate B, G and (~-i)~.~.

_ a n d X , - - Set (y) ~ (8~b~,) (~ - I) l , l b.~, +
while =lj with s j (x , y) < 0 do

Set A ~ (~), lookahead ~ FALSE and deactivating ,,-- FALSE.
Set (~) ~ G(~) and r ~ B(~).
if (z) e 0 then set t I ~ -s j~x , y) / (cTz + dVw)
else if r ~< 0 then STOP (the problem is infeasible)
if Q.) = 0 or A + f i(- f) ~ 0 then deactivating ~ TRUE.
while deactivating = TRUE do

Set t 2 ~ m i n ~ ~,. ~,> 0{Ai/r~} and set k ~ 5 g to be the constraint which achieves
this minimum.

Set (~) ,,-- (~) + t2(~), A ~ A\~k~ + tz(-%,~0, and .a¢ ~ ..~¢\ {k}.
if rank (D ~) < l then

Set lookahead ~ TRUE and ..~' ~..~¢ U {j}.

Update B, G and (~-~)~,~ to reflect the exchange of constraints k and j in the
active set.

else if lookahead = FALSE then
Update B, G and (qt-t)t,~ to reflect the removal of constraint k from the active
set.
Set (~) ~- G(~) and r ~ B(~) .
if (~) :# 0 then

Set t I ~ - s j (x , y) / (c~z + d~w).
if A + tt(--t r) >~ 0 then deactivating ~ FALSE.

else if r ~< 0 then STOP (the problem is infeasible).
else

Update B, G and (XV-I)LI to reflect the removal of constraint k from the active
set.

endi f

if lookahead = TRUE then

2 2 N.L. Boland / Mathematical Programming 78 (1997) 1-27

Set p ~ - s t (x , y)(q : - l) l . t e ~ and t] ~ / . t j .
i f tj > 0 then

x-- zB~ei~
Set (~) ~ - s f l x , y) / t l te~ef and r *-- - (1 / t l) p \ { j].

else (t I = 0)
X \/BTIej'~

Set (~.) ~ (y) - st(x, Y)~B~ef and A ~ A + Ix.
endif

if t i = 0 or A + ti(-~ r) >1 0 then deactivating ~- FALSE.

endif

enddo

if t I > 0 then set (;) ~- (~) + t,(~) and A ~ A + t](l~).

if lookahead = FALSE then

Set ,~' ~ , ~ O {j} and update B, G and (~ - I)Li tO reflect the addition of j to the

active set.

endif

enddo

Notice that if it is desired, the look-ahead method could be used throughout the

algorithm, except in the event that the constraint to be added to the active set is linearly
dependent on the already active constraints.

4.2.2. A sample problem
We will illustrate the operation of the positive semi-definite dual-active-set algorithm

using the following example:

rain x~ + x 2

subject to x~ + x 2 >/ 1, and

x] + 2 x ~ >~ 2.

The feasible region and lines of constant objective function for this problem are shown

in Fig. 1. Clearly the solution for this problem is at x~ = 0.25 and x 2 = 0.875. The
minimum value is 0.9375. The values of the current primal variables at each stage of the
algorithm are indicated in Fig. 1.

Consider how the algorithm would operate on this problem if the initial active set is

3a¢= {1}. B, G and (~ - I) l . I are calculated:

() B = (0 I) , G = 2 ~
1 1 '

--5- 5-

Primal and dual variables are computed:

(') = , and A = (1) .

I N o w s 2 (x , y) = - 5 < 0 so j = 2 and we set

1

and (g ' - ') , . , = (0) .

N.L. Boland/ Mathematical Programming 78 (1997) 1-27 23

iiiiiiiiiiiiiiii.iiiii.ii i iii~iiiiiiii.

- 1 7 i " . - i i ' i - i - - i ' ~ i . . . i - ~ ' - ~ i . 1 1 1 1 1 - 7 ' . 1 ' 1 ' i '
. , . ~ 1 . - . , . . . , . - - , . . , " , ~ . . , . . . , .

• - I f , , , - ' - - . , . . , . - • - x - . , . . - . . . - . . . - - . - - .

~ ! ' i i i i i i i i i i i l l i i i i i i i i i i i i i i l)kiii l l l i i i i l l l l
~ + 2 ~ = 2 ~ /" ~ i - " ~,r .-. ' . , - - ' . \ ' . - . ' . ' ' - - . . ' . ' . - . - . ' . .

, . ~ , • > ~ , - . \ • • , ,

' / ~ - - , - . . - k . , - - ~ . - - i - i - i - i - . - . . i - i - i - . . . -
/ /

/ /~," 0.75
/ / /

/ / / / / .0-.~

(~(I I , f

- - / 1 I / /

/ /
/ /

/ /

- . -:- . - " " ~ - i i x i - i i - i \ i - i i i ? • i i-i- " -?-',-.<-.- . . . \

. . . , . . . ~ . . ~...- . . - - , i ~ . i

- - , -.2\1.2.2-i.i.i.i.2.2-1.2

• \ • . . - .

z~ + :~2 increas ing >

i i i i i i i i ' I feasible region

lines of cons tan t ob jec t ive funct ion

Fig. 1. The feasible region and lines of constant objective function for the sample problem. The primal
variables at each step of the algorithm are indicated.

Also lookahead is set to FALSE, (') F = (2) . tw! I
7

Since (z w) ~ 0 we set t I = -s2(x, y)/(cyz + dTw) = I. N o w t I > 0 and

- 1) 9 0
l

so it must be that some dual variable will become infeasible as a result of making

constraint 2 active. To determine how far we should m o v e in the current direction we

compute

rain [A--Zs / 1
f 2 =

iE~ ¢, r,> O ~ ri J = -2

24 N.L. Boland/ Mathematical Programming 78 (1997) 1-27

and set k = I. Moving the primal and dual variables in the current direction, and
removing k from the current active set, we get

() 3
7

and .~ = 0- Now the rank of D~ is 0 which is less that l = 1, so we set lookahead to

be TRUE, add j to ~ so that ~ ' = {2}, and update B, G and (g r J)l,l: (, ,) (') B = 0 ~ , G = , , , and (g r - n) , . , = (0) .
4

Since lookahead is now TRUE, we calculate ~ = (0) and t I = 0. Noting that s2(¼, -})
- - I 4, we set the primal and dual variables to be:

x 5 + = 7 and A = .
Y = -3 4 -4 B~(1)

This solution is primal feasible, so the algorithm terminates with the optimal solution.

4.3. Towards a numerically stable implementation

Our primary purpose in this paper is to show that, in theory, the Goldfarb and Idnani
dual-active-set method can be generalized to the positive semi-definite case. However
we feel that some discussion of the issues involved in a practical implementation of the

method is warranted. This discussion is not intended to be complete or exhaustive; in

fact we expect there to be many ways of effecting a practical implementation of the
method we have presented. We include the material in this section only to indicate that it
is possible to express the necessary matrices by way of numerically stable factorizafions.

We do not intend that this be the most efficient or effective representation.

The method we presented in the previous section relies on the complicated matrices
B and G to compute the search directions. In practice, these matrices are unlikely to be
useful as computational tools. However we can express them in terms of matrix factors

obtained from numerically stable factofizations which are analagous to those described
by Goldfarb and Idnani. These factorizations are based on a Cholesky factofization

Q = EL T (43)

of the positive definite symmetric matrix Q, a QR factorization

Q2, Q22 (~) (44)

of the (l + q) x m matrix

and a QR factorization

N.L. Bolasul / Mathematical Programming 78 (1997) 1-27 25

of the q × m matrix

U = R-TMT = Q21~v. (47)

L is a q × q lower triangular matrix, R is an m × m upper triangular matrix, ~9 is a

(q + l) × (q + l) orthogonal matrix, partitioned so that Qll has q rows and m columns,
is an l × l upper triangular matrix, and Q is an m × m orthogonal matrix, partitioned

^ def
so that QI has l columns, where m = I ~¢1. Using (43)-(47), we obtain

R = R - I R -T and S = / ~ - l R - r ,
and hence that

and

1

L - T (I q - - 011020TQTI)L -1 - - L - T 0 t l Q I ~ - T
a=

1 ^

This can be simplified slightly if we store and maintain V L =defL-'rQt I and V 2 =da

~ - ~ 0 T rather than Q,l and Q,, since 0l , only ever appears in conjunction with L - r
and ~T only ever appears in conjunction with ~ - i .

4.4. Relationship with a primal active set method applied to the dual problem

As Fletcher [9] observes, the dual iterates produced by the Goldfarb and Idnani
method are identical to those that would be produced by applying a primal active set
method (such as those described in Chapter 10.3 of [9] or in [11]), to the dual problem.
The key differences are in the implementation.

Difficulties caused to a primal active set method by degeneracy of the constraints in
the equality problem are avoided in the Goldfarb and Idnani method because the only
constraints in the dual problem are the nonnegativity constraints; these cannot lead to
degeneracy. This property would appear to fail in the case of the semi-definite problem
we wish to solve, where the dual constraints are DA = p and A/> 0. In this case the
equality problem solved by a primal active set method to determine the dual step tt
would be

min ½ I t T (c T Q - ' C) i t -- (CTQp + b)Tlx

subject to Dit = 0,

tz i = O V i ~.~g

which is equivalent to

1 T T -1 (N T Q p + bs:)Ti t~ min 2it~e(N Q N) i t ~ - -
/

subject to Mits¢ = 0.

It is not obvious that these constraints could not become degenerate. However, noting
that a primal active set method applied to the duaI problem is always in " look-ahead"

26 N.L. Boland / Mathematical Programming 78 (1997) 1-27

mode, we see that Lemma 2 in effect proves exactly that: degeneracy of the constraints

in the dual equality problem is still avoided.

We observe that the algorithm we have presented preserves the property that the dual

iterates produced correspond to those that would be produced by a primal active set

method applied to the dual problem. Again, the benefits of the implementation we

present are, in comparison, commensurate with those of the Goldfarb and Idnani

method.

5. Conclusions

We have presented a very natural extension of the Goldfarb and Idnani dual-active-set

algorithm for positive definite quadratic programming which enables positive semi-defi-

nite problems to be solved. Matrices analogous to those used by Goldfarb and Idnani for

determining search directions were defined, and new initial conditions for the algorithm

were developed. These conditions meant that there needed to be, in some sense, a

" l ower bound" on the active set, as well as the "uppe r bound" already encountered in

the original method. In the original method, (and also in this one), the constraints in the

active set must be linearly independent; our new conditions imply that the constraints in

the active set must span a certain subspace. In order to maintain this condition, we

introduce a new method of obtaining search directions, the " l o o k - a h e a d " method. We

have proved in this paper that the resulting algorithm will terminate in a finite number of

iterations with the solution to the positive semi-definite programming problem. Although

we do require that our problem be in a special form, we have shown that this not a

restrictive requirement. In addition, we have indicated that the matrices we use to

determine search directions are amenable to numerically stable implementation.

Acknowledgements

We thank H. Wolkowicz of the Department of Combinatorics and Optimization at the

University of Waterloo for his helpful suggestions on issues of numerical stability and

practical implementation. We are also grateful to W. Murray and an anonymous referee

for their careful reading and detailed, insightful comments.

References

[1] N. Boland. CJ. Gob and A.I. Mees, An algorithm for solving quadratic network flow problems, Applied
Mathematics Letters 4 (1991) 61 -64.

[2] N. Boland. C.J. Goh and A.I. Mees, An algorithm for non-linear network programming: implementation,
results and comparisons, Journal of the Operational Research Society 43 (1992) 979-992.

[3] N. Boland, Some problems in network optimization and quadratic programming, PhD Thesis, Department
of Mathematics, University of Western Australia (1992).

[4] D. Burton and Ph.L. Toint, On an instance of the inverse shortest paths problem, Mathematical
Programming 53 (1992) 45-61.

N.L. Boland / Mathematical Programming78 (1997) 1-27 27

[5] A.R. Conn, N.I.M. Gould, M. Lescrenier and Ph.L. Toint, Performance of a multifrontal scheme for
partially separable optimization, Research Report CS-88-04, Computer Science Department, University of
Waterloo (1988).

[6] A.R. Corm, N.I.M. Gould and Ph.L. Toint, An introduction to the structure of large scale nonlinear
optimization problems and the LANCELOT project, Research Report CS-89-63, Computer Science
Department, University of Waterloo (1989).

[7] A.R. Corm, N. Gould and Ph.L. Toint, Large-scale nonlinear constrained optimization, Research Report
RAL-92-066, Rutherford Appleton Laboratory (1992).

[8] J. Demmel, Jacobis method is more accurate than QR, SIAM Journal on Matrix Analysis and Applica-
tions 13 (1992) 1204--1245.

[9] R. Fletcher, Practical Methods of Optimization (Wiley, Chichester, 1987).
[10] A.T. Ernst, X.Q. Yang and N.L. Boland, Exterior point methods for quadratic cost multicommodity flow,

submitted for publication, 1996.
[11] P.E. Gill and W. Murray, Numerically stable methods for quadratic programming, Mathematical

Programming 14 (1978) 349-372.
[12] P.E. Gill, W. Murray and M. Wright, Practical Optimization (Academic Press, London, 1981).
[13] P.E. Gill, W. Murray and M. Wright, Numerical Linear Algebra and Optimization (Addison-Wesley,

Reading, MA, 199l).
[14] D. Goldfarb and A. Idnani, A numerically stable dual method for solving strictly convex quadratic

programs, Mathematical Programming 27 (1983) 1-33.
[15] G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, MD,

1989).
[16] S.P. Han, Superlinearly convergent variable metric algorithms for general nonlinear programming

problems, Mathematical Programming 11 (1976) 263-282.
[17] S.P. Han, A globally convergent method for nonlinear programming, Journal of Optimization Theory and

Applications 22 (1977) 297-309.
[18] Y.Y. Lin and J.S. Pang, Iterative methods for large convex quadratic programs: a survey, SIAM Journal

on Control and Optimization 25 (1987) 383-411.
[19] W. Murray and F.J. Prieto, A sequential quadratic programming algorithm using incomplete solution of

the subproblem, Technical Report SOL90-12, Operations Research Deparmlent, Stanford University
(1990).

[20] B.N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, N J, 1980).
[21] M.J.D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in: G.A. Watson,

ed., Numerical analysis Dundee 1977, Lecture Notes in Mathematics 630 (Springer, Berlin, 1977)
144-157.

[22] M.J.D. Powell, The convergence of variable metric methods for nonlinearly constrained optimization
calculations, in: O.L. Magasarian, R.R. Meyer and S.M. Robinson, eds., Nonlinear Programming 3
(Academic Press, New York, 1978) 27-63.

[23] M.J.D. Powell, Variable metric methods for constrained optimization, in: A. Bachen, M. Grotschel and B.
Korte, eds., Mathematical Programming: The State of the Art (Springer, Berlin, 1983) 288-31l.

[24] M.J.D. Powell, ZQPCVX: a Fortran subroutine for convex quadratic programming, Report
DAMTP/1983/NA 17, University of Cambridge (1983).

[25] M.J.D. Powell, On the quadratic progranuning algorithm of Goldfarb and Idnani, Mathematical Pro-
gramming Study 25 (1985) 46-61.

[26] K. Schittkowski, The nonlinear programming method of Wilson, Han, and Powell with an augmented
Lagrangian type line search function, Part 1: convergence analysis, Numerische Mathematik 38 (1981)
83-114.

[27] K. Schittkowski, On the convergence of a sequential quadratic programming method with an augmented
Lagrangian line search function, Mathematische OperationsJbrschung und Statistik, Set. Optimization 14
(1983) 197-216.

[28] J. Stoer, A dual algorithm for solving degenerate linearly constrained linear least squares problems,
Journal of Numerical Linear Algebra with Applications I (1992) 103 131.

[29] Pb.L. Toint and D. Tuyttens, On large scale nonlinear network optimization, Mathematical Programming
48 (1990) 125-159.

[30] R.B. Wilson, A simplicial algorithm for concave programming, Ph.D. Dissertation, Graduate School of
Business Administration, Harvard University, Boston (1963).

