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Abstract  

Numerous problems in control and systems theory can be formulated in terms of linear matrix 
inequalities (LMI). Since solving an LMI amounts to a convex optimization problem, such 
formulations are known to be numerically tractable. However, the interest in LMI-based design 
techniques has really surged with the introduction of efficient interior-point methods for solving 
LMIs with a polynomial-time complexity. This paper describes one particular method called the 
Projective Method. Simple geometrical arguments are used to clarify the strategy and convergence 
mechanism of the Projective algorithm. A complexity analysis is provided, and applications to 
two generic LMI problems (feasibility and linear objective minimization) are discussed. (~) 1997 
The Mathematical Programming Society, Inc. Published by Elsevier Science B.V. 
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1. I n t r o d u c t i o n  

Linear matrix inequality (LMI)  techniques are inspiring a growing interest in the 

control community and are emerging as powerful numerical tools for the analysis and 

design o f  control systems [4] .  An LMI is any matrix inequality o f  the form 

A ( x )  > 0 

where A ( x )  is a symmetric matrix that depends affinely on the entries of  the vector 

x c R '~. In other words, A ( x )  can be written as 

A ( x ) = x I .A l + " "  + x ,  c4n + B ,  
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where 
• .A1 . . . . .  ,An and/3 are given symmetric matrices, 
• x = (xl  . . . . .  x , )  is a vector of real scalar variables, 
• > 0 stands for positive definite. 

The entries of x are often called the decision variables. Note that the system of LMIs 

LI(X) > 0 

Lp (x) > 0 

is equivalent to the single LMI 

L ( x )  := Diag(Ll (x)  . . . . .  L p ( x ) )  > O. 

Hence the discussion below readily extends to systems of LMIs. 
Two of the three generic LMI problems are discussed in this paper: 

• The strict feasibility problem: 

Find x C I1~" such that A ( x )  > O. (1) 

In other words, find values of the decision variables xj . . . . .  x ,  that satisfy the 
LMI constraint A ( x )  > O. 

• The linear objective minimization under LMI constraints: 

Minimize c'rx subject to A ( x )  >10. (2) 

This problem only makes sense when the LMI constraint A ( x )  >1 0 is feasible. 
Both problems are convex due to the affine dependence in x. The third generic problem 
is the generalized eigenvalue minimization problem discussed in [3, 16]. 

Optimization under LMI constraints is a very attractive field for the application of 
modern polynomial-time interior-point methods. These methods are rooted in the seminal 
paper of Karmarkar [ 12] where the first method of this type was proposed for linear 
programming. Various extensions to semi-definite programming and optimization under 

LMI constraints can be found in [ 1,3, 6, 11, 13-16, 19] and references therein. See also 

[ 17, 18] for alternative approaches to this class of problems. 
This paper focuses on the so-called Projective Method. This interior-point method has 

several interesting features: 
• A s  a polynomial-time algorithm, it is guaranteed to find, for any e > 0, an e- 

solution to the problem within a finite number of steps bounded by O(m) log(C/e) ,  
where m is the total row size of the LMIs and C is some scaling factor (see The- 

orems 7 and 13 for details). 
• The Projective Method is applicable to a variety of LMI problems including linear 

programs under LMI constraints and fractional problems of the form 

min A subject to A ( x )  <~ A B ( x ) ,  B ( x )  > 0, C ( x )  >/O. 
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• No initial feasible solution is required for problem (2),  and no separate Phase-I 

algorithm needs to be run to generate such a solution. 

The Projective Method was first described in [ 15, 16] in the more abstract context of 
the theory of  self-concordant barriers. The present paper takes a different and more 
straightforward perspective and provides simple geometrical insight into the algorithm. 
Besides its tutorial value, the paper also contains details on the numerical implementation 
and statistics on the computational overhead. Note that a version of the Projective Method 
optimized for LMI problems with a block-matrix structure (see Section 5 is implemented 
in the LMI Control Toolbox" for use with MATLA~ [8,9].  

The paper is organized as follows. Section 2 summarizes the notation and reviews a 
few instrumental concepts. Section 3 describes the Projective Algorithm for the strict 
feasibility problem. This includes a detailed proof of convergence as well as a complexity 
analysis. Section 4 shows how this basic algorithm can be adapted to solve the linear 
objective minimization problem. Finally, Section 5 discusses the implementation aspects 
with an emphasis on efficiency and numerical stability. The results of numerical tests 

are also reported. 

2. Notation and preliminaries 

The following notation is used in the sequel. 
• Tr(X) and Det(X) denote the trace and the determinant of the square matrix X, 

and log(x) stands for the natural logarithm of the positive scalar x. 
• S is the space of symmetric matrices of size m. This is a subspace of ~mxm of 

dimension 

M := dim(S)  = ½m(rn + 1 ). (3) 

• K~ denotes the open cone of positive definite matrices in S, and ~ denotes the 
closure of/C, that is, the cone of positive semi-definite matrices of S. 

• S is endowed with the family of scalar products (., .)p defined for P > 0 by 

(X, Y)p = Tr(PXPY). 

The corresponding induced norms are 

IIxIIp = (Tr(PXPX))I /2  

The case P = I yields the usual Frobenius norm which we denote by (., .)Fro. The 
origin and interpretation of the metrics (., .)e are clarified in the next subsection. 

2.1. Logarithmic barriers 

As an interior-point method, the Projective Method generates a sequence of matrices 
that remain in the open cone /C. To preserve positive definiteness, the optimization 
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criterion includes a logarithmic barrier that is defined on /C and tends to +oo when 
approaching a boundary point of/C. This barrier is defined for X > 0 by 

f ( X )  = - log Det (X) (4) 

and constitutes a special case of the "self-concordant" barriers discussed in [ 16]. It is 
easily verified that 

f ' ( X )  = - X  - I ,  [ f " ( X ) l ( Y )  =X-JYX -t  

(here we identify linear and bilinear forms with their matrix representation). Conse- 
quently, the Hessian metric is given by 

( [ f ' ( X ) ]  ( r ) ,  Z}F,.o = Tr(X-~YX-~ Z) = (Y,Z}x-,. 

This explains the relevance of the inner products (., .}e introduced above. 

2.2. Dikin ellipsoid 

Instrumental to the updating of the current "best" solution is the notion of Dikin 
ellipsoid (see Fig. 1 ). Given X > 0, consider the ellipsoid centered at X: 

n(x)  = { Y  I lie - g l l~ - ,  = Tr{X-l (Y - X ) X - l ( Y  - X)} < 1} 

= { Y ]  [Ix- ' /2YX-'/2-IllFro < 1}. (5) 

Lemma 1. The Dikin ellipsoid 12(X) is contained in IC. 

Proof. Let Z := X-I /2yx  -1/2 and denote by {Ai}l<~i<~,,, the eigenvalues of Z. It suffices 

to show that Z is positive definite whenever IIZ - tllvro < 1. Now 

n l  

I I z -  ll12ro = 1)2<1 
1 

implies that ]/~i-- 11 < 1 for all i. Consequently, Ai(Z) > 0 holds for all i if HZ-/]]Fro < 
I and the proof is complete. [] 

The importance of the Dikin ellipsoid comes from the fact that it delimits a re- 
gion around X where we can move without leaving the cone /C, i.e., losing positive 

cone 

Fig. 1. Dikin ellipsoid. 
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definiteness. Note that the Dikin ellipsoid is exactly the open unit ball in the metric 

II.llx-,, 

2.3. Orthogonal projection in the metric (., .) p 

An important tool in the Projective Method is the orthogonal projection onto a sub- 

space E with respect to the metric (., .)p. In our case, E will be the range of  the linear 

map ¢4 associated with the LMI A(x)  > 0 (see Section 3). 

Given X E S, its projection X + onto E is defined as the unique solution of  the 

least-squares problem 

min [IY - x l lp  = rain II,a~ - Sl ip.  (6) 
YEE xEI~ '~ 

The gradient g(Y) of  the function Y H II Y - X]l ~ is easily obtained from the first-order 
variation 

(g(Y),  aY)vro = ¢3( [IY - Xl[2e) = 2 Tr (P (Y - X)PaY) 

which yields 

g(Y) = 2 P ( Y -  X)P. (7) 

The projection X + is characterized by the optimality condition 

E E, (g(X+), Y ) F r o  = 2(X + - X, Y)e = 0. (8) 

This is nothing else than saying that X + - X should be orthogonal to E with respect 
to the inner product (., .)t', or equivalently, that P( X + - X )P  should be orthogonal to 

E in the usual Frobenius metric (., .)Fro. In the case E = Range(A) ,  the orthogonality 
condition (8) can be rewritten in terms of  x + such that X + = .Ax + as: 

Vx c ~" ,  (Ax + - X,,Ax)p = ( P ( A x  + - X ) a  AX)Vro = 0. (9) 

3. The strict feasibility problem 

We first consider the strict feasibility problem ( 1 ). A vector x is called strictly feasible 
if A(x)  > 0. The affine function A(x)  can be decomposed as 

A(x)  =.Ax + B =  xi,Al + . . . +  x,,A, +/3 ( lO)  

where the .Zi'S and/3 are given matrices in S, and ,Ax is the homogeneous part of  A(x) .  
Without loss of  generality, we can assume /3 = 0 for simplicity. To see this, introduce 
an extra variable ~- and define 



168 P. Gahinet. A. Nemirovski/Mathematical Programming 77 (1997) 163-190 

Clearly, if x solves .Ax + / 3  > 0, then ~ := (~) solves ~ > 0. Conversely, given a 
solution (x) of .A~" > 0, 7- is positive and x/l" satisfies ,Ax +/3  > 0. Hence the two strict 

feasibility problems are equivalent. 
Up to redefining .4., x, and n as ,,~,~, and n + I, respectively, we can therefore 

concentrate on the homogeneous strict feasibility problem: 

Find x E R" such that ¢4x > 0, (11) 

where ,,4 is a linear map from R n to S. Henceforth, the range of this map is denoted by 

E :=Range(A) .  (12) 

The geometrical interpretation of this problem is as follows: 

Given an open cone/C with its vertex at the origin, and a plane E passing through 
the origin, find a matrix X in the intersection of E and/C. 

Throughout the sequel, we require that 

Nondegeneracy assumption. ,Ax is nonzero whenever x is nonzero. 

In other words, ,4 must have full column rank (dim E = n). 
The next lemma captures an instrumental geometric property of/C [2]. 

Lemma  2. The open cone IC intersects the subspace E = Range(A) i f  and only i f  
E ± n /C  = {0} (here E ± denotes the orthogonal complement of  E for  the Frobenius 

inner product). Consequently, strict feasibility is characterized by EN IC ~ 0 while the 

absence of  strict feasibility corresponds to E ± n 1C 4~ {0}. 

Proof. This lemma follows from a general result on convex sets. Specifically, if EA/C = 

then/C and E can be separated by an hyperplane of equation IS, X)Fro = 0 (with S fixed 

and nonzero) such that 

(S, X)Fro > 0 for all X E/C, (13) 

(S, S)vro ~< 0 for all X E E. (14) 

From (13) it is immediate that S E /C. Now, E being a linear subspace, (14) is only 
possible if  in fact (S, X)Fro = 0 for all X E E, i.e., if S E E ±, Consequently S E E ± N/C. 

The converse is proved by contradiction. Suppose that there exist X E E n/C and a 
nonzero Y C E ± M/C. Then (X, Y)Fro = 0 because X E E and Y E E ±, while (X, Y)Fro > 0 
because X E/C, Y E/C, and Y 4: 0. This is clearly a contradiction. [] 

Remark  3. The matrix S characterizing the separating hyperplane in the proof above 
is the slack variable for the following dual problem of ( 11 ): 

Find S in the intersection of E ± and/C. 
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The primal problem is strictly feasible if and only if S = 0 is the only solution of the 

dual problem. 

A two-dimensional interpretation of Lemma 2 is that the angle at the vertex of the 
cone /C is exactly 90 ° since (X, Y)Fro ~> 0 for all nonzero X, Y E /C with possible 
equality if both X, Y are on the boundary (see Fig. 2). For tractability in the interior- 
point framework, we rule out the limit case where .Ax >/0 admits nonzero solutions x, 
yet is not strictly feasible. This corresponds to the case when both E fq/C and E ± fq/C 
are empty. 

3.1. The Projective algorithm 

To find a strictly feasible vector x, the Projective Method relies on the following simple 
strategy. Given some X in the open cone /C, test whether the Dikin ellipsoid centered 
at X intersects E. If it does, this provides a strictly feasible point since g2(X) C /C. 
Otherwise, update X to increase the "chances" that this intersection be nonempty. More 
precisely, the Projective algorithm proceeds as follows. 

Algorithm 4 (Projective algorithm for strict feasibility problems). 
Given an arbitrary initial point X0 E/C (e.g., X0 = 1), generate a sequence of positive 
definite matrices Xk as follows. To update Xk into Xk+l, 
Step !. Compute the orthogonal projection X~- of Xk onto E in the metric (., .)xz~. 

Step 2. If X + > 0, terminate since then X~- E/C fq E. A strictly feasible point x E •n 
is then obtained by solving 

~4x = x +. 

Step 3. Otherwise, update Xk to Xk+l via the formula 

x~+ ~, = x - [ '  - ~,k x ;  T ( x - [  - x ,  ) x~. ~ , (15) 

where the step size Yk is selected to make Xk-+ll positive definite and "larger" 
than X~ -x by some fixed factor. Specifically, Yk should be chosen such that 

Det(X~-+J]) >/KDet(X~-l), (16) 

where K > 1 is a fixed number (both iteration and problem independent). 

The key of the Projective Method is of course the existence of a step size "Yk that 
enforces (16) whenever s2(Xk) N E = ~. This is established in the next subsection and 
for now we restrict our attention to the convergence mechanism of Algorithm 4. 

We first give an intuitive geometric explanation of the convergence mechanism. As- 
sume that .Ax > 0 is strictly feasible, i.e., that E ± N/C = {0} as shown in Lemma 2. By 
construction, the size of XA71 grows exponentially with the number of iterations since, 
from (16), 

Det(X~ -I)  /> KkDet(Xo1), K > 1. (17) 
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Meanwhile, the updating direction 

¢ ( x , )  := x - : ~ ( x " :  - x k ) x ~  x (18) 

remains orthogonal to E in virtue of (8) and of the discussion in Section 2.3. Con- 
sequently, the sequence X~ -1 moves toward infinity parallel to E ± as the algorithm 
progresses. But since E ± N KS = {0}, no sequence of positive definite matrices can go 
to infinity along E -t- without leaving KS. This is due to the geometry of the problem as 
illustrated by Fig. 2, and in particular to the geometry of the cone KS (see Lemma 2). 
As a result, termination must occur in finitely many iterations, the number of iterations 
depending only on (1) the growth rate K, (2) the position of KS with respect to E -L, 

and (3) the initial point X0. 
More rigorously, assume strict feasibility, consider a strictly feasible vector x: E R n, 

and let X / : =  .A_rf E E A KS. From (17), we have 

IogDet(X~ -I ) >/klogK + logDet(Xo 1 ) 

while the arithmetic-geometric mean inequality applied to the eigenvalues of Xk -I yields 

I°g(Tr(X~-')  ~ n  : /> Iog(Det(X~-' ) ) m  

Moreover, Tr(X~IX/) >1 ~Tr(X~ -I) for some a > 0 since Xf > O. The combination 
of these three inequalities shows the existence of some positive constant ~- such that 

Tr( X~I Xf ) ~ ~-e kl°g¢~)lm. (19) 

Now, since X~ -l is always updated along directions ~r(xk) orthogonal to E for (., .)Fro, 

we have at all iterations k 

Tr( X-~I Xf ) = Tr( XoI X: ). (20) 

Hence 

Tr(XoIX:)  ~> re kl°g~K)/"' (2 l )  

must hold as long as X~- fails to be positive definite. Recalling that logK > 0 since 
K > 1, and observing that the left-hand side is independent of k, this shows that X~- 
must become positive definite after a finite number of iterations k. In other words, the 
algorithm will terminate in finitely many steps, the polynomial-time complexity resulting 
from (21) (see Section 3.3 for details). 

In case of infeasibility, by contrast, the algorithm will in principle run forever. In 
practice, we force termination when the size of X~ -~ exceeds some tolerance. Recalling 
that Xk approaches E, a large norm in X~ -I indicates that for all feasible vectors x 
(if  any), .Ax is nearly singular. In other words, problems where this occurs are only 
marginally feasible or even unfeasible up to rounding errors. 

The convergence mechanism is illustrated in Figs. 2 and 3. Note that these two- 
dimensional pictures are by essence simplistic since nonscalar problems are at least 
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E± / X~- i 

/ = x?' 

/ 2 x~T' 

I 
I ¢ 
I 

X + = .Ax 

cone/C 

E = Range(A)  

Fig. 2. Convergence mechanism: feasible problem. 

E ± 
^ 

c o n e  

XI l 

X{i ~ 

i E = Range(.A) 

i 

i 
i 

Fig. 3. Convergence mechanism: infeasible problem. 

three-dimensional and the geometry of /C is fairly complex. Through these figures 
we only mean to give insight into the workings of the algorithm, not into the problem 
geometry. Note that the algorithm actually works toward proving infeasibility, and solves 
the feasibility problem only by failing to do so. 

Computing the orthogonal projection X~- amounts to solving the least-squares prob- 
lem: 

min I].Ax - X, llx ,. ( 2 2 )  
xEI~" 

Even though this task turns out to be most expensive in terms of arithmetic operations, 
it poses no theoretical nor practical difficulty (see Section 5.2 for more details). Con- 
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sequently, the main challenge is to find a scalar ),, that enforces the growth rate (16) .  
This central issue is now addressed in detail. 

3.2. Determination o f  the step size 3/~ 

Now that the convergence mechanism is understood, we are left with proving that Xk 
can be updated in such a way that Det(X~ -1 ) grows by at least some fixed factor K > 1. 

Recall that this updating is performed as long as the orthogonal projection X~- of  Xk onto 
E (for (., .)x~-i ) fails to be positive definite. Throughout this subsection, we therefore 

assume that X~- is not positive definite. As a by-product, we know that the Dikin 

el l ipsoid/2(Xk) does not intersect E. Indeed, if Y E .O(X) tq E, then IJY - Xk]]x~, < 1 

by definition and I I x ~ -  - x~IIx;, -<< l i E  - X~llx;, since X~- is the point of  E closest to 
Xk. As a result, X~- must be in .O(Xk) whence X~- > 0 by Lemma 1, a contradiction. 
That /'2(Xk) N E = ~ proves critical in the subsequent derivation of  an adequate step 

size yk. 
The shorthand notation X and X + is used in place of  Xk and X~ for the rest o f  the 

section. Define 

( ( X )  := X - I ( X  + - X ) X  - I .  (23) 

Clearly 

p : =  I l X  ÷ - Xllx-i/> 1 (24) 

since X + ¢ O ( X ) .  To derive an adequate Tk, it is convenient to work with the barrier 
F ( x )  = - l o g D e t X  - t  rather than with De tX  - j .  Our goal is then to find 3' E I~ such 
that X - I  - ~/sr(X) > 0 and 

F(  X -~)  - F(  X -~ - ~ ( ( X ) )  7> 0 > 0 (25) 

for some 0 independent of  X, or equivalently to show that F can be decreased by some 
fixed amount in the direction - ~ r ( x ) .  This naturally leads to studying the function 

~(gJ) := F ( X  -I  ) - F ( X  - l  - ",/~r(x)) = l ogDe t ( l  - 3/~,), (26) 

where 

: =  X I / 2 ( ( X ) X  1/2 = X - I / 2 ( X  + - X ) X  -1/2. (27) 

Two important properties of  the symmetric matrix ~p are stated in the next lemma. 

L e m m a  5. Consider X > 0 such that 12(X) n E = • and let p := [IX + - Xllx-, .  With 

this notation, the matrix ~b defined by (27) satisfies 

Tr(~/,2) = p2, (28) 

Tr(~p) = _p2.  (29) 

Proof.  See Appendix A. [] 
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Given ( 2 8 ) - ( 2 9 ) ,  7r('y) can be evaluated as follows. Let /ll . . . . .  ,tin denote the real 

eigenvalues of  the symmetric matrix ~b, and introduce 

pot := max lail. (30) 
! <~i~m 

Clearly I - y ¢  is positive definite whenever 

0 ~< 9 'P~  < 1. (31) 

In this range of  values, the next lemma provides a lower bound on 7r(~/) and establishes 
the existence of  an adequate % 

L e m m a  6. For all ~, satisfying(31), 

~r(~) ~> p2 {~, + p~2 (log( 1 - ~ p ~  ) + ~/p~ ) } (32) 

and the right-hand side is maximized for "p = 1/ (  1 + pot) so that 

p2 
~r('y) >~ ~r* := -2T--(poo - l o g ( 1  + po~) ) />  1 - log2. (33) 

Pot 

Proof.  See Appendix B. [] 

Selecting 7 := ~* = 1/(1 + pot )  > 0 therefore guarantees that 

logDet(X~-+ll ) -- logDet(X~ -I ) ~> I - log2 

or equivalently that 

Det(X~-ll) >~ KDet(X~ z )  

where K := exp( 1 - l og (2 ) )  = e /2  ~ 1.36 > I. 

cross-section of the cone K: / 
/ 

X + (feasible) 

Fig. 4. Updating of Xk. 
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When implementing this updating, it is more efficient to directly maximize 7r(y) via 
a line search. To evaluate 7r(y) and its first and second derivatives at a low cost, ¢ is 
first reduced to tridiagonal form via orthogonal similarity. The cost of each evaluation 
of ~r(T) is then of order O(m).  The main advantage of the line search is to generally 
yield a faster growth rate for Det(X~ -j ), hence a faster convergence of the algorithm. 

A two-dimensional illustration of the sequence generated by this updating appears in 
Fig. 4. 

3.3. Complexity 

Summarizing the previous argument, we come to the following complexity estimate. 

Theorem 7. Assume that the strict feasibility problem ( 11 ) is solvable, and let m 
denote the total row size of Ax.  Then the Projective Method started at Xo > 0 will find 
a strictly feasible point in a finite number N of iterations bounded by 

m 
N -  1 ~< - -  inf logCondx~(Xf) 

1 - l o g  2 x I ~ e  ' x i > 0  

where the condition number Condxn( Xf  ) of Xf  with respect to Xo is defined by 

min{t[ tXo >1 Xf}  Amax(XoJ/2XyXo 1/2) 
C°ndx°(Xf) := max{t I tXo <~ Xf}  = amin( XoI/2XfXoI/2) " 

Proof. Assume that the method has not yet terminated after k steps and let 

train = min{t [ tXo >~ Xf} ,  tmax = max{t [ tXo <~ Xf}.  

As seen above in (20), 

Tr(X~-+ll X f )  = Tr(Xo1Xf)  

and consequently 

tmax Tr(XoXk-)l ) ~ train Tr ( l )  = mtmin .  (34) 

Meanwhile, recall from Section 3.2 that 

Det( XoX[l+l ) >1 K k 

where logK = 1 - log2. This together with (34) implies that the positive definite 
v l / 2 e - i  y i / 2  symmetric matrix Y = ~0 -'k+J-'0 satisfies the inequalities 

>~ Tr(Y__.....~), Det(Y) ~> K*. 
m 

DetJ/m(Y), we infer that 

Condxo ( X f )  

Since Tr(Y)/m 

logCondxo(Xf) >~ k logK ~> k ( 1 -  log2) 
m m 

and the desired upper bound on N readily follows. [] 
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4.  M i n i m i z a t i o n  o f  a l i n e a r  o b j e c t i v e  u n d e r  L M I  cons tra in t s  

175 

This section shows how the Projective Method described in Section 3 can be adapted 
to the problem 

Minimize cTx subject to A(x )  = .Ax + t3 >~ 0 (35) 

where .Ax = xt.Ai + • • • + x,,.A,,. To simplify the forthcoming analysis, we assume that 

Solvability assumption. Problem (35) is strictly feasible and the optimal solution set 
is nonempty. 

As in Section 3, we first turn (35) into a homogeneous problem. Consider the 
auxiliary problem 

Minimize cxy over y, 7- subject to Ay + r13 ) O, r > O. 
7" 

This problem and (35) are equivalent in the change of variable x = y / r  and share the 
same global minimum. Defining 

x : =  ' " ~ : =  0 7" ' 

we can therefore replace the original problem by the homogeneous problem: 

Minimize ~ subject to 4 2  ) 0, d'r~ 4: 0. (36) 

For the sake of clarity, all tildes are dropped in the sequel, bearing in mind that we 
are dealing with the transformed problem (36). As before, E denotes the range of the 
linear map ,4. 

Remark  8. Note that in the homogeneous reformulation introduced above, d"r.~ > 0 
whenever ~ > 0, that is, whenever x is strictly feasible. 

The first task consists of finding a feasible vector x. The objective 

cTx 
O)(x) := d-rx (37) 

plays no role at this stage and Algorithm 4 can be applied until a strictly feasible vector 
x0 is found; without loss of generality, we can assume that the r-component of this 
vector is 1. Let X0 = .Ax0 > 0 denote the corresponding value of the LMI, and let 
00 := cTxo/dTxo. The level sets of the function O are the hyperplanes 

{X E l~' [ O(X) = O} = {X C ~n I (C -- Od)Tx = 0}  

and they are mapped by .,4 to 

E(O) := {.Ax E E [ (c - Od)Tx = 0}. (38) 
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We are now ready to outline the Projective Method for linear objective minimization. 

Algorithm 9 (Projective algorithm for linear objective minimization). 
Given an initial strictly feasible X0 = .Ax0 c /C A E computed by Algorithm 4, generate 
a sequence of matrices Xk > 0 and a sequence 0~. of objective values at strictly feasible 

solutions x k as follows. To update Xk, 0~., x k to Xk+~, 0h+ 1 , xk+ j : 
Step 1. Compute the orthogonal projection X~ = .Axk of Xk onto E (for the metric 

(., .)x,-~ ) and check its positive definiteness. If X{ > 0, call the step productive 
and go to Step 2. Otherwise, call the step unproductive, set 

* . * * . * + 

Oh .=Ok_l, xk-=Xk_t,  Yk:=Xk - X k ,  

and go directly to Step 3. 
Step 2. Decrease 0 starting from Oh = cTxk/dTxk until the orthogonal projection X~-(0) 

of Xk onto E(O) (still in the metric (.,.)x;-~) is about to leave /C. More 
precisely, find 0 ~< Ok such that 

IIXk-X~,(O)llx:, ) 0 . 9 9  and X[.(O) > 0 .  (39) 

Let 0f be the resulting value, x~. be the strictly feasible vector such that 
X[(O~.) = .Axe., and set 

Yk := Xk (0h) - Xk. 

Step 3. Update Xk to Xk+l according to 

x/-+ ~, = x~ -~ _ ~,,x~ -~ ykx~ -~ , (40) 

where the step size yk is selected such that X~-+lt > 0 and 

Det(Xk+ll) /> KDet(Xk I ) (41) 

for some fixed K > I. Go back to Step 1. 

Note that the first iteration is always productive since x0 is strictly feasible and 
consequently X0 = X~- E E. Hence x~. is well-defined for all k ) I. Moreover, x~ is by 
construction a strictly feasible solution of .Ax ) 0 with corresponding objective value 
O(x~)  = 0~. 

Remark 10. Note that the objective remains unchanged when the iteration is unpro- 
ductive (see Step 1). Thus the method does not necessarily improve the objective at 
each iteration, even though it still achieves some progress of its own in unproductive 
steps. 
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S 

( 1 ) decrease 0 

/ 
/ /  / 7"... 12(Xo) n E ~  

Y / 
(2) update X0 based on X+(O~) 

Fig. 5. Progress of the algorithm: first step. 

Before discussing this modified algorithm and its convergence properties, we give a 
graphical illustration of the algorithm progress. The first step is depicted by Fig. 5. 

Given the initial feasible solution X0 = .Ax0 and the corresponding objective value 00, 

the objective value 0 is decreased in a way ensuring (39) (see Section 4.2). This yields 
a current best value 0~ of the objective as well as a matrix X~(O~) in E(8~) n O(Xo). 

The latter is used to update X0 according to Step 3. 
The following steps proceed in a similar fashion (see Fig. 6). First the matrix Xk is 

updated until its projection X~- = .Axk onto E regains positive definiteness. The value 
0, = O(xk) is then a feasible value of the objective, and we can decrease 0 down from 
the value Ok until (39) is satisfied. Denoting by O~. the resulting objective value, the 
projection of X~+ (0~,*) of Xk onto E(O~,) is used to update Xk to Xk+l. 

4.1. Step size Yk 

First consider Step 3 and the determination of 7k such that (41) holds. In unproductive 
steps, the situation is completely similar to that in Algorithm 4, and from Section 3.2 
there exists an adequate )'k that results in K = exp( I - log2).  

Next consider the case of a productive step. Here again the set-up parallels that of 
Algorithm 4 with E replaced by E(O~.). By picking O k such that + * • X k (O k) is outside the 
ellipsoid 
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(2) decrease 0 ~ (Ok) Ok = cTxk/dTx~ 

oD 

X + O* " 

/E  , / / 

~ (3) update Xk based on X~(O~.) 

Fig. 6. Progress of the algorithm: following steps. 

~"20.99(Xk) ---- {Y l i lY-  X~llx;, < 0.99}, (42) 

the existence of some adequate "/k is established as in Section 3.2, except that the 
resulting K is now exp(0.99 - log(1.99) ) instead of exp( 1 - log(2) ). This difference is 
immaterial since exp(0.99 - log(1.99) ) > 1 as well. Hence Step 3 causes no additional 
difficulty. 

4.2. Computation of 0~. 

Next we turn to the computation of 0~ in productive steps. Since ,.4 is a bijection 
from R" to E, there exist two matrices Ck, Dk 6 E such that for all X = .Axc  E, 

(Ck, X)x Z, = ctx, (D~., X)X~-, = dTx.  (43) 

Consequently, E(O) defined in (38) is an hyperplane of E with normal vector Ck - ODk 
and equation 

E(8) := {X C E l <C, - 8Dk, X>s = 0}, S := Xk'. (44) 

_L -I- Using Pythagoras theorem in the triangle (Xk, X~, X k (0))  and the fact that X~. (O) is 
the orthogonal projection of X~- onto the hyperplane E(0)  with normal vector Ck-  ODk, 
the squared distance from Xk to X~(O) is given by 
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, ~2 (0 )  := IlSk - x~;(o)I1~ 
- -  [[xk - x~-II~ + t [x~  - x ~ ( 0 ) [ 1 ~  

+ ( C k - O D  v+x2 k,  A k / S  

- -  [Ixk - x k  I1~ + H-c~ - ODk[I]. 
From the previous subsection, we must find 0~ such that 

(i) + * X k (0 k ) is positive definite; 
( i i )  + * X k (0k) lies outside of the ellipsoid ~'20.99(Xk) defined in (42). 

Since the step in question is productive, X~ = X~(Ok) is positive definite. If X + already 

lies outside ,O.0.99(Xk), simply take 0~. = 0k. Otherwise, 
• I l X k  - x~;lls < 0.99 implies that 

S(Ok) < 0.99 (45) 

since ( Ck -- Ok Dk, X~ ) s = ( c -- Okd) r xk = 0 by definition of Ok. 

• xk(O) must become infeasible as 0 approaches -cx3. Otherwise, the objective would 
be unbounded from below since the objective value at xk(O) is exactly 0, and this 
would contradict our Solvability Assumption. As a result, X~k(O) = Axk(0) must 
lie outside of the Dikin ellipsoid O(Xk) for small enough 0, whence 

lira 3(0) /> 1. (46) 

By continuity, (45) - (46)  prove the existence of 0~ ~< 0k such that 6(0~) = 0.99. 
Observing that tS2(0) is the ratio of two quadratic expressions, this value 0~ is given by 
a simple explicit formula. Note that by construction + * X~ (O k) belongs to the boundary 
of the ellipsoid /20.99(Xk) and is therefore positive definite (see Lemma l ). 

Remark 11. In the actual implementation of the algorithm, the value 0~ derived above 
is further decreased by a line search down to the value of 0 at which X~-(0) leaves the 
cone/C. 

4.3. Convergence and complexity 

Denote by Oopt the optimal value of the objective O(x) and by Xopt all optimal 
solution of the problem (that is, such that A(xopt) ~> 0 and O(xopt) = 0opt); without 
loss of generality, we assume that the r-component of Xop t is 1. What is meant by 
polynomial-time convergence in the context of linear objective minimization? We say 
that the algorithm converges in polynomial time if for some fixed "scale factor" R > 0 
and for any e E (0, l ), the objective value 0opt + Re is attained within a finite number 
N8 of iterations bounded from above by 

Nc ~< O(Tr(m,n) ) log(C/e )  (47) 

where m is the size of A ( x ) ,  n the number of scalar variables xi, 7r(., .) is a polynomial, 
and C is a data-dependent factor. For our purpose, it is convenient to take R := O(x0) - 

0op t and C := min{t ] tXo >1 Xopt} where X0 = .Ax0 > 0 and Xopt = ,AXopt ~ 0. 
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To prove polynomial- t ime convergence, fix e C (0, 1) and introduce 

x~ = ( 1 - e)Xopt + exo, X~ = .Axe. (48) 

Clearly x~ is a strictly feasible vector such that 

O ( x ~ )  <~ 0opt + R e  ( 4 9 )  

(recall that the T-components of  both x0 and Xopt are equal to I, so that O ( x )  = cTx for 
x = XO,Xopt, Xe).  Let  N e be the number of  iterations performed until 0~. ~< O(x~).  To 
bound N~ from above, we use an argument similar to that of  Section 3.3. 

In Algorithm 4, the convergence proof  relied critically on the following fact: given any 
strictly feasible X = .As E/C, the quantity Tr(X~-JX) remained constant throughout the 
updating of  Xk, that is, T r ( X o I X )  = Tr(X~-IX) for all k. Even though this property no 
longer holds for the modified algorithm, the next lemma shows that for X~ introduced 
above, we have Tr(X~-+IIX,) ~< Tr(X~-IX6) as long as 0f > O ( x , ) ,  that is, for all 

k ~< N~.. As a result, Tr(X,X~ -1 ) is always bounded from above by Tr(X~Xoi) ,  which 

allows us to adapt the derivation of  Section 3.3 to derive an upper bound for N~. 

L e m m a  12. Let x~ and X~ = .Ax, be defined by (48).  Then 

Tr(X~-+JiXe) ~< Tr(X~TIX~) (50) 

holds as long as 0~. > O(x~) .  

Proof.  Consider some iteration k < N~ where 0~. > O(x~).  If  this iteration is unpro- 
ductive, the updating is identical to that of  Algorithm 4 and consequently Tr(X~-~1X~) = 
Tr(X~-IX~). Assume from now on that the iteration is productive. We first show that 

X k+(O k*) - X k+ = --c~(Ck -- O~Dk) with a /> 0 (51) 

with Ck, Dk defined by (43) .  To this end, consider xk and x~ such that 

X + = ,AXk ,  + * Xk (Ok) = AXe. 

O* Recalling that X + ( k )  is the orthogonal projection of X~- onto E(O~.), and that E(O~) 
• + • + 

is an hyperplane of  E with normal vector Ck - OkDk, the vector X k ( 0 , )  - X k must be 

collinear to Ck -- O~Dk. In addition, 

• Okd ) x k -- (C--O~d)Txk ( C k -  OkDk,X+(O~-) - X + ) x ; ,  =(c -  * T • 

(O(x~.) • T . .  • + = - -Ok)d  X k -- ( O ( X k )  - -Ok)d  Xk 

= - (Ok - 0~) dVx, <~ 0 

since O(xk)  = O~ >~ O~ = O(x*~ ) and dTxk > 0 from .Ark > 0. This establishes (51 ). 
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Back to the proof of  (50), we have from (40): 

Yk Tr( (X~ -l - X~~I )X~ ) = Tr(X~ -I (X~ (0~) - Xk)X-~IX~) 
+ * 

= (x~ ( o k )  - xk ,  X ~ ) x ; ,  

= - + - 

Now, 
• (X + - X~, X~)xz~ = 0 since X-~ - Xk is orthogonal to E while X~ E E; 
• from (51) it follows that 

<xf(o~.) - xk,  X~)xr, = - ~ < c k  - O~Ok, X~>x;, 

= - a ( c  - O~d)Tx~ 

= -a (O(x~)  - O~)dTx~. 

Summing up, we have established the identity 

y~ Tr( (X~ -l - Xk+ll )X~) = --a(eg(x~) - O~.)dTx~. 

This completes the proof of (50) upon recalling that (1) tg(x~) < 0~ whenever k < N~, 

(2) ~'k > 0, and (3) a and dtx~ are nonnegative scalars. [] 

The argument used to prove Theorem 7 is readily adapted to derive an upper bound 
on N~ from (50). Here X~ plays the role of  Xf  and consequently, the resulting upper 
bound on N~ will be 1 + m log(Condxo (X~)) / log K with log K >~ 0.99 - log 1.99. Since 
X~ = (1 - e)X* +eXo and X0, X~ are positive definite, we clearly have Condx0(X~) ~< 

C/e. This leads to the following result. 

Theorem 13. Let Problem (35) satisfy the Solvability Assumption, and let xo be 
a strictly feasible point (,Axo > 0). For any e E (0, 1), the number of iterations 
performed by Algorithm 9 before a feasible solution with objective value less than 
0opt q- e ( O ( X 0 )  - -  0opt) is found does not exceed the quantity 

log(C/e) 
1 + m0.99 _ log 1.99' 

where 

C := min{t I t.Ax0/> .AXopt}, 

and Xopt is the optimal solution of the problem. 

5. Implementation and numerical results 

From the previous discussion, solving the least-squares problem 

m i n  I l A x  - xkllx;, 
XE~" 

(52) 
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is the main computational effort involved in each iteration of Algorithms 4 and 9. This 
section shows that for control-oriented applications, much can be gained by exploiting 
the specific block-matrix structure of each problem. Numerical stability issues near 
the optimum are also addressed. Finally, experimental data on the running time and 
computational overhead for a typical control application are reported. The details given 
next pertain to the implementation of the Projective Method available in the release 1.0 
of the LMI Control Toolbox [ 8, 9]. 

5. I. Structuled representation o f  LMIs 

Henceforth, the discussion is implicitly specialized to the case of a single homogenous 
LMI constraint 

tl 

A x  = ~"~xi.Ai > 0. (53) 
i=1 

All arguments readily extend to non-homogenous LMIs and to the case of multiple LMI 
constraints. The canonical representation (53) is generic and without further information 
on the LMI structure, the LMI is best described by storing the upper triangles of the 
symmetric matrices .Ai. In most control applications however, LMI constraints are heavily 
structured which renders the canonical representation quite inefficient. Specifically, most 
control-like LMIs are of the form 

tit 
~AX = ~ [  trZr RT -~- RrZT LT], 

r=l 
(54) 

where Lr, Rr are given matrices and Zr is a particular instance in a collection YI . . . . .  Yv 

of structured matrix variables, e.g., symmetric, block-diagonal, Toeplitz, etc. Here the 
decision variables xl . . . . .  x~, are the free entries of YI . . . . .  Yv (taking structure into 
account). From now on, (53) is referred to as the "unstructured" representation while 
(54) is called the "structured" representation. 

To illustrate the benefits of the structured representation, we use the following simple 
example: 

AYE T + EYA "c < 0, (55) 

where A, E E R r×t' are given and Y is a symmetric matrix to be determined. This 
LMI would be called a generalized Lyapunov inequality. Note that this example is only 
chosen for its tutorial value, and that in the particular case of Lyapunov inequalities, 
additional properties could be used to further boost efficiency [ 19]. However, while the 
speed-ups obtained in [ 19] are limited to Lyapunov or Riccati inequalities, the benefits 
of the structured representation and rank-one linear algebra discussed below pertain to 
the general class of structured problems (54). To clarify the subsequent argument, we 
sumnaarize the dimensional parameters involved in Problem (55): 
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• p denotes the number of  states in the problem, that is, the row dimension of A. 
• n = ½p(p + 1) is the number of decision variables (free entries of Y when ac- 

counting for symmetry). 
• M = ½p(p + 1 ) is the dimension of the image space S where AYE T + EYA T takes 

values. 

• nt denotes the number of terms in LMIs of the form (54). It is typically small 

compared to n, and nl = I for the LMI (55). 

In the flop counts and storage estimates given below, we only keep the dominant term 
so that, e.g., ½p(p + 1) + 3p is approximated by ½p2. 

An immediate benefit of the structured representation is in terms of storage require- 
ment and cost of evaluating .Ax. Take the example (55). With the unstructured repre- 

1 9 sentation (53), we need to store all ,Ai which uses /p4 storage since there are n ~ gp- 
decision variables. By comparison, in the structured representation it suffices to store the 
matrices A and E which uses 2p 2 storage. Similarly, evaluating ,Ax in the unstructured 
case costs ½p4 flops vs. only 2p 3 with the structured representation. 

Thus, the structured representation is significantly cheaper in terms of storage re- 

quirement and evaluation cost. More importantly, the computational burden attached to 
solving the least-squares problem (52) can also be significantly reduced. This claim is 
justified next. 

5.2. Rank-one linear algebra 

The main computational effort in the Projective Method, as in any other interior-point 
method for this type of problem, is the one required to project a given symmetric X 
onto the range space of A in the metric (. , .)s where S > 0. That is, to compute the 
solution x* E R" of the least-squares problem 

min I I A x  - xIls. 
a 'E~"  

Let 

S = LL  T 

be a Cholesky factorization of S. There are two main linear algebra techniques to 
compute x*: 

• Cholesky-based approach: x* is the solution of the normal equation 

Hx* = q (56) 

where H and q are the matrix and vector with entries 

H i j  = Tr( c4iS, A iS ) ,  qi = Tr( ,AiLXLT ). (57) 

To solve (56), we compute a Cholesky factorization 

H =  RTR 
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of the positive definite matrix H and x* is then obtained by solving two triangular 

linear systems. Note that H must be assembled as a preliminary to the Cholesky 

factorization. 
• QR-based approach: introducing the linear mapping 12 defined on S by 

£ : Z ~ LTZL, 

the least-squares problem is equivalent to 

rain 111£.  - £XkllF~o. xEI~" 

TO solve this problem with the QR approach, we first compute the M × n matrix 

/3 associated with the mapping £..4. Then, by an orthogonal transformation Q, we 

reduce/3 to upper-triangular form: 

The least-squares solution x* is then given by solving 

Rx* = srj. (58) 

Note that the n x n matrix R is nothing but the Cholesky factor of H, i.e., H = RTR. 

In the unstructured case, there is no incentive at all for using the Cholesky approach 
since (1) the cost of  assembling H is comparable to the cost of the QR factorization 
of £.,4, and (2) the normal equation (56) is more badly conditioned than (58) since 
K(H) = K(R) 2 [ 10]. In the case of LMIs with structure (54), however, assembling the 

Hessian becomes cheap which makes the Cholesky approach very appealing as long as 

the least-squares problem remains relatively well-conditioned. 
To evaluate the speed-up attached with the Cholesky approach, consider again the 

simple example (55). The cost of the QR approach is easily estimated as follows: p5/3  

flops to form the matrix 13 (i.e., compute LT.Ai L for i =  1 . . . . .  n) and 2Mn 2 = p 6 / 4  to 

perform the actual QR factorization. In comparison, the Cholesky approach costs n 3/3 = 
p6/24 to factor the Hessian matrix H, to which we must add the cost of assembling 
H. As mentioned earlier, this cost is comparable to that of the QR factorization of 
/3 in general since H = BTI3. However, it drops by orders of magnitude for LMIs of 

the form (54). To see this, denote by {ei}i=l...,,, the standard orthonormal basis of the 
design space 11~", and consider the term-oriented representation (54). Then Hij can be 

decomposed as 

1"11 ~Tt 

"o= H,';, 
r=l s=] 

where 

rs T T T + R ~ E T L T ) }  H 0 = Tr{S(L,.EiR T + RrE i L r ) S(LsEiRs  . , 

=2Tr{Ei( nV~Sts)Ej( nV~SLr) } + 2Tr{ET(LVrSL,~)Ej( R~SRr) } (59) 
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Table I 
Relative expense of the Cholesky and QR approaches 

Cholesky approach QR approach 

Assembling Factorization Total 

O(Np 4) p6/24 Np6/4 
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and Ei, Ej denote the values of Zr and Zs for x = ei and x = e.i, respectively. For typical 
matrix variable structures, Ei and Ej are low-rank matrices, i.e., 

h=l I=l 

where a, /3 are small integers (0, 1, or 2 in most cases) and ~, t3 are canonical vectors 
of the appropriate space. 

Using this low-rank decomposition of Ei and Ej, we obtain 

H,-j = 2 ~  { T T [~i(RTSLr)~hi] rs [ ~l,i ( Rr SLs ) ~l.i ] × . . 
h=l 1=1 

T T [~TIj(RTSRr)~hi] } + [6hi(LrSLs)e4 j] × (60) 

Now, this expression can be evaluated in O(1) flops since 
• All matrix products R~SLs, R~SLr . . . .  can be computed beforehand (once for all 

H O) at a negligible cost. 
• The scalar products 6~,i(R~SL~)etj,B~(R~SLr)ehi . . . .  simply amount to selecting 

particular entries of these pre-computed matrices. 
As a result, each entry Hij of H can be assembled in O(n 2) flops by exploiting the 
structure, and H is therefore assembled in O(n2n 2) flops. 

We call this assembling scheme rank-one linear algebra. In example (55) where 
nt = 1 and the rank of Ei (value of the matrix variable Y for x = ei) is at most two, the 
precise cost of assembling H is 

• 3p 3 flops to compute the matrices ETSE, ATSA, and ETSA (once and for all); 
• 8 flops to evaluate each Hij via (60), yielding a total of p4 flops since there are 

p4/8 entries to be evaluated. 
The overall cost of the Cholesky approach is therefore p6/24. Table 1 summarizes the 
previous analysis. The flop counts are given for a system of N Lyapunov inequalities of 
type (55). 

These figures are clearly in favor of the Cholesky approach. Note that the cost of 
QR grows linearly with the number of LMI constraints, while the dominant term in the 
Cholesky approach is invariant since it only depends on the number of variables in the 
problem. In the general case of block-matrix LMIs such as 
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+ XA + cTc XB "X 
BTx  - t l  ) < 0, 

the block structure of the Lr and Rr factors can be further exploited to eliminate all 
multiplications by zero blocks. Overall, the rank-one assembling scheme is very efficient 

as long as the average number nt of terms involving a given decision variable xi remains 
small. Finally, note that for an LMI 

xl .,41 + • • • + x,,.A,, < 0, 

where .Ai . . . . .  ,A,, are unstructured p × p matrices, the structured representation does 
no worse than its unstructured counterpart provided that we exploit the scalar nature of 

the variables x l , . . .  ,x,,. 

Remark  14. In linear objective minimization, the optimal solution lies on the boundary 
of the cone /C. When the optimal objective value ought to be computed with high 
accuracy, numerical instability may occur in the final stage of the iterative process as 

we come very close to the boundary of the feasible set. Indeed, Xk = .Axk is then 
nearly singular, and S = X~ -1 has a large condition number. As a result, the least-squares 

problem may be badly conditioned, in which case the normal equation becomes difficult 
to solve accurately since its condition number is roughly the square of that of the the 
least-squares problem, i.e., the condition number of R. In fact, the Cholesky factorization 
of H may even fail due to rounding errors. When this happens, there is no alternative but 

switching to the QR approach to solve the least-squares problem. Fortunately, the QR 
steps are typically a small proportion of the total number of iterations and are often not 
needed if a relative accuracy of 1% on the optimal value is acceptable (see Section 5.3 
for details). 

5.3. Numerical results 

The Projective Method as implemented in the LMI Control Toolbox has been tested 
on a wide variety of control-oriented applications. The qualitative conclusions of these 

experiments are as follows: 
• The method is fairly fast when the desired relative accuracy on the optimal value 

of (35) is not too high, i.e., around 10 -2. In particular, it quickly finds a feasible 
solution and knocks off most of the inaccuracy in the objective. 

• The total number of iterations seems to be almost independent of the problem size 
and typically ranges between 20 and 30 for well-conditioned problems and between 

40 and 60 for badly conditioned ones. 
• When a high accuracy is required, the need to switch to QR-based linear algebra 

significantly increases the running times and the final iterations account for most of 
the computational burden. For large problems with a thousand variables, this may 
result in relatively large running times (see Table 1). 
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Typically, the rank-one phase produces solutions within 1-5% of  the optimal value. 

Since such accuracy is generally sufficient in control applications, it can be argued that 

the method is highly efficient for most practical purposes. 

To illustrate these conclusions, we present detailed numerical results for the following 

LMI problem drawn from H ~  control (see, e.g., [ 7 ] ) :  

Minimize  y 

A R + R A  T BI R c T I  
subject to Ai~rl2 B T - y l  D~l I Jkfl2 < 0 

CIR Dl, - y l  ] 

ATS + SA SB1 Cl r ) 
BT s -- yl  DTI Al'21 < 0 
Ct Dlf - y l  

Here the variables are the two p × p symmetric matrices R and S and the scalar % 

Accordingly,  the dimension of  the design space is n =p(p + 1) + 1. 

This linear objective minimization problem was solved for various values of  the 

state-space dimension p and with the additional constraint 

Ilxl12 10 7 

Two experiments were conducted: 

( 1 ) Optimizat ion using only rank-one linear algebra. 

(2)  Optimizat ion with a required relative accuracy of  10 _4 on  the optimal 3/. 2 

All problems were randomly generated and can therefore be considered well condi- 

tioned. Since such problems can also be solved by direct linear algebra techniques [5] ,  

we compared the optimal value obtained by LMI optimization with the Riccati-based 

opt imum to derive the final relative accuracy estimates. 

The results of  these experiments appear in Table 2. The CPU times are for a DEC 

Alpha  200 4 /166  workstation. The number of  states, the total number of  scalar variables, 

and the dimension o f  the image space S are denoted by p, n, and M, respectively. 

Table 3 indicates the distribution of  the CPU time (in %) between the various linear 

algebra tasks. These figures are relative to the second experiment and confirm the high 

cost of  the final few QR-based iterations. 

2 There is an additional built-in test to detect when the required accuracy is achieved which is as follows: 
at a productive iteration k, when an iniproved value of the objective 0* is obtained, we compute the matrix k 
)(k = X~- (0~. --6), 6 being the required absolute accuracy in terrrhs of the objective value, and check whether the 
matrix Zk = Xk - 3~k is positive semidefinite. If it is the case, then the actual optimal value is/> 0 ~ _= 0~ - 6, 
since the positive semidefinite matrix X~.IZ~X~. I is orthogonal (in the Frobertius Euclidean structure) to the 
plane E(O ~) and therefore gives a separator of the cone of positive semidefinite matrices and the plane. Thus, 
the indicated test provides us with a sufficient condition for detecting that the required accuracy is already 
achieved. 
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Table 2 
Experimental results 

p n M First experiment (rank-one only) Second experiment(10 -4)  

iter. relative error CPU time iter. relative error CPU time 

8 73 292 18 2 × 10 -4 2" 23 2 x 10 -6 4" 
12 157 680 18 2 x 10 -4 7" 24 2 x 10 -5 23" 
16 273 1178 18 2 x 10 -2 20" 25 3 × 10 -5 1'57" 
20 421 1750 19 6 × 10 -3 1'00" 25 I x 10 -6 6'20" 
24 601 2436 19 2 x 10 -3 2'44" 24 5 x 10 -5 16'0~' 
28 813 3236 19 2 x 10 -3 7'00" 24 I x 10 -5 39"45" 
32 1057 4242 20 4 x 10 -3 15'00" 26 3 x 10 -5 lh30'00" 

Table 3 
Distribution of CPU time 

p Assembling H Cholesky QR factorization Other 

8 20 2 50 28 
12 15 2 69 14 
16 8 3 82 7 
20 7 5 84 4 
24 7 6 83 4 
28 5 8 82 5 
32 4 7 85 4 

6. Conclus ions  

A f i r s t -pr inc ip le  and  c o m p r e h e n s i v e  desc r ip t ion  o f  the  Pro jec t ive  M e t h o d  for  so lv ing  

L M I  p r o b l e m s  has  been  given.  As  a m o d e m  in t e r io r -po in t  me thod ,  this  a l g o r i t h m  has  

p o l y n o m i a l - t i m e  c o m p l e x i t y  and  ex tens ive  pract ical  exper i ence  conf i rms  its h i g h  per for -  

m a n c e  o n  L M I  p rob l ems .  In the  con tex t  o f  con t ro l -o r i en ted  appl ica t ions ,  the  Pro jec t ive  

M e t h o d  can  be  i m p l e m e n t e d  in a h igh ly  eff icient  m a n n e r  so as to m i n i m i z e  the  c o m p u -  

ta t ional  ove rhead  per  i tera t ion.  In addi t ion ,  exper imen ta l  resul ts  sugges t  that  the  n u m b e r  

o f  i t e ra t ions  g rows  very s lowly  wi th  the  size o f  the  p rob lem.  

Appendix  A 

P r o o f  o f  L e m m a  5. Le t  S := X - l .  T he  first iden t i ty  is i m m e d i a t e  f rom the  def in i t ion  

of ¢: 

V r { ~  2 )  = T r {  S t / 2 (  X + - X ) S (  X + - X ) S  1/2} = T r { S ( X  + - X ) S (  X + - X ) }  

= II X +  - x i l ] -  =: ,o 2. 

To der ive  the  second  identi ty,  obs e r ve  that  
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J ig  + - xll2s = T r { S ( X  + - X ) S ( X  + - X)} 

= T r { S ( X  + - X)SX +} - T r { S ( X  + - X)SX} 

= (X + - X, X+)s - T r { S ( X  + - X ) } ,  

Now, (X + - X ,  X+)s = 0 since X + is the orthogonal projection o f  X onto E for the inner 

product (., .)s. Consequently, 

p2 = _ T r ( S ( X  + _ X)} = - T r { S l / 2 ( X  + - X ) S  I/2} = - Tr0p) .  [] 

Appendix B 

Proo f  of  L e m m a  6. Using a series expansion of  the log function, we obtain 

7r(9,) = l o g D e t ( I  - 9 '0) = ~ log( 1 - 9,a;) = - Z Z 9 ,k ;  
i=1 k=l i=1 

= - -  ~ 9"tii - -  k = 9"02 - k 

~=l ~z ~=l k=2 ~=~ 
(B.1) 

In the last identity we used that Tr(~O) = _p2 (see Lemma 5).  Now, for k/> 2 we have 

" ( L  ~ " ~  ~.k 2 \ / \ k - -2  
i ~< A i } [ max lail ) =p2poo~-z 

/ \l<~i<~m ] 
i=1 i=1 

using this time Tr(~b 2) = p2. From the expression (B.1) of  7r(9,), it follows that 

k 2 k - - 2  
9" P Poo _ p 2 { T + _ ~ _ [ l o g ( l _ T p o o ) + T p o o ]  } 

¢r(9") >>. yp2 _ k Poo 
k=2 

which is exactly (32) .  

Elementary calculus shows that the right-hand side is maximized for y* = 1/(  I + p ~ ) .  
Finally, to establish 7r* /> 1 -- log 2, first observe that the function f ( t )  = t -2 ( t -  log ( 1 + 
t ) )  is monotonically decreasing for t > 0 since 

f ( t )  = t -2 

t ! 

f ( t - r ) ( l  + O  -2 d r = f ( 1  - s ) ( l  + t s )  -2as.  

0 0 

Two cases must now be distinguished: 
• I f  pot ~< 1, then or* /> p 2 f ( 1 )  = ,o2(1 - log2)  ~> 1 - log2 (recalling that p / >  1 

from (24) since we assumed that /21 (X) N E = 0). 
• Otherwise, we have 7r* >1 p2p~2( I - l o g 2 )  since t ~ t - l o g (  i + t )  is monotonically 

increasing. Now, p / >  p,~ since from Lemma 5: 
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Ill  

p2 =Tr(~/,2) ~-~A~ ) max h~ 2 
i=1 

Hence 7r* ) 1 - log2 also holds in this case. [ ]  
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