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Abstract 

In this paper, an exact dual is derived for Semidefinite Programming (SDP), for which strong 
duality properties hold without any regularity assumptions. Its main features are: (i) The new 
dual is an explicit semidefinite program with polynomially many variables and polynomial size 
coefficient bitlengths. (ii) If the primal is feasible, then it is bounded if and only if the dual is 
feasible. (iii) When the primal is feasible and bounded, then its optimum value equals that of the 
dual, or in other words, there is no duality gap. Further, the dual attains this common optimum 
value. (iv) It yields a precise theorem of the alternative for semidefinite inequality systems, i.e. 
a characterization of the infeasibility of a semidefinite inequality in terms of the feasibility of 
another polynomial size semidefinite inequality. 

The standard duality for linear programming satisfies all of the above features, but no such 
explicit gap-free dual program of polynomial size was previously known for SDP, without Slater- 
like conditions being assumed. The dual is then applied to derive certain complexity results 
for SDP. The decision problem of Semidefinite Feasibility (SDFP), which asks to determine if a 
given semidefinite inequality system is feasible, is the central problem of interest, he complexity of 
SDFP is unknown, but we show the following: (i) In the Turing machine model, the membership 
or nonmembership of SDFP in NP and Co-NP is simultaneous; hence SDFP is not NP-Complete 
unless NP = Co-NP. (ii) In the real number model of Blum, Shub and Smale, SDFP is in NPnCo- 
NP. (~) 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V. 
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1. Introduction 

1. I. Problem o f  interest 

We consider the following (Primal) Semidefinite Program (SDP):  
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cTx 

m 

xiQi ~ Q0, 
i=1 

(P) 

where Q0, QL . . . . .  Q,, are given real symmetric matrices, and -< denotes the L6ewner 
partial order, i.e., B _-< A iff A - B is positive semidefinite. (Throughout this paper, (P) 

will refer to this semidefinite program.) 
Formally, one may define, 

Definition 1 (The Semidefinite Programming Problem). Determine and/or compute 
the following for (P) 

(i) Is the feasible region nonempty? 

(ii) If so, is the objective function bounded? 
(iii) If  so, is the optimum attained? 
(iv) If so, compute an (approximate) optimum solution. 

Note that the first three parts are decision problems and the last is of numerical 
computation nature. Of the three decision problems, the first one is most central, and 

hence we state it separately: 

Definition 2 (Semidefinite Feasibility Problem (SDFP)).  Determine whether there ex- 
ists an x E /R" such that Q(x )  ~- O, where Q(x )  = Qo - ~-~ixiOi, for given real 

symmetric matrices ai, i = 0 . . . . .  m. 

At the moment, the complexity of SDFP is open in both the Turing machine as well 
as the real number models. The existing algorithms for SDP can be characterized as 
those that find approximate optimal solutions to SDP, and for precisely this reason are 
incapable of solving the decision problems ( i ) - ( i i i )  in polynomial time. It will follow 

from the results of this paper that there are polynomial reductions [9] to SDFP from 
boundedness and attainment problems, as well as other decision problems concerning 
SDE Thus, SDFP assumes a central role in a rigorous complexity theoretic treatment of 

semidefinite programming. 
The purpose of this paper is to derive a polynomial size dual program for the problem 

(P) (Section 1.5). This dual is a semidefinite program, whose coefficients are completely 
and explicitly determined from the primal data, and it enjoys zero duality gap as well 
as other strong duality properties. It is emphasized here that we do not make any kind 
of assumptions concerning the problem instance, and in particular, we do not suppose 

that any form of constraint qualifications, Slater or otherwise, hold. 
As an application of the dual, we derive (Section 3) characterizations for several 

properties concerning semidefinite systems, including an assumption-free theorem of 
the alternative. These characterizations are then applied to obtain certain complexity 
relations for SDFP (Section 4.3), one of which is a proof that semidefinite feasibility 

is not NP-Complete unless NP = Co-NP. 
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1.2. On semidefinite programming 

131 

Semidefinite programming is a generalization of linear programming, obtained by 
replacing the nonnegativity constraints of LP by the semidefiniteness of some matrix 
variables and maps, or in other words, the role of the nonnegative orthant is now played 
by the cone of positive semidefinite matrices. 

Historically, semidefinite programming has been studied in more general contexts such 
as convex and cone programming (see [2] for references). 

However; the more recent surge of interest in SDP was perhaps inspired by the work 
of [ l l ]  (see [ 12, Chapter 9]) .  In that work, the authors associate with every graph 
G, a convex set denoted by TH(G),  and show that when G is perfect, this set equals 
the stable set polytope. Then they demonstrate that one can optimize over TH(G) in 
polynomial time, and hence the stable set problem (along with many other related 
problems) can be solved in polynomial time for perfect graphs. 

The algorithms of [ 1 1] employ the ellipsoid method, and are not considered to be 
efficient in practice. In [ 1 ] it was shown that many of the known interior point methods 
for LP readily extend to polynomial time algorithms for solving SDP approximately 

(see Section 4.1 ). In [ 18], Nesterov and Nemirovskii developed efficient interior point 
methods for a wider class of convex programs, by employing self-concordant barrier 
functions. Other early papers in the area include [ 15] and [ 19]. In [21 ], the relationship 
between SDP and multiquadratic programming (quadratic programming with quadratic 
constraints) was studied and certain geometric and algorithmic results were developed 
for SDP. 

A natural generalization of the standard LP duality has been considered in [2] and 
[ 18]. This can also be seen as a specialization of the Lagrangian dual of (P) when 
this problem is viewed as a cone program. However, there are simple instances of SDPs 
(see Section 4.2) for which this Lagrangian dual exhibits a duality gap. As already 
mentioned, we remedy this situation in this paper, by deriving an explicit dual for SDP 
which has no duality gap. 

A recent result of Goemans and Williamson [ 10] showing that one can use a semidefi- 
nite relaxation to obtain a .878-approximation algorithm for the Max-Cut problem, gave 
further impetus to this subject. Their result employs a clever randomized rounding 
scheme, and it has inspired other results on the application of SDP to combinatorial 
optimization problems. 

An extensive bibliography on semidefinite programming can be found in the survey 
articles [ 2, 24, 29]. 

1.3. Notation 

Most of the notation is taken from [ 14] and [27]. The main matrix spaces of interest 
here are: 

- .A,4,,: The space of n x n real matrices. 
- S,,: The subspace of symmetric matrices in .A4,,. 
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For A,B  E S, ,  we write A ~ B (resp. :,-), if A - B is positive semidefinite (resp. 
positive definite), i.e., all the eigenvalues of A - B are nonnegative (resp. positive). 
The term"positive semidefinite" will sometimes be abbreviated by PSD and "positive 
definite" by PD. 

The inner product on .A/In (and Sn) is given by 

A • B = Z AijBi) .  
i,j 

The trace A • I of a matrix A is denoted by Tr(A). Given A E .Mm,B E .A4k, their 
direct sum is the block partitioned (m + k) x (m + k) matrix 

A @ B = [ A  0 ] .  

The spectral decomposition of a symmetric matrix A is A = VDV T, where V is an 
orthogonal matrix (i.e., VTV = 1) whose columns are eigenvectors of A, and D is 

the diagonal matrix of the eigenvalues of A. The spectral radius of a not necessarily 
symmetric matrix A, denoted by p (A), is the largest of the magnitudes of the eigenvalues 

of A. The null space of A is denoted by Null(A). 
For A, B C_ R", A + B denotes the Minkowski Sum (also called the set sum). For 

a scalar a E ~, and a set A in R", a a  = {ax  I x ¢ A}. For A C R", Conv(A) 
(resp. Af t (A))  denotes the smallest convex set (resp. affine subspace) containing A. 
The dimension of A is d im(Aft (A)) ,  and B(x , r )  is the ball of radius r around x. 
We will use the convention that C denotes strict containment and _C denotes nonstrict 
containment (similar usage for D and _~). 

For a convex set G C IR n, the interior and the relative interior of G are denoted by 
Int(G) and ri(G) respectively. The recession cone of G is defined by 

0 + ( G ) = { v E ~ n  [ V x E G ,  t / > 0 ,  x + t v E G } ,  

and the lineal hull of G (contrast with linear hull) is the subspace 0+(G) M 0 + ( - G ) .  
The geometric polar (polar for short) of a closed convex set G containing the origin is 
defined as 

G ° = {y ] yrx <~ 1 Vx E G}. 

Polars play a very important role in the analysis to follow. 

We define a Semidefinite Program to be an optimization problem of the form: 

sup cTx 
"' (p)  

xiQi ~_ Qo, s . t .  

i=l 

where Qi, i = 0 . . . . .  m are in Sn (n × n symmetric matrices). Note that any semidefinite 
program as considered in [2] can be cast in the above form. We say that (P) is 
homogeneous if Q0 = 0. 
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Definition 3. A spectrahedron is defined to be a closed convex set of the following 

type, 

G = {x ] a ( x )  >'- 0}, 

where Q(x)  is an affine symmetric matrix map. 

It is clear that spectrahedra are precisely the feasible regions of semidefinite programs. 

1.4. On the existing duality theories for SDP 

The dual to be proposed (see Section 1.5) in this paper satisfies the following criteria: 
(i) The dual is an explicit semidefinite program in polynomially many variables (in- 

volves O(m) matrix variables) and constraints (these are O(m2n 2) in number). 
It can be written down mechanically (i.e., without performing any computa- 
tions), and the bitlengths of its coefficients are polynomial in those of the 
primal. 

(ii) The duality gap, which is the difference between the primal and the dual optimal 
objective function values, is zero whenever the primal is feasible and bounded. 
Also, in this case, the dual attains its optimum. 

(iii) It yields a precise theorem of the alternative for semidefinite inequality systems, 
i.e., a characterization of the infeasibility of a semidefinite inequality in terms 
of the feasibility of another polynomial size semidefinite inequality. 

We will now examine two previously known duality theories for SDP. 

Lagrangian dual. The dual considered in [2, 18] satisfies (i) above, but needs to 
assume certain Slater-like constraint qualifications for (ii) and (iii) to hold. 

Minimal cone  based  d u a l  On the other hand, the duality approach presented in [3] 
(when specialized to SDP) while theoretically satisfying (ii), has the following short- 
coming: this dual is not an explicit semidefinite program as it requires certain compu- 
tations to be performed in order to extract the dual. Moreover, these computations are 
not polynomial time. 

Let us take a closer look at these two approaches. 

1.4.1. The Lagrange-Slater dual for SDP 
Here is the dual as stated [2] and [18] (note that we are using primal and dual in 

reversed sense here as compared to [2] ). This dual is nothing but the Lagrangian dual 
obtained by treating SDP as a cone program. We will call it the Lagrange-Slater Dual 
(LSD) of (P).  
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inf U o Qo 

s.t. U • Qi = ci Vi = 1 . . . . .  m, (LSD) 

U _ 0 .  

Let us now state a condition, called the Slater Constraint qualification, under which 

the dual LSD entertains no duality gap: 

there exists an x such that Z xiQi -< Qo. 
i 

While it is not clear whether this condition or other similar regularity conditions are 

restrictive in practical applications, they severely limit the applicability of LSD for many 

theoretical concerns, such as theorems of the alternative (see Section 1.4.3). 

The following is a very simple SDP, for which the LSD has a nonzero duality gap 

(slight modification of an example in [28] ): 

Example 4 (SDP for  which LSD has a duality gap). Let the primal be 

sup x2 

s.t. xl ~ 0 , 

x2 0 

where oL > 0. Then the LSD becomes 

inf o~Uij 

s.t. U22 = 0, 

UII +2U23 = 1, 

U ~ 0 .  

Any primal feasible solution has x2 = 0, and hence the primal optimum value is 0. 

Whereas, in the dual, U22 = 0 forces U23 = 0, so that Uwl = 1 for every dual feasible 
solution. Therefore the dual optimum value is ce, resulting in a duality gap of a. 

An example of failure of a Farkas' Lemma that arises from LSD is given in Sec- 

tion 1.4.3 (Example 5). The remarkable simplicity of these examples reveals some 

shortcomings of Lagrangian duality as applied to semidefinite programming. 

1.4.2. The minimal cone based approach 

This approach was proposed by Borwein and Wolkowicz [3]. In simplified terms, 
they consider a cone programming problem 

sup{cTx ] b -  Ax  C S}, 

where S is a convex cone, which in this case will be the cone of PSD matrices. For a 

convex subset T of S, they define the minimal c o n e  Sf(T) (slightly different notation 
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being used here) of T to be the intersection of all the faces of S containing T. (A face 

F of a convex set S is a subset such that every line segment whose relative interior 

meets F and is contained in S is contained in F as well; see [27].) The following is 
an equivalent problem to the above cone-program: 

sup{cTx [ b - Ax E S f ( T ) ) ,  

where T = {b - Ax I x E ]~"~} N S. The authors have shown that the "standard La- 
grange multiplier theorem" as applied to this modified problem has no duality gap. The 
authors then develop a theoretical algorithm for computing the minimal cone Sf (T) .  

This approach is mathematically very interesting. And since the first appearance of the 
results here, certain geometric relations between the minimal cone methodology and 
our approach here have been demonstrated [26]. However, the main drawback of the 

approach is that it does not yield a polynomial size dual program. We explain this fact 
as follows. 

Firstly, their algorithm when specialized to the SDP case requires the extraction of 

exact solutions to a sequence of semidefinite inequality systems. This task cannot be 
accomplished in polynomial time, because semidefinite systems, even when the data 

is rational, may not possess polynomial size solutions (in bitlength), as we will see 
in Section 4.2. Finally, as in the case of linear programming, it is evidently highly 

advantageous to be able to write down a polynomial size gap-free dual for any given 

SDP and not have to perform computations of some kind or another. For, after all, a 
duality theory for a mathematical program is an analytical tool and should provide a 

starting point in an algorithmic treatment of the problem and not vice versa. 

1.4.3. Farkas' Lemma and certificates 
A related issue is that of Farkas' Lemma and other Theorems of  the Alternative. 

In the case of Linear Programming, Farkas' Lemma and its relatives characterize the 
solvability of  one linear inequality system in terms of the nnsolvability of another linear 
inequality system: The system Ax <. b is infeasible iff the system ATy = 0, bTy = --1, 

y ~> 0 is feasible. Such pairs of  systems are called Systems of the Alternative. 
Systems of the alternative essentially give "certificates" of infeasibility. Prior to the 

publication of the Ellipsoid Algorithm (in 1979) which showed that Linear Programming 

was polynomial time solvable, the LP Farkas' Lemma enabled one to conclude that the 
feasibility problem for linear inequalities is in NP N Co-NP (see [9, Chapter 7] ). The 
significance of the membership of a problem in NP N Co-NP is derived from the widely 
held belief that P = NP n Co-NP (see [9] ). 

Let us now turn to semidefinite inequality systems: Suppose that we want to charac- 
terize the feasibility/infeasibility of the system 

Q(x)  ~ o. (4) 

Then a direct analog of the LP Farkas' Lemma [2] gives the following as a system of 
alternative for (4).  
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Q i o U = O  V i = I  . . . .  ,m, Q 0 • U = - l ,  U _ 0 .  (5) 

However, this extension is inadequate as witnessed in the following example, in which 
both (4) and (5) are simultaneously infeasible. 

Example  5 (Failure of  "Farkas' Lemma"). Consider the inequality lo] 
Q(x)  = y 

0 

~0, 

and observe that it is infeasible. The system (5) for this system is given by 

U33-  Uil =0 ,  -U22 = 0, 2UI2 = - 1 ,  U__.0, 

which is also infeasible since a positive semidefinite U with U22 = 0 will force Ul~ to 
be zero. 

We will derive a polynomial size explicit semidefinite system of the alternative for 

(4), and employ it to establish the following complexity results: 
(i) ff  SDFP C NP, then SDFP E Co-NP, and vice versa. 

(ii) In the Turing Machine model [9], SDFP is not NP-complete unless NP = 

Co-NP, 
(iii) SDFP is in NPNCo-NP in the real number model of Blum, Shub and Smale [5]. 
(iv) There are polynomial time reductions from the following problems to SDFP: 

(a) Checking whether a feasible SDP is bounded (i.e., it has a finite optimal 
value). 

(b) Checking whether a feasible and bounded SDP attains the optimum. 
(c) Checking the optimality of a given feasible solution. 

1.5. The proposed dual for SDP 

1.5.1. Statement of the dual 
Let us define the following. 

- G := {x ] ~ i x i Q i  -~ Q0} is the feasible region of (P). 

- 0 ( x )  = ~ i=1  x ia i .  

- Q(x)  = Q• - Q_.(x) (so that G =  {x I a ( x )  ~- 0}). 
- Q* : .M,, --~ •" is defined by Q*(U) = U • Oi, i = 1 . . . . .  m. (A comment is in 

order here. Usually, the superscript • is used to denote the adjoints of linear maps. 
Here, Q is an affine map. We think of Q* as the adjoint of the linear part of Q. 
We do not use Q* to avoid cumbersome notation.) 

- Q# : M ,  --~ N m+t , defined by 

(Qo * U'~ 
Q*(v) = \O*(U)/" 
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We now introduce a dual semidefinite program, named the Extended Lagrange-Slater 

Dual (ELSD) for SDP. 

inf (U+Wm)-Qo 

s.t. Q*(U + W,,,) = c, 

Q#(Ui + Wi-I ) = O, 

t,, w, wT, 

U ~ O ,  

Wo=O. 

i= 1 . . . . .  m, 
(ELSD) 

i=  1 . . . . .  m, 

Note that the constraint Ui >'- wiwTi can alternately be written as (see Proposition 7(4) 
of Section 2.2). 

and consequently (ELSD) is indeed a semidefmite program. A glossary of the domains 
of the variables is: U E 3~, Ui E Sn Vi = 1 . . . . .  ra and Wi E .Mn Vi = 1 . . . . .  m (and we 
use an auxiliary matrix variable W0 = 0 for notational convenience). 

Size of  ELSD. Note that ELSD has O(mn 2) number of variables and O(m~n 2) number 

of constraints, and the coefficient data is essentially that of the primal. Hence ELSD is 
a polynomial size semidefinite program. 

Let us define for an arbitrary positive integer k, 

Ck=((Ui ,  wi)ki:l [ a # ( u i + w i - 1 ) = 0 ,  U i ~ W i W ? ,  'v'i= 1 . . . . .  k, W0=0},  

/2k = {vk I (u. w~)L~ ~ ok}, 

wk = {wk I (u. w,)L~ ~ c~}, 

It wil! be shown in Lemma 10 that the sequences of sets/2k and ~A;k are increasing 
with respect to containment, i.e.,/21 _C_/d2 C_ . . . ,  etc. In terms of this notation, we can 
write ELSD in a more compact form. Future references to (ELSD) will be to this form 
of the dual. 

inf (U + W) . Q o  

s.t. Q*(U + W) =c,  
W c )/Vm, (ELSD) 

U ~ O .  

A pair (U, W) is said to be dual feasible, if it satisfies the above constraints. For the 
purposes of our proofs, we need to consider the following weakening of (ELSD), which 
we call the Weak-ELSD. 
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inf ( U + W ) * Q 0  

s.t. Q*(U+W) =c, 
(Weak-ELSD) 

W C W,,,_ I, 

U~_O. 

The term "weak" is used since, while the optimal value of this dual is the same as 
primal and (ELSD) (by the duality theorem to follow), it is not known if this dual 
attains its optimal value. A feasible solution (U, W) to (Weak-ELSD) will be called 
weakly dual feasible. 

1.5.2. Strong duality theorem for SDP 
In the sections to follow, we will prove the following strong duality theorem, which 

closely resembles duality theorems for linear programming. 

Theorem 6 (Duality Theorem). The following hold for the primal problem (P) and 
the dual problems (ELSD) and (Weak-ELSD): 

(i) (Weak duality) If x is primal feasible and (U, W) is dual feasible (or weakly 
dual feasible), then c~Cx <~ (U + W) • Qo. 

(ii) (Primal boundedness) If the primal is feasible, then its optimal value is finite 
if  and only (f the dual (ELSD) (or (Weak-ELSD)) is feasible. 

(iii) (Zero gap) If both the primal and the dual (ELSD) (or (Weak-ELSD)) are 
feasible, then the optimal values of all the three programs are equal. 

(iv) (Dual attainment) Whenever the common optimal value of the primal and 
(ELSD) are finite, the latter attains this value. 

The only difference between a standard LP Duality theorem and the above is borne by 
the fact that some semidefinite programs (i.e., primal) may not achieve their optimum 
values (Example 24 in Section 4.2). The proof of the theorem is given in Section 2.5. 

2. Derivation of  the dual 

2.1. A brief sketch of the derivation 

The technique used here emerged from the results of [23], where certain geometric 
properties of spectrahedra (G) were investigated. In particular, in order to understand 
the polars (G °) of spectrahedra, an object called the algebraic polar(G*) was introduced 
(see Section 2.4 here). This is an "algebraic approximation" of the polar, which is a 
geometrically defined object. The relations established there were: (1) G ° = CI(G*) and 
(2) G ° = G*+Aff(G) ± (Lemmas 13 and 15 here). A closer examination of the proof of 
(2) revealed that one can extract very useful information concerning Aft(G) whenever 
G* turns out not to be closed (and hence not equal to G°). This key observation is 
exploited here in Section 2.4.1. 
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In the next subsection, we list a few simple results concerning positive semidefinite 

matrices and convex sets, which are used in our proofs. Then we establish weak duality 

for ELSD in Section 2.3. In Section 2.4, we establish an exact algebraic description of 
G °. This description readily yields the strong duality properties of the dual ELSD (proof 

in Section 2.5). Subsequently, a theorem of the alternative for semidefinite systems, and 
further properties of SDP are characterized in Section 3. Finally, in Section 4, we 

establish the previously stated complexity results for SDP. 

2.2. Some useful facts about PSD matrices 

We now collect as a proposition some useful and well-known properties of semidefinite 

matrices. 

Proposition 7. The following hold: 

(i) I f  U ~_ O, and Uii = 0, then Uij = 0 Vj. 

(ii) I f  A E S,, and S E A4,  and nonsingular, then A ~ 0 iff ST AS ~ O. 

(iii) I f  A ~- 0 and u C •", then uT Au = 0  iff Au =0.  
(iv) Given a block partitioned matrix 

a 

where A and C are square, and A is nonsingular, then the Schur Complement 
o f  A in U is the matrix S = C - B A - I B  T. We have that, i f  A ~ O, then 

U~_Oe=~ S ~ O a n d U  ~.-O¢~ S~-O.  

(v) A E &, is PSD iff A . B >~ O for  all B ~ O. 
(vi) I f  A, B ~ 0, then A • B = 0 if  and only i f  AB  = O. 

(vii) I f  U - 14'W T ~_ O, then there exists a matrix H E 3,4, such that W = UH. 

(viii) I f U j , U 2  ~ 0, then Null(U1 +/-/2) = Null(Ui) MNulI(U2). 

Proof. Most of  these results are quite classical, and may be found in texts on matrix 
analysis [ 14]. We make critical use of (vi) and (vii). The proof of (vi) may be found 
in [2], and that of (vii) is given here: Suppose that U - W W  T ~ O. Then, for an arbitrary 
x E R", if Ux = 0, then xTUx = 0, and x T ( u  -- wWT)x i> 0. Hence 0 ~> xTWWTx, 

implying that WTx = 0. Thus, Ux = 0 ~ WTx = 0, and hence there must exist a matrix 
H such that W T = HTu,  and result follows from the symmetry of U. [] 

Another simple folklore result we need is the following. 

Proposition 8. l f  K C_ ]R 't' is a convex set such that CI(K) = ]R "', then K = R °t. 

Proof. From Theorem 6.3 of [27], 

r i(K) = r i (Cl(K) ) = 1~"', 

and hence K = IR m. [] 
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2.3. Weak duality 

In this section, we will establish weak duality for (ELSD). We need the following 
lemma. 

Lemma 9. Let k <~ m. Then for  any x E G and U E bik, W E ~/V~, we have 

Q ( x ) U  =O, Q ( x ) W  =O, 

and hence Q ( x ) o U = O = Q ( x ) . w. ln particular, if O E G, then Qo * U = O = Qo . W. 

Proof. Let x E G and 

(u~, w~)~, ~ c~. 

To start with, note that as Wo =0,  and so Q#(UI) =0,  we have 

nt 

Q(x)  • UI = Qo • ui - ~ x i ( Q i  • U I )  = O, 
i=1 

Since Q ( x ) ,  U1 ~ 0, by Proposition 7(vi) ,  

Q(x)Uj  ~0.  

Since Ul ~ W1W~, by Proposition 7(vii),  we infer that there exists a matrix H such 
that 

W~ = Ul H, 

and consequently, 

Q ( x ) W i  =O and Q ( x )  o Wl =O. 

Since Q#(U2 + wl ) = 0, the above gives 

a ( x )  • U2 = O, 

which as above gives Q(x)U2 = 0. It is clear that by continuing in this fashion, one can 

conclude the truth of  the lemma. [] 

That weak duality holds for the primal-dual pairs (P)- (ELSD) and (P)-(Weak- 
ELSD) is shown below. 

Proof of Weak Duality (Theorem 6(i)). Let x be primal feasible, k ~< m, and (U, W) 
satisfy 

Q*(U + W) =c, 

W E W k ,  

U ~ O .  

We then have 
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c+x = xTQ * (U + W) 

= - Q ( x )  . (U + W) + Qo .  (U + W) 

= - Q ( x )  • u -  Q(x)  • w +  Qo " ( u  + w) .  

Since Q ( x ) , U  >- O, - Q ( x )  • u <~ O. From the above lemma, Q(x)  • W = 0, and we 

get 

crx <<. Qo • (U + W). 

Applying the above with k = m yields that weak duality holds for the pair ( P ) -  

(ELSD). [] 

We will establish the following lemma for use in future sections. It sheds some light 

on the incremental structure of the dual (ELSD). 

L e m m a  10. The following hold: 
(i) The sequences Hk and )/Vk are increasing (set) sequences. 

(ii) For any k <~ m, ~/Vk C_ .M,, and Q*(Wk) c_ R"  are linear subspaces. 

(fii) Q* (W t )  c_ . . .  c Q*(Wm). 
(iv) l f  O E G, then G C_ (Q*(Wk)  )± for every k= 1 . . . . .  m. 

Proof. The proof of (i) is as follows: suppose that 

(Ui, wi)ki=l E C k, 

then set 

U[=Ui- l ,  W[=Wi- I  V i = 2  . . . . .  k + l ,  and U ~ = 0 = W ~ ,  

and observe that 

(u:, w,~+~ ,rill= ] E Ck+l, 

and hence W~ E V~;k and Uk E Hk. 
To prove (ii), let W E V~;k and let 

(Ui, Wi)ik=l E Ck 

such that W = Wk. We will first show that ~W E )/Vk for every /z E JR. Define the 
matrices 

2k--i 2k--i.t t 
w: = ~ wi, t:: =/~ t:~ 

for every i = I ..... k. Then, 

Q# ( v: + w:_ ~ ) 2~-"' :,#... =/~ ~ t u i + W i - ~ ) = O ,  

and 

U: -- W:Wli T= [J,2k-i+'(V i -- WiWTi ) )'-- O, 
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and it follows that 

U / 

hence 

tzW, ~ Wk. 

It can now be concluded that kVk is a subspace, once we show that kVk is convex, for 

which it suffices to show that Ck is convex, which follows trivially using the fact that 
one can write the condition U - WW T ~ 0 as 

Clearly (i) implies (iii), and the proof is complete, as (iv) is an easy consequence 
of  Lemma 9. [] 

Example  4 revisited. In Section 1.4.1, it was seen that the LSD fails for Example 4: 

there was a duality gap of  a > 0. Now, let us apply ELSD to this example. Since m = 2, 
we get: 

inf 

S,t. 

(U + W2) *Qo 

Q*(U + W2) =c, 

OO(u2 + w~) =o, 

Q#(UI ) = O, (ELSD) 

Ul _~ W1 Wi r, 

w wL 
U ~ O .  

In this case, Qo = aer e T, Q, = e2e~, Q2 = el e T + e2e~ + e3ez x, and c = (0, 1) x. It is not 

hard to see that the solution U = Ui = Wi = 0, U2 = e3e~ and W2 = e3e~ is feasible for 
the ELSD, and the objective function value of  this solution is 0, and by weak duality, 

it must be optimal to the ELSD. Hence, ELSD gives zero duality gap as well as attains 

its optimum for the SDP of Example 4, and as we will show in the next two sections, 
the same holds for any SDP. 

2.4. Polars of spectrahedra 

In this section, we derive an expression for the polar of  an arbitrary spectrahedron 
defined by 

G = {x I Q ( x )  :L-_ 0}, 

and containing the origin, i.e., Q0 ~ 0. 
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The polar is defined to be 

G° = {3' I xTy <~ 1, VX E G}. 

The following is a standard result and the proofs can be found in [27]. 

Proposition 11. The following hold for a closed convex set G containing the origin: 
(i) G ° is a closed convex set containing the origin. 

( i i )  G = G °°.  

The central result of this paper will now be established. 

2.4.1. Description of the polar 

143 

Theorem 12. If G contains the origin, then its polar is given by 

G°= {Q*(U + W) [ WE~A;k, U~-O, U . Q o  <~ I} Vk > / m - 1 .  

The proof will be given shortly, but first consider the following object, called the 

algebraic polar of G (with respect to the representation Q(x)  ~ 0). It serves as an 
"initial approximation" for G°: 

G*={Q*(U)  1U.Qo<~ 1, U ~ 0 } .  

We reproduce here the proof that G* indeed approximates G ° (missing only a set of 
measure zero) closely. 

Lelnma 13. Assuming that 0 E G, we have G ° = CI(G*). 

Proof. Let us first prove that G ° D G*: 

G ° = {y l sup{yTx  ] a ( x )  ~_ 0} ~< 1} 

~ { Q * ( U ) ] U * Q o < < , l ,  U L 0 }  

G •" 

Since G ° is always closed, CI (G*) C_ G °. To show the reverse inclusion, put H = CI(G*) 
and consider any w E H °. Then, we have 

wT(Q*(U))<~ I wheneverU~O,U .Qo<~  l. (10) 

We claim that Q(w) ~ O. First, if Q0 = 0, then ( 1 0 )  implies 

Q ( w ) , U > ~ - I  VU :-- O, 

which happens if and only if Q(w) ~ O. 
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Suppose that Q0 ~ 0. Let V ~- 0, and choose/i  > 0 such that/iV • Q0 = 1, which is 
possible since Qo ~ 0 and nonzero. Then 

( a v )  • Q ( w )  = ( a v )  • a o  - w T Q * ( A v )  = 1 - w T Q * ( a V )  >1 0 by (10). 

Therefore, Q ( w )  • V >~ 0 VV ~- O, implying that w E G, and hence H ° _C G. But then, 

H = H °° _D G °, 

and the proof is complete. [] 

We will need the following corollary, which generalizes Lemma 13. 

Corollary 14. Let 0 E G, and T = {x I Ax = 0} be a subspace. Then 

(G n T) ° = CI(G* + T±) .  

Proof. We give below a spectrahedral representation of G M T. Let 

Q(x)  := Q ( x )  @ Diag(Ax) @ D i a g ( - A x ) .  

Clearly, 

Gr iT  = { x  I O(~) ~ o}. 

It is not difficult to show that the algebraic polar of G N T with respect to the matrix 
map Q(x)  is precisely G* + T ±. Now we can apply Lemma 13 and conclude the truth 
of the corollary. [] 

The following fact was established in [23] and its proof is omitted as we will not 
use the result directly here. 

Lemma 15. Let G = {x  [ Q ( x )  >- 0} with Qo >-_ O. Then 

G ° = Ci(G*) = G* + Aft(G) ±. 

The essence of the lemma is that the difference of the polar G ° and its algebraic 
approximation G* is offset by the orthogonal complement of the affine hull of G. 
However, the disadvantage of the above lemma is that we need to first have at our 
disposal a description of the affine hull of G, say as {x I Ax  = 0} for some A. Since 
such a representation is not readily available, we attack the problem as follows. 

As seen, if G* turns out to be closed, we already have a description of G °. So suppose 
that this is not the case. Interestingly enough, from the nonclosedness, we can obtain 
information on the annihilators of G (as will be witnessed in Claims 16 and 17 below). 

Proof of  Theorem 12. Let us first consider the algebraic polar G* of G: 

G* = ( Q * ( U )  I U . Q o  <~ 1, v _ o } ,  
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and the subspaces (see Lemma 10) of ~m 

S0 = {0}, Sk =Q*(~A3k) V k =  l . . . . .  m, 

which satisfy 

So C St C_ S2 C_ . . .  C_ S,,,. 

(There is some potential for confusion between the matrix space 8,1 and the subspaces 

Si of ~m being used here.) 
Let us invoke the assumption that 0 E G, and apply Lemma I0 (with x = O) to 

conclude that for any W E Wk, 

QoW = O, 

and hence by another application of Lemma 10, we get that 

x T Q * ( W ) = O  V x e G .  

This implies easily that 

G * +  Sk C_G o. 

Therefore, we have 

G*C_G*+S1  C _ G * + S 2 C _ . . . C _ G  ° = C I ( G * ) ,  

and we need to show that G* + Sm-I = G °. If  for some k ~< m, G* + Sk is closed, then 

clearly 

G * + S j = G  ° Vj>~k.  

We will show (Claim 16 below) that whenever G* + Sk (with 0 ~< k ~< m -  1) is not 
closed, then 

Sk c & + l ,  

and therefore 

dim(Sk) < dim(Sk+l). 

We now assert that the above implies 

G ° = G* + Sin-1. 

For the sake of a contradiction, suppose that this is not the case. 
It" G* + Sm-~ is not closed, then G +  Sk is not closed for every 0 ~< k ~< m - 1, which 

by Claim 16 will result in 

0 = dim(S0) < dim(St)  < dim(S2) < . . -  < dim(Sm-l)  < dim(Sin), 

implying that Sm = ~ ' .  But by Lemma 10(iv), this implies that G = {0}, and hence G ° = 
~"~. But then Ct(G*) = ]R',  and by Proposition 8, the only convex set whose closure is 

the whole space is the whole space itself and hence G* = ~ ' ,  a contradiction. [] 



146 M. V. Ramana / Mathemafical Programmh~g 77 (1997) 129-162 

Let us now prove the claim made in the above proof. 

Claim 16. If G* + Sk is not closed, then 

Sk c Sk+l and dim(Sk) < dim(Sk+l). 

Proof, Let A be an r × m full row rank matrix such that 

T := Ski = {x [Ax  = 0}, 

and suppose that G* + Sk = G* + T -L is not closed. 
Our main tool is the result in Claim 17 below, according to which there exists a 

matrix U >'- 0 and a vector A E R" such that 

Q * ( U ) ÷ A T A = 0 ,  Q 0 • U = 0  

and {x I Ax = O, Q(x )U = 0} is a subspace with a strictly smaller dimension than T. 

We will use the quantities U, 3. as follows. First, note that 

T ± = S~ = Q* ('142k), 

and hence we may choose W E Wk such that 

ATA = Q*(W).  

Since W E )A~k, QoW = 0 from an application of  Lemma 13, and hence 

Q * ( U + W ) = O ,  Q o • ( U + W )  =0 .  

From the claim, the subspace 

~ : =  { x E T  I Q ( x ) U =  0 } =  { x E T  ~ - ~ x i Q i U =  O} 
i=1 

(the equality follows from QoU = 0) is strictly contained in the subspace T = Sk I .  Hence 

there exists v E T that is orthogonal to every vector in 7 ~, i.e., whenever 

II1 

xiQiU = O, 
i=1 

one has vTx = 0. Now, treating the matrix equation in the display as n 2 separate scalar 

equations, one can conclude that there exists a multiplier (not necessarily symmetric) 

matrix V E A4,, such that 

Vi = V •  (QiU)  = ( Q * ( U V ) ) i  Vi= 1 . . . . .  m. 

The proof  of  the claim will he completed by showing that the vector v = Q*(UV) is 

contained in Sk+~ = Q*(VV~+I ). Let 

(u,, w;)~=~ E Ck, 
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such that Wk = W. Obviously neither U nor V is zero, for otherwise, v = 0 will be in 

the subspace Sk. Define 

I~ = I I ( p ( V ) x / p ( U )  ), 

and set Uk+l = U and Wk+l = IzUV. Let us show that Uk+l ~ Wk+t WT+I : 

Wk+j wT+I = ( 1 / ( p ( U ) p ( V )  2) )uwTu  

~_ ( l I p ( U ) ) U  2 

~_ u = uk+:. 

It is clear that 

(Ui, w.~k+l "'tli=l E Ck+l, 

and hence 

tzv=Q*(W~+l) E Sk+t, 

and since the latter is a subspace, it contains v. The proof of  Claim 16 is complete. []  

The proof of  the following Claim 17 was inspired and closely parallels that of  

Lemma 15 given in [23] .  

Claim 17. Let T = {x ]Ax  = 0}, where A is an r x m full row rank matrix, and let 
G = {x [ Q(x)  >'- 0} be any spectrahedron containing the origin. If  G* + T -l- is not 
closed, then there exist U >'- 0 and A E ~" such that 

Q*(U) + ATA=o,  Q o o U = O  

and {x I Ax = 0, Q(x )U  = 0} is a subspace whose dimension is strictly smaller than T. 

Proof. The proof is by induction on n (the size of  the matrices ai), with the base case 

being n = 1, which is trivial to verify. Put Z = G* + T  ± and suppose that w E C I ( Z )  \ Z ,  

and pick a sequence 

[U( i )  _ 0, ,~(i) C Rr ] ,  i =  1 . . . . .  c~ 

for which 

1 Vi and l i m Q * ( U ( i ) ) + A V A ( i ) = w ( ~ Z .  U(i) eQo <, 
i----~ oo 

If  the sequence [U( i ) ,A( i ) ]  has an accumulation point, say, [g/, 3.], then we will 

have w = Q*(U)  + AT]. Since 0 _ 0 and /S/, Q0 ~< l, this will imply that w E Z, 

contradicting our hypothesis. Hence, of  the two sequences {Tr(U( i ) )  = U(i) • I}, and 

{IIA(i) I[}, at least one is unbounded. 
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Now define the normalized sequence 

[U(i ) ,  ~( i ) ]  = [U(i) ,A(i)] /(U(i)  • I + Ila(i)[I) vi, 

and assume, by passing to a subsequence if necessary, that the sequence converges to 
( 0 ,  ~). Note that the following hold: 

- 0 ~ o .  
- Q * ( L ~ )  + AT,~  = l i m  w / ( U ( i )  • I + I l a ( i ) I I )  = 0.  

- At least one of 0 or ~ is nonzero. 
- In fact, 0 4= 0. This can be seen as follows: if 0 = 0, then ATe. = 0, which 

contradicts the fact that A has full row rank. 

- Also, since 0 ~< U(i) •Qo <~ 1 Vi (as Q0 :L-_ 0 from 0 c G), it follows that 

O .Qo =0.  
Now consider the affine subspace 

T'= {x l a x  = 0 , a ( x ) ~  = o}. 

Since Q0 • 0 = 0 (and Q0 >'- 0), by Proposition 7(vi) ,  QoO = 0, and hence 

T'= (x l ax  =O, Q ( x ) 0 = 0 } ,  

and consequently T ~ is a linear subspace. 
Now, if d im(T')  < dim(T),  we are done. Let us suppose to the contrary. This implies 

that T ~ = T. Let spectral decomposition of 0 be given by 

o [o Ol T 
where D is the diagonal matrix made up of the positive eigenvalues (which are l > 0 in 
number) of  O, and the columns of X are composed of a set of orthonormal eigenvectors 
of U. Also, block partition X'rQ(x)X accordingly 

[p(x) R(x)  
XTQ(x)X= LR(x) S(x) J '  (11) 

giving 

e(x)TD] 
Q(x)O= X S(x)D J XT' and 

T' = (x ]Ax = O, R(x) = O, S(x) = 0}. 

Since T ~ = T, we have 

Ax=O ~ R(x)=O and S(x) =0 ,  

implying that 

GnT={xlP(x) ~_0, A x = O } = H N T ,  
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where H is the spectrahedron defined by 

H = {, I P(x) ~- 0}. 

Since Q(x)  ~ 0 iff X r Q ( x ) X  ~- O, and a principal submatrix of  a PSD matrix is 

PSD, it follows from ( 1 l ) that G ___ H.  From the definition of  the algebraic polar given 
in Section 2.4.1, it is quite evident that the algebraic polar of  G with respect to the 
map XTQ(x)X is the same as that with respect to Q(x).  Since P(x)  is a pricipal 

submatricial map of  XTQ(x)X, it follows that the algebraic polar of  H with respect to 
P(x)  is contained in G*, i.e., H* _C G*, and so 

H* + T  ± C_ G* + T  ±. 

We have, 

E l (H*  + T  ± )  = ( H M T )  ° = ( G N T )  ° = E l ( G *  + T  ±)  

_~ G* + T L _D H* + T  L, 

in which two applications of  Corollary 14 are made. I f  H* + T  ± is closed, then equality 
holds throughout, and in particular, G* + T ± is closed. Hence we may assume that 

H* + T ± is not closed. But since the dimension of  the matrix map P(x)  is n - l < n, 
by induction there exists an (n - I) × (n - 1) matrix V ~- 0 and ~ E ~ r  such that 

P*(V) + A'r~ = 0, V.Po  = 0 ,  

and 

{xl Ax=O, P(x)V=O} cT. 

To obtain the U, a as required by the claim, we just set 

and ~ -- ,~ + ,~. The proof  of  Claim 17 is now complete. [] 

2.4.2. Value and gauge functions 
With a complete description of  the polar of  a spectrahedron at hand, it is quite easy 

to derive a strong dual for SDP, namely ELSD. The underlying notions behind our proof  
of  strong duality are those of  support and gauge functions, which we now define for an 
arbitrary closed convex set G containing the origin. 

The value function (also known as support function) of  G is defined as 

vc(y) = sup{yTx ] x E G}, 

and the gauge function is defined by 

PG(Y) = inf{t > 0 [ y E tG). 

(By convention, infimum is cx~ if for no t > O, y E tG.) 
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The following lemma, linking polars, support functions and gauges, serves as a pro- 

totype for the strong duality proof  in the next section. 

L e m m a  18. For a closed convex set 0 E G C_ R ' ,  and a vector c E ]t~ m, the followh~g 

hold: 
(i) cTx is bounded on G iff there exists t > 0 such that tc E G °. 

(ii) The origin maximizes cXx over G ~ff tc E G ° for  evepy t > O. 

(iii) When cTx is bounded on nonemp~.' G, then ~'c(Y) = Pco(Y) Vy E ~"'. 

Proof. Let y E ~ " .  

Pco(Y) =inf{ t  > 0 I Y E tG °} 

= in f{ t  > 0 } xTy ~ t k/X E G} 

=sup{yTx l x E G} 

= v c ( y ) .  

The lemma trivially follows. [] 

2.5. Proof of  strong duality for  ELSD 

Part (i) of  Theorem 6, namely weak duality, has already been established. We will 
first prove (ii) and (iii) of  Theorem 6, and then apply the (Weak-ELSD) version of  

(ii) to prove ( iv) ,  namely, dual attainment. 
First, let us consider the following simplification that allows us to assume that 0 C- G. 

In the special case of  (20 = 0, 0 is in G, and in the general case, since we may assume 

for the purposes of  Theorem l that the primal is feasible, let 2- ¢ G. Let us perform the 
simple translation of  G that sends 2 to 0: z = x - 2-, so that we get 

G ' = G - - Y = { z  [ Q l ( z )  ~ 0 } ,  

where 

Q ' ( z )  := ( Q ( 2 ) )  - Q ( z ) .  

So the primal SDP (P) transforms to: 

sup cT z + CTTf 

S.t. ~ ziQi <_ Q(-x). 
i 

(P ' )  

Note that Q has not changed, and it is not difficult to show that the sets Ck, L/k and kVk 
remain unchanged, as the equations Q#(X) = 0 are equivalent to Q*(X) = O,Q(-£) 6X  = 

0. And therefore, the (ELSD) corresponding to (p/)  is given by 
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inf ( U +  W) -Q(2)  +cT2 

s.t. Q*(U + W) =c, (ELSD') 

W e  W,,, 

U>-O. 

Since Q* (U + W) = c, 

( U + W )  • O ( y )  + c T 2 = ( U +  W) • Q 0 - ~ T Q * ( U +  W) + c T 2  

= ( U + W )  eQo, 

and thus there is an exact correspondence between (ELSD) and (ELSD ~) (and a 
similar statement holds for (Weak-ELSD)), and we may therefore assume without loss 
of generality that 0 is feasible for (P). Note that this implies 

sup{cTx Ix e G} >~ 0. 

Proof of parts (ii) and (iii): We have the following for any k >7 m - 1 (explanation 
given below): 

sup{cTx [X E G}=inf{ t  > 0 

= inf{t > 0 

= inf{t > 0 

= inf{t > 0 

= inf{t > 0 

l cTx <~ t VX C G} 

I cVx/t <~ I Vx E G} 

I c/ t  e G °} 

] Q*(V' + W') =c/ t ,  W' E Wk, U' ~ O, U' •Qo <~ I} 

IQ*(U+W)=c ,  w e w k ,  u ~ o ,  U.Qo<~t} 

= i n f { U * Q o l Q * ( U + W ) = c ,  W e W k ,  U ~ 0 }  

= i n f { ( U + W ) • Q o l Q * ( U + W ) = c ,  W e W k ,  U~O},  

Explanation: The first equality is from the fact that the primal optimal value is non- 
negative. The second is obvious, and the third follows from the definition of polar. The 
fourth equality is from Theorem 12, and the fifth is obtained by a change of variables 
U = tU', W = tW', and (since We is a subspace, W c Wk). The sixth equality is quite 
obvious and the last one comes from the fact that W • Q0 = 0 whenever W ¢ W~ (of 
course, under the assumption that 0 C G). 

Thus, we deduce that 
( 1 ) Whenever the primal (P) has a finite optimal value, the duals (ELSD) and (Weak- 

ELSD) are feasible. 
(2) In such a case, the optimal values of (P), (ELSD) and (Weak-ELSD) are equal. 
Parts (ii) and (iii) of Theorem 6 follow. Note that the duality gap is zero for the weak 

version of the dual (Weak-ELSD) itself. 
Proof of part (iv): Let us now show that the dual (ELSD) attains its optimum value 

whenever the latter is finite (it does not follow from the proof below that (Weak- 
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ELSD) attains its optimum). Let 0 ~< a < oc be the common optimal value of  the three 

programs (P) ,  (ELSD) and (Weak-ELSD).  We distinguish between two cases. 

Case l: ~r > 0. Clearly c 4= 0. Consider 

O < a = i n f { t > O [ c / t E G  ° } 

and hence 

1 /~  = sup{s/> 0 [ sc E G°}, 

and since G ° is a closed convex set and c 4~ 0, the above supremum is attained, say for 

s = s*. Then clearly, 

a = l /s* = min{t > 0 [ c / t  E G°),  

and it easily follows that (ELSD) attains the optimal value a in this case. 

Case 2: o~ = 0. This means that 0 is an optimal solution to the primal. I f  c = 0, then 

(U, W) = 0 will be a dual feasible solution with an optimal value of  0. So assume that 

c ~ O .  

For the remaining case, we need to show that there exists a dual feasible solution 

(to (ELSD))  with an optimal value of  O, which is equivalent to the feasibility of  the 

following system: 

( U + W ) . Q o = O ,  Q * ( U + W ) = c ,  V~-O,  W E W , , , .  (14) 

It is easy to see that the above system is the set of  feasible solutions of  the (Weak- 

ELSD) of  the following homogeneous semidefinite program in m + 1 variables: 

sup cX x 

"' (15) 
xiai ~ xoQo. s .t .  

i=1 

There is a cause for confusion here as the matrix map has changed slightly after 
homogenization. We are using Wm (and implicitly Q* and Q#) as they are defined for 
the original Q(x) .  

Since the above primal problem is feasible (with x = 0, x0 = 0),  the infeasibility o f  the 

(Weak-ELSD) system (14) implies that the SDP (15) is unbounded (this is precisely 
the motivation behind introducing the weak version of  the dual. The improvement 

obtained in having W E ~/V,,-1 is absorbed by the above increase in the number of  

variables from m to m + 1). From the homogeneity of  (15),  we conclude that there 

exists (x, x0) such that 

m 

crx xiQi '< xoQo. > 0, 
i=i 

Let us pick an r ~> 0 such that r + )co > 0 and set 

z = x / ( r + x o ) .  



M. E Ramana/Mathematical Programming 77 (1997) 129-162 153 

We claim that Q (z)  ~ 0: 

nl 

(r q- xo)Q(z)  = (r + xo) (Qo - Z ziQi) 
i=1 

m 

= (r+xo)Qo - Z x i Q i  
i=1 

m 

_-rQo + (x0Q0- 
i=1 

~ 0 .  

Therefore z is feasible for (P) and quite clearly cTz > 0, which is a contradiction 
since a = 0. Thus, (14) is feasible, and the dual (ELSD) attains its optimum value 

of 0. 
This concludes the proof of  our strong duality result. [] 

3. Related characterizations 

3.1. An exact theorem of the alternative 

By applying Theorem 6(ii) (the Weak-ELSD version), we can now trivially derive 

an exact theorem of the alternative for semidefinite systems. 
Let Q(x)  = Qo - Y~iml xiQi be a given matrix map, and suppose that we would like 

characterize the nonemptyness of G = {x ] Q(x)  ~- 0} (or the feasibility of Q(x)  ~- 0). 
Consider the following homogeneous SDP in m + 1 variables: 

sup x0 
n! 

s.t. ~ xiQi - xoQo -< O. 
i=l 

It is quite clear that G is nonempty if and only if the above supremum is oo, i.e., 
unbounded. Therefore, we can apply the Duality Theorem (Theorem 6(ii);  for Weak- 
ELSD) to conclude that G is empty iff there exist U, W such that 

( U + W ) . Q o = - I ,  Q * ( U + W ) = O ,  W E W , , ,  U ~ O .  

We now state this fact as a theorem of the alternative. 

tn 
Theorem 19 (Farkas' Lemma for SDP). Let Q(x)  = Qo - ~i=l x i Q i  be a given affine 
matrix map. Then exactly one of the following semidefinite systems is consistent: 

(i) Q(x)  ~- 0; 
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(ii) 
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( U +  W,,,) . Q 0  = - 1 ,  

Q*(u + w,,) = O, 

Q#(Ui+Wi-1) = 0  V i = l  . . . . .  m, 

W0=0,  

U _ 0 ,  

[Iwi W~] ~ - ° u i J -  V i = l  . . . . .  m. 

3.2. Optimality and attainment 

Given a semidefinite program (P) and a feasible vector 2, suppose that we wish 

to test the optimality of this vector. The strong duality theorem, in particular the dual 

attainment part, gives us an answer. 

Theorem 20 (Optimality condition). A given feasible vector -~ is optimal to SDP (P) 
if and only there exist U, W such that 

( U + W )  eQo=cT-Y, Q * ( U + W ) = O ,  WCV~m, U ~ O .  

Thus the optimali~' detection problem for SDP reduces to semidefinite feasibility. The 
proof is an obvious application of Theorem 6. On a related note, let us now characterize 
the condition that a (feasible and bounded) semidefinite program (P) attains its optimum 
value (as seen in Example 24 of Section 4.2, not all SDPs attain their optima). 

Theorem 21 (Primal attainment). Suppose that (P) as well (ELSD) are feasible. 
Then the primal SDP attains the optimal value iff the.following system is feasible: 

Q(x)  ~-0, c T x = ( U + W )  eQo, Q * ( U + W )  =0,  WEW, , , ,  U L O .  

4. On the complexity of SDP 

4.1. An overview of known complexi~ results 

By applying ellipsoid and interior point methods, one can deduce the following 
complexity results for SDP. First let 

i l l  

Q(x)  = Qo - ~-~xiOi, 
i=1 

where Qi, i = 0 . . . .  , m are given rational symmetric matrices, c is a rational vector, and 
let 
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G =  {x l Q ( x )  ~- 0} 

be the feasible region of (P).  The maximum of the bitlengths of the entries of the Qi 

and the components of c will be denoted by L, and define for e > 0, 

S(G,e )  = G + B ( 0 ,  e) and S ( G , - e )  = ( x l B ( x , e )  C_G}. 

- If a positive integer R is known a priori such that either G =  ~ or G M B(0, R) v~ ~, 
then there is an algorithm that solves the "weak optimization" problem, i.e., for any 

rational e > 0, the algorithm either finds a point y E S(G,e)  that satisfies cVx <~ 

cVy + e Vx E S(G, - e ) ,  or asserts that S(G, - e )  is empty [ 12]. The complexity of 
the algorithm is polynomial in n, m, L, and log ( l / e ) .  

- There is an algorithm which, given any rational e > 0 and an x0 such that Q(xo) ~- 

0, computes a rational vector 2 such that Q (Y) ~- 0, and cV2 is within an additive 
factor e of the optimum value of SDP. The arithmetic complexity of the algorithm 
is polynomial in n,m, L, l og (1 /e ) , log (R)  and the bitlength of x0, where R is an 

integer such that the feasible region of the SDP lies inside the ball of radius R around 
the origin [2, 18]. However, it should be mentioned that a polynomial bound has not 
been established for the bitlengths of the intermediate numbers occurring in these 
algorithms. 

- For any fixed m, there is a polynomial time algorithm (in n, L), that checks whether 
there exists an x such that Q(x )  ~- O, and if so, computes such a vector [21]. For 
the nonstrict case of Q(x )  ~- O, the feasibility can be verified in polynomial time for 

the fixed dimensional problem as shown in [ 17]. 
In a recent work [8],  Freund discusses interior-point algorithms for SDPs in which 

no regularity (Slater-like) conditions are assumed. 

4.2. "Ill-conditioned" SDPs 

Progression from "weak optimization" to "strong optimization" is made difficult as 
there exist SDPs with certain undesirable features as described in the following. 

(i) SDPs with no rational optimal solutions. For a symmetric matrix A, consider the 

SDP 

max{t I A - t l  ~- 0}, 

and note that its optimal value equals the least eigenvalue of A, and this is usually 
irrational even for rational matrices A, for instance, if 

then the least eigenvalue is ( 3 -  x/5)/2. 
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(ii) Feasible regions with small volume. 

Example 22 (Khachiyan's example). Consider the map 

Q(x) = Ql (x )  @Qz(x) @- . .@Qn(x )  @ [1 - x , , ] ,  

where 

[ xo 2x i -q  
Oi(x) = 2xi-i xi j '  

and @ denotes the direct sum operation for matrices (Section 2.1). 
A 91-1 It is then easily shown that for any x wi thQ(x)  ~_ O, we have xi <. 1,.~- xo <~ 

xi Vi = 1 . . . . .  n, and xi >~ O, i = 0 . . . . .  n. Hence, the volume of G is doubly exponentially 
small in n. This example was found by L.G. Khachiyan. 

(iii) SDPs with doubly exponential optimal solutions. Rational optimal solutions exist, 
but they require exponentially many bits: In the above example max{x0 I Q(x) ~_ 0} = 
41-2". 

(iv) Feasible region too far from the origin. In the above example, if we replace 
x,, ~< 1 by x0 >/ 1, then the feasible region is at a doubly exponential distance from the 
origin. Another example of this type is the following. 

Example 23. Consider the map 

Q(x)  = [xl - 2 ]  @Ql(x)  @ . . . @ Q , - t ( x ) ,  

where 

Q i (x )=  [1 x i]  i = I ,  n - I  
Xi Xi+l 

Then 

2 G = {Q(x) _~ 0} = {x ] xl ) 2, x2 ) x~ . . . . .  x,, ) x,_,},  

and hence for any x E G, 

22,--~ X i ~ Vi, 

which is doubly exponential and therefore any rational solution in G has exponential 
bitlength and is at an exponential distance from the origin. Further, there does not exist 
any rational point satisfying Q(x)  ~- 0 whose bitlength is single exponential in n. Hence, 
any polynomial algorithm that attempts to check whether (x I Q(x) ~- 0} ~ 0 cannot 
actually output such an x. 
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(v) SDP with unattained optimum. 
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Example 24. Consider the map 

Q ( x ) = [ l l  x21] - 0 '  

and note that inf{xl [ Q ( x )  ~ 0} = 0 (this is the infimum of xl over the top right lobe 
of the hyperbola XlX2/> 1 ), but it is not attained. 

The success of ellipsoid and interior point methods in establishing the polynomial 
complexity for the strong versions of linear and convex quadratic programming relies on 
the fact that the above idiosyncrasies do not arise for these problems. For this reason, 
to show that the SDFP is polynomial time solvable, if at all this is the case, it seems to 
require a completely new approach. This point is elaborated as follows. 

As seen, the optimal as well as feasible solutions of SDPs could potentially be 
exclusively irrational, double exponential in bitlength, or sometimes the optimum may 
not even be attained, so that one cannot hope to write down explicitly an optimal solution 
or, for that matter, an arbitrary feasible solution of general SDPs in polynomial time. 
But, there might be alternate implicit polynomial size representations for these solutions. 
For instance, the optimal solution of the SDP in (iii) above is the unique solution to 
the system 

xn = 1, xox i = 4x2i_l, i = 1 . . . . .  n, 

and it takes polynomially many bits to write down this system. Similarly, the optimal 
value of max{t I A - tI  ~ 0} is the smallest root of the characteristic polynomial of A, 
and clearly it is the unique solution to the polynomial system 

S k ( A - t l ) = O  V k = l  . . . . .  n, 

where Sk ( • )  denotes the kth elementary symmetric function of a matrix [ 14]. Now, if A 
is an integral matrix whose entries have bitlength at most L, then the above polynomial 
system has size polynomial in n , L  (as each of the Sk(A - t l )  is the sum of single 
exponentially many subdeterminants of A - tI, which are polynomials of polynomial 
bitlength). 

4.3. Complexity consequences o f  ELSD 

In this section, we will address certain complexity issues concerning Semidefinite 
Programming. The two computational models of our interest are 

The Turing Machine model [9] (abbreviated as TM Model here). We will mainly 
borrow notation in Chapters 2 and 7 of Garey and Johnson [9]. 

The real number model of Blum, Shub and Smale [5] (abbreviated as BSS Model) .  

The primary decision problem of interest is: 
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Semidefinite Feasibility Problem (SDFP). 
Instance: Positive integers m and n, and n x n symmetric matrices Q0 . . . . .  Q,, with 

integer entries. 
n !  Question: Are there real numbers such that xl . . . . .  x,,, such that Q( x) = Qo - ~ i = l  xiQi 

is positive semidefinite? 

Sizes of instances. In the TM model, the size of  an instance of  SDFP is m + n plus 

the total number o f  bits required to write down the matrices. In the BSS model, the size 

is m + n (bit lengths are not allowed as a part of  the size here).  

At present, it is not known whether SDFP is in NP (and o f  course, it is open whether 

SDFP is P) for the TM Model.  In the BSS model, from the fact that checking for 

positive semidefiniteness can be accomplished using Gaussian elimination, it follows 

that SDFP is in NP, and it is shown here that it is also in Co-NP. Let us define a 

language [9] (or  a decision problem) to be semidefinite reducible, if  there exists a 

polynomial  reduction from that language to SDFP. 

Our main result of  the section is the following. 

The o r em 25. The.following hold concerning SDFP: 

( i )  I f  SDFP G NP, then SDFP C Co - N P  and vice-versa. 
( i i )  In the TM model, unless NP = Co - NP, SDFP is neither NP-complete nor 

Co-NP-compl ete. 
( i i i )  In the BSS model, SDFP is in NP A Co - NP. 

Proof.  The result is essentially an application of  the theorem of  alternative, namely 

Theorem 19. 

First note that, the system of  alternative given for Q(x )  ~- 0, written here in short 

form: 

( U + W ) . Q o = - I ,  Q * ( U + W ) = O ,  W E W , , ,  U~_O, 

can itself be cast in the form " Q ( x )  :"- 0": Specifically, we can replace the linear 

constraints Ax  = b 

D i a g ( A x  - b) @ Diag(b  - Ax) ~ 0, 

and one can combine two semidefinite inequalities P ( x )  ~ 0, Q(x )  ~ 0 into one as: 

P ( x )  @ Q(x )  ~ O. 

These two "tricks" are sufficient to show that the system of  alternative ( i i )  of  Farkas'  

Lemma (Theorem 19) can be written as a semidefinite inequality whose size is polyno- 
mial in the size of  the input instance of  the SDFP. So, given any instance of  SDFP, we 

write the above alternative system and deduce from the Farkas'  Lemma that the former 

has a "No" answer iff the latter has a "Yes" answer. This directly implies ( i ) .  
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To prove (ii), suppose that SDFP is NP-complete (in the TM model). Then, in 
particular, it is in NP, and then (i) implies that SDFP is in NPfqCo-NP. By Theorem 7.2 
of [9], the existence of an NP-complete problem in NP • Co-NP implies that NP = 
Co-NP. 

The proof of (iii) will follow if we show that SDFP is in NP for the BSS model. If we 
can check in time polynomial (in m, n), given a "guess vector" x, whether Q(x)  >- 0, 
then it follows that SDFP is in NP. We can perform this task in O(max{n 3, mn2}) arith- 
metic computations as follows: first compute the combination matrix Q(x) in O(mn 2) 
steps and then apply partial Cholesky decomposition (see [12] or [21]) to check if 
this matrix is positive semidefinite in O(n 3) steps. [] 

The reason one cannot extend the above proof that SDFP C NP N Co-NP for the BSS 
model to the TM model is because feasible semidefinite inequalities need not always 
have rational solutions of polynomial size (see examples in Section 4.2). However, part 
2 of the theorem is quite interesting as it results in: either SDFP E NP M Co-NP or 
SDFP ~ NP U Co-NP, which may be interpreted as, "either SDFP is too easy or it is 
too hard". 

By an application of the results of last section, we can conclude that there exist 
polynomial time reductions (in both TM and BSS models) from the following problems 
to SDFP: 

(i) The Primal Boundedness Problem. Checking whether a feasible SDP is bounded; 
By the strong duality theorem, primal boundedness is equivalent to the feasibility 
of the ELSD. 

(ii) The Primal Attainment Problem. Verifying whether a feasible and bounded SDP 
attains its optimum value; this follows from Theorem 21. 

(iii) The SDP Optimality Problem. Given an SDP and a feasible solution, determine 
whether this solution is optimal; The reduction is evident from Theorem 20. 

5. Concluding remarks 

The ELSD dual has O(mn 2) number of variables. While this number is polynomial, it 
is rather large from a computational point of view. Hence it is natural to seek refinements 
of the dual that have fewer variables. It should, however, be mentioned that despite the 
large number of variables, the dual ELSD has a good deal of structure, which might 
lend itself to efficient matrix algebraic manipulations, and reduce the effective algebraic 
complexity of algorithms involving ELSD. 

It has been recently shown [22] that the Lagrangian dual (LSD) of ELSD shares the 
common optimal value of P and ELSD. The relationship between this problem (i.e., the 
LSD of ELSD dual), denoted by CP, and the original primal P is the following: from 
P, one can obtain the polynomial size semidefinite program CP, which has the same 
optimal value as P and whose Lagrangian duality gap is zero. Thus, this process can be 
thought of as a "correction" of the original primal, and therefore we call the resulting 
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SDP the corrected pr imal  (CP) of E It appears very likely at this point that certain 
infeasible interior point algorithms can be built around the pair of programs CP and 
ELSD, which are Lagrangian duals of each other with Lagrangian duality gap zero. 

It should also be noted that the ELSD duality, unlike the Lagrangian duality, is not 

symmetric, i.e., if one takes the second ELSD dual of (P),  we do not recover the latter 
problem (for instance, we know that the second ESLD dual will attain its optimum 
value even if (P) does not). It is quite intriguing as to how this second dual relates to 

the primal. 
Perhaps the most outstanding open problem in the theory of Semidefinite Programming 

is whether SDFP (see Section 4.3) is polynomial time solvable. While Theorem 25(ii) 

shows that SDFP is not NP-complete (unless NP = Co-NP), the examples of Section 4.2 
are reasonably strong reasons to suspect that SDFP may not be in NP to start with; one 
must verify feasibility without actually computing a feasible solution. But there may exist 
a representation theory for solutions of semidefinite systems, which offer polynomial 
time representable and verifiable certificates (see the remarks at the end of Section 4.2). 

It is quite common in the SDP literature to liken SDP to Linear Programming, and a 
good part of the research in the theory of semidefinite programming has been focused on 
aspects for which the theory known for Linear Programming extended to SDP without 
too many complications. The duality issues addressed in the current work may be viewed 
as situations in which direct extensions from LP do not work. In this context, we would 
like to mention that no satisfactory generalization of the LP Simplex method is yet 
known for SDP. 

Finally, there is some reason to hope that Graph Isomorphism can be reduced to 
SDFP. This conjecture comes from certain results in [25]. Let A, B be the adjacency 
matrices of two graphs. Then these graphs are isomorphic iff there exists a permutation 
matrix P such that A = P B P  z ,  i.e., the following system is feasible 

A = P B P  T, Pe = e, p Te  = e, Pij E {0, 1}, (GI1) 

where e denotes the vector of  all ones. In [25], it was shown that one may relax the last 
integrality condition, i.e., let P be doubly stochastic instead, without losing exactness, 
i.e., GII  is feasible iff the following is feasible 

A = P B P  T, Pe = e, pTe  = e, 0 <~ P <~ J, (GI2) 

where J is the matrix of all ones. It is probably not far-fetched to conjecture that some 
semidefinite relaxation of GI1 or GI2 is exact. Another seemingly good candidate fbr 
reduction to SDFP is the recognition problem for perfect graphs. 
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