
Mathematical Programming 78 (1997) 265-281

The Steiner tree packing problem in VLSI design
M. Gr6tschel *, A. Martin, R. Weismantel

Konrad-Zuse-Zentrum)'~r Informationstechnik Berlin. Takustr. 7, 14195 Berlin, Germany

Received l February 1994; revised manuscript received 16 April 1996

Abstract

In this paper we describe several versions of the muting problem arising in VLSI design and
indicate how the Steiner tree packing problem can be used to model these problems mathematically.
We focus on switchbox routing problems and provide integer programming formulations for
muting in the knock-knee and in the Manhattan model. We give a brief sketch of cutting plane
algorithms that we developed and implemented for these two models. We report on computational
experiments using standard test instances. Our codes are able to determine optimum solutions in
most cases, and in particular, we can show that some of the instances have no feasible solution if
Manhattan muting is used instead of knock-knee muting. (~) 1997 The Mathematical Programming
Society, Inc. Published by Elsevier Science B.V.

Keywords: Steiner tree packing; Routing in VLSI design; Switchbox muting; Cutting plane algorithm

1. In t roduc t ion

The design of electronic circuits is a hierarchical process consisting of several phases.

The beginning is a description of the task the circuit to be designed must perform. Such

a task can be viewed as a complex logical function that consists of many elementary

logic operations. Usually several of these elementary logic operations are combined

into a logical unit (for example an adder). In the logical design phase chip designers
specify which of these predefined logical units are to be used, and determine which of

the chosen logical units must be connected by wires so that the chip performs in the

way it should.

The logical units are also called cells. Each cell is characterized by its width, its
height, its contact points (so-called terminals) and its electric properties. A net is a

set o f terminals that must be connected by a wire (as specified in the logical design

* Corresponding author. Email: groetschel@zib-bedin.de.

0025-5610/97/$17.00 (~) 1997 The Mathematical Programming Society, Inc.
Published by Elsevier Science B.V.
PI1 S0025-5610(97)00016-6

266 M. Grgitschel et al./Mathematical Programming 78 (1997) 265-281

phase). The list of cells and the list of nets are the input of the second phase, the
physical design. Here, the task is to assign the cells to a certain rectangular area and
connect (route) the nets by wires. The physical design problem is, of course, more
complicated than the sketch above suggests, since certain design rules have to be taken
into account, an objective function is to be minimized, etc. The design rules strongly
depend on the given layout style and specify, for instance, the distance two nets must
stay apart, whether certain cells are preassigned to certain locations and so on. This
applies especially to the objective function. Usually, the primary goal is to minimize the
whole area of the chip or, if the chip area is fixed in advance, to guarantee routability,
i.e., to solve the problem of placing the cells on the chip such that there exists a feasible
solution to the routing problem.

However, routability can hardly be measured and expressed in terms of an objective
function. Thus, minimizing the total length of all routes is very often used instead.
Another reason for minimizing the routing length is that an electronic circuit with small
routing length usually needs little area on the whole. Thus, minimizing the overall area
is (somehow) implicitly taken into account by minimizing the routing length.

Any reasonably precise version of the physical design problem is .A/~-hard, even very
simple models are. Moreover, most real world problem instances involve several thou-
sands of cells and nets, so that today's algorithmic knowledge makes it very improbable
that they can be solved to optimality. Therefore, the physical design problem is (heuris-
tically) decomposed into subproblems. The first subproblem typically consists of finding
appropriate locations for the cells (placement problem). Subsequently, the nets must be
realized by wiring the appropriate terminals (routing problem) and finally, a compaction
step is performed if required. This process is iterated with different parameters if the
final result is not satisfactory.

In this paper we will focus on the routing problem in more detail. We survey in Section
2 different types of routing models used in practice and relate them to the packing of
Steiner trees in certain graphs. In Section 3 we state an integer programming formulation
of the Steiner tree packing problem and describe several classes of valid and facet-
defining inequalities for the associated Steiner tree packing polyhedron, Specializing
this model to switchbox routing we distinguish between routing in knock-knee and
Manhattan style by using an additional class of inequalities (the Manhattan inequalities)

to meet the requirements of the latter routing style.
In Section 4 we report on our computational experiments with a cutting plane algo-

rithm that we designed and implemented for switchbox routing in Manhattan style; and
we compare these in Section 5 with our results for the same instances when knock-knees
are allowed.

2. The routing problem in VLSI design: A short survey

We assume in this section that the placement problem has been solved. We seek for a
solution of the routing problem. In technical terms, we are given a list of nets. Each net

M. Gr~tschel et al./Mathematical Programming 78 (1997) 265-281 267

consists of a set of terminals. The terminals specify the points at which wires have to

contact the cells. The routing problem is to connect the nets by wires on the routing area
subject to certain technical side constraints. As mentioned above, the objective usually
is to minimize the overall wiring length.

We say a net is routed if its terminals are connected by (electric) wires. We speak
of a k-terminal net, if k is the number of terminals of the net. I f k > 2, the term

multiterminal net is often used. In the following we will not distinguish between a net
and the route of a net unless this may lead to confusion.

The routing itself takes place on so-called layers. If some net changes a layer, a
hole, called via, must be "drilled". Usually, each layer is subdivided into horizontal and
vertical lines, so-called tracks to which the wires of the nets must be assigned. If there
does not exist such a division into tracks we speak of a free or grid-free routing. Further
side constraints include, for instance, the distance two wires must stay apart from each
other, how long two different nets may run on top of each other on two different layers,

or that some wires must not exceed a certain length.
In practice, the routing problem itself is also decomposed because of its inherent

complexity and large scale. In the global routing phase the homotopy of the nets is

determined, i.e., it is determined how the wires "maneuver around the cells". Thereafter,
in the detailed routing phase the wires are assigned to the layers and tracks according

to the homotopy specified in the global routing step.
The routing problems arising in both phases are usually expressed in graph-theoretic

terminology. To describe these models precisely, we introduce some graph-theoretic

notation.
We denote graphs by G = (V,E), where V is the node set and E the edge set. All

graphs we consider are undirected and finite. For a given edge set F C E, we denote
by V(F) all nodes that are incident to an edge in F. We call a sequence of nodes and
edges K = (v0, el , vl, e2 v t- l , el, vl), where each edge ei is incident with the nodes
vi-I and vi for i = I I, and where the edges are pairwise different and the nodes

distinct (except possibly v0 and or), a path from vo to vt, if vo ~ vl, and a cycle, if
vo = vt and l ~> 2. We call a graph G a complete rectangular h × b grid graph, if it can
be embedded in the plane by h horizontal lines and b vertical lines such that the nodes
of V are represented by the intersections of the lines and the edges are represented by
the connections of the intersections. A grid graph is a graph that is obtained from a
complete rectangular grid graph by deleting some edges and removing isolated nodes
(i.e., nodes that are not incident to any edge).

Let G = (V,E) be a graph and T C V a node set of G. An edge set S is called
a Steiner tree for T in G, if the subgraph (V (S) , S) contains a path from s to t for
all pairs of nodes s, t E T, s ~ t. Following the notation in VLSI-design, we call T a
terminal set or a net and each t E T a terminal. "Routing some net T in a graph G"
means in graph-theoretic terms, "finding a Steiner tree for T in G". We will use both
phrases in the following.

Note that our definition of a Steiner tree differs from the standard terminology used in
the literature. A Steiner tree is usually supposed to be a tree. For our purposes, however,

268 M. Gr6tschel et aL /Mathematical Programming 78 (1997) 265-281

the above definition is more convenient for our polyhedral investigations. A Steiner tree
that is a tree and whose leaves are terminals is called edge-minimal. Observe that, since
objective functions in practice are positive, every shortest Steiner tree is edge-minimal.

There are many ways to model the global routing problem as a graph-theoretic
problem. Usually, the routing area is subdivided into subareas. This is done in a way
such that the resulting subareas have certain special properties, for instance, they contain
no holes (i.e., there are no cells located within the areas) or they have simple shapes
(for example, rectangles). These subareas are represented by the nodes or the edges
of some graph. We describe the node representation. Here, two nodes are connected
by an edge, if the corresponding subareas are adjacent. Additionally, a capacity is
assigned to an edge limiting the number of nets that may run between the subareas
associated with the two endnodes of this edge. The weight of an edge corresponds to
the distance between the two midpoints of the according subareas. Every terminal of a
net is assigned to that node, whose corresponding subarea contains the terminal or is
closest to the position of the terminal. The global routing problem consists in routing all
nets in the graph constructed this way (or in graph-theoretic terms, finding a Steiner tree
for each terminal set) such that the capacity constraints are satisfied and the total wiring
length (that is the sum of the weights of the Steiner trees) is as small as possible.

After having solved the global routing problem every subarea that corresponds to
a node in the global routing graph must be routed in detail. The number of different
detailed routing models which are studied in the literature or which are used in practice is
tremendous. Usually, the problems coming up are formulated in a grid graph. We restrict
ourselves to this case, too. The detailed routing problems can be classified according to
two criteria (see (1) and (2) below) which are independent of each other. We introduce
these classifications now and discuss a few important subcases. For a more complete
and detailed treatment we refer to [13].
(1) The detailed routing problems are distinguished according to the shape of the

routing area and the locations of the terminals. As mentioned before, the nodes in
the global routing graph represent subareas of the whole routing area. Depending
on the subdivision, different shapes of detailed routing areas arise. At the end
of the global routing phase it is known which nets go across which subareas.
Suppose, some net crosses the border of two adjacent subareas. Of course, from
the information of the global routing solution it is not clear at which point the net
meets the border. Each such crossing point is interpreted as a "pseudo"-terminal.
In order to solve the routing problems for each of these subareas independently,
locations for the pseudo-terminals must be determined. This usually is done by
applying heuristics. Concerning the shape of the routing area and the locations
of the terminals the following detailed routing models are of particular interest in

practice.
(a) (Channel routing) Here, we are given a complete rectangular grid graph. The

terminals of the nets are exclusively located on the lower and upper border
(see Fig. 1). It is possible to vary the height (= number of horizontal tracks)
of the channel. Hence, the size of the routing area is not fixed in advance.

M. Griitschel et al./Mathematical Programming 78 (1997) 265-281

I1 I0 2 4 12 7 6 9 5 8 13 15 14 15 13 17 2 1 3 1 6 1 18

269

2 17 16 4 7 6 5 9 8 3 9 12 I5 2 15 10 1 II 17 14 18 l0

F i g . I . C h a n n e l r o u t i n g .

2 4 12 7 ~ 9 5 8 13 15 14 15 2t 20 I 2 19 I ta t5

15 24
3

14 19

13 20 I1

24

1 18

9 20

2 11

17 21

12 18

If, 23

4 2

10 22

324 17 16 4 7 6 5 9 8 9 12 15 24 15 |0 23 I 22 18 18

Fig. 2. Switchbox routing.

(b) (Switchbox routing) Again, we are given a complete rectangular grid graph.
The terminals may be located on all four sides of the grid graph (see Fig. 2).
Thus, the size of the routing area is fixed.

(c) (General routing) In this case, an arbitrary grid graph is considered. The
terminals are located at any hole of the grid (see Fig. 3). Here, the homotopy
of the nets must be taken into account (which is trivial in (a) and (b)) .

(2) The detailed routing problems are distinguished by the extent to which the layers
are taken into account when the wires of the nets are assigned to the tracks.
(a) (Multiple layer model) Given a k-dimensional grid graph (that is a graph

obtained by stacking k copies of a grid graph on top of each other and
connecting corresponding nodes by perpendicular lines), where k denotes the
number of layers. The nets have to be routed in a node disjoint fashion. The
multiple layer model is well suited to reflect reality. The disadvantage is that,
in general, the resulting graphs are very large.

(b) (Manhattan model) Given some (planar) grid graph. The nets must be routed

270 M. Gri~tschel et al./Mathematical Programming 78 (1997) 265-281

IS 2 4 12 7 6 9 ~ 15 14 15 2J 20 ! 2 18 15

3

14 19

'i 20

2O

|1

I 0 ~ 18

24 16 4 6 9 8 9 15 10 I 22 18

Fig. 3. General routing.

i i

i " :

Fig. 4. Knock-knee.

in an edge disjoint fashion with the additional restriction that nets that meet
at some node are not allowed to bend at this node, i.e., so-called knock-knees

(cf. Fig. 4) are not allowed. This restriction guarantees that the resulting
routing can be laid out on two layers at the possible expense of causing long
detours.

(c) (Knock-knee model) Again, some (planar) grid graph is given and the task
is to find an edge disjoint routing of the nets. In this model knock-knees are
possible. Very frequently, the wiring length of a solution in this case is smaller
than in the Manhattan model. The main drawback is that the assignment to
layers is neglected. Brady and Brown [1] have designed an algorithm that
guarantees that any solution in this model can be routed on four layers. It
was shown in [15] that it is .A~-complete to decide whether a realization on
three layers is possible.

The models coming out of these two kinds of classifications can be combined in all
possible ways. For example, combining 1 (b) and 2 (c) we obtain a switchbox routing
problem in the knock-knee model, or in graph-theoretic terms, the problem of finding

M. Grttschel et al./Mathematical Programming 78 (1997) 265-281 271

edge disjoint Steiner trees in a complete rectangular grid graph, where all terminals
are located on the outer face. Moreover, depending on the model, different objective
functions are considered. Possible objective functions are, for example, minimizing the
routing area or minimizing the routing length. Minimizing the routing area is typically the
objective in channel routing problems, whereas the routing length is usually minimized,
if the routing area is fixed in advance.

It is not surprising that most of these routing problems are .A/P-hard. For example, the
problem of finding a (with respect to some weighting of the edges) minimum Steiner
tree in a graph G for some terminal set T is A/P-hard (see [12,3]). Even the problem
of deciding whether there exists a feasible solution for the switchbox routing problem
in the knock-knee model [18] or in the Manhattan model [19], respectively, is A/P-
complete. In the next section we present a model that is applicable to the global routing
problem and the switchbox routing problem in the knock-knee model and Manhattan
model, respectively, and attack it from a polyhedral point of view.

3. A polyhedral approach to the knock knee and Manhattan routing model

To get started let us formally introduce the Steiner tree packing problem.

Problem 3.1. (The weighted Steiner tree packing problem)
Instance:

A graph G = (V,E) with positive, integer capacities ce E l~l and nonnegative

weights we E •÷, e E E.
A net list .M = {Ti TN}, N/> 1, with Tk C_ V for all k = 1 N.

Problem:

Find edge sets S1 SN C_ E such that
(i) Sk is a Steiner tree in G for Tk for all k = 1 N,

N

(ii) E [Sk N {e}[~< ce for all e E E,
k=-I
N

(iii) Z Z we is minimal.
k=l eESk

If requirement (iii) in Problem 3.1 is omitted we call the corresponding problem
the Steiner tree packing problem without the prefix "weighted". We call an N-tuple
(Sl SN) of edge sets a Steiner tree packing or packing of Steiner trees if the sets
Si SN satisfy (i) and (ii) of Problem 3.1. We will refer to an instance of the
weighted Steiner tree packing problem by (G,.A/', c, w) and to an instance of the Steiner
tree packing problem by (G,.M, c).

We assume throughout the paper that every terminal set of the net list .IV" has at least
cardinality two and that N/> 1.

Many routing problems introduced in the previous section can be formulated as Stei-
ner tree packing problems in certain graphs with, possibly, some additional constraints

272 M, GrOtschel et al./Mathematical Programming 78 (1997) 265-281

reflecting the design rules. In this section we focus in detail on two such cases
• the switchbox routing problem in the knock-knee style and

• the switchbox routing problem in the Manhattan style.
We start with modelling the switchbox routing problem in the knock-knee style as an

integer program. Before doing so let us fix some further notation.

We are given a graph G = (V, E) with capacities Ce E lq for all e E E and a net list

.Af = {TI TN}, N ~> 1. Let IRNxe denote the N . IEI - dimensional vector space
k IR e x . , . x IRe, where the components of each vector x E IR.~'xe are indexed by x~

for k E {1 N}, e E E. Moreover, for a vector x E IRAcxe and k E {1 N},

we denote by x ~ E R e the vector (x~) ,ee , and, for notational simplicity, we write x =
(x I x N) instead of x = ((x I) r (xN)r) r. For an edge set F C E, X r denotes

the incidence vector of F. The incidence vector of a Steiner tree packing (S1 Sly)
is denoted by (X sj X s~).

k with the With every e E E and k E {1 N} we associate a Boolean variable x~
k 1 if edge e is used to connect terminal set T~ and xe k = 0 otherwise. interpretation x e =

Then it is easy to see that each incidence vector of a Steiner tree packing satisfies the

constraints (3.1) (i) - (i v) , and vice versa, each vector x E IR~xe satisfying (3.1) (i) -

(iv) is the incidence vector of a Steiner tree packing. Hence, (3.1) is an integer

programming formulation for the weighted Steiner tree packing problem.

min
N

EEw x:
k=-t eEE

k (i) E Xe >~ 1,
eES(W)

for all W C V, W n T k ~ O,

(V \ W) ATk --/: O, k = l N.

for all e E E.

(3.1)

If G is a complete rectangular grid graph, then every edge-minimal solution of (3.1)

is obviously a switchbox routing in the knock knee style, and vice versa.
To model the Manhattan routing style, where knock-knees are not allowed, we have

to introduce additional inequalities that make it impossible for two Steiner trees to bend

at the same node.

STP (G,./V',c) := conv{x E RACxE I x satisfies (3.1) (i) - (iv)} .

N

(ii) E x ~ <<, ce,
k=-I

(iii) 0 ~< xe ~ ~< 1, for all e E E, k = 1 N.

k {0, I}, for a l l e E E , k = l N. (iv) x~ e

The inequalities (3.1) (i) are called Steiner cut inequalities, inequalities (3.1) (ii)

are called capacity inequalities and the ones in (3.1) (iii) trivial inequalities.
We define the Steiner tree packing polyhedron STP (G , A c, c) as the convex hull o f

all incidence vectors of Steiner tree packings, i.e.,

M. Gri/tschel et al./Mathematical Progranuning 78 (1997) 265-281 273

Let G be a grid graph and uv, vw be two consecutive horizontal (or vertical) edges.
Let Nl, N2 be a partition of { 1 N}. Then, the constraint

xvw <~ 1 (3.2)
kENl ktN2

is called Manhattan inequality.
Again it is easy to see that if G is a complete rectangular grid graph, then every

edge-minimal packing of Steiner trees that satisfies, for every pair of consecutive edges
and for every 2-partition of the set of nets, the corresponding Manhattan inequality (3.2)
and the constraints (3.1) (i) - (iv) corresponds to a feasible switchbox routing in the
Manhattan style. Conversely, the incidence vector of a switchbox routing in Manhattan
style satisfies the inequalities (3.1) (i) - (iv) and all Manhattan inequalities. We define
the Steiner tree packing polyhedron in Manhattan style STPM(G,A/',c) as

STPM(G,A/',c) := conv {x E STP (G,A/',c) Ix satisfies all inequalities (3.2)}.

In the remainder of this section we present some inequalities that are valid for
STP(G,A/ ' ,c) . Since STPM (G, A/, c) C__ STP (G,.A/,c), every inequality that is valid
for STP (G,A/',c) is valid for STPt, t(G,.A/',c) as well. For a detailed discussion under
which conditions some of these inequalities define facets of STP (G,.A/, c), we refer to
[7].

The Steiner partition inequalities
Let a graph G = (V,E) and a set of terminals T C_ V, ITI >/2 be given. A partition

V1 Vp, p >>. 2, of V is called a Steiner partition (with respect to T) if V/N T 4= 0 for
i = 1 p. The inequality

x(8(V~ Vp)) >~ p - 1

induced by a Steiner partition I,] Vp is called a Steiner partition inequality. (Note
that a Steiner cut inequality is the special case, where p -- 2.) Obviously, each Steiner
partition inequality is valid for STP (G, {T}, 1) (eL [6]).

The alternating cycle inequalities
Let G = (V,E) be a graph and A / = {TI,T2} a net list. We call a cycle F in G an

alternating cycle with respect to TI,T2, if F C_ [Ti : T2] and V(F) NTI AT2 = 0 (see
Fig. 5). Moreover, let F1 C_ E(T2) and F2 C E(Tr) be two sets of diagonals of the
alternating cycle F with respect to T~, T2. The inequality

(x e\<Fu~'), x ex<euF2))rx >t ½ IFI - 1

is called an alternating cycle inequality.
It is not difficult to see that the basic form of an alternating cycle inequality, i.e.,

Fl = F2 = ¢, is valid for STP (G,A/', 1), but in general, it is not facet-defining. The sets
Fi and F2 are used to strengthen the basic form; in fact, choosing them appropriately
we can obtain valid and even facet-defining inequalities (see [7] for details).

274 M. GrOtschel et al./Mathematical Programming 78 (1997) 265-281

T I []

T2 ©

F

F I

F 2

i I
I T1 []

T 2 0
F

I FI

F 2

Fig. 5. Alternating cycle. Eg. 6.3 x 2 grid.

The next type of inequalities to be considered here are the so-called grid inequalities.

The grid inequalities
Let G = (V,E) be a graph and At" = {Tt,T2} a net list. Furthermore, let 0 = (f,',/~)

be a subgraph of G such that G is a complete rectangular h × 2 grid graph with h/> 3.
Assume that the nodes of V are numbered such that f,' = { (i , j) I i = 1 h, j = 1,2}.
Moreover, let (1, 1), (h ,2) G 7"1 and (1 ,2) , (h, 1) E T2. We call the inequality

(X e\~, Xe \ e) rx ~ I

an h × 2 grid inequality (see Fig. 6). In [7] we derived (very technical) conditions
for an h x 2 grid inequality to define a facet. The following theorem characterizes the
conditions under which an h x 2 grid inequality is valid.

Theorem 3.4. Let G = (f ' , ~) be a complete rectangular h x 2 grid graph with h/> 3.
Let .A/" = {TI,T2} be a net list where Tl = { (1 , 1) , (h , 2) } and /'2 = { (1 , 2) , (h , 1)}.
Furthermore, let G = (V,E) be a graph with f' C_ V,/~ C E such that the following set of
horizontal edges {uv E ~ I there exists an i E {1 h} with u = (i, 1) and v = (i ,2)}
is a cut in G. Set F :=/~ and let FI, F2 C E \ F, then the inequality

(X ~'\(FuF~), X e\(FuF2))Tx >>. I

is valid for STP (G,A/', 1)

(i) For all u,v C V(F) , u
k = 1,2.

(ii) Fi and F2 are maximal

if and only if FI and F2 satisfy the following properties:
4~ v there does not exist a path from u to v in (V, Fk) for

with respect to property (i).

The critical cut inequalities
Finally, let us describe the so-called critical cut inequalities introduced in [7]. Let G =

(V,E) be a graph with edge capacities ce E IN, e G E. Moreover, let A/" = {Ti TN}
be a net list. For a node set W C V, we define S(W) := {k E {1 N} I Tk M W v~
O, Tk N (V \ W) v~ 0}. We call a cut induced by a node set W critical for (G,.N',c) if
s(W) := c (8 (w)) - IS(W)l <~ 1, i.e., if the sum of the capacities of the edges leaving
W exceeds the number of nets that must use at least one edge leaving W by at most 1.

M. Grttschel et al./Mathematical Programming 78 (1997) 265-281 275

Suppose that Vl, V2, V3 is a partition of V such that 8(V8) is a critical cut. Moreover,
assume that, for some j E { 1 N } , Tj f3 Vj = 0 and Tj M Vi ¢: 0 for i = 2, 3. Then,
the inequality

x J ([½ : 16]) >t l

is called a crit ical cut inequali ty with respect to Tj.

It is easy to see that the critical cut inequality with respect to T./ is valid for
STP (G,.A/', c).

4. Computational results for the Manhattan model

In this section we present the computational results we obtained with our cutting plane
algorithm for the switchbox routing problem in Manhattan mode. The Steiner partition
inequalities, the alternating cycle inequalities, the grid and the critical cut inequalities
together with the Manhattan inequalities form the basis of our cutting plane algorithm.

Our code is an extension and modification of the cutting plane algorithm for switch-
box routing in knock-knee style that we described in [8]. We could use all separation
routines for the Steiner partition inequalities, the alternating cycle inequalities, the grid
and the critical cut inequalities, all special features (preprocessing) and implemen-
tational tricks (perturbation) developed for the routing problem in the knock-knee
model. In addition, we designed and implemented a separation routine for the Manhattan
inequalities (3.2), and some (minor) changes were needed or useful to apply the code
to Manhattan routing problems.

Our procedure for separating Manhattan inequalities works as follows. Let us assume
that that the capacity inequalities are satisfied (of course, this can be checked in linear
time). Let uv E E and v w E E be two horizontal edges that are incident to node
v E V (the same arguments apply to the case of two consecutive vertical edges). For

every net k E {1 N}, we determine max{x~,,,x~w }. Set N1 := {k E {1 N} I
xuk~, > x~.} and N2 := {k E {1 N} I x~,. ~< x,k.w}. If N, = 0 or N2 = •, we can
conclude that no violated Manhattan inequality exists, since the capacity inequalities
are all satisfied. Otherwise, Nj, N2 is a partition of {1 N} and the inequality
~--]~k~N, Xuk~, + ~keNz XLk'w ~< 1 is a Manhattan inequality with maximal left hand side.
This procedure obviously solves the separation problem for the class of Manhattan
inequalities.

We also modified the LP-based primal heuristic described in [8] to guarantee that only
Steiner tree packings are feasible that contain no knock-knees. We omit the technical
details here.

Moreover, we exploit the fact that nets must not bend against each other in order to
fix variables at the initial phase of the code. If two terminals of different nets k and
l are located at the same corner v of the grid graph, i.e., v E Tk, v E Tt, then the
input data specifies which of the two edges that are incident to v is used by which of
the two nets. For example, in Fig. 7(a) edge vu must be used by net k and edge vw

276 M. Gr6tschel et al./Mathematical Programming 78 (1997) 265-281

Table I
Input data

k

(a) (b)
Fig. 7. Possible fixings in the Manhattan model.

Example h w N Distribution of the nets Ref.

2 3 4 5 6

difficult switchbox 15 23 24 15 3 4 I I [2]
more difficult switchbox 15 22 24 15 3 5 I [41
terminal intensive switehbox 16 23 24 8 7 5 4 [16]
dense switchbox 17 15 19 3 11 5 [16]
augmented dense switchbox 18 16 19 3 I 1 5 l 16]
modified dense switchbox 17 16 19 3 11 5 [4|
pedagogical switchbox 16 15 22 14 4 4 [4]

must be used by net I. Since the capacities of the edges are equal to one, all variables
xl. u (i E {1 N} \ {/}) and .x(.~,, (i c {1 N} \ {k}) can be fixed to zero.

Furthermore, suppose a terminal t of net k is not located at any corner of the grid

graph. Then the edge e that is incident to t but not included in the outer face cycle

cannot be used by any net, except k. Hence, the variables x~, i C {I N) \ {k), can

be fixed to zero. This situation is illustrated in Fig. 7(b) .

Many variables can be fixed by using critical cuts and logical implications derived

from them. How these can be found is described in [8].
The problem instances to which we applied our code are taken from VLSI literature.

Table 1 summarizes the data. Column 1 presents the name used in the literature. In

column 2 and 3 the height and width of the underlying grid graph is given. Column 4

contains the number of nets. Columns 5 to 9 provide information about the distribution

of the nets; more precisely, column 5 gives the number of 2-terminal nets, column

6 gives the number of 3-terminal nets and so on. Finally, the last column states the

reference to the paper the example is taken from.

The standard input format for switchbox routing problems used in the literature

differs slightly from the representation in this paper. The input graph in the literature

is obtained from a complete rectangular grid graph by removing the outer cycle, see

Fig. 8(a) . Hence, every terminal is incident to a unique edge, and obviously, every
Steiner tree must contain this edge. It is easy to see that by contracting all pending
edges an equivalent problem is obtained, see Fig. 8(b) . The graph resulting this way is

M. Gr6tschel et al./Mathematical Programming 78 (1997) 265-281

3 2

3

I

2

4

5

2 4 5 6

(a)

6,1 3 1 2,3

I !

2 2

4 4

5,1 2 4 5 6,5

Fig. 8. Reduction of the input graph.

(b)

Table 2
Results for the Manhattan model

277

Example Best Sol. LP Value Gap Iter. B & C CPU-time

difficult switchbox 469 469 0.0% 167 3 3452:55
more difficult switchbox 461 461 0.0% 124 5 3540:14
terminal intensive switchbox 537 537 0.0% 29 I 480:18
dense switchbox o~ 20 I 122:29
augmented dense switchbox 469 469 0.0% 30 1 583:50
modified dense switchbox c~ 48 1 686:27
pedagogical switchbox 343 341 0.6% 615 7 5230:35

a complete rectangular grid graph with terminals on the outer face. This instance is the

input to our problem.

In Table 2 we present the computational results we have obtained with our branch and

cut algorithm. In Column 2 the objective function value of the best feasible solution we

found is shown. The entries in Column 3 correspond to the objective function values of

the linear program when no further violated constraints are found, i.e., when branching

is performed for the first time. These values are obviously lower bounds for the whole

problem. Column 4 contains the percental derivation of the best solution from the lower

bound. Column 5 (resp. 6) gives the number of cutting plane iterations (resp. the

number of nodes in the branching tree). Finally, the last column reports on the running

times. The values are stated in minutes obtained on a SUN 4/50.

For all instances we could either find an optimal solution or prove that the problem is

infeasible. The latter situation occurred in the two cases "dense switchbox" and "modi-

fied dense switchbox". To our knowledge, it was up to now open whether there exists a

packing o f Steiner trees in the Manhattan model for these instances. Actually, the two

examples "modified dense switchbox" and "augmented dense switchbox" are extensions

of the problem "dense switchbox" in which additional tracks are added ("augmented

dense switchbox" has an additional vertical track on the right and "modified dense

278 M. Gr~tschel et al./Mathematical Programming 78 (1997) 265-281

Table 3
Deviation of the lower bound from the optimal solution

Example 5% 2% 1% 0%

difficult switchbox 2:48 54:59 248:02 1383:06
more diflieult switchbox 2:35 35:20 268:43 1471:21
terminal intensive switchbox 4: I l 26:52 99:48 343:00
augmented dense switchbox 1:38 1:38 146:13 583:50
pedagogical switehbox 2:15 84:19 199:38 5230:35

switchbox" has an additional vertical track near the middle and an additional horizontal
track at the bottom). In fact, these modifications have been introduced, because no

routing algorithm could find a feasible solution for "dense switchbox" in any routing

style. Whereas a Manhattan routing is known for the problem "augmented dense switch-

box", the heuristics described in literature were unable to find one for "modified dense

switchbox". Our algorithm yields a mathematical proof that, indeed, no routing routine

can ever be successful for the latter example.

Second, the results show that except for the example "pedagogical switchbox" the

objective function value of an optimal solution, provided it exists, was found without

branching. The optimal LP-solution was, however, fractional and in two cases it took a
few branching steps to find a feasible solution with the same value. Only for the test

instance "pedagogical switchbox" the objective function value of the root LP differed
from the optimal objective function value by 0.6%. This gap was closed by applying
the enumerative phase of our code.

In all these cases the number of branch and cut nodes needed to solve the problems

is very small (below 10). This indicates that the cutting planes we use as well as the

corresponding separation routines perform quite well at least for the case of switchbox

routing problems in Manhattan style.

Of course, there is a price to pay: the high running times. The reason for that is that

we aimed at finding an optimal solution or proving that no solution exists at all. If we
just look at the time (measured in minutes) after which the lower bound deviates by at

most 5, 2, 1 or 0 percent from the optimal value, the results look much more friendly.

Table 3 shows in particular that in all these instances for which a feasible solution exists,

the lower bound deviates at most 5% from the optimal objective function value within
4 : 1 1 minutes.

5. Knock knee versus Manhattan: A comparison

From a practical point of view a very interesting question with probably never ending

discussions is the question which model should be preferred: the knock-knee model or

the Manhattan model. The theory says that in the knock-knee model two layers may not
suffice, whereas in the Manhattan model they do. On the other hand, one can expect
that the wiring length that is needed when Steiner trees are packed in the knock-knee

model is smaller than in case of the Manhattan model. But, does the knock-knee model

M. GrStschel et al./Mathematical Programming 78 (1997) 265-281

Table 4
Comparing lower and upper bounds

279

Example Knock-knee model Manhattan model

lower bd upper bd lower bd upper bd

difficult switchbox 464 464 469 469
more difficult switchbox 452 452 461 461
terminal intensive switchbox 536 537 537 537
dense switchbox 438 441 oo
augmented dense switchbox 467 469 469 469
modified dense switchbox 452 452 oo
pedagogical switehbox 331 331 341 343

substantially provide shorter wiring lengths? We have tried to answer these questions

for the problem instances introduced in the last section. In [8] we report in detail on

our computational experiences for the knock-knee model. The best lower and upper

bounds we have obtained are summarized in Columns 2 and 3 of Table 4. We are able

to solve all problem instances to optimality except the examples "dense switchbox"

and "augmented dense switchbox". For comparison, the corresponding results for the

Manhattan model are shown in Columns 4 and 5.
The results are quite different for different instances. For two of the examples the

wiring length in the Manhattan model is just the same as in the knock-knee model though

the solutions reported in [7] have knock-knees indeed (for pictures of the solutions,

see [17]). For three other problem instances the wiring length in the Manhattan model

exceeds that in the knock-knee model by a small amount (for "difficult switchbox"

by 5 (= 1.1%), for "mole difficult switchbox" by 9 (= 2.0%) and for "pedagogical

switchbox" by 12 (= 3.6%)). Of course, the shorter lengths in the knock-knee model

must be paid by additional layers. Since the percental increase in length is quite small one

may tend to prefer the Manhattan model. However, for the examples "dense switchbox"

and "modified dense switchbox", for which we could prove that there does not exist a
feasible solution in the Manhattan model, we are able to find feasible solutions in the

knock-knee model. This makes the knock-knee model more attractive.
Comparing the running times we observe similar phenomena (see Table 5). Some ex-

amples are quite easy for the knock-knee model but rather hard for the Manhattan model,

and vice versa, some are solved quite fast in the Manhattan model, but are difficult in the

knock-knee style. Based on these results we cannot decide whether one model is supe-

rior to the other. The issue of choosing the "correct" model must be left to practitioners

and depends on the chosen fabrication technology and the given design rules.
Finally, we have compared our results with those published in the literature. In Table 6

we summarize the objective function values of the - to our knowledge - best Manhattan
solution reported in the literature (Column 2). No entry means that we did not find

any Manhattan solution for the corresponding problem instance that was published in

the literature. In Column 3 the objective function value of the Manhattan solution that
was obtained by our code is shown. The values differ from those reported in Table

280 M. GriJtschel et al./Mathematical Progrtlmming 78 (1997) 265-281

Table 5
Comparing the running times

Example CPU time (min:sec)

Knock knee Manhattan

difficult switchbox 1564:15 3432:55
more difficult switchbox 983:23 3540:34
terminal intensive switchbox 3755:44 480:18
dense switchbox 1017:43 122:29
augmented dense switchbox 4561:41 583:50
modified dense switchbox 387:03 686:27
pedagogical switchbox 251:58 5230:35

Table 6
Best solutions for the Manhattan model

Example Best Manhattan Solution from

the Literature our Code

difficult switchbox 547 II01 535
more difficult switchbox 527
terminal intensive switchbox 632 (161 615
dense switchbox - *
augmented dense switchbox 529 [16l 529
modified dense switchbox - *
pedagogical switehbox - 400

2 and Table 4, respectively, by the total number of terminals of the original data due

to preprocessing (see Section 4, page 276 for further explanations). For the instances

"dense switchbox" and "modified dense switchbox" no Manhattan solution exists which

is expressed by the symbol " , " in Column 3. For the problem instance "augmented

dense switchbox" the solution given in [16] is optimal, whereas for the two problems

"difficult switchbox" and "terminal intensive switchbox" the solution found by our code

improves the best solution reported in the literature by 2.2% and 2.7%, respectively.

Of course, there are further routing algorithms presented in the VLSI literature. To

our knowledge, all of them apply to the 2-layer model (i.e., the multiple layer model on

a 2-dimensional grid graph), see, for instance, [14,1 1,4,10,5,20]. A comparison of the

knock-knee or Manhattan model to the 2-layer model is difficult. In the 2-layer model

two different nets may run on the same horizontal or vertical edges of the two layers. The

number of consecutive edges that are used on both layers is usually limited in order to

avoid so-called cross-talk problems. The value of this upper bound depends on the design

rules and technological constraints, but is mostly neglected by the routing algorithms~

The fact that the wires can run on top of each other along arbitrary lengths may

lead to routings with shorter wiring lengths than in the Manhattan model, because a

solution in the Manhattan model is feasible for the 2-layer model. Nevertheless, we

have compared our Manhattan solutions to the best 2-layer solutions reported in the

M. Grrtschel et aL /Mathematical Programming 78 (1997) 265-281 281

literature for the instances described in Section 4. It turns out that for all examples

for which a Manhat tan solution exists, the objective funct ion values are at most 1%

worse than the objective funct ion values of the corresponding 2-layer solutions. In fact,

for the two examples "terminal intensive switchbox" and "augmented dense switchbox"

the Manhat tan solut ion provides the same wir ing length, and for the switchbox "more

difficult swi tchbox" we even find a better solution. For one of two examples ("modif ied

dense swi tchbox") for which a Manhat tan solut ion does not exist, the wir ing length of

the best 2- tayer solut ion is by a value o f 2 shorter than the one of the optimal knock-

knee solut ion. For the instance "dense switchbox", we are not aware of any feasible

rout ing that can be realized on two layers.

References

[11 M.L. Brady and D.J. Brown, "VLSI routing: Four layers suffice," in: EP. Preparata, ed., Advances in
Computing Research, Vol. 2: VLSI theory (Jai Press, London, 1984) 245-258.

[2} M. Burstein and R. Pelavin, "Hierarchical wire routing," 1EEE Transactions on Computer-Aided-Design
CAD-2 (1983) 223-234.

[3] M.R. Garey and D.S. Johnson, "The rectilinear Steiner tree problem is .A/P-complete" S/AM Z AppL
Math. 32 (1977) 826-834.

I4] J.E Cohoon and P.L. Hock, "BEAVER: A computational-geometry-based tool for switchbox routing;'
IEEE Transactions on Computer-Aided-Design CAD-7 (1988) 684-697.

15l S.H. Gerez and O.E. Herrmann, "Switehbox routing by stepwise reshaping," IEEE Transactions on
Computer-Aided-Design CAD-8 (1989) 1350-1361.

[6] M. Grrtschel and C.L. Monma, "Integer polyhedra associated with certain network design problems
with connectivity constraints," SIAM Journal on Discrete Mathematics 3 (1990) 502-523.

17] M. GrStschel, A. Martin and R. Weismantel, "Packing Steiner trees: polyhedral investigations"
Mathematical Pragramming 72 (1996) 101-124.

[81 M. Grrtschel, A. Martin and R. Weismantel, "Packing Steiner trees: a cutting plane algorithm and
computational results," Mathematical Programming 72 (1996) 125-146.

[9] M. Grrtschel, A. Malxin and R. Weismantel, "Packing Steiner trees: separation algorithms," SlAM
Journal on Discrete Mathematics 9 (2) (1996) 233-257.

[101 J.M. Jou, J.Y. Lee, Y. Sun and J.E Wang, "An efficient VLSI switch-box router," IEEE Design and Test
(1990) 52-65.

[1 I 1 R. Joobbani and D.P. Siewiorek, "WEAVER: A knowledge-based routing expert,' IEEE Design and Test
(1986) 12-23.

[121 R.M. Karp, "Reducibility among combinatorial problems," in: R.E. Miller and J.W. Thatcher, eds.,
Complexi~. of Computer Computations (Plenum Press, New York, 1972) 85-103.

[131 T. Lengauer, Combinatorial algorithms for integrated circuit layout (Wiley, Chichester, 1990).
[141 Y.L. Lin, Y.C. Hsu and ES. Tsai, "A detailed router based on simulated evolution:' in: Proc. Int. Conf.

Computer-Aided-Design, 1988, 38--41.
[15] W. Lipski, "On the structure of three-layer wireable layout" EE Preparata, ed., Advances in Computing

Research, Vol. 2: VLSl.theory (Jai Press, London, 1984) 231-244.
[161 W.K. Luk, "A greedy switch-box router," hztegration 3 (1985) 129-149.
[17] A. Martin, "Packen yon Steinerb~umen: Polyedrische Studien und Anwendung;' Ph.D. Thesis, Technische

Universit~t Berlin, 1992.
[18] M. Sarrafzadeh, "Channel-routing problem in the knock-knee mode is A,'P-complete,'" IEEE Transactions

on Computer-Aided-Design CAD-6 (1987) 503-506.
[191 T.G. Szymanski, "Dogleg channel routing is A09-complete; ' IEEE Transactions on Computer-Aided-

Design CAD-4 (1985) 3140.
[20] P. Tzeng and C.H. Srquin, "Codar: a congestion-directed general area router;' in: Proc. Int. Conf.

Computer-Aided Design (1988) 30-33.

