
Mathematical Programming 78 (1997) 243-263

A branch-and-cut algorithm
for the equicut problem

Lorenzo Brunetta a, Michele Conforti a,*, Giovanni Rinaldi b
a Dipartimento di Matematica Pura e Applicata, Universitd degli Studi di Padova,

via Belzoni 7, 35131 Padova, Italy
b lstituto di Analisi dei Sistemi ed lnformatica del CNR, Roma, Italy

Received 16 February 1994; revised manuscript received 21 October 1995

Abstract

We describe an algorithm for solving the equieut problem on complete graphs. The core of
the algorithm is a cutting-plane procedure that exploits a subset of the linear inequalities defining
the convex hull of the incidence vectors of the edge sets that define an equicut. The cuts are
generated by several separation procedures that will be described in the paper. Whenever the
cutting-plane procedure does not terminate with an optimal solution, the algorithm uses a branch-
and-cut strategy. We also describe the implementation of the algorithm and the interface with the
LP solver. Finally, we report on computational results on dense instances with sizes up to 100
nodes. © 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

Keywords: Equicut; Max-cut; Polyhedral theory; Curling-plane algorithm; Heuristic algorithm;
Branch-and-cut

1. Introduction

We consider an undirected graph G = (V,E), with edge set E, vertex set V, and

with edge weights ce E N, e E E. By u v we denote the edge of E having u and o as

endpoints. For a (possibly empty) subset S of V, a c u t associated with S is the fol lowing

subset of E:

8(s) = { .o • e I . • s, o • v \ s}.

The sets S and V \ S are called the shores of the cut 8(S). We simply write 8(v),
instead o f 8 ({v}) , to denote a cut defined by a single node. A cut is an empty set o f

* Corresponding author. Correspondence to: Dipartimento di Matematica Pura e Applieata, Universit~ degli
Studi di Padova, via Belzoni 7, 35131 Padova, Italy.

0025-5610/97/$17.00 @ 1997 The Mathematical Programming Society, Inc.
Published by EIsevier Science B.V.
PH S0025-56 10 (97)00017-8

244 L. Brunetm et al./Mathematical Programming 78 (1997) 243-263

edges if S = ¢ or S = V. The weight c (8 (S)) of a cut 6(S), is the sum of the weights

of its edges. A cut 6(S) is an equicut if]S[= [Iv[/2J or 1s1 = HvI/2q.
In this paper we describe a branch-and-cut algorithm for finding an equicut of mini-

mum weight in K2p, a complete graph with an even number of nodes. The problem is

known to be A/'79 hard. By possibly adding one node to the graph and connecting it to
the other nodes with edges of weight zero, our algorithm solves the minimum weight

equicut also if the graph has an odd number of nodes. If the graph is not complete,

by adding all the missing edges to the graph and assigning a zero weight to them, one
obtains an equivalent minimum weight equicut problem on a complete graph. Finally,
since there are no sign restrictions on the weight vector c, searching for a minimum is
equivalent to searching for a maximum weight equicut.

The relevance of this problem arises in several areas. In Physics, for example, since it
models the problem of finding a ground state of a spin glass having zero magnetization.
In VLSI design, it models the problem of minimizing the number of vias (holes on
a printed circuit board, or contacts on a chip) subject to pin preassignment and layer

preferences. For these applications of the problem, see Barahona, GrStschel, Jtinger and
Reinelt [2] for an extensive survey. In numerical analysis it is helpful in finding the

L - U factorization of the matrix of a linear system.
The four basic components of our branch-and-cut algorithm are: a heuristic procedure

to find a good upper bound on the objective function, a set of exact and heuristic
procedures for the separation of violated inequalities belonging to a partial description
of the equicut polytope, an interface with the LP solver, and an enumeration procedure
that combines branching with cutting-planes techniques. We describe these components

in the following sections.
We give an overview of the algorithm in Section 2. Then we describe the constraint

generation procedure in Section 3, and the implementation of the branch-and-cut algo-

rithm in Section 4. Finally, in Section 5 we report on our computational experience with

the algorithm.

2. The branch-and-cut algorithm

A subgraph of G is the graph G' = (S, F) , where S c_ V and F c_ E. The subgraph
G ~ = (S, E(S)) is said to be induced by the node set S C_ V if E(S) is the set of edges

having both endpoints in S. We denote with Kq the subgraph of K2p induced by a set
S C V of q nodes.

2.1. Polyhedral results

We denote by N E the real vector space whose components are indexed by the elements
of E. With every subset F C_ E, we associate an incidence vector x F C R e, where a
component x eF is equal to I if e E F, and to 0 otherwise. For y E R e and S _C E we

indicate with y(S) the sum ~-~e~S Ye.

L. Brunetta et al./Mathematical Programming 78 (1997) 243-263 245

The cut polytope C(G) and the equicut polytope Q(G) of a graph G are the convex
hulls of the incidence vectors of all cuts and of all equicuts of G, respectively.

Therefore the minimum weight equicut of G can be found, in principle, by solving
the following linear program:

min {cx I x E Q(G) }. (2.1)

The optimal solution to (2.1) is the incidence vector of an optimal equicut. Unfortu-
nately, it is unknown how to completely describe Q(G) by linear inequalities. However,
using a partial set of the inequalities defining Q(G), which yield a relaxation of Q(G),
it is still possible to find an optimal solution to (2.1) using a branch-and-cut algorithm.

Conforti, Rao, and Sassano [3] characterize the p-dimensional affine hull of Q(K2p)
in the following theorem.

Theorem 2.1. For p >/ 2, the dimension of Q(K2p) is (~) - 2p and the affine hull
of Q(K2p) is {x E]Re [A2px = p}, where a2p is the 2p x (~P) node-edge incidence
matrix of K2p and p is the vector of N e with all the components equal to p.

Throughout the paper we assume that p) 2.

An edge set F ___ E is said to be a p-matching if every node in the subgraph
G ~ = (V,F) has degree less than or equal to p. A p-matching is a p-factor if the graph
G r is p-regular.

Edmonds and Johnson [8] show that the following system of inequalities describes
the p-factor polytope PFp (G) of G, i.e., the convex hull of the incidence vectors of all

p-factors in a graph G:

x(6(u)) = p
O<~x~ <~ 1
x (E(W)) +x(T) <~ ½(plWl + [TI- 1)

for all p E V
for all e E E
for all W _ V,T C_ 6(W),

plWJ + ITI odd.

(2.2)

The last set of inequalities in (2.2) are called the matching constraints.
Equicuts are related to p-factors as observed by Conforti, Rao and Sassano [3] in

the following proposition.

Proposition 2,2. Let F be a p-factor of a complete graph K2p. Then F is an equicut if
and only if F C 8(S) (or, equivalently, F = 8(S)) for some S C__ V.

Let us denote by C (G) an LP relaxation of C (G), i.e., a polytope (containing C (G))
whose integer points are the incidence vectors of all the cuts of G. Then Proposition 2.2
implies that the intersection of C(G) and PFp(G) yields an LP relaxation of Q(G),
i.e., Q(G) = conv{PFp(G) Mt~(G) M ZE}. An LP relaxation of C(K2p) is given by
the following system of inequalities, called the triangle inequalities (see Barahona and
Mahjoub [1]):

246 L. Brunetta et al./Mathematical Programming 78 (1997) 243-263

xij ~- xie + xjg ~ 2

x 0 - xie - xj~ <<. 0
- x i j + xit x)t <. 0 for all triples i, j, g E {1 2p), (2.3)

- x O - xie W xjg <. O i4= j 4= g 4: i.

Consequently, the inequalities (2.2) and (2.3) define an LP relaxation Q(K2p) of
Q(K2p) and provide an integer programming formulation for the equicut problem on

K2t,.
The optimal solution $ to the problem max{cx [x E 0 (K 2 ,)} is not in general

an integer vector, thus it does not directly provide an optimal solution to the equicut
problem. However, the optimal objective function value c~ can be used as a lower
bound on the value of a minimal weight equicut in an enumeration algorithm like the

branch-and-bound or the branch-and-cut.
The higher the value of the lower bound, the faster is the enumeration algorithm

in finding an optimal solution to the equicut problem. Therefore, to produce an LP
relaxation that is tighter than O_(K2p) we add other inequalities, which belong to two
classes, to those defining Q(K2t,). These new inequalities are described in the following
two theorems, where it is claimed that they define facets of Q(K2p). For the proofs of

these theorems see Conforti, Rao, and Sassano [4].

Theorem 2.3. For a proper nonempty induced subgraph Kq o f K2p, the inequality

x(E(rq)) ~< r½ql k½qJ (2.4)

defines a face t o f Q (K2p) i f and only i f q is odd and at least 3.

Remark 2.4. From the previous theorem we have, as a corollary, that the triangle
inequality x 0 + xi~ + xjk ~< 2 defines a facet of Q (G) .

A sequence of nodes vl ,v2 vk of G is called a path if 13i_ll)i E E, for i = 2 k.
Node v; is the origin and node vk is the end of the path. A path is called cycle if vl = Vk.

Theorem 2.5. Let C be a cycle o f G with IV(C)[= p + 1 then

x (E (C)) >/2 (2.5)

defines a facet o f Q(G).

The inequalities (2.4) and (2.5) are called clique and cycle inequalities, respectively.
The inequalities (2.4) (and thus the (2.3)) are facet-defining also for the cut polytope

(see Barahona and Mahjoub [1]), while the (2.5) are valid for Q (G) but not for C (G) .

The inequalities xe >~ 0 and xe ~< 1 in (2.2) do not define facets of Q(K2p), since
they can be obtained by nonnegative combinations of the inequalities (2.3). Therefore
they could be dropped from the formulation of an LP relaxation of Q(K2p). However,
we keep them for the technical reason that we want to guarantee that all the linear
programs that are solved in Step 2 of the following Procedure 2.1 have a finite optimal

solution.

L. Brunetta et al./Mathematical Programming 78 (1997) 243-263 247

The next lemma shows that the matching inequalities (2.2), which are necessary
for the description of PFp(G), are never facet defining for Q(K2p). Note that these
inequalities are valid for Q(K2p) but not for C(K2p) and, although not facet defining,
they are computationally useful and so they are used in our algorithm. Since Q(K4) is
completely described by the equations and the (2.3), in the lemma we consider only

the case p >~ 3.

Lemma 2.6. For no W C V and T C 8(W), with plW] + IT I odd, the inequality

x(E(W)) +x(T) <~ ½(plWl + I T I - 1) (2.6)

defines a facet of Q (K2t~), for p >1 3.

Proof Let us assume that (2.6) defines a facet of Q(K2p). By subtracting the linear

combination ½ E,,ew x(6(o)) = ½plwl of the equation system of a(K2p) from (2.6),
we get the following well known equivalent form for the inequality:

x(T) - x (6 (W) \ T) <. IT [- 1 (2.7)

An equicut 6(S) that satisfies (2.7) at equality is called tight. It is immediate to see that
an equicut is tight if and only if the set 6(S) N 6(W) is equal either to T minus an edge
of T, or to T plus an edge of 6(W)\T. Furthermore, for each edge e E T there exists a
tight equicut such that 6(S) N 6(W) = T\{e}. Otherwise, the inequality Xe = 1 would
be satisfied by the incidence vectors of all fight equicuts and the face defined by (2.7)
would be contained in the face defined by xe ~< 1, and so it could not define a facet. The
same argument, involving the inequality Xe >>- 0, shows that for each e E 6(W)\T there
exists a tight equicut such that 6(S) O6(W) = TU {e}. The subgraph of K2p induced by
the edge set T is the bipartite graph (V1,V2,T), where I/1 = V(T) O W, I12 = V(T)\Vb
and V(T) denotes the set of nodes spanned by T. Without loss of generality we assume
I~] ~< 1½l. Let C be a cycle of (VI ,½,T) and e be an edge of C. The cycle C has
an even number of edges, and so a tight equicut cannot contain all edges of T but
e, because it would intersect C in an odd number of edges. Consequently the graph

(VI, V2,T) is acyclic.
It is easy to see that T 4= 0. Otherwise, a tight equicut would contain only one edge

of 6(W), but this is possible only i f p = 1.
Suppose now that T = 6(W). Since (VI,V2,T) is acyclic, we have [W[= 1 and

]TI = 2p - 1. For an equicut to he tight, we must have]6(S) O 8(W) I = 2p - 2 and,
since in this case 16(S) n 6(W)] = p, it follows that p = 2. Therefore T 4~ 6(w).

Let e be an edge of 6(W)\T and 8(S) be a tight equicut that contains e. Since
we must have T C_ 6(S), we can assume, without loss of generality, that VI C_ S
and ½ C (V\S). Since e is the only edge of 6(W)\T that belongs to 6(S), either

(V1, V2,TU {e}) or (V1, V2,T) is a complete bipartite graph.
In the first case, since (Vl, V2, T) is acyclic, we must have II,]l = [1121 = 2. Moreover,

W = Vj and V\W = V2, otherwise there would be at least two edges in 6(W) \T contained
in 6(S). But this implies p = 2.

248 L. Brunetta et al./Mathematicat Programming 78 (1997) 243-263

In the second case, since (VI,V2,T) is acyclic, IVl] = 1. Let e = (u,v) be the only
edge in t3(W)\T contained in t~(S) and assume that u is in W. Clearly, W = V1 = {u}
and V\S = V2 tJ {v}. This implies that 1'41 = p - 1. Let f = (u,w) be an edge of T,
S be a tight equicut that does not contain f , and assume, again, that u is in W. In this
case no edges of 6(W)\T intersect t3(S), and so V\S = V2\{w}. Hence we must have
]½] = p + 1, a contradiction. []

From now on, for Q(K2p) w e use the LP relaxation Q(K2p) (stronger than Q(K2e)),
described by (2.2), (2.3), (2.4), and (2.5).

The following remark about the facial :structure of Q(K2p) has some computational
implications that will be discussed in Section 4.2.

Remark 2.7. Let G be a graph obtained from K2p by removing a nonempty set E t
of edges. The incidence vectors of the equicuts of G are obtained from the incidence
vectors of the equicuts of K2t, by deleting all the entries corresponding to edges in E t,
that is Q(G) is the projection of Q(K2p) on the subspace {Xe = 0, e E E'}. It is in
general difficult to retrieve an algebraic description of the facial structure of a projected
polytope Q(G) when such a description is known for Q(K2p). So, either one studies
the facial structure of Q(G) for special classes of graphs (see, e.g., Laurent and De
Souza [7] for planar graphs) or, if one wants an algorithm that solves the problem for
general graphs and uses valid inequalities for Q(G), then G has to be transformed to a
complete graph K~/,, using the construction described in Section 1. We pursue the latter
alternative that has the advantage of being more general, but has the disadvantage that
problem (2.1) has a big number of variables even if G has only a small number of

edges.

2.2. A cutting plane algorithm

We describe an algorithm to optimize over an LP relaxation Q(K2p) of Q(K2p). The
polytope Q(K21,) is described by the set/2p of linear inequalities and by the equations
of the affine hull of Q(K2p). Since l£p[is finite but exponential in p, it is not possible
to optimize over Q(K2t,) by solving an LP with a full description of all inequalities
of £p. Yet the optimization can be carried out by the following standard polyhedral
cutting-plane procedure.

Procedure 2.1. (Polyhedral cutting-plane)

Input: p, c E]R E, a family of inequalities/2p. Step 1. Let/2 = (~.

Step 2. Solve the linear program

min {cx I A21, x = P, Ix <~ lo for all (l, 10) E/2, 0 ~< x ~< 1}, (2.8)

where 0 and 1 are vectors of R ~ with all the components equal to 0 and 1, respectively.
Let ~ be an optimal solution of (2.8) (~ is called the current LP solution.)

L. Brtmetta et aL /Mathematical Programming 78 (1997) 243-263 249

Step 3. Find one or more inequalities (l, to) C Z;p with lx > lo (these inequalities
are called the violated inequalities), or prove that all inequalities in Z;p are
satisfied.

Step 4. If no violated inequalities are found, then stop. Otherwise, add the violated
inequalities found at Step 3 to/~, and go to Step 2.

Procedure 2.1 stops after a finite number of steps because/:p is finite. Step 3 is called
the separation problem or the constraint identification problem. A procedure that solves
Step 3 is said an exact separation procedure. We call heuristic a procedure that may
produce some violated inequalities but that, if does not find any, cannot prove that all
members o f / :p are indeed satisfied by the current LP solution. In our algorithm we have
exact as well as heuristic separation routines to produce members of/2p violated by the
current LP solution of Step 2. Due to the fact that O(K2p) is only a relaxation of Q(K2p)
and due to the heuristic nature of some of the separation algorithms, Procedure 2.1 may
stop with a solution ~ which is fractional, and thus cannot be an optimal solution for
the problem (2.1). In such a case we proceed by integrating the polyhedral cutting-
plane procedure described above with an enumeration procedure, i.e., we fix a fractional
variable to 0 or 1 and create two new equicut problems that we try to solve with
the above described cutting plane approach. This approach to the problem is the one
originally used by Padberg and Rinaldi [13] for the symmetric traveling salesman
problem (TSP) and by them named branch-and-cut. We refer to the original paper of
Padberg and Rinaldi [15] for a complete description of the method.

In the sections 3 and 4, we describe the details of the separation procedures and of
our implementation of a branch-and-cut algorithm for the equicut problem.

A heuristic algorithm is applied at the beginning of the root node of the enumeration
tree to find an initial "good" feasible solution to Problem (2.1). The algorithm is the
"exchange" heuristic proposed by Lin and Kernighan [12].

3. The constraint generator

The constraint generator is the most important part of our branch-and-cut algorithm.
The inequalities produced by the generator fall into one of the following four categories:
(a) matching constraints, (b) triangle inequalities, (c) clique inequalities, and (d) cycle
inequalities.

The input to the cut generator is the optimal solution .~ of the current LP relaxation.
Depending on the type of inequalities to be generated, we represent the current LP
solution .~ in two different ways. One is by its support graph, i.e., the weighted graph
(1~, ~) = (V, F, .~), where P is the subset of E corresponding to all nonzero components
of ~. The weight of each edge e E P is ~e. The second is by the weighted graph
(G,.~) = (V,E,~), where the weight of each edge e E E is ~e.

250 L. Brunetta et al./Mathematical Programming 78 (1997) 243-263

3.1. Separation of matching inequalities

The exact separation of matching inequalities was solved by Padberg and Rao [16]
who provide a polynomial time algorithm for this problem. This algorithm requires IPl
max-flow computations in G' = (V', F ' , y) , a graph that is derived from (G, .~) and has

IvI + I,~[nodes and 21Pl edges,
The Padberg-Rao algorithm is used as an exact separation algorithm of the 2-matching

inequalities of the TSP. In this case the support graphs of the LP solutions produced
by a polyhedral cutting-plane algorithm are usually very sparse. In addition there exist
reduction procedures that can be very conveniently applied to these graphs (see, e.g.,
Padberg and Rinaldi [14]). As a result, the number of max-flow computations necessary
to apply the separation algorithm is in general a small fraction of the number of the
nodes of the support graph. On the contrary, the support graph in the case of the equicut
problem in complete graphs is usually dense and the number of the required max-flow
computation is of the order of the square of the number of nodes. Consequently, as the
number of nodes grows, the Padberg-Rao procedure tends to become the bottleneck of
the entire constraint generator.

To avoid these difficulties, we use a heuristic procedure proposed by Padberg and
Rinaldi (Procedure 4.10 in [14]) that requires only IvI max-flow computations on
(G, ~), where the weight ~ is derived from $. The Padberg-Rinaldi procedure (see
[14] for the details) requires that we construct the cut-equivalent tree of the Gomory-
Hu algorithm associated with (G, ~') (for a definition of the cut-equivalent tree, see, e.g.,
[11]). In our implementation such a tree is not produced using the original Gomory-Hu
algorithm but its simplified version proposed by Gusfield [10].

Although the Padberg-Rinaldi procedure is not exact, the instances where it falls
to find a violated matching constraint seem to be infrequent. To support this feeling,
we implemented the exact procedure of Padberg and Rao as well, and we created two
versions of our branch-and-cut algorithm that differ only in the procedure that generates
violated matching inequalities. We run the two versions on a representative set of 13
instances from our test-bed, with sizes ranging from 20 to 50 nodes. The results of this
experiment are reported in Table 1. For the first three labels of the columns of Table 1
and for a description of the instances, see Section 5. For the version of the branch-and-
cut code using algorithm a, where a is either Padberg-Rao (PIL~0) or Padberg-Rinaldi
(PRIR), T_a is total computation time, C..a is number of matching inequalities generated,
LP..a is number of LP's solved to reach optimality.

In all tests described in the table the Padberg-Rinaldi procedure runs considerably
faster than the exact Padberg-Rao algorithm and never falls to find a violated inequality,
since the two algorithms produced the same number of inequalities.

The max-flow algorithm used in both procedures to compute the Gomory-Hu cut-
equivalent tree is the one of Goldberg-Tarjan implemented without dynamic tree struc-
ture [9].

In our implementation of the constraint generator we add only the first 30 most
violated matching inequalities to the set/Z, and we disregard the others.

L. Brunetta et al./Mathematical Programming 78 (1997) 243-263

Table l
Experiments with different matching separators

251

n NVAR PEKC T_PKAO T-PKIN C~:Az~O C-PRI LP-PRAO LP-PRIN

20 190 100 5 2 0 0 6 6
20 190 10 5 3 0 0 6 6

4x5g 190 I0 5 3 0 0 5 5
lOx2g 190 10 5 3 0 0 7 7

5x4t 190 10 7 4 0 0 7 7
30 435 10 36 20 34 34 I0 to
30 435 I00 148 76 0 0 19 19

5x6g 435 I0 116 67 3 3 20 20
5x6t 435 10 116 65 12 12 18 18
5xSg 780 10 763 559 0 0 30 30
5xSt 780 I0 641 365 0 0 31 31

40 780 10 503 187 2 2 31 31
50 1225 I0 2084 926 0 0 47 47

3.2. Separation of triangle inequalities

The total number of triangle inequalities (2.3) is 4(~). Therefore, an algorithm that

exhaustively produces all o f them and checks each of them for violation is exact and
runs in O (n 3) time.

The triangle inequalities (2.3) are o f four different types for each triple of distinct

nodes o f V. For all triples (i,j,e) of nodes we check all the four types o f triangle

inequalities and then we keep only the most violated of them. Of course, since 0 ~<

Xe <~ 1, for each triple (i , j , e) there is at most one inequality violated. Therefore, once

for a given triple we have found a violated inequality o f one type we can disregard

those of the other types.
In the implementation we add only the first 100 most violated triangle inequalities to

/3.

3.3. Separation of clique inequalities

Finding a clique inequality violated by ~ amounts to finding a clique o f maximum

weight in the graph (G, ~), which is an Ac79-hard problem. Thus we devised a heuristic

separation procedure for these inequalities.
For each subset S C__ V, we define an external cost Ea = ~'~v~s Ycav for each node

a E V \ S, and an internal cost ll~ = ~ , ~ s \ b $¢bu for each node b E S, where 2uv is the
weight of the edge uv E E.

The sets S that we consider are cliques with an odd number o f nodes. We start from

3 nodes and go up in size, by adding pair of nodes (the cardinality of the node sets has
to be odd in order to identify a violated constraint of type (2 .4)) .

Algor i thm 3.1. (Clique separation)

252 L. Brunetta et al./Mathematical Programming 78 (1997) 243-263

Input: (G,$) , k. Step 0. Find the triangle T = (i , j ,e) that maximizes ,~(E(T));

set q = 3 and S = {i,j,g}.
Step 1. If q = 2k + 1, then stop. Otherwise Repeat twice: {add the node a E V \ S

with maximum Ea to S}; set q -- q + 2 and declare all nodes of V \ S
unflagged and all nodes of S flagged.

Step 2. If ~(E(S)) > ~½q] [½qJ, the corresponding constraint is violated, save it.
Step 3. If all nodes are flagged, go to Step 1; otherwise exchange the node b of S

with minimum lb with an unflagged node a with maximum Ea; mark a as
flagged and go to Step 2.

We have observed that violated inequalities with small value of q are more effective in
increasing the objective function value of the current LP. On the other hand, the time
consumed by the separation algorithm increases with k. For these reasons, the parameter
k is never larger than 5 in our procedure (see Section 3.5).

In the implementation we add only the first 80 most violated clique inequalities to
the £ and we disregard the others.

3.4. Separation of cycle inequalities

Finding a cycle inequality violated by .~ amounts to finding a cycle of prescribed length
(p + I) of minimum weight in the graph (G, .~). This is also a AlP-hard problem, since
it is as difficult as finding a shortest Hamiltonian cycle in the graph. Therefore, we
devised the following heuristic separation procedure for the cycle inequalities. In the
algorithm we use symbols E,, and lb with the same meaning as in Section 3.3.

Algorithm 3.2. (Cycle separation)

Input: (G,~) , p. Step 0. Generate a cycle C of p + 1 nodes using a cheapest

insertion algorithm, i.e., start from any node and iteratively add the node
connected by the edge of minimum weight to the last added node; mark all
nodes in the cycle.

Step 1. Keeping the node set of C unchanged, find a 2-opt cycle by performing a
sequence of 2-exchange of edges. (A 2-exchange of edges is the operation
that starts by removing two non consecutive edges in the cycle, which has
weight g, and then adds the two edges that form a new single connected
cycle of weight less than g. A 2-opt cycle is one for which 2-exchange of
edges is no longer possible.)

Step 2. If $ (E (C)) < 2, then the corresponding constraint is violated, save it.
Step 3. If all nodes have been marked, then stop; otherwise exchange the node b

of C having minimum lb with the unmarked node a having maximum Ea;
mark a and go to Step 1.

In the implementation we add only the first 80 most violated cycle inequalities to the/~
and we disregard the others.

L. Brunetta et al./Mathematical Programming 78 (1997) 243-263

3.5. Constraint generation strategy

253

Although most of the violated inequalities produced by the cut generator are facet-
defining for Q(K~_p), therefore essential to describe it, depending on the objective
function c and on the current LP solution ~, some of them are better than others as they
produce a higher increase in the objective function value of the LP current solution. We
say that these inequalities are more effective. From our computational experiments we
found that, on the average, the most effective inequalities are the triangle inequalities,
followed by the clique inequalities defined by cliques of small size (5 or 7 nodes). The
matching and the cycle inequalities are not effective for unstructured instances for which
the components of c are drawn from a uniform random distribution. On the contrary
they become effective for structured instances, like those generated on planar or toroidal
grids (see Section 5 for their descriptions).

To evaluate the effectiveness of these inequalities, we created two versions of the
branch-and-cut algorithm, one with the complete cut generator and the other with the
generation of the cycle (or of the matching) inequalities turned off. The first algorithm
was up to 5% slower than the second on unstructured instances but up to 30% slower,
for example, for instances generated on toroidal grids.

There are two more parameters that we consider to prefer some violated inequalities
to others. The first is the time taken by the generator and does not require any comment.
The second is the density of the nonzero coefficients of the inequality. In order to solve
the LP's fast, we need to keep their constraint matrix as sparse as possible.

To take the different characteristics of the inequalities that we consider into account,
we do not execute the separation procedures of the different classes of inequalities all
at the same time, but in a hierarchical order. The choice of the hierarchy is motivated
primarily by the effectiveness of the inequalities and then by their density and by their
generation time. Our separation strategy is summarized by the following procedure.

In the current implementation of the algorithm the default value of the tailing of f
parameter y is 0.0003 x 7r, where rr is the optimal value of the previous LP relaxation
(we refer to [15] for a detailed description of tailing off).

Procedure 3.3. (Separation strategy)

Input: (a3, a5, aT, a9, al 1}, 3 / (the tailing off parameter), rr (the value of the previous
LP optimal solution). Step 1. Solve (2.8) and let .~ be its solution.

Step 2. If a i < cYc- 7r < ai-2 for some i E {3, 5, 7, 9, 11 }, then execute the triangle
separation if i = 3, and Algorithm 3.1 with input k = (i - 1) /2 and ~, if
i > 3. Go to Step 4.

Step 3. If y < c~ - ~" < al i then execute the generator for the matching inequalities
and Algorithm 3.2 (for the cycle inequalities).

Step 4. If any constraints are found, then set 7r = c.~ and go to Step 1. Otherwise
resort to branching.

254 L. Brunetta et aL /Mathematical Programming 78 (1997) 243-263

In our computational experience the best results were found for a3 = 0.009, ai = a i - 2 / 2

for i T {5,7 ,9 ,11} and al =c¢ .

4. The implementation of the branch-and-cut algorithm

The first 2p rows of the formulation of the current LP are the degree constraints
whose density of nonzero entries is l / p , since each column has two nonzero entries in
the first 2p components. Because we solve the LP programs with the bounded Simplex
method, the constraints x >/ 0 and x ~< 1 are not stored explicitly but as lower and
upper bounds on the variables. All the other inequalities produced by the cut generator
described in Section 3 are added to or removed from the formulation of the current LP

with the dynamic mechanism described below.

4.1. The pool

A considerable percentage of the time of our algorithm is consumed by the LP solver
(see the tables in Section 5). To reduce this time we try to keep the constraint matrix
of each LP program as small as possible. Therefore, after an LP is solved and before
adding new violated constraints, we remove all the constraints that are not tight at the
current LP solution from the formulation. In our implementation all the inequalities

whose current slack value is more than 0.1 are removed. It is then possible that, at
some later step, a removed inequality is violated again. However, since the cut generator
is not exact, it is also possible that the inequality is not generated a second time. In
fact, a heuristic separation procedure may or may not generate an inequality, depending
on the LP solution .~ provided in the input. Therefore the method of removing loose

constraints provides, in general, shorter LP solution times but weaker final LP relaxation.
To avoid the drawback, rather than deleting a loose inequality we store it into a pool of

loose inequalities. At each iteration of the polyhedral cutting plane procedure and before
executing the cut generator, we check if any inequalities of the pool are violated by the
current LP solution. If this is the case, these constraints are removed from the pool and
added to the set £ of the inequalities of the LP formulation. Some of these inequalities

may be produced by the cut generator too, so before adding a newly generated constraint,

we check it against duplication. A constraint in the current LP formulation is considered
to be tight or loose according to a threshold value of its slack value. If this threshold
is too small a constraint may go in and out the pool several times slowing down the
convergence of the algorithm. On the other hand, if the threshold is too high the LP
basis may grow too much. The value of 0.1 for this threshold has been found as a good

compromise after several experiments.
When there is an overflow of the storage area reserved to the pool, the inequalities

having large slack value are removed from the pool and forgotten.
When the processing of a subproblem of the branch-and-cut tree is terminated because

no more cuts can be generated because of tailing off, we mark all the constraints whose

L. Brunetta et al./Mathematical Programming 78 (I 997) 243-263 255

slack variables are out of the current optimal LP basis as undeletable. Marked constraints

are never removed from the pool in case of overflow. These constraints are, in general,

a subset of the constraints that are tight at the current optimal LP solution and are
sufficient to reproduce the best LP solution of the subproblem. Therefore, they should
go to the set £ when one of the children of the subproblem is later chosen as the

current subproblem. We reconstruct the LP formulation of a parent subproblem before
processing its children and the pool permits us to do the reconstruction efficiently in the
following way. Once the variables are set, the best LP relaxation of any subproblem is

reconstructed using only the inequalities of the pool instead of the set Ep.

4.2. Variable fixing and setting

Let $ be any basic optimal solution to the linear relaxation of the zero-one program

min {cx [x ~ 0(K21,) , x C Ze}, (4.1)

and let x* be a feasible integer solution of (4.1). As we are solving linear programs
with the bounded Simplex method, a component xe with value I can be either a basic
variable or a non basic variable at its upper bound. In the latter case its reduced cost re

is nonpositive. If re < - (c x * - cYc), then the e-th component of every optimal solution
to (4.1) has value 1. Analogously, if a component Se has value 0 and r~ > cx* -cYc,

then the e-th component of every optimal solution to (4.1) has value 0. In both cases
the variable $~ can be permanently fixed to its current value.

The inequalities corresponding to the fixing of some variables are not valid for Q (K2p)
but are satisfied by all the optimal vertices of Q(K2p), with respect to the objective
function c. Therefore, they can be considered as cutting-planes whose validity depends
on the objective function.

Fixing variables reduces the number of variables to be handled and tightens the LP
formulation of all the subproblems of the branch-and-cut algorithm.

These fixed variables are constrained to be equal to 0 and 1, respectively, Since these
constraints are only "locally" valid, i.e., are valid only for the current subproblem and its

"descendants" in the branch-and-cut tree, we say that these variables are set to their cor-
responding values. The reduced costs associated with an optimal basic solution of these
LP relaxation is used to set additional variables in the same way as described before.
These settings are valid, of course, only for the subproblem and for its descendants.

Once some variables have been set, either when a subproblem is solved for the first
time or when the above reduced cost criterion has been applied, the triangle inequali-
ties (2.3) are used to possibly set more variables. Let H be the subgraph of G induced
by the edges corresponding to all the variables that are fixed or set. I f two edges are
adjacent in H, then the third edge of the triangle that they define can be set using one
of the (2.3). If this edge is not in H, then it is added to it. The edge set of H cannot be
enlarged any further when all the connected components of H are complete subgraphs.

As explained in Remark 2.7 of Section 2.1, in our approach the LP's solved at Step 2
of Procedure 2.1 have (~') variables. Even though the LP objective function has several

256 L. Brunetta et al./Mathematical Programming 78 (1997) 243-263

zero components (as it is the case when, e.g., the graph of the instance to be solved

is sparse) the support graph of any solution of (2.8) is rather dense and only a few
edges can be fixed to 0. This is not surprising, because even the support graph of the
incidence vector of an equicut is dense, since it has more that half of the edges of the

complete graph.
For other combinatorial problems on graphs the situation may be completely different.

For example, the support graph of a feasible solution of the TSP has density 2 n--l"
Moreover the density of the support graph of a solution to any of its LP relaxation is not
much higher. This nice feature makes it possible to execute a branch-and-cut algorithm
for the TSP by solving LP's with only a small subset of the problem variables. All
the other variables are implicitly assumed to be at value zero (see, e.g., Padberg and

Rinaldi [15]). Such a solution technique is not appropriate for the equicut problem,
for which the linear program (2.8) has to be solved explicitly in the space of all the
variables. Thus, the LP solver has to face problems that are much larger and harder than
those arising in the case of the traveling salesman problem, as it will be clear from the

figures of the tables of Section 5.

4.3. The LP solver

For implementing our algorithm we used the routines of the CPLEX CALLABLE
LIBRARY, VERSION 2.1 [5]. The CPLEX library offers some features that are helpful
in programming a branch-and-cut code, so we decided to make use of them. We give a
bound on the objective function to the LP solver: this bound tells it to prematurely stop,
when the objective function exceeds the value of the current best equicut, We use the
CPLEX AGGREGATOR tO use substitution whenever it is possible to reduce the number
of rows and we use the default values for all the parameters with which CPLEX can be

tuned.
We use both the primal Simplex and the dual Simplex method. Primal Simplex is

used to solve the first linear program whose explicit constraints are only the degree

equations.
In order to avoid running Phase I of the method, we provide the LP solver with a

basic primal feasible solution. A basis of the matrix A2p is a well characterized subset

of size 2p of its columns. The edges corresponding to these columns induce a subgraph
of K2p. Each connected component of this subgraph contains exactly one cycle and the

length of this cycle is odd. Using this characterization of the basis of Azr and the best
partition (A, V \ A) found by the heuristic algorithm, we construct a feasible basis for
the LP solver whose corresponding objective function value is c(6(A)) , i.e., the upper
bound found by the heuristic algorithm. To construct such a basis we take the subset of
~(A) composed by all the edges that connect a given node in A to the nodes of V \ A
and by all the edges that connect a node in V \ A to the nodes of A. Then we add an
edge that connects two nodes of A. It is easy to verify that the subgraph of K2p induced
by these edges is connected and contains a cycle of length 3. The edges of 6(A) that
are not in the basis are declared to be nonbasic at their upper bound and all the other

L. Brunetta et al./Mathematical Programming 78 (1997) 243-263 257

variables are declared to be nonbasic at their lower bound.

After the first LP program, we always supply the LP solver with the basis of the

current LP solution ~. This basis is always primal infeasible for the next LP program
to be solved. In fact, either some constraints violated by ~ have been added to the LP
formulation, or some variables have been set to a value 0 or 1 that does not agree
with the value of the corresponding component of .~. This basis is always dual feasible,
though, and so, to avoid executing Phase I of the primal Simplex, we can either solve
the LP program with the dual Simplex method or solve the dual of the LP program with

the primal Simplex.
Since the efficiency of both the primal and the dual Simplex methods is sensitive to

the size of the basis, it is customary to choose the approach that produces a smaller basis
(i.e., the first if 1/~[~< (~'), and the second otherwise). In our computational experiments
we found, though, that CPLEX is sensitive to the number of variables too. Therefore,

to decide which of the two approaches is more convenient to use, we implemented two
versions of our branch-and-cut algorithm. Then we run the two versions on the same
set of 23 instances taken from our test-bed and having sizes from 20 to 40 nodes. Quite

surprisingly, the approach with the dual Simplex is from 2 to 4 times faster than the
other. Therefore, we followed this approach in the final implementation of our algorithm.

4.4. Node and variable selection strategies

Two elements that are critical for the efficiency of a branch-and-cut algorithm are the
criterion used to select the next unsolved subproblem and the criterion used to select the
branching variable. Due to the good quality of the solutions produced by the heuristic
algorithm and to the small sizes of the trees that we generate to solve the instances
in our test-bed, we decided to select the simplest among the possible known criteria.
Therefore, we visit the branch-and-cut tree in a "depth first" manner and we pick the

variable whose value is the closest to 0.5 as the branching variable.

5. Computational results

The algorithm described in the previous sections was implemented in FORTRAN 77

and tested on randomly generated as well as on real-world equicut instances. Some
real-world instances of equicut problems with sizes from 31 to 1001 nodes, arising

from an application of the finite elements method in fluids (the problem is the L - U
factorization of the matrix of the linear system), were kindly provided to us by Cid De
Souza. The matrix to be factorized is a band matrix, that is the non-zero elements are
located in two bands below and above the main diagonal. These two bands are made
up of blocks of non-zero elements that can be moved indifferently below and above the
main diagonal. The problem can be modeled as the one of finding a minimum equicut
in a planar graph, where the nodes correspond to the blocks and an edge connects two
nodes if the corresponding two blocks have non-zero elements in the same row.

258 L. Brunetta et aL/Mathematical Programming 78 (1997) 243-263

We created a library of 250 randomly generated instances having sizes from 20 to 70
nodes 1. These instances fall into the following five categories.

a) Pure random instances: A fixed percentage of the edges (denoted by PERC in the
following) get weights from 1 to 10 drawn from a uniform distribution. The remaining
edges get a 0 weight. Instances with PEKC less than 100 model the equicut problem on
graphs that are not complete. The instances are generated with several values for PERC.

b) Planar grid instances: To represent instances of equicut on planar grid graphs we
assign a weight from 1 to I0, drawn from a uniform distribution, to the edges of an
h × k planar grid, and a 0 weight to the other edges; our h x k rectangular grid graphs

have hk nodes and 2h - h - k edges.
c) Toroidal grid instances: Same as at point (b) but for toroidal grids; our h x k

rectangular toroidal graphs have hk nodes and 2hk edges.
d) Mixed grid instances: These are dense instances with all edges having a nonzero

weight. The edges of a planar grid receive weights from 10 to 100 uniformly generated
and all the other edges a weight from 1 to 10, also uniformly generated.

e) Instances with negative weights: Same as point (a), except for the fact that half
of the edges get weights from - 1 0 to - 1 drawn from a uniform distribution.

Since the objective function for all the instances that we consider is integer, a branch-
and-cut subprobtem is fathomed when c$ > cx* - 1.

The computation times that we report are relative to the experiments run on a SPARC
10/41 and are expressed in seconds.

In all tables the size of an instance is given by the number of nodes for the instances
of type (a) and (e), and by the dimensions of the grid (h x k) for the instances of
the other types. The size of an instance is ended with a 'g' , a ' t ' , a 'm', or a 'n' for
the instances of type (b), (c), (d), or (e), respectively. We also use the following
abbreviations:

n-"

NVAR:

PERC:

TLP :

TT:

GAP:

CUTR:

CUCL:

CUCY:

CUMA:

MROW:

NLP :

BC:

number of nodes;
number of variables;
percentage of nonzero weight edges;
CPU time spent by the LP solver;
CPU time consumed by the whole algorithm;
percentage of difference between optimal and heuristic solution;
total number of triangle inequalities generated;
total number of clique inequalities generated;
total number of cycles inequalities generated;
total number of matching inequalities generated;
maximum number of active inequalities constraints;
total number of LP calls;
total number of nodes of the search tree;

I accessible via ftp anonymous at the ftp site ftp.math.tmipd.it

L, Brunetta et aL/Mathematical Programming 78 (1997) 243-263 259

Table 2
Max-cut instances

n NVAK PERC TT TLP GAP CUTR CUCL I~OW NLP BC

20 190 90 15 14 0 950 869 37 17
10 9 925 240 1099 14 1

20 190 30 2 2 0 741 601 8 1
2 2 741 0 601 8 1

4 × 5 g 190 10 1 0 10 400 400 5 1
I 0 400 0 400 5 1

4 x 5 t 190 10 2 1 2 721 635 9 1
2 1 721 0 635 9 I

30 435 100 1774 1768 0 4629 3226 94 35
313 308 0 2702 2656 4705 75 5

30 435 90 1113 1105 0 3712 2768 97 39
325 317 2445 3110 5068 45 1

30 435 30 22 20 19 1638 1430 20 3
7 5 696 320 878 9 3

5 x 6 g 435 10 24 22 19 1638 1430 20 3
9 5 696 560 878 9 3

5 x 6 t 435 10 64 61 3 1478 1126 17 3
14 12 1076 1120 1723 12 1

40 780 30 352 342 23 2927 2305 31 3
150 144 2456 1120 3180 26 1

8 x 5 g 780 10 311 299 27 2327 1970 26 5
38 34 1566 1360 2295 18 3

8 x 5 t 780 10 616 605 3 2792 1944 30 3
86 80 1876 1600 2762 20 1

In Section 2, we pointed out that triangle and clique inequalities are facet-defining for the
max-cut polytope. The triangle inequalities were used in other polyhedral based compu-
tational studies for the max-cut problem, such as the ones of Barahona, GriStschel, Jiinger
and Reinelt [2] or of De Simone and Rinaldi [6], but clique inequalities were not used
there. Although De Simone and Rinaldi actually used the hypermetric inequalities, which
generalize the clique inequalities, it is possible that a specific routine for the clique in-
equalities generates inequalities that the more general hypermetric inequalities generator
may not identify. Consequently, we decided to use our heuristic procedure for clique
inequalities, together with our exact procedure for triangles, also to solve some max-cut
instances with the same branch-and-cut algorithm described in the previous sections.

Differently from what is claimed in [2] and [6], triangle inequalities were seldom
sufficient to solve our max-cut instances to optimality without resorting to branching.
Instead, even with a very simple heuristic procedure for clique inequalities like ours, we
were able to solve the same instances at the root node (hence without branching) with
a substantially smaller computation time.

The library of test problems is the same used for the equicut problem. By comparing
the results of the computations for the max-cut with those for the equicut it seems that,
at least for the instances of our library, the equicut is easier to solve than the max-cut
problem.

260 L. Brunetta et aL /Mathematical Programming 78 (1997) 243-263

Table 3
Real world equicut instances

n IfVAR PERC TT TLP GAP CUTR CUCL CUCY CUMA MI%OW NIP BC

31 496 I0 56 53 0 1483 320 0 0 846 15 1
54 1431 5 3218 3186 0 3299 1120 364 0 2030 33 29
60 1770 5 6505 6433 0 5700 1840 523 0 2480 57 37
70 2415 5 5737 5616 0 8500 0 929 515 2973 85 55
74 2701 5 3772 3686 0 3999 1280 569 0 2442 40 33
74 2701 5 27712 27527 0 9498 2240 975 0 4026 95 53
80 3160 4 86140 85815 0 14097 2 8 0 0 1087 0 4683 141 57
90 4005 3 14659 14443 0 5600 1840 987 0 3697 56 47

100 4950 3 97271 96540 0 11797 4080 2449 0 7184 118 101

In Table 2 we report the computational results for max-cut using only triangle, or

triangle and clique inequalities. Two consecutive rows of the table refer to the same

problem instance: the first refers to the algorithm that uses only triangle inequalities and

the second refers to the other.

In Table 3 we provide the results of our algorithm on eight real world equicut

instances. Even i f the 100-node instance is one of the largest in size we solved, it is

much easier to solve than our random generated ones. It is interesting to note also

the large number of cycle and clique inequalities identified by our algorithms for these

instances.

Then we solved all the 250 instances o f our library, as equicut problems, to optimality.

Rather than reporting the results in a long table of 250 rows, we prefer to list in Table 4

the statistics of a very small representative sample of the instances that we solved.

As can be noticed by looking at Table 4, because of the density of the matrix of

our formulation and because of the numerical difficulties that CPLEX has to handle, the

Simplex algorithm runs very slow while it is solving the LP's, and so the CPU time spent

by the LP solver is the bottleneck of the whole algorithm. On the contrary the behavior

of the cut generator is quite satisfactory, since it consumes a minute portion of the overall

computation time while the number of LP calls and the number of branch-and-cut nodes

are small.

To give a short report on the total computation time TT for all the 250 instances, we

computed a least-squares estimate of it, as a function of n and of a parameter zr. For the

instances of type (a) and (e) , rr is the density on nonzero edges PERC, for the others, it

is the ratio h / k of the dimensions of the grids. The least-squares estimate provides the

values o f the parameters a , /3, and 7 for the function that gives the total computation

time and that we always assume to have the form

TT = o m ~ "y.

The results are reported in Table 5, where, for each type of instances, we also give the

number o f instances (N) solved to optimali ty and the value of the error of the estimate

(the square root of the sum of the squares of the residuals o f all the N instances).

L. Brunetta et aL /Mathematical Programming 78 (1997) 243-263 261

Table 4
Relevant equicut instances

n NVAR PERC TT TLP GAP CUTR CUCL CUCY CUMA MROW NIP BC

20 190 10 3 2
20 190 100 2 1
30 435 10 20 18
30 435 50 103 98
30 435 100 73 69
40 780 10 179 170
40 780 20 581 575
40 780 70 3942 3840
40 780 80 3303 3278
40 780 90 3246 3210
40 780 100 1152

0 591 63 9
0 496 0 0
0 997 240 42
1 1856 80O 0
l 1745 640 0
5 2756 400 57
1 3823 2000 38
2 4427 4016 0
0 4507 3962 0
0 4613 3848 0

1130 0 3885 2400 0
50 1225 I0 958 943 0 5015 480 72
50 1225 20 7225 7218 2 8492 5005 48
50 1225 30 10223 10122 0 8599 5146 0
50 1225 70 20742 20503 0 7552 6460 0
50 1225 90 15602 15204 0 7238 5768 0
50 1225 100 10261 10150 0 7378 5142 0
52 1326
54 1431
56 1540
60 1770

10×2g 190
5 × 6 g 435

2 × 1 6 g 496
18 x2g 630
2X19g 703

5 x 8 g 780

I0 2042 2037 0 5146 720 73
10 2955 2934 0 7148 720 208
10 3143 3125 0 8025 800 216
10 10488 10355 5 10871 4160 116
10 6 5 0 667 204 27
10 61 58 1 1720 320 56
10 108 103 1 1877 480 89
10 262 245 6 2083 720 156
10 788 755 0 3205 1087 144
10 851 799 0 2923 230 437

0 348 6 1
0 354 6 1
5 690 10 1
0 1099 25 l
0 1167 19 I
2 1582 29 1
0 1817 48 1
0 3469 71 5
0 3310 69 3
0 3094 70 7
0 1944 44 1

31 2137 51 7
10 5050 114 11
0 2811 129 I
0 5747 119 9
0 4854 100 7
0 4643 92 5
3 2317 52 7

69 2667 73 17
3 2868 82 17
0 5167 113 7
2 409 7 1
3 1020 19 I
0 1130 20 3
I 1362 22 3

10 2271 45 3
0 1178 30 7

3×14g 861
5×10g 1225
6×10g 1770

4×5~ 190
6 × 5 t 435
8 X 5 t 780

21X2t 861
2 3 × 2 t 1035
4 x 1 2 t 1128
5 × 1 0 t 1225
1 0 x 6 t 1770
7x10¢ 2415
2× 10m 190 100 3

6x5m 435 100 28
2×17m 561 100 235
10×4m 780 100 315
5 x 10m 1225 100 3212
4x13m 1326 100 5702
13×4m 1326 100 5105

10 1256 1221 0 3525 1040 258 23 2065 37 5
10 2843 2810 0 4376 1360 384 42 2190 44 3
10 17994 17978 0 7200 1440 435
10 3 2 0 397 70 8
10 45 43 4 1371 320 56
10 494 479 0 2947 200 380
10 1061 1035 4 3437 960 218
10 2788 2755 4 4540 1600 336
10 3012 2089 4 4669 1040 293
10 2031 2017 0 4300 880 144
10 6517 6494 7 8475 2000 440
10 28297 28129 0 11387 2080 544

2 0 490 141 18
24 18 1184 160 30

227 0 2031 1280 102
307 0 1889 1t20 160

3158 0 3175 2480 399
5613 0 4255 3040 510
5043 0 3976 2960 494

0 3043 72 31
0 297 5 1
0 850 15 1
7 1218 30 7
0 1968 36 3
0 3317 58 3
1 2341 48 5
0 1821 43 13
6 4295 87 3
0 4551 114 33
0 329 5 1
4 691 13 1

14 1617 21 3
0 1406 19 1
3 2363 33 5
0 3315 43 7
0 2812 41 5

10X6m 1770 100 12920 12770 0 4877 3760 746 0 3417 49 9
10×7m 2415 I00 127297 126507 0 8663 6240 1454 217 7857 87 13

262 L. Brunet~ et al./Ma~ema~cal Programmmg78(1997) 243-263

Table 4 - -con t inued

n NVAR PERC TT TLP GAP CUTR CUCL CUCY CUMA MROW NLP BC

30n 435 100 87 84 0 1963 232 0 0 944 34 1
30n 435 90 115 112 0 2146 373 0 0 993 38 1
4011 780 100 3173 3134 0 4418 2687 0 0 1830 152 1
40n 780 60 478 465 12 4729 160 0 0 1419 64 1
40n 780 50 1221 1189 3 6258 1377 0 0 1837 120 I
40n 780 30 688 668 1 5013 625 0 0 1710 88 1
50n 1225 100 96847 96147 0 8659 9008 0 0 4039 749 5
60n 1770 20 4892 4818 0 11948 0 0 0 4012 124 1

Table 5
K~timates for the function TT

Instance type N "IT error

(a) 40 1.0 x 10 -13 n 916 'n °83 19655.4
(b) 50 1.2 × 10 - 9 n 7"28 7r 0"04 18007.2
(c) 60 1.5 x 10 - 9 n 7:06 7/" -0"31 30048.0
(d) 50 1.7 x 10 -1° n 7"69 7r -0:27 10366.2
(e) 50 1.1 x 10 -10 n 6"99 "/r 0"4 3078.0

Acknowledgments

The research was partially supported by two research grants from Progetto Finalizzato
Trasporti 2 of the Italian National Research Council (contracts CNR/92.018880.PF74
and CNR/93.01812.PF74). Acquisition of CPLEX was made possible by other research
grants from Progetto Finalizzato Trasporti 2 of the Italian National Research Council
(contracts CNR/92.01845.PF74 and CNR/93.01778.PF74). We are grateful to Professor
Maria Morandi Cecchi for making some workstations available to us. We would like to
thank also Luca Righi for helping us in installing and using some software tools.

References

[1] E Barahona and A.R. Mahjoub, On the cut polytope, Mathematical Programming 36 (1986) 157-173.
[2] E Barahona, M. Gr~tschel, M. Jfinger and G. Reinelt, An application of combinatorial optimization to

statistical physics and circuit layout design, Operations Research 36 (1988) 493-513.
[3] M. Conforti, M.R. Rao and A. Sassano, The equipartition polytope I: Formulations, dimension and basic

facets, Mathematical Programming 49 (1990) 49-70.
[4] M. Conforti, M.R. Rao and A. Sassano, The equipartition polytope lh Valid inequalities and facets,

Mathematical Programming 49 (1990) 71-90.
I51 CPLEX, Using the CPLEX Callable Library and CPLEX Mixed Integer Library, CPLEX Optimization

Inc. (1992).
[61 C. De Simone and G. Rinaldi, A cutting-plane algorithm for the max-cut problem, Optimization Methods

and Software 3 (1994) 195-214.
[7] C.C. De Souza and M. Laurent, Some new classes of facets for the equicut polytope, Working Paper,

CORE (Louvain-la-Neuve, 1991).

L. Brt~netta et aL /Mathematicat Programming 78 (1997) 243-263 263

[8] J. Edmonds and E.L. Johnson, Matching: A well solved class of integer linear programs, in: R. Guy,
ed., Combinatorial Strtwtures and Their Applications (Gordon and Breach, New York, 1970) 89-92.

[9] A.V. Goldberg and R.E. Tarjan, A new approach to the maximum flow problem, Journal of ACM 35
(1988) 921-940.

110] D. Gusfield, Very simple algorithms and programs for all pairs network flow analysis, Research Report,
University of California (Davis, California, 1987).

[11] T.C. Hu, MultiterminaI maximal flows, in: T.C. Hu, tnteger Programming And Network Flows (Addison-
Wesley, Reading, MA, 1969) 129-142.

[12] B.W. Kemighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell Systera.v
Technical Journal 49 (1970) 291-307.

[13] M. Padberg and G. Rinaldi, Optimization of a 532-city symmetric traveling salesman problems,
Operations Research Letters 6 (1987) 1-7.

[14] M. Padberg and G. Rinaldi, Facet identification for the symmetric traveling salesman polytope,
Mathematical Programming 47 (1990) 219-258.

[15] M. Padberg and G. Rinaldi, A branch-and-cat algorithm for the resolution of large-scale symmetric
traveling salesman problems, SIAM Review 33 (199 I) 1-41.

[16] M. Padberg and M.R. Rao, Odd minimum cut-set and b-matchings, Mathematics of Operation Research
7 (1982) 67-80.

