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Approximate analytic expressions for the local friction and heat transfer 
coefficients in a dusty laminar boundary layer are obtained and tested 
in the case of an incompressible carrier phase, power-law variation of 
the external gas flow velocity and small velocity and temperature phase 
disequilibrium. These expressions supplement the numerical analysis of 
the dusty boundary layer on a blunt body [i, 2] and the asymptotic cal- 
culation of the friction and heat transfer in a quasiequilibrium dusty 
gas boundary layer on a plate [3]. The combined effect of dustiness 
and pressure gradient on the friction and heat transfer coefficients 
is discussed. The results obtained can be used for the practical 
calculation of the friction and heat transfer in a quasiequilibrium 
dusty laminar boundary layer and for interpreting the corresponding 
experimental data. 

It is proposed to consider the steady plane flow past a body with constant surface 
temperature T w of a uniform monodlsperse stream of dusty viscous heat-conducting incom- 
pressible gas at large Reynolds numbers. The standard assumptions of the dusty laminar 
boundary layer model [1--7] are employed and it is assumed that at the outer edge of the 
boundary layer the gas velocity increases with the longitudinal coordinate in accordance 
with the power law u e = cx m (m > 0) and that at points remote from the body the tempera- 
ture T e of the gas and the particles is constant. 

The mathematical formulation of the problem of the dynamic and thermal interaction 
of the wall and the dusty gas essentially depends on the values of the dimensionless 
parameters 61 = L/s u and 62 = L/s t, which determine the relations between the character- 
istic length of the problem L and the characteristic dynamic and thermal particle relaxa- 
tion lengths s and s [1--8]. When the Reynolds numbers for the flow over the particles 
are small and Stokes phase interaction conditions are realized, for gas suspensions the 
parameters 61 and 62 are of the same order [5--8] 
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Here, d, 9~ , and c s are the diameter, density and specific heat of the par t ic les ,  
and the other notation is that usually employed [5]. 

We will calculate the dimensionless local friction and heat transfer coefficients 
Cf and Nu x in the case Re s ~ i, when throughout the flow region it is possible to use 
relations (I) and the form of the equations of the nonisothermal dusty laminar boundary 
layer depends only on the value of the parameter 6 1 . If the particles are small and the 
flow velocity is not very great, then 6 1 m i. In this case the velocity and temperature 
disequilibria of the flow are unimportant and the quasiequilibrium model [3--7] applies. 
As d and V= increase, the parameter 6 1 decreases and it becomes necessary to use the com- 
plete equations of the nonequilibrium dusty boundary layer [i, 2]. We note that at large 
Re s relations (i) are not satisfied, 61 may considerably exceed 6 2 [8] and in choosing 
the mathematical model it is necessary to estimate the values of both the parameters 6 1 
and 6 2 . 

When 6 7 m 1 the motion of the dusty gas in the boundary layer can be described by 
means of the following boundary-value problem: 

(I) 
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Here, f and q are the dimensionless stream function and self-similar variable [5], 
8 is the dimensionless temperature, x is the relative mass particle concentration in the 
approach stream, and a prime denotes the derivative with respect to ~. 

When x=0 the problem (2) coincides with the nonisothermal Falkner--Skan problem 
for a clean gas [5, 9], and $ = 0 with the Blasius problem for a pseudogas [3] (it should 
be noted that the energy equation in [3] contains a printing error -- the factor f is 
missing from the second term). 

In order to calculate Cf and Nu x it is sufficient to find the dimensionless quantities 
a = f"(0) amd b = 0'(0), since 
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By introducing the new variables and parameters 
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for any x we can reduce the calculation of a and b from problem (2) to finding the aux- 
iliary quantities a, and b~ from the nonisothermal Falkner--Skan problem 
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Here, 6 ,  is the usual pressure gradient parameter of boundary layer theory, and the 
part of the Prandtl number is played by the effective Prandl number of the pseudogas Pr, 
[3, 5--7]. When ~ ~ 1 the parameters Pr, and Pr are different, the difference increasing 
with increase in x, and for x~0 we have the estimates 
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I f  1~ - 11 ~ 1. t h e n  f o r  any x i t  can  be assumed t h a t  P r ,  z Pr  ( f o r  e x a m p l e ,  f o r  
an aluminum p a r t i c l e  s u s p e n s i o n  in  a i r  unde r  s t a n d a r d  c o n d i t i o n s  ~ z 0 . 9 ) .  When I~ -- 
11 ~ I for an essentially dusty gas (x~1) the difference between Pr, and Pr should be 
taken into account. For example, in the case of an air suspension (Pr = 0.7) when x=2 
for water droplets (~ = 4.2) we have Pr, = 2.2, and for copper particles (~ = 0.4) 
Pr, = 0.4. 

Using a combination of asymptotic methods [i0--12], on the basis of (5) we can ob- 
tain approximate analytic expressions for a, and b, with 0 ~ 6, ~ 2 and Pr, = 0(i) that 
generalize the numerical and asymptotic data on these quantities for fixed Be derived 
from the boundary layer theory for a clean gas [5, 9--11]. Finally, using (3), (4), and 
(6), we arrive at the following expressions for the relative friction and heat transfer 
coefficients in a quasiequilibrium dusty laminar boundary layer: 
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Here, the degree symbol superscript relates to the characteristics of the clean gas 
(X=0), and the zero subscript to the characteristics of the zero-gradient flow (6 = 0). 

It should be noted that relations (8) and (9) are exact within the framework of model 
(2), while the error of the approximate expressions (i0) and (ii) depends on the values 
of 8 and Pr~. Relations (i0) generalize the numerical data of [5, 9, i0] with a maximum 
error of • and for ~ = 0 (longitudinal flow over a plate), 0.5 (flow over the stagna- 
tion point of an axisylmmetric body) and 1 (flow over the stagnation point of a cylindrical 
body) the error is tenths of a percent. When 8 = 1 the error of relation (ii) does not 
exceed 0.5% over the entire range of Prandtl numbers indicated in [5] (for 0.6 ~ Pr~ g 15), 
and when 8 = 0.5 it gives results that agree with the numerical results of [10] to within 
1.3 and 0.6% for Pr~ = 0.7 and i, respectively. When ~ = 1 and Pr~ = Pr relation (ii) 
coincides with the expression given in [ii], and as 8 ~ 0 or Pr~ ~ - it takes the form: 

b.=O.616[a~ ~-]-~-x ] (12) 

Hence for • and 8 = 1 in complete conformity with [9] we obtain b, = b ~ = 
0.661Pr ua (Pr ~ =), and for B = 0 in conformity with [3] 
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From expressions (8) and (i0) it follows that the dustiness and the pressure gra- 
dient act independently on the friction, the coefficient ~I reflecting the increase in 
friction as a result of the dustiness of the gas having the same form as when 8 = 0 [3]. 
On the other hand, in the context of relations (9) and (ii) it is not generally possible 
to separate the effects of the particles and pressure gradient on the heat transfer rate 
and, consequently, in estimating the heat transfer coefficient Nu x it is not generally 
possible to apply the superposition principle. From (11)--(13) it follows that this 
principle holds only in particular cases: y = 1 (Pr, = Pr), 8 ~ 0, Pr.~ ~ ~, when z = 
z(8, Pr) or z ~ 0. Since for gas suspensions, when (7) is taken into account, we have 
Pre - 0(i), while the case 8 = 0 was examined in [3], of the three cases in question 
when 8 # 0 only the case ~ = 1 is of practical interest. 

When 7 = 1 from (9) and (ii) there follows 

(13) 

Nlls 
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so that the coefficient ~2 reflecting the influence of the particles on Nu x coincides 
with ~x. This is attributable to the fact that when 7 = 1 (c s = Cp) the specific heat 
of the pseudogas Cp~ coincides with the specific heat of the gas Cp and the intensifica- 
tion of friction and heat transfer in the quasiequilibrium dusty laminar boundary layer 
is caused only by the increase in the density of the pseudogas as compared with the density 
of the gas 0 by a factor of a~ [5--7]. When y # 1 and 8 + 0 the effect of the dustiness 
on Nu x is more complex than its effect on Cf. 
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HYDRAULIC FRACTURING IN AN INHOMOGENEOUS RESERVOIR 

A. V. Domanskii UDC 532.546 

A method of estimating the change in well productivity resulting from the 
hydraulic fracturing of a finite reservoir, piecewise-homogeneous in the 
horizontal and vertical directions, with an arbitrary number of cracks is 
proposed. A correction coefficient that enables these estimates to take 
into account the effect of capillary trapping of mud and fracturing fluid 
filtrate is derived [i, 2]. 

Questions relating to the mechanism of formation of artificial cracks in a reservoir 
were considered, for example, in [3, 4]. In [5] well productivity estimates were con- 
structed for the case of one horizontal or two vertical cracks in a finite homogeneous 
reservoir, and in [6] the case of an arbitrary number of vertical cracks in an infinite 
homogeneous reservoir was investigated. The problem of the flow into a well from a 
horizontal crack was examined in [6, 7]. 

i. Hydraulic Fracturing in a Homogeneous Reservoir 

Let a perfect well of radius r c lie at the center of a homogeneous reservoir of 
thickness H having in plan the shape of a circle of radius r k. By means of hydraulic 
fracturing N identical, symmetrically distributed vertical cracks of height H are created 
in the reservoir. These cracks radiate from the walls of the well, extending a distance 
r 0 from its axis (Fig. i). The cracks are assumed to be fairly narrow and not to offer 
hydraulic resistance to the fluid flowing in them. The pressure in a crack is assumed 
to be everywhere equal to the bottom hole pressure. 

By virtue of the chosen geometry of the flow zone the equation for the pressure has 
the form: 

r-'(~,),+r~p.=0 ( i. i) 

Here and in what follows the subscripts r, ~,z, z, and y denote differentiation with 
respect to the corresponding variable. 

Neglecting the transverse dimensions of the cracks, we can write the boundary con- 
ditions for Eq. (i.i) in the form: 

p=po=const (r=n) p.=0 (r=n, 0~2n), p],=po=const, p~<p,, Ap--p,-po (1.2) 
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