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PARTICLE DEPOSITION FROM A TURBULENT FLOW 

I. V. Derevich and L. I. Zaichik UDC 532.529.5:532.517.4 

The diffusion equations and boundary condition for particle deposition 
from a turbulent flow are obtained on the basis of the kinetic equa- 
tion for the probability density of the particle distribution. This 
approach makes it possible to calculate the deposition fairly simply 
without introducing additional empirical information relating to the 
particles (empirical constants are needed only for calculating the 
characteristics of the turbulent carrier flow). 

A considerable number of experimental and theoretical studies (for a review see, 
for example, [1--3]) have been devoted to the study of particle deposition from turbulent 
gas streams on the walls of pipes and ducts. For relatively snmll particles easily 
entrained into the fluctuating motion of the carrier stream the principal deposition 
mechanisms are the turbulent diffusion and migration of the particles due to the trans- 
verse gradients of the particle concentration and the gas fluctuation intensity, respec- 
tively; the influence of such factors as the mean interphase slip, the force of gravity 
and the Magnus effect is of secondary importance. Most methods of analyzing particle 
deposition are based on the ordinary diffusion equation; with this approach in order 
to describe the turbulent migration of the particles effectively it is necessary to 
introduce the concept of a free-inertial particle path in the boundary zone (see, for 
example, [4, 5]) or other models without a very sound physical basis. In [2, 6] the 
migration deposition mechanism is taken directly into account. The formulation of the 
boundary condition for the diffusion equation is also a complex problem. As the bound- 
ary condition on a totally absorbing wall it is usual to take zero particle concentra- 
tion. The boundary condition for the diffusion equation is discussed in [2, 7, 8]. 
Particularly interesting is the method of calculating particle deposition based on the 
solution of the kinetic equation for the probability density of the particle coordinate 
and velocity distribution [3]. However, for a real turbulent flow the calculations based 
on the direct solution of the kinetic equation in coordinate and velocity space are 
rather laborious. 

I. The equation of motion of an individual solid spherical particle is written in 
the form: 

dr,, u , ( R , ( t ) , t ) - v , , ( t )  
+ F,(R,(t), t) + / , ( a , ( t ) ,  t) 

dt x 

dry, 2p,a' i+2~/./a 

d t  v ~ ,  ~ ~ 9p ,~  t+3aMa 

where Rp(t) and vp(t) are  the  coo rd ina t e  and v e l o c i t y  of the  p a r t i c l e ,  u(x, t) i s  the  ve- 
l o c i t y  of the turbulent carrier flow, �9 is the dynamic relaxation time of the Stokes 
particle with allowance for the slip of the gas molecules on the surface, 01 and P2 are 
are the densities of the fluid and solid phases, ~ is the kinematic viscosity of the 
fluid phase, X is the mean free path of the molecules in the fluid, a is the particle 
radius, and = is the slip coefficient (of the order of unity). The first term on the 

(1.1) 
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right side of (i.i) describes the viscous interaction between the phases in the Stokes 
approximation; the second term F~(x, t) determines the external force acting on the par- 
ticle (for example, the force of gravity); the last term fi(x, t) depends on the random 
force acting on the particle in a random field 6-correlated with respect to time and is 
associated with the Brownian motion effect. 

In writing Eq. (i.i) we assumed that the density of the fluid phase is much less 
than that of the particle material; accordingly, the forces depending on the pressure 
gradient in the fluid, the apparent mass and the nonstationarity of the flow (Basset 
force) can be disregarded. Expression (i.i) is a Langevin equation depending on two 
uncorrelated random fields describing the velocity of the turbulent carrier flow u and 
the Brownian motion L The mean mass (and afortiori volume) particle concentration is 
assumed to be small; accordingly, the reaction of the particles on the carrier flow 
characteristics and the interaction of the particles themselves as a result of collisions 
can be neglected. 

We introduce the distribution function of the particles with respect to the coordi- 
nates x and velocities v in phase space 

p(x, v, t )=<6(x-R,( t ) )8(v-v , ( t ) )> ( 1 . 2 )  

where the averaging is carried out over the realizations of the turbulent flow and the 
random field f. 

Using (i.i), we differentiate (1.2) with respect to time: 

~p 

Ot 
0 <6(x_R,)6(v_vp)~ > 0 / dt',~k axe, -- ~ ~ 6 (x-R,) 8 ( v - - v , ) T / =  

..,o,. v.,o..> § 
az,. 

(1.3) 

<6(x-R,(t))8(v-v,(t))v,dt)>-vd(x,  v, t) (1.4) 

We represent the carrier phase velocity in the form of an averaged and a fluctuation 
term: 

a~(x, t)-URx, t)+=,'(x, t), UX-<a~>, <a~'>-0 (1 .5)  

Then from express ion  (1 .3 ) ,  us ing (1 .4)  and ( 1 . 5 ) ,  we ob ta in  the  fo l lowing  equa t ion  
for the distribution function: 

ap 0 (U~-t'~ \ a I <pah'> +<ph>)=O ~ + ~ + r , ) ~ ' + T j [  
at Ox ark 

(1 .6)  
<pu~'>--<6(x-R,)8(v-v,) u~'>, <M~>=<8(x-Rp)8(v-vp)l,> 

In order  to  ob ta in  a c losed equat ion  for  p, i t  i s  necessa ry  to f i n d  express ions  fo r  
the correlations <pu~> and <pfk >. In order to calculate these correlations, we use the 
Furutsu--Novikov equation [9], assuming that the random fields u~ and fk are Gaussian: 

<z(x)R[z]> = ; dx, <z(x)z(x,)><6R[z(x)].> (1 .7)  
l~z(x,) 

where z(x) is a random process in x space; R[x I is a functional depending on the random 
process; and 6R/6z is a functional (variational) derivative. 

In accordance with (1.7) and (1.2), we have 

<pu,'> = <a,'(x,t)u~ (x,,t,)> 
@ (x, v, t) dx, dt, (1 .8)  
8u~' (x,, t,) 

(,, ,,, ,) a (8(,-R,(,))6 > (v-v,(t))8~;,) 
8u~' (x,, t,) axj 

at,, ) 5uj (x~, t,) 
(1.9) 
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In order to find the functional derivatives in (1.9), we write the equations of 
motion of the individual particle (I.i) in integral form: 

t 

v.((t)--v.,(O) exp( - t )+ J" [ 
�9 ~ s 0 

u, (R, (t,), t, ] 
I- F, (R, (t), t,) + l,(R,,(td, t,) x 

T 

t 

R,, (t) •= R,, (0) + ~ v,, (t,) dt, 
0 

(1.10) 

(1 .11)  

We apply to (i.i0) the functional differentiation operator, bearing in mind the 
relation 6u~(x,t)/6u~(x,,t,)~6,~(x--x,)6(t-t,), the causality principle [9] and the fact that 
the initial conditions Vpi(0) and Rpi(0) do not depend on ui. In order to obtain a 
kinetic equation for the particles containing derivatives with respect to the coordi- 
nates and velocities of not higher than second order, we neglect the spatial nonunifor- 
mity of the carrier flow velocity field in calculating the functional derivatives. As 
a result we obtain 

6v,, (t) t t~t ,  
-- -- e-if06 (xt-Rt (t,)), ~ -- 

6u/(x,,  t,) �9 
t 

6Rt,(t) =[ 6vii(t,) dtf_(t_e_t)6, j6(x,_R,(t , )  ) 
6u,' (x,, t,) ~ 6u,' (x,, t,) 

When (1.9) and (i.ii) are taken into account, from (1.8) there follows 

Op Op 
<pu,'> •, ~g <u,'u/> - J, <~'uh'> Oz~ 0 v~ 

' - - I  , , " •  <~'(x,t)uj (Rp(t,), t ,)>(t-e-)dt, ,-g<u, u~ >, <u, (x,t)a~ (Rp(t,),t,)>e-"dt, =]~ <~'u/> 
T o I~ o 

where <uiu3> are the second one-point one-time moments of the carrier flow velocity 
fluctuatiohs. 

(1 .12 )  

Approximating the two-time correlation moments for Rp(t)=x by the step function [I0] 

f <a,'u/>, [ t , - t l <  T <u,'(x, t)u/(R,(t,), t,) > =~ 
O, ]t,--t]> T 

where T is the particle--turbulent mole interaction time, we obtain the following expres- 
sions for the coefficients of entrainment of the particles in the fluctuating motion of 
the carrier flow: 

r -T ]1----l--exp -- , g =---- i+exp 
T 

(1.13) 

i.e., when The random field fi is assumed to be 6-correlated with respect to time, 
Rp(t) =x  

(i+3m%/a) kO 
<],(x, t)fj(Rp(t,), t,)>=D6(t-t,)SJx, D-- 

6~ptva (i+2=Ma). 
where D is the Brownian diffusion coefficient; k is the Boltzmann constant; and 8 is 
temperature. 

Then 

[[ 5p(x,v, t) 
<pm=. .</ , (~ , t ) / , ( . , , t , )> dx, d t , . - - -  6 .  (1.14) 

M~(x. t,) Ov~ 

Substituting (1.12) and (1.14) in (1.6), we obtain a closed equation for the proba- 
bility density function of the particle coordinate and velocity distribution in the tur- 
bulent flow: 

Op O ( U,-v~ ) #p + v~ + . + Fh p'=g <u~'uh'> O'p +. 
Ot Ox~ Ov~ x Oz, 00~ 

724 



ft <=,':~'> #'___2__p ~ D 8"p ( i. 15) 
~: @p~ Ov~ "c z aph av~ 

For laminar flow (<u~u~> = 0) Eq. (I.15) goes over into the Fokker--Planck equation 
for the Brownian particle distribution function [9, ii]. When �9 m T (D = 0, fl = T/~, 
g = T2/2x 2 = 0) Eq. (1.15) conforms to the equation for the probability density of the 
large particle distribution in a turbulent flow [2]. 

From (1.15) we obtain the equations for the moments. Integrating Eq. (1.15) over 
the entire volume in velocity space, we obtain the mass balance equation for the solid 
phase 

8C+ a--~h C V ' - - O o t  C--~pdv, V,--k~ v,pdv (1.16) 

Here, C is the particle concentration, and V k is the mean velocity of the solid 
phase. Multiplying (1.15) by v i and integrating with respect to v, we obtain the equa- 
tion for the averaged velocity of the solid phase [12] 

OF, OV~ 0 <v,'vh'> U~-V, D~ 0 ln C 
+ V~ = + + F, 

: . Ot Ox~ Ox~ x x ax~ 

<v,'v~'>==--C- v,'vh'pdv, D,h'-x(<v,'v~'>+g<u,'uh'>), v,'=-v,--V, 

(1.17) 

Here, <v.zv~> is the solid-phase stress tensor, and Dik is the diffusion tensor. The 
first term on the right side of (1.17) describes the appearance of stresses in the solid 
phase as a result of the involvement of the particles in the turbulent motion of the car- 
rier flow and the Brownian motion, while the last term determines the so-called diffusion 
force. Mulitplying (1.16) by v.zvj and carrying out the integration with respect to v, 
we obtain the equation for the second moments of the solid-phase velocity fluctuations 

, , avj a <v,'v/> k v~ a <v/v/> +(<v,'vh'> +g<u, u~ > ) ~ +  
at  Oxh ax~ 

§ ' (<v/v:> + g<u/u/>) 
ax~ C ax~ 

(1.18) <v~ v~ vk > == v,'v/v,'p dv 

From Eq. (1.18) in the approximation that disregards the nonstationarity and the 
nonuniformity of the solid-phase velocity field (more precisely, in the local steady- 
state and uniform approximation) the following expression for the stresses can be ob- 
tained: 

<v,'v/> = It < u,'u~'> + D 5,j ( i. 19 ) 

From expression (1.19) it follows that the small particles are completely entrained 
in the turbulent motion of the carrier flow (i.e., fl ~ i as x/T ~ 0), whereas the large 
particles are not entrained in the fluctuating motion (since fz ~ 0 as x/T + ~). 

Without taking the convective terms into account, from Eq. (1.17) we can obtain the 
following expression for the mean velocity of the solid phase: 

0 <v/v/> alnC 
V,=U,+TFI-x - D a , ~  (1.20) 

Ox~ ax~ 

Using (1.19) and (1.20), we obtain the mass balance equation for the solid phase 
(1.16) in the form of the diffusion equation 

~C + 0 O [ D OC + a ] 
Ot Ox [ (U~+xF~)C]== Ox~ ~ C (qd,h+D6,h) 

(1.21) 
Dij=d~j'FDS~j, d~j=T <u,'u/>, q=x],/l' 
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Here, dij is the turbulent diffusion coefficient, and q is the migration coefficient. 
As distinct from the ordinary diffusion equation with right side ~(DikSC/axi)~Xk, in 
addition to diffusion transport Eq. (1.21) also describes the migration of the particles 
due mainly to the nonuniformity of the turbulent fluctuation field of the carrier flow. 
As the particle size increases, the migration coefficient q increases from zero to unity; 
accordingly, whereas the deposition of the small particles (x/T ~ i) is pr4marily deter- 
mined by the process of turbulent and Brownian diffusion, as the particle size increases 
the role of the migration mechanism becomes more important and the deposition of the 
relatively large particles (x/T ~ i) is essentially determined by the turbulent migra- 
tion process. 

2. In order to obtain the boundary condition for Eq. (1.21) on a totally or partially 
particle-absorbing wall we construct the solution of Eq. (1.15) in a thin kinetic layer 
near the surface. In Eq. (1.15) as applied to this layer it is possible to retain only 
the terms relating to the components in the direction y normal to the wall: 

(qDe+D) O'p + Oy Or, �9 
"[ Opv: Op~ oy oVw 

where D T = T<uy2>. We solve Eq. (2.1) by the perturbation method, treating the right 
side as a perturbing factor, i.e., representing the solution in the series form p = 
P~ + P2, where the first (equilibrium) term is given by 

[ 
"~ I p,ffic L~ (qD,+D) 2 (qD,+D) 

The function P2 is determined from the equation 

(qD,+D) O'p, + Or,p, Op, �9 api O:p, 
-- xv, - -  + ( V , + x F v ) - -  - ( t -q)  Dr 

Or; �9 Or, Oy Or,  Oy Ovy 

(2.1) 

[ ~ ]'~ exp[-- "w'ffi ] v' {(DT+D)dd~y+ 
2~ (qD,+D) 2 (qD,+D) (qD,+D) 

_~[ "r 3DT+2qDr_D] dln(qDT+D) - (Uv+'cFv)C} 
qDr+D dy 

The so lu t ion  of Eq. (2.2)  is  

[ vv dC q- 

(2.2)  

(DT+D)'cv ; dln(qDr+D) (V~+'tF,)C } 
-~-[ (2q-t)DT+D+ 3(qDr+D) "1 dy 

Thus, in the second approximation the solution of Eq. (2.1) takes the form: 

PKC[ 2~(qDT+D) 2a(qDr+D) qDr+D L ( T ) dy + 

i (D~+D)~v,' ] dln(qDT+D) 
--~ (2qDr-DT+D) + 3(qDT+D) a "~y (Uy+~F,) ]} (2.3)  

On the basis of solution (2.3) we determine the particle fluxes incident on and re- 
flected from the wall Jf and Jr, respectively: 

0 

'/t C 

.= I qDr+D \ .I, C 
J,.-Jv,pdv, ~~) C+(U,+~F,) 2 

Q 

(DT+D) dC C d(qDr+D) + - -  
2 dy 2 dy 

(Dr+D) dC C d(qDT+D) 
2 dy 2 dy 

(2.4) 

726 



~,m/sec 

/0 -z 

o/ 

/ 
ooo  

I0 ~ 

Fig. 

+/ 

02 

, 3  

-? 

~z /0 "1 101 d, um I0 ~ d, um /0 z 

1 Fig. 2 

All the quantities in expressions (2.4) correspond to their values at the wall. 
From the standpoint of particle reflection or absorption the physical properties of the 
surface can be characterized by the reflection coefficient X, equal to the probability 
of a particle breaking away from the wall after reaching it (return to the flow of a par- 
ticle colliding with the wall) or by the absorption coefficient 1 -- X, equal to the 
probability of a particle sticking to the wall. Thus, the reflection coefficient is 
equal to the ratio of the reflected and incident particle fluxes 

X=AIS, (2.5) 

Substituting expressions (2.4) in (2.5), we obtain the following boundary condi- 
tion for the particle diffusion equation (1.21): 

C.=i_-~x2(qDr+D) [(Dz+D)-~-y+C dg ?~_X, 2 (qW+D)) I. (2.6) 

where Jw = Jf -- Jr" The boundary condition relates the particle concentration at the 
wall C, a and the net particle flux Jw. The terms in square brackets in (2.6) determine the 
diffusion, migration and convective particle fluxes to the wall, respectively. It follows 
from (2.6) that, contrary to the opinion widely expressed in the literature, even on a 
totally absorbing surface (X = 0) the particle concentration is not equal to zero. Nat- 
urally, for a totally reflecting surface (X = i) from (2.6) we obtain Jw = 0. 

3. Let us consider the process of particle deposition from a steady hydrodynamically 
developed turbulent flow in a plane-parallel or cylindrical channel. In the boundary 
layer approximation without allowance for body forces the diffusion equation (1.21) takes 
the form: 

# 8 8C 8 

where x and r = 1 --'y are the coordinates in the longitudinal and transverse directions, 
and = = 0 and 1 for plane-parallel and cylindrical channels, respectively. Integrating 
(3.1) over the channel cross section, we obtain 

rw rm 

dU=C, 
dz r.  

o 0 

where U m and C m are the mass-average flow velocity and particle concentration, and r w is 
the channel radius. For the region of hydrodynamically stabilized flow in Eq. (3.1) we 
set aUxC/Sx = dUmCm/dx. Then, bearing in mind (3.2), we obtain the following equation for 
calculating the particle distribution over the channel cross section: 

~C 8 r 
(D~+D).~. 7 + C..~r (qDz+D ) --  _ m& ( 3.3 ) 

rw 

The turbulent particle diffusion coefficient in (3.3) is assumed to be equal to 
the turbulent viscosity coefficient of the carrier flow D T = UT" The turbulent 

727 



~z 

]~-r 

~e 

! 
/J 

/ 
/0 -Z 

�9 j 
i 

\ i  
/O-e --'-+f +r "J 

I0 "I I0' 
F i g .  4 

q 8 /2 Re.lO "~ 10 J ~+ 

Fig. 3 

viscosity coefficient is calculated from the expression 

M _', _ 

which at a point remote from the wall goes over into the Reichardt equation, and as y ~ 0 
into the Van Driest--Deissler relation [13] (Y0 = Y/rw, Y+ = yu,/v, x = 0.4, A = 26). The 
quantity T is taken equal to the integral time scale of turbulence and in accordance with 
the experimental data presented in review [14] it is assumed that T, = Tu~/9 ffi 200. In 
solving Eq. (3.3) the boundary condition (2.6), relating the particle concentration at 
the channel wall with the particle flux through the wall, was written at a distance from 
the wall equal to the particle radius a. 

In Figs. 1 and 2 we have compared the results of calculating the particle deposition 
velocity V w ffi Jw/Cw or J+ ffi Vm/u , (u, is the dynamic velocity) with the experimental data. 
Curves 1 and 2 in Fig. 1 correspond to the experimental data of [15] for the Reynolds 
numbers Re = 2rwUm/~ = 2.8"10 s and 5"10s; curves i--3 in Fig. 2 correspond to the experi- 
mental data of [4] for the flow velocities Um ffi 7.6, 17.6, and 26.6 m/sec. Attention is 
drawn to the presence of a minimum in the dependence of the deposition velocity on the 
particle diameter d. The initial fall in the deposition velocity is attributable to the 
decrease of the Brownian diffusion coefficient with increase in particle size. In this 
region (for particles smaller than a micron) the principal deposition mechanism is diffu- 
sion. As the particle diameter increases, so does the velocity of turbulent migration 
due to the nonuniformity of the distribution of the turbulent fluctuation intensity over 
the channel cross section, which also leads to an increase in the deposition velocity. For 
particles of the order of 100 Bm the dimensionless deposition velocity reaches a maximum 
J+=0.2. 

As the flow velocity U m increases, so does the deposition velocity V w, which is 
associated with an increase in the intensity of the particle deposition process under 
the influence of both turbulent diffusion and turbulent migration. In Fig. 3 we have 
plotted the results of calculating the dependence of the dimensionless deposition ve- 
locity J+ on the Reynolds number for a tube of radius 2.5 mm (curves 1--5 correspond to 
particle diameters of 0.01, 0.27, 0.81, 2, and 8 ~m; the experimental points are from 
[16] for d ffi 0.81 um). It is clear from Figs. 2 and 3 that for submicron particles 
(d < 0.i um) the value of J+ is practically independent of the Reynolds number, since 
the velocity of particle deposition V w as a result of diffusion is proportional to the 
dynamic velocity u,. 

In Fig. 4 we have compared the results of the calculations with the experimental 
data represented in the form, often encountered in the literature, of the dependence of 
J+ on the dimensionless particle relaxation time ~+ = ~u~/~ (curves i and 2 correspond 
to a tube radius of 0.015 m and flow velocities of i0 and 30 m/sec; curve 3 corresponds 
to r w = 0.3 m, U m = 30 m/sec and curve 4 to r w = 0.025 m, U m = 30 m/sec; the experi- 
mental data are taken from [2]). 
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Clearly, in these variables a relatively good correlation of the calculation results 
is obtained only for inertial particle's (~+ > 10), while for small particles the particle 
size is also an important parameter. This is associated with the fact that the rate of 
deposition of inertial particles is determined by processes of a turbulent nature -- tur- 
bulent diffusion and turbulent migration. For the small particles (T+ < i) the deposition 
velocity is determined not only by the turbulent transfer rate but also by the Brownian 
diffusion and hence depends significantly on the absolute particle size. 
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