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Testing Homogeneity of Ordered Variances 
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Summary: Fujino (1979) studied several tests for homogeneity of nondecreasing variances and 
concluded that the modification of Bartlett's (1937) test, first proposed by Boswell & Brunk (1969), 
is generally superior to its competitors in terms of power. A weakness of this test, however, is that 
the null distribution of the test statistic has not been adequately determined for cases other than 
when the group sample sizes are equal. In this article a class of simple tests for equality of non- 
decreasing variances is proposed which can be used without special tables for arbitrary sample sizes. 
Some of these tests have operating characteristics which compare favorably to those of the modifica- 
tion of Bartlett's test. A prescription is also given for applying the tests in cases where the population 
variances are constrained by more general partial orders. 

Key Words: Bartlett's test; Combining independent tests; Fisher's Combination method; Logit 
Combination method; Order-restricted inference. 

1 Introduction 

The assumption of  equal error  variances underlies many  inferential procedures 
in the normal  theory analysis of  linear models. The well-known homoscedas-  
ticity tests of  Bartlett (1937), Cochran  (1941), and Hart ley (1950) provide appro-  
priate type I error  control  even if the populat ion variances are a priori order- 
restricted, however their powers would be expected to be smaller than those 
of  procedures which utilize the prior  information about  the ordering. In this 
spirit Fuj ino (1979) suggested modifying the classical tests by using the order- 
constrained maximum likelihood estimates of the variances in the test statistics 
in place of  the sample variances. He considered the case where the variances 
are known to be in nondecreasing order  and the sample sizes are equal. In  
an empirical study of the classical tests and their modifications, as well as a 
regression-type test due to Vincent (1961) and its modification, Fujino found 
that the modified tests have a substantial power advantage  over the classical 
tests, and that  the modification of  Bartlett 's test is preferable in this regard. 

In this paper  we employ the general strategy for order-constrained hypothesis 
testing proposed  in Mudho lka r  & M c D e r m o t t  (1989) for construct ing simple 
alternatives to the modified tests investigated by Fujino. In  this approach  the 
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null hypothesis is decomposed into several nested component hypotheses, each 
of which can be tested using simple, well-known statistics. It can be easily shown 
that these statistics, and therefore the associated p-values, are mutually indepen- 
dent. These p-values are then pooled using such classical devices as Fisher's 
combination method to provide an overall test of the null hypothesis. 

The modified versions of the classical tests of homoscedasticity proposed by 
Fujino (1979) are outlined in Section 2. In Section 3 the new tests are described 
for the case where the population variances are known to be in nondecreasing 
order. These tests are easy to implement for arbitrary sample sizes. A power 
study is undertaken in Section 4, using both exact computation and simulation, 
which compares the new tests with the modification of Bartlett's test. The new 
tests for homoscedasticity are extended in Section 5 to cases where the popula- 
tion variances are constrained by more general partial orders. The conclusions 
are summarized in Section 6. 

2 Modifications of the Classical Tests 

Let d2 = S 2 (i = 1 . . . .  , k) be the unbiased estimates of the variances a 2 of k 
normal populations, where the v i S 2 / a ~  are independently distributed as X 2 with 
v~ degrees of freedom. It is of interest to test H0: a 2 = "'" = tr 2 against the simple 
order alternative Hi: a~ 2 < "'" < ak 2, with at least one inequality strict. 

Fujino (1979) assumed v I . . . . .  v k = v and developed the modifications M*, 
F*,x, and G*, G. of the classical tests M due to Bartlett (1937), Hartley's (1950) 
Fm, x, and G proposed by Cochran (1941) respectively for testing H o against H 1 . 
These modifications were obtained by replacing the unrestricted maximum 
likelihood estimates of aft in the classical statistics by the order-constrained 
maximum likelihood estimates #,2: 

k 
M *  = k v  log #2 _ v ~ log #i .2 , (2.1) 

i ~ l  

where d2 is the maximum likelihood estimate of the common value a 2 under Ho, 

F*,x = max # . 2 / m i n  d*2 , 
l<V<k / l < i < k  

G ' =  max d*2/~,, ~1.2 , 
l <i<k / t = l  

G,= min d*2/ ~ ~,2. 
l <i<k / i l l  

(2.2) 

(2.3) 
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Note that several algorithms are available for computing the constrained esti- 
mates d,2 (i = 1 . . . . .  k); see Robertson, Wright & Dykstra (1988, Ch. 1) for 
details. 

Boswell & Brunk (1969) first proposed M* as a statistic for this problem and 
also obtained its large sample null distribution. Fujino (1979) tabulated the null 
distributions of M* and F*ax. Fujino also performed a simulation study in order 
to evaluate the power properties of the above tests as well as a "regression type" 
test to due Vincent (1961), which is based on the statistic 

V = { i -  ½(k + 1)}d #2 , (2.4) 
i=1 

and a modified version based on the statistic 

k 

V' = ~ { i -  ½(k + 1)} log d2 . (2.5) 
i=1 

The test based on M* was found to have the best overall performance in this 
investigation. 

3 A New Class of Tests 

Following the approach given in Mudholkar  & McDermot t  (1989), one may 
view the problem of testing Ho: a2 = ... = ak 2 subject to the simple order con- 
straint tr 2 < .." < tr 2 as the conjunction of k - 1 nested problems of testing 
no(i): a 2 . . . . .  a 2 1  = tr 2 against the alternative Hi(o: tr2 = " "  = ~/2-1 < tr2 for 
i = 2 . . . . .  k. To ease notation, let 

i - 1  i - 1  

i - 1  

vti_11 = ~ ,  vj (i = 2 , . . . ,  k) . (3.1) 
j = l  

It is well-known that the uniformly most powerful unbiased test of Ho(o against 
Hi(0 is based on the statistic F~ 2 2 = S i /S i~ - i  v The construction of the new tests of 
Ho against H1 depends on the following result: 
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Theorem 1: Under the null hypothesis the (k - 1) test statistics F~ are mutually 
independently distributed as F with v i and vt~_11 degrees o f  freedom (i = 2 . . . . .  k). 

The theorem follows immediately from the following lemma: 

Lemma 1" Let  V 1 . . . . .  V, be independent gamma random variables with the same 
scale parameter, i.e. 

fv,(v,) = - - v ~ ' - l e  -pv` v~ > 0 
r(~i) 

for  i = I . . . . .  n. Then the random variables 

V2 V3 V. 
W 2 - v ,  ' W 3 - v , + v ~  . . . . .  ~ - v, + v2 + . . .  + ~ _ ,  

are mutually independent. 

Proof." Let I:1 = W~. It follows that  

v~ = w~ , v2 = w ,  w~ , vs = w d l  + w~)ws  . . . . .  

~ = w,(1 + w~)...(1 + ~ _ ~ ) ~ .  

The Jacobian matrix 

J = \-~ii,] ' i=I . . . . .  n, j = l  . . . . .  n ,  

is upper-tr iangular,  therefore 

IJI = 
i=1 0w~ 

= Wx(Wt(I + W2)) '" (WI(1 + W2) ' " (1  + W.-x)) 

n--1 

= W1 "-a H (I + W~)"-' . 
i=2 
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The probability density function ofW = (WI . . . . .  W~)' is then easily shown to be 

gw(W) oc w ~ ' " "  exp - f lw  1 (1 + wi) w?:1(1 + wi)~°'+"J 
i = 2  i = 2  

Hence the joint density of W* = (I412 . . . . .  W~)', obtained by integrating out W 1, is 

hw*(W*) OC i = 2  ~ Wff~-l(1 + Wi)ETffi~+t~J ~ , , ,T.7~-IO '~1 expf - - f lwl  i=2 ~ ( 1 +  wi) t dw 1 

-y:  

i = 2  

This is clearly the product of the individual densities of W2 . . . .  , W~. Therefore 
W2 . . . . .  IV, are mutually independent. 

Now let Pi be the p-values associated with the test statistics Fi, which by 
Theorem 1 are mutually independent. The new tests of H o subject to the simple 
order constraint are based on various methods of combining independent p- 
values. In this article we study four such tests based on the combination statistics 
~ur = min(Pi) due to Tippett, ~ r  = - 2  ~ log P~ introduced by Fisher, Liptak's 
~N = ~ ~-1 (1 -- Pi), and the logit statistic ~P~. = - A -1/2 E l°g{Pi/(1 - Pi)} pro- 
posed by Mudholkar & George (1979), where A = n2m(5m + 2)/(15m + 12) and 
m = k - 1 is the number of p-values being combined. Small values of ~ r  and 
large values of ~r,  TN, and TL are seen as evidence against the null hypothesis. 
Under Ho ~ r  is distributed as the minimum of m uniform variates, ~/"F has a X 2 
distribution with 2m degrees of freedom, ~PN has a N(0, m) distribution, and ~L 
has a distribution that is very well approximated by Student's t with 5m + 4 
degrees of freedom. Note that Wr and ~L are asymptotically equivalent and 
optimal among all monotone combination methods, and in some cases among 
all tests based on the data, in terms of Bahadur's exact slopes; for example see 
Berk & Cohen (1979). 

4 Power Comparisons 

Consider the simple case where k = 3 and the degrees of freedom are all equal, 
i.e. vl = v2 = v3 = v. To calculate the power of the new tests for Ho: o 2 = trg = 
0 g against the alternative a 2 < o 2 < a 2, with at least one inequality strict, it is 
necessary to examine the distributions of the component p-values under the 
alternative hypothesis. 
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Consider the random variables 

2 2 $2/a2 2S2/tr 2 
/ 7 1 _ _ 2 2  , /7~__ 

+ (S la ) 

where a 2, ag, and a g cancel under the null hypothesis. Clearly these random 
variables may be expressed as /~  = ~ ,~ (UI )  and F~ = ~,a~21v(U2), where ~ , , ,2 ( ' )  
is the cumulative distribution function of the F-distribution with vl and v2 
degrees of freedom and U1 and U2 are independent U(0, 1) random variables. 
Hence, after some manipulation, it is easily seen that the random variables F 2 
and F3 satisfy 

0.2 
2 -1  

e2 - .  ( u 1 ) ,  
o l  

2 -1  /73 -L" 0 -2 "q- 0"2~-v,v ( U 1 )  

where - denotes equivalence in law. Therefore the component p-values satisfy 

2 -1 
G - 1 - ( u 1 )  , (4.1) 

2 -1 

P3 "-- I - v, 2v l -~ -~ - - -2 - -~ -_ l -7+ /S -~  - v,2vt"- '211 • 
L 01 "P" 02"3rv, v I,L)I) -] 

(4.2) 

The power function of the new test based on ~u = _ 2 log/'2 + - 2  log P3 
may be found directly using (4.1) and (4.2). Note however that this power 
function is not a simple convolution of - 2  log P2 and - 2  log/'3 because, in 
general, the component p-values are not mutually independent under the alter- 
native hypothesis. However because P2 is a function of U 1 alone, the power 
function may be obtained by conditioning on U1: 

p r ( ~  >_ C) = p r ( -  2 log P2 + - 2  log P3 -> C) 

= p r ( e  3 ~ e-C/2/P2) 

= E{pr(P 3 <~ e-C/2/P2)lU~} , 

where C is the upper lOOa% point of the X 2 distribution. Expressions (4.1) and 
(4.2) may be substituted above for P2 and P3 respectively, leading to the power 
function 

/ ~2  j_ a 2 ~ F - 1 1 U  ~ [- e-C/2 ] ~  
[ 1 ~ 2"Tv, v~" ] ~ " - I  | 1  _ 

1 -- o i "~v,2v~,oI{1 + .~-v~-~ (U)} " v.2vL~ 1 _ ~ . ~ { ~ ( u ) o ~ / ¢ f } l j d U ,  (4.3) 
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where 

y = #-~,,{.~7~ (I - e-C/2)~r21N22} 

The power functions of ~r ,  ~ ,  and ~L may be obtained with some effort in a 
similar fashion. 

The power function (4.3) of ~ r  and analogous expressions for ~r ,  ~N, and ~L 
were numerically evaluated using NAG (1981) fortran library subroutines 
D01AJF and D01AHF for quadrature. The significance level was taken to be 5% 
and values of v = 5, 10 were used. The power function of M* was estimated 
using Monte-Carlo simulation. NAG fortran library subroutines G05CCF and 
G05DDF were used to generate ni = v + 1 independent normal random vari- 
ables with mean 0 and variance a 2, i = 1, 2, 3, and using these M* was calculated. 
The powers were estimated by calculating the percentage of times out of 100,000 
repetitions that M* exceeded the appropriate critical value. The results of the 
comparisons of these five power functions are presented in Table 1 (a). Various 
configurations (a 2, or22, a 2) of the variances were used and these are listed in 
Table l(b). 

Table l(a). Powers at the 5% level of five competing tests for Ho: c r2 = a22 = 62 in the model 
~2 _ ~ < ~ 

Configuration v M* q/F q/L q/N q/r 

Null 5 0.050 0.050 0.050 0.050 0.050 
10 0.050 0.050 0.050 0.050 0.050 

Step (1, 2) 5 0.404 0.416 0.411 0.396 0.369 
10 0.710 0.729 0.720 0.691 0.656 

Step (2, 3) 5 0.454 0.434 0.391 0.348 0.453 
I0 0.737 0.702 0.640 0,565 0.728 

Linear 5 0.378 0.392 0.402 0.397 0,325 
10 0.644 0.664 0.679 0.674 0.556 

Quadratic 5 0.378 0.392 0.401 0.395 0.328 
10 0.640 0.658 0.672 0.666 0.556 

Logarithm 5 0.380 0.395 0.404 0.399 0.329 
10 0.654 0.677 0.689 0.682 0.570 

Powers are based on 100,000 simulated replications for M* and are exact for q/r, q/L, q/N, and q/r 

Table l(b). Configurations (a 2, a2,2 a3)2 

Null (1.00, 1.00, 1.00) 
Step (I, 2) (1.00, 4.00, 4.00) 
Step (2, 3) (1.00, 1.00, 4.00) 
Linear (1.00, 2.50, 4.00) 
Quadratic (1.00, 2.25, 4.00) 
Logarithm (1.00, 2.89, 4.00) 
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Table 2(a). Estimated powers at the 59/0 level of five competing tests for Ho: a 2 . . . . .  a 2 in the 
model tr~ < ... < tr~ 

Configuration v M* ~F ~L ~N ~Vr 

Null 5 0.050 0.050 0.051 0.050 0.051 
10 0.050 0.050 0.050 0.050 0.051 

Step (1, 2) 5 0.367 0.375 0.359 0.344 0.282 
10 0.694 0.706 0.661 0.616 0.540 

Step (3, 4) 5 0.707 0.699 0.628 0.571 0.609 
10 0.949 0.943 0.900 0.847 0.882 

Step (5, 6) 5 0.501 0.415 0.331 0.259 0.481 
10 0.776 0.673 0.553 0.411 0.752 

Linear 5 0.460 0.490 0.494 0.483 0.315 
10 0.742 0.773 0.790 0.781 0.508 

Quadratic 5 0.497 0.512 0.504 0.485 0.357 
10 0.777 0.782 0.782 0.764 0.574 

Logarithm 5 0.418 0.462 0.471 0.460 0.282 
10 0.707 0.758 0.774 0.767 0.470 

Table 2(b). Configurations (a~ . . . . .  a6 2) 

Null 
Step (1, 2) 
Step (2, 3) 
Step (5, 6) 
Linear 
Quadratic 
Logarithm 

(1.00, 1.00, 1.00, 1.00, 1.00, 1.00) 
(1.00, 4.00, 4.00, 4.00, 4.00, 4.00) 
(1.00, 1.00, 1.00, 4.00, 4.00, 4.00) 
(1.00, 1.00, 1.00, 1.00, 1.00, 4.00) 
(1.00, 1.60, 2.20, 2.80, 3.40, 4.00) 
(1.00, 1.26, 1.69, 2.29, 3.06, 4.00) 
(1.00, 2.16, 2.84, 3.32, 3.69, 4.00) 

A second simulation study was done in order to compare the five power 
functions for k = 6, again at the 570 level of significance and for v = 5, 10. The 
simulation was performed as described above, except that N = 50,000 repeti- 
tions were used for this study. The results and the configurations (a 2 . . . . .  a62) of 
the variances employed are listed in Tables 2(a) and 2(b) respectively. These 
configurations are taken to be the same as in Fujino (1979) to facilitate compari- 
son with his results. 

For most of the configurations considered, the test based on Fisher's com- 
bination method is superior to the modification of Bartlett's test. As seen in 
Mudholkar & McDermott  (1989) the tests based on the Logit and Liptak 
combination methods perform quite well for some configurations but quite 
poorly for others. The test based on Tippett's combination method is generally 
unsatisfactory. 

It should be noted that the application of these combination methods in this 
setting is not invariant. Indeed one could proceed by first testing equality of any 
two adjacent variances, then one could test equality of their common value with 
an adjacent variance, and continue in this fashion. Clearly the power of the 
overall test will depend on the way in which the procedure is carried out. This 
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in part explains why the tests based on combination methods outperform the 
modification of Bartlett's test for some configurations, but not for others. 

5 Applications to Other Partial Orders 

The new tests proposed in this article can be extended to cases where the 
variances are constrained by partial orders other than simple order. As an 
illustration of the necessary notation, consider the constraints 

_< ," _<  25, --- • 

Here the eight variances are divided into two blocks, where the separation is 
indicated by a semicolon, and it is understood that there are no order restrictions 
among the variances in different blocks. The inclusion of variances within a 
bracket, such as [tr j ,  0~, tr2], implies a lack of any order restrictions among 
them. More generally, the k variances will be divided into blocks such that there 
are no order restrictions among the variances in different blocks, but the vari- 
ances within each block will be restricted in some manner. 

To test the overall null hypothesis, first conduct the following steps for each 
block separately: 

Step I: Use Bartlett's test for testing equality of the variances included within a 
bracket. Obtain the corresponding significance probability for each bracket. 
Step 2: Assume that all variances within each bracket are equal, thus yielding a 
simple order structure for the block. If there are, say, r inequalities in the block, 
obtain the r - 1 significance probabilities using the method described above for 
the case of simple order. 

Having treated each of the blocks in this manner, assume equality within each 
block and use Bartlett's statistic to test equality of the variances between blocks. 
The component p-values involved in the procedure can be easily shown to be 
mutually independent. They can therefore be combined as described above in 
order to test equality of the variances. 

In the above example, the new testing procedure would result in six compo- 
nent p-values arising from the following tests: (1) Bartlett's test for Ho: a 2 = 
tr~ = o2; (2) Bartlett's test for Ho: a 2 = o2; (3) F-test for Ho: tr 2 = o2; (4) F-test 
for equality of tr 2 and the assumed common value of o42, tr 2, and 02; (5) F-test for 
equality of the common value of tr 2 . . . .  , 0  2 and the common value of a 2 and trs2; 
(6) Bartlett's test for equality of the common value of cr 2 and a22 and the common 
value of 0 .2 . . . . .  a 2. 
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The independence of the component test statistics relies on the following 
result (e.g. see Johnson and Kotz (1970)): if Xx . . . . .  X k are independent gamma 
random variables having the same scale parameter, then the two random vari- 
ables ~ X~ and Xj/~, Xi are independent for each j ( j  = 1 . . . . .  k). As an illustra- 
tion of the use of this result in proving independence consider the case where the 
variances are subject to the simple tree order, tr 2 < [cr22 . . . . .  a2]. The Bartlett 
statistic used for testing equality of tr 2 . . . . .  a 2 at the first stage is easily seen to 
be a simple function of 

= v S/ / S, • 
i=2  j = 2  

The above property of gamma random variables can be applied directly to show 
that Q1 is independent of the F-statistic used at the second stage, which is a 
simple function of 

k 

Q2 = E v, S2/S  
i=2  

A combination statistic ~ may then be applied to the two associated component 
p-values in order to test equality of the k variances. 

When testing equality of unrestricted variances in the above procedure, it is 
apparent that one may apply either Hartley's or Cochran's test instead of 
Bartlett's without sacrificing independence of the test statistics. This follows 
from the fact that, for independent gamma random variables having the same 
scale parameter, ~,Xi will be independent of max Xi/~ Xi, min Xi/~ Xi, and 
their ratio max Xi/min Xi. 

The new procedures may be extended further to more complex situations 
where the variances are subject to more general restrictions such as tr 2 < 
[a2; a2; a22 < [tr 2, a~, a2]].  Here groups of variances separated by semicolons 
are understood to have no order restrictions among them. In this case equality 
of the seven variances may be tested by first comparing tr~ . . . .  , a 2 subject to the 
constraint to the right of a 2, and then using an F-test to compare the common 
value of cr 2 . . . . .  tr 2 with tr 2. An example of an ordering for which the new 
procedures may not be applied is a~ < [a22, try]; tr 2 < a 2, where cr~ appears in 
both blocks. In general this new approach may be applied whenever a particular 
variance appears in one and only one block, not for general partial orders. 

6 Conclusions 

Until now satisfactory procedures for testing homogeneity of normal variances 
subject to order constraints have existed only for the simple order restriction and 
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equal sample sizes. The new approach to the problem outlined in this paper is 
easy to implement for arbitrary sample sizes and may be applied to a wide 
variety of order restrictions. The power comparisons show that, in particular, 
the proposed test based on Fisher's combination method compares favorably 
with the best of the existing tests, namely the modification of Bartlett's test. 

Acknowledgement: The authors wish to thank an anonymous referee for some very helpful comments 
which substantially improved the manuscript. 

References 

Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc. Roy. Soc. A 160:268-282 
Berk RH, Cohen A (1979) Asymptotically optimal methods of combining tests. J. Amer. Statist. 

Assoc. 74:812-814 
Boswell MT, Brunk HD (1969) Distribution of likelihood ratio in testing against trend. Ann. Math. 

Statist. 40:371-380 
Cochran WG (1941) The distribution of the largest of a set of estimated variances as a fraction of 

their total. Ann. Eugen. 11:47-52 
Fujino Y (1979) Tests for the homogeneity of a set of variances against ordered alternatives. 

Biometrika 66:133-139 
Hartley HO (1950) The maximum F-ratio as a short-cut test for heterogeneity of variance. Bio- 

metrika 37: 308-312 
Johnson NL, Kotz S (1970) Distributions in Statistics: Continuous Univariate Distributions--1. New 

York: John Wiley 
Mudholkar GS, George EO (1979) The logit statistic for combining probabilities--an overview. In 

Optimizing Methods in Statistics, ed. J. S. Rustagi, pp. 345-365. New York: Academic Press 
Mudholkar GS, McDermott MP (1989) A class of tests for equality of ordered means. Biometrika 

76:161-168 
NAG (1981) Numerical Algorithms Group Library, Mark 8. Downers Grove, Illinois: Numerical 

Algorithms Group 
Robertson T, Wright FT, Dykstra RL (1988) Order Restricted Statistical Inference. New York: John 

Wiley 
Vincent SE (1961) A test of homogeneity for ordered variances. J. Roy. Statist. Soc. Ser B 23 : 195-206 

Received 15.06.1992 
Revised version 10.11.1992 


