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1. Introduction

Recently much attention has been paid to the statistical distribution
of certain socio-economic quantities such as personal incomes, the assets
of firms, the sizes of cities and the number of firms in various industries.3)
Some authors posit that the quantities in question are generated by
stochastic processes which have as limiting distribution either the Pareto
distribution, or the lognormal distribution, or some other distribution
strongly skewed to the right. In view of the fact that some of the competing
distributions are fairly similar, it becomes relevant to test the hypothesis
that data have been generated by a particular distribution against the
alternative hypothesis that some particular other distribution(s) is (are)
responsible for generating the data. Since many of the candidate hypotheses
closely resemble each other, the problem of estimating the parameters of
the various distributions is by no means trivial.%)

The objective of this paper is to discuss various methods of estimating
the Pareto distribution which has been one of the most distinguished

) T am deeply indepted to Joun Tukey whose advice and ideas have deeply
affected this paper. I am also grateful to MicHAEL GODFREY, STEPHEN GOLDFELD
and Hare TrorTER for much valuable advice and criticism. Acknowledgement is
made to National Science Foundation Grants NSF-GS 551 and NSF-G 24462 for
support.
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candidates for the honor of explaning the distribution of incomes, assets,
etc. Some of the methods discussed are traditional; one is probably novel
and appears to be sufficiently promising as to be generally usable in prob-
lems of estimating the parameters of distributions. Section 2 is devoted
to a discussion of various traditional methods of estimating the Pareto
distribution. Section 3 presents the results of some sampling experiments
with these methods. Section 4 discusses a new approach to estimation
and analyzes the results of pertinent sampling experiments. Section 5
contains some concluding remarks.

2. Estimation of the Pareto Distribution

We distinguish between the distribution function F(x) and the density

x

function f(x) of a random variable x where F(x) = .‘ f(£) d¢ is the prob-

ability that the random variable assumes a value < %. The Pareto distribu-
tion®) is given by

k a

Fx) =1 —(7) (2.1)
E>0, a>0and x >k Its parameters ¥ and a (where & is the lower
bound of the random variable x) can be estimated by a variety of methods.
These methods are discussed and some theorems about the properties of
the estimates are proved below. Specifically, we shall be concerned with
the consistency of the estimates on the grounds that the convergence in
probability of the estimates to the true values represents a minimum
standard of acceptability.

The Method of Moments. Provided that « > 1, the mean of the Pareto
distribution exists and is given by

E(x) =SxdF(x) =§x%ﬁdx=aﬁel- (2.2)°)
‘ k

8) More properly called the Pareto distribution of the first kind since Pareto
himself proposes three distributions. The Pareto distribution of the second kind
is F(x) = 1 — (K/|(» + ¢)*) and that of the third kind is F(x) = 1 — K e=b%|(x + o)
See [10].

%) It is well known that for a < 2 the variance does not exist.
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We estimate @ by equating (2.2) to the sample mean #, yielding

: (2.3)

where % is some estimate of k.

The estimation of % from samples of » observations is accomplished
as follows: the probability of an observation greater than x is (2/x)* from
(2.1). Hence, the probability that all » sample values x,, ..., %, are greater
than x is (&/x)*". This is, therefore, also the probability that the lowest
sample value is greater than x. Thus the probability distribution of the
lowest sample value is

G(x) =1 -(5)“. (2.4)

X

The corresponding density function is

anker
g% =t

and the expected value of the lowest sample observation is

(2.5)

an ki ank
dx = ———.

xrn an—1
k

Equating the lowest sample value, x,, to the expected value,”) we obtain

polan—1) % (2.6)
an
and therefore
4 i
B i __fl:'f__l
d 0
yielding
Y n X -— X
= 2. 2.7
4 n(x — x,) (27)

The estimators are thus given by (2.6) and (2.7).

Theorem 7. The method of moments yields consistent estimates.

") By the subscript 0, we denote the least of the » values x,,,..., x,.
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Proof: Since p lim x, = %, and since the sample mean is a consistent
estimator of the population mean?) (2.6) yields immediately

plim £ = k. (2.8)

Taking probability limits in (2.7) we obtain

nx— x,

. a—1 . l—a
—n(i_xo)«=p11m—-—~——n( 7F _k)—phrn(a+ p” )_a

plim 4 = plim

as asserted.

The Method of Maximum Likelthood. The likelihood function for a
sample (x,..., %,) is

a* kan

(I Tx)e+

[

F =

and taking logarithms,

L=mnloga+anlogh—(a+1 Zlogx,

Hence

oL  =»n
E—~E+nlogk~§10gxi— 0
vielding for a the estimate

G=——. (2.10)

A maximum likelihood estimate cannot be obtained for % by differentiating
L with respect to & since L is unbounded with respect to k. But since &
is the lower bound of the random variable x, we may maximize L subject
to the constraint

k < min %, (2.11)

i

8) We do not have to require that the variance of the random variable exists.
See [4], pp. 228—233.
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Clearly % is maximized with respect to % subject to (2.11) when
£ — min x, (2.12)

which is, therefore, the maximum likelihood estimate for k.

Since the partial derivatives of the likelihood function do not all vanish
at the maximum, we convince ourselves of the consistency of the maximum
likelihood estimates by the following argument.

Theorem 2. The maximum likelihood estimates are consistent.
Proof: We first observe that plim |# — min x| = 0, and hence %

is a consistent estimator. Rewriting (2.10) we have

. (2.13)

The consistency of 4 can be established if we can show that

Z log x;

.5 1
plim — = logk + rE
But (3 log x,)/n is the arithmetic mean of a random variable
y = log x. (2.14)

Transforming the Pareto density according to the transformation (2.14)
we obtain

fy)dy =akrte*vdy. (2.15)
Since the sample arithmetic mean is a consistent estimator of the mean
of the distribution, we require E(y). But

[ee]

E(y) = j ﬂkaye"“ydy:logk_i__dl_,
logk

Then

L, . 1 1
plim 4 = plim = =a

Zilogxi_ 8 logk+;1—logk

log

as asserted.



60 R. E. QuanDT

Quantile Methods. Choose two probability levels P, and P, and determine
the corresponding quantiles x; and %, from

k a
Plz 1—(;;) (2.16)
and
kY -
P, :1—(;2) : (2.17)

Then we obtain an estimate for @ by solving the above equations to yield

log—i »il
d=— "2t (2.18)
log 22
gx

which, when substituted into (2.16) or (2.17) yields the corresponding
estimate for 2.

Theorem 3. The quantile estimates are consistent.

Proof: We merely have to observe that sample quantiles are consistent
estimators of the population quantiles.

Least Squares Estimates. The (cumulative) distribution function can
be rewritten as

1—F(x) = (-k«)a

and taking logarithms on both sides
log (1 — F(x)) = alog k —alog x. (2.19)

The parameters of equation (2.19) are estimated by least squares where
the dependent variable is the logarithm of 1 minus the sample cumulative
distribution. For the same reason as in Theorem 3, the estimates are con-
sistent.

In addition to mixed methods by which several of the above methods
are combined, we may single out for special mention a class of methods
which could best be designated as
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Qualitative Methods. These methods have as their purpose not so much
the precise estimation of the parameters £ and a but rather the verification
that the sample is generated by the Pareto distribution at all.

Such a qualitative method consistents of examining the Lorenz curve
of the sample. The Lorenz curve is frequently employed in studies of
income distribution and is a locus of points such that the ordinate of each
point represents the fraction of income accruing to that fraction of recipients
which is the abscissa of that point. We can define the lLorenz curve
parametrically as follows: letting F(x) be the distribution of the random
variable ¥ we have

for abscissa: F(x)

for ordinate: F,(x) =

where F,(x) is referred to as the sth moment distribution function cor-
responding to F(x) and where % is the lower bound of the random variable
x5) As a measure of the inequality of distribution we use the coefficient
defined by

L=1 —jpl(x) dF (x),

Le., 1 minus the area under the Lorenz curve. Clearly the Lorenz measure
and curve are not defined when E(x) does not exist; hence we restrict
ourselves now to cases in which a > 1.

Theorem 4. The Lorenz measure for the Pareto distribution is
a/(2a —1).

Proof: The first moment distribution of the Pareto distribution is

: 1 [ ake kY1
R = =y s == (]

&

This provides values of the ordinate of the Lorenz curve; the abscissae
are given by the cumulative distribntion 1 — (k/x)*. The Lorenz measure

’) See [1].
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therefore is

as asserted.

For purposes of comparison with other distributions, it is of interest
to examine the symmetry of the Lorenz curve arising from the Pareto
distribution. We shall establish that the Lorenz curve is not symmetric
about the 45 degree line perpendicular to the line of equal distribution
and that the point at which the slope of the curve equals unity occurs
above the line which is perpendicular to the line of equal distribution.
Hence, possibly, we may determine whether a sample has been generated
by the Pareto distribution by examining the sample Lorenz curve. We
shall refer to the line perpendicular to the line of equal distribution as the
alternate diagonal.

Theorem 5. The slope of the Lorenz curve equals unity at the value
x = E(x).

Proof: Denoting the Lorenz curve in the parametrized form

k a—1
y:l—(?) (2.20)
. — 1_(£)“, (2.21)
X

where ¥ and z are the ordinate and abscissa respectively, we obtain the
slope

dy _dyldx _(a—1)x
dz ~ dzldx ak

which equals unity when x = a k/(a — 1) which is E(x) by (2.2).

Theorem 6. The point on the Lorenz curve corresponding to
% = a k/(a — 1) is above the alternate diagonal.

Proof: By the definition of the Lorenz curve, the intersection of the
alternate diagonal with the Lorenz curve occurs at the point given by

F(x) =1 —Fy(x) (2.22)
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and substituting from (2.20) and (2.21) we obtain
a a—1
1 _(f_) - (ﬁ)
¥ x

Rk + %)
=

or

1 (2.23)

We can rewrite (2.23) by considering the right hand side as a function
of x as

ka—1(k
BTk )

- (2.24)

and evaluate ¢ at the point x = a k/(a — 1). Substituting directly into
(2.24)

1+ i a—1
a—1 a—1 2a—1
¢ = - :[ a ] [ - ] (2.25)
(@—1)
= (a — 1)-1 (%)a (2a—1). (2.26)

Clearly as @ — 1, ¢ — 1 since lim »* = 1.19) Moreover, for values of a
u—>0

close to unity,

1de 1
Enlpih A —— 0. 2.27
v log (1 u) + < (2.27)
We also observe from (2.25) that as a4 — oo, ¢ — 2 e~! which is less than
unity. Since ¢ is continuous and differentiable for @ > 1, it can become
greater than 1 only if it has at least two extreme points in the range a4 > 1,
one of which must be a maximum. However

1l _ 1 (dg)?
g da®  ¢t\da

2a—1

1
+a(a—1)(2a—1)2

and since ¢ > 0 for a > 1, d2p/da® > 0 for all @ > 1 and hence ¢ can have

—_—

19 This is immediate from I'Hopital’s rule.
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no maximum. Consequently ¢ << 1 for all 2 > 1 and the value E(x) does
not satisfy the intersection of the Lorenz curve and the alternate diagonal.
We finally note that ¢ diminishes as x increases. Thus the value of x at
which the slope of the Lorenz curve is unity is greater than the value at
which it intersects the alternate diagonal and this point is therefore above
the alternate diagonal, as asserted.

Such qualitative considerations for establishing that a sample has
been generated from the Pareto distribution are fairly crude. The property
derived in Theorem 6 distinguishes the Lorenz curve of the Pareto dis-
tribution from the Lorenz curve of, say, the exponential distribution but
not from the Lorenz curve of the three-parameter family of lognormal
distributions. Another qualitative device, the measurement of the moments
of sequentially increasing samples, may distinguish the Pareto distribution
{for which the sample moments may have a clear tendency to become
unbounded)!!) from the lognormal distribution but not from other dis-
tributions with infinite means andjor variances. Although these methods
are not without interest one obviously cannot place excessive reliance
on them.

3. Sampling Experiments

For purposes of comparing the various methods by sampling experi-
ments the Pareto distribution with 2 = 1.0 and a = 1.5 was chosen.?
Pareto distributed samples were generated by generating uniformly dis-
tributed pseudo-random derivates between 0 and 1. For each such deviate
u, we determined the corresponding Pareto deviate x; by solving #, =
1 — 1/#}% for x,.18) The sample size N took on the values 25, 50, 100,
300, 500, 1000, 2000. For each sample size 100 samples were generated
and %, a, and the value of the Lorenz coefficient were estimated for each
sample by the method of moments, the method of least squares, the method
of maximum likelihood and four quantile methods. These latter differ
from each other only in that they are based on different quantiles. Quantile
methods 1, 2, 3, and 4 respectively use deciles 1 and 9, 2 and 8, 3 and 7,
and 4 and 6. Table 1 displays the mean estimates over one hundred samples;

1) See the sampling experiments discussed in [9].

)
12) If q is less than 1, the method of moments will not yield consistent estimates.
13) By the well known proposition that, for any distribution F(#), the values
of F(x) itself are uniformly distributed on the [0, 1] interval. The #; play a role only
in generating the samples and are not known for estimating purposes.
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Method of
Moments

lethod of
Least Squares
Maximum
Likelihood
Quantile
Method 1
Quantile
Method 2
Quantile
Method 3

Quantile
Method ¢

Table

1
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Table 2 contains the root mean square error, and Table 3 the predicted
Since the true value of « is 1.5, the theoretical value
of the Lorenz coefficient is L = 0.75 by Theorem 4.
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Table 3
Mean Lovenz Coefficients
N= 25| N= 50|N = 100|N = 300{N = 500|N = 1000|N = 2000
Method of Moments 0.719 | 0.725 | 0.730 0.736 0.740 0.743 0.746
Method of Least Squares | 0.736 { 0.742 | 0.737 0.742 0.745 0.748 0.750
Maximum Likelihood 0.741 | 0.749 | 0.746 0.748 0.749 0.750 0.751
Quantile Method 1 0.783 | 0.793 | 0.762 0.756 0.754 0.753 0.753
Quantile Method 2 0.796 | 0.774 | 0.761 0.754 0.753 0.752 0.752
Quantile Method 3 0.796 | 0.768 | 0.754 0.750 0.750 0.752 0.751
Quantile Method 4 0.796 | 0.783 | 0.773 0.752 0.753 0.752 0.752

We shall consider five individual performance criteria: (i) the mean
bias in £, (ii) the mean bias in 4; (iii) the root mean square error of £;
(iv) the root mean square error of 4; (v) the mean bias in L. The tables
reveal the following:

(1) By all criteria Quantile Methods 1 and 2 perform better than
Methods 3 and 4. The values 0.15 and 0.85 seem therefore reasonable
values to use for P, and P, in the Quantile Method.

(2) Since Quantile Methods 1 and 2 are comparable with each other
in performance, we shall choose (arbitrarily) Quantile Method 1 to represent
the best of the quantile methods. For each of the five criteria, we obtained
a table of rankings in which the four methods!¢) are ranked by each of the
seven sets of samples corresponding to the seven values of N. For each
of these tables of rankings Kendall’s coefficient of concordance W was
calculated. The W values are displayed in Table 4.

Table 4
W Statistic for Ranking of Estimating Methods

Bias % Bias d RMSE % RMSE 4 L

w 0.718 0.755 0.974 0.883 0.698

These values are all significant on the 0.01 level and allow one to reject
the null hypothesis that the rankings of methods according to different
sample sizes are random.

14) Method of Moments, Least Squares, Maximum Likelihood, Quantiles — L
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(8) If rank totals are obtained for each method and criterion, one
can rerank the methods (on the basis of the rank totals) by each of the
five criteria. Kendall’'s W calculated from the resulting table of rankings
is 0.362 which is not significant on the 0.05 level and does not allow one
to reject the null hypothesis that the rankings of the different methods
by the five criteria are random. The rankings of the four methods by the
five criteria are displayed in Table 5.

Table 5
Ranking of Methods
Criterion
Method = =
Bias % Bias 4 RMSE % RMSE 4 L Bias

Moments 1 4 1 4 4
Least Squares 4 3 4 3 2
MaximumLikelihood 3 2 2 1 1
Quantiles 2 1 3 2 3

(4) The related Friedman two-way analysis of variance test yields
a % value (with 3 degrees of freedom) of 3.48 which does not permit one
to reject the null hypothesis that the rank totals are not significantly
different. By inspection of Table 5 one would single out the maximum
likelihood and quantile estimates as yielding best results but such a
distinction is casual and does not rest on a probabilistic basis.15)

(5) The performances of the methods as measured by the bias and
by the root mean square error of a given parameter are highly correlated.
Also, the performances of the methods as measured by (the biases or root
mean square errors of) £ and a are substantially divergent.

(6) Since L depends only on a, it is not surprising that the ranking
of methods according to L is substantially more similar to the rankings
according to 4 than to those according to £.

4. A New Method of Fitting

The previous sections discussed various traditional methods of fitting
distributions to samples with reference to the Pareto distribution. No
sharp differences in performance were found among the various methods
but informally the quantile and maximum likelihood methods seemed
to have the edge.

D —
%) One must note the difficulty of evaluating methods such as the Method of
Moments which is best by some and worst by other criteria.
5'
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All of the traditional methods, however, suffer from a distinct dis-
advantage. Broadly speaking, this disadvantage is that traditional methods
of fitting do not allow one to discriminate statistically among competing
but mathematically closely related alternative hypotheses.

Suppose, for example, that one hypothesizes that a given sample was
generated by the Pareto distribution and that the alternative hypothesis
is that the sample comes from, say, the lognormal distribution. It is easily
possible and in fact frequently the case that two or more conflicting hy-
potheses appear to yield good fits.’) In such instances one is typically
dissatisfied with the nature of the criteria of goodness of fit as well as with
the inconclusive results to which these criteria lead.

Standard Goodness of Fit Tests. Some of the goodness of fit tests that
might be suggested as appropriate are the following.

(1) The x2 goodness of fit test. Accordingly the observations are grouped
and the statistic

(e —1i)®
C=E T
is obtained, where ¢; and f; are the expected and actual frequencies in the
ith group respectively. Under the null hypothesis that the parent of the
sample is the distribution in question, G has approximately the 2 distribu-
tion with » — & degrees of freedom, where 7 is the number of groups and % the
number of parameters fitted. According to this approach one would declare
that one of all competing hypotheses to be the winner which yields the G
statistic representing the highest significance level. But this approach has
several undesirable features: (a) the grouping of observations is arbitrary
and if all candidate distributions fit fairly well, even small alterations in the
method of grouping will tend to alter the resulting ranking of rivalhypotheses;
(b) the validity of the y2 test does not rest on any specific alternative
hypothesis; therefore it is not strictly proper for evaluating the fit from
distribution X, when the only alternatives are, say, distributions X, and
X,; (c) in any particular study interest may be focused on behavior in
the right tail of the distribution where expected frequencies are small;
small expected frequencies are, however, a violation of the conditions that
must be fulfilled for a valid application of the test;!?) (d) the y2 test essen-
tially ignores small but systematic deviations of the sample from the theo-
retical distribution.

16) See [11].
17) See [3].
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(2) The Kolmogorov-Smirnov Test. Given a sample of # observations
%, ..., %, and empirical and theoretical cumulative distribution functions
S(x) and F(x), the statistic is

D = max |S(x) — F(x)]

and measures the distance between the empirical and theoretical distri-
butions. Accordingly the distribution yielding the smallest D statistic
for a given sample would be declared to fit that sample best. This method
also has serious disadvantages: (a) it shares difficulties (b) and (d) above
with the y2? test; (b) critical values of the D statistic cannot be obtained
when the parameters of the distribution have been estimated from the
sample. Thus, even though the Kolmogorov-Smirnov test is probably
more powerful than the 42 test in cases in which they can both be validly
applied,’8) there is probably little reason for believing that either test
is appropriate for present purposes.

A Widely Applicable Fitting Procedure. Denote by F(x) the distribu-
tion to be estimated and F(x,) its value at the 7th sample point. Let the
ordered sample be (x,,..., x,) and let there be two fictitious points x,
and x,,, such that F(x)) = 0 and F(x,,,) = 1. The quantity F(x) —
— F(x,_,) has expected value of 1/(n 4 1) for all valuesof i =1,...,n 41
since each of the intervals F(x) — F(x,_,) is identically distributed.
The proposed procedure is to estimate the parameters of (x) by minimizing

S= ; (F(x,-) —F(%-1) — 1%1—)2 (4.1)

with respect to the parameters of the distribution. The minimization of
(4.1) is generally feasible by gradient or other numerical methods if F(x)
is twice differentiable. The resulting estimates have the property of con-
sistency as shown in the following

Theorem 7. 1f (1) F(x)isa member of a k-parameter family of continuous
distributions, (2) if the parameters are continuous and single valued functions
of the cumulative probability in the sense that % sample points x;, ¢ =
=1...,k, x # x; for all < and , are sufficient to determine unique values
of the parameters, (3) if the null hypothesis that the x; were generated
by F(x) is true, then the estimates resulting from minimizing

n+1l

5= 2 (e —Fted — )

i=1

are consistent.

e——

) See [12], p. 5.
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Proof: Consider the quantities ¢, = F(x,) — F(x,_;),+=1,...,2 4+ 1,
called the coverages corresponding to the order statistics F(x;). We shall
need the probability distributions of the ¢;. Since the F(x;) are uniformly
distributed, so are the ¢; and this distribution is identical for all c,.29)
The first coverage ¢, is given by ¢; = F(x;) — 0 and hence the required
probability distribution is that of F(x;). Now the probability that the
first order statistic F(x,) is greater than or equal to some quantity z is

Py{F(x) =zl = (1 —2z)"
Then
Py[Flo) <z]=1—(1—2)"
and
Prle;<2]=1—{(1—2)"
The corresponding density function is
H2) =n(l —2)»—L

Now let y = » z and thus

o =12

n

and clearly lim f(y) = e¢~?. It follows that, for any ¢ > 0 and a partic-

ular ¢,

] 1 & e
im Pr| |¢;— > = limPr[|(n+1)¢c—1|> 1] ==
lim [ n+1| l/n+l] Jim [|(n + 1) |>el/n+1]

= lim Pr[ly+c;——l|>s]/n+ 1] = lim Pr[y>—ci—|—l—|—s]/n+ 1] =

= lim (171" = 0.

Then
. ) 1 — ! .. ci“l—svm_
”llr’r:oPr[Any c,——-——n+1 >8/Vn+l]_,,lﬂr;ne =0

1) See [6], p. 151. It is well known that the order statistics have Beta
distributions; furthermore, if () and n(, are two order statistics, the distribution
of ny) — m depends only on » — s and on the number of observatios, ».



Old and New Methods of Estimation and the Pareto Distribution 71
and

lim Pr [max

n—> 0

1 -

It further follows that

n+1 1 2
i 2|3 o) <
and the quantity S converges in probability to zerc for the true values
of the parameters. If is also clear that for values of the parameters other
than the true values S does not have zero as its limit and S asymptotically
possesses a minimum at the true values. Thus the method of choosing
estimates for the parameters by minimizing S yields, for n — oo, a sequence
of parameter estimates converging in probability to the true values.

Testing Goodness of Fit. The current procedure employs two notions
of the goodness of fit. The first of these is called the closeness of the fit
and is measured by the value of S at the minimum. The second is the
randomness of the fit and may be measured in several ways. The approach
rests on the notion that a good fit is characterized by two circumstances:
(a) the residuals

1 1
m, F(x,~+1) ~F(x,)—m.

are small; (b) the residuals are random. In general a distribution will
be considered to give a bad fit if it fails by either criterion. Closeness is
a fairly natural criterion of goodness of fit and is related to the general
notion of the distance between the sample and the fitted distribution.
Randomness of the residuals is desirable since, if the null hypothesis is
true, we would expect the increments in cumulative probability F(x;) —
~—F(x,_,) — associated with going from the ( — 1)th to the sth sample
point, as estimated from the fitted distribution — sometimes to exceed
and sometimes to fall short of their mathematical expectation, in no
Predictable manner. One may note that the assumption of randomness
1s not strictly correct since the coverages are not distributed independ-
ently. They are, however, asymptotically uncorrelated wich may explain
why, in practice, the assumption of randomness under the null hypothesis
appears acceptable.

Since estimates are obtained by minimizing S, the value of S at the
Mminimum is a natural measure of closeness. The randomness of the re-
siduals can be measured in several ways. Three particular methods are
discussed here.

F(x) —F{xi_1) — etc.,
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1. A run test on the number of runs of positive and negative residuals.
On the hypothesis that the permutations of positive and negative residuals
are randomly generated, the number of runs in large samples is approxi-
mately normally distributed with mean

21,y ny
="
# ”1+”2+

and standard deviation

_ [2 1y No{2 7y Mg — My — ”2)]1/2
L ey )2y oy —1) '

where », and », are the number of positive and negative residuals. For
small samples exact tables are available for testing the hypothesis of
randomness. 29)

2. The reduction in the sum of the squares of residuals due to fitting
to the residuals orthogonal polynomials up through the Ath degree.?!)
The value of % should be a number small relative to the total number of
observations but high enough to fit well fairly high frequency oscillations.
In the experiments described below % was chosen to be 15. According
to this method a random series of residuals will yield a low reduction in
the sum of squares. If there are low frequency oscillations in the residuals
indicating systematic deviations of the sample from the fitted distribution,
the reduction in the sum of squares will be considerable. Systematic very
high frequency deviations which are also a sign of nonrandomness will
also yield very small reduction in the sum of squares but this is not likely
to occur with unimodal densities.

3. The spectral density of the residuals according to which we consider
the series of residuals ordered by the subscript ¢ as a time series and display
the density of frequencies generating the series. The more the spectrum
resembles that of white noise the better the fit is considered from this
point of view.

Sampling Experiments. A separate set of sampling experiments sim-
ilar to those described in Section 3 was performed. Sample sizes of 25,
50, 100, 300, 500 and 1000 were employed and 100 samples of each size
were generated from the Pareto distribution with 2 = 1.0 and 2 = L.5.
The parameters were fitted by the method described in this section and
the various goodness of fit statistics were calculated.

20) See [12].
21) See [5] and [8].
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Estimated critical values for the § statistic from 100 samples are shown
in Table 6. As an illustration, we would reject the hypothesis of a good
fit on the 0.05 level if, for example, a sample of 100 observations yielded

Table 6

Estimated Critical Values for the S-Statistic

N Significance Level
0.20 0.10 0.06
25 0.0362 0.0401 0.0438
50 0.0198 0.0218 0.0239
100 0.0106 0.0112 0.0123
300 0.0036 0.0038 0.0038
500 0.0021 0.0022 0.0022
1000 0.0010 0.0011 0.0011

an S value in excess of 0.0123. The mean parameter estimates and the
root mean square errors are displayed in Table 7, and compare favorably

Table 7

Parametey Estimates and Root Mean Square Evvors

N g k RMSE 4 | RMSE#

25 1.435 0.981 0.100 0.021

50 1.383 0.993 0.125 0.008
100 1.440 1.003 0.071 0.004
300 1.480 1.008 0.033 0.008
500 1.490 1.009 0.028 0.009
1000 1.493 1.009 0.019 0.009

with other methods of estimation. For large values of N the mean bias

of % is slightly larger than for other estimators. For & the mean bias tends
to be somewhat larger than for the quantile method and for maximum
likelihood estimates, but is generally of the same magnitude. The root
mean square errors for £ are larger and those for 4 smaller than with the
best of the alternative methods. On the basis of the apparent properties
of the present estimating method, it seems to be a reasonable alternative

to the others.

. The several methods discussed above of testing for randomness of
fit were applied to the residuals arising out of fitting the Pareto distribution

to the data. Since the data were generated from the Pareto distribution,
the null hypothesis is known to be true.
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Since the distribution of runs (under the null hypothesis) is known,
the run test was performed for only 36 samples (6 for each value of N).
In 3 out of the 36 cases we rejected the null hypothesis on the 0.05 level
of significance. Considering the situation to be a binomial one with prob-
ability p == 0.95 of success, the probability of three or more failures in
36 triesis 0.268 and we cannot reject the hypothesis that 0.95is a correct es-
timate of the probability of success.

The fitting of orthogonal polynomials up to and including the fifteenth
degree permits us to estimate empirically the percentage reduction in the
total sum of squares of residuals due to fitting the first 15 degrees. The
critical values of the percentage reduction are displayed in Table 8. Ina

Table 8

Estimated Critical Values for the Precentage Reduction in the Sum of Squares Resulting
from 15th Degree Orthogonal Polynomials

N { Significance Level

) | 0975 | 0.950 | 0.900 | 0.800 | 0.200 | 0.100 | 0.050 | 0.025
25 0.821 | 0.777 | 0.693 | 0.661 | 0.487 | 0415 | 0.365 | 0.316
50 0.462 | 0442 | 0392 | 0351 | 0212 | 0177 | 0.155 | 0.145
100 0.219 | 0205 | 0.188 | 0174 | 0.102 | 0.080 | 0.079 | 0.066
300 0.085 | 0.077 | 0.066 | 0.060 | 0.034 | 0028 | 0.026 | 0.024
500 0.062 | 0.051 | 0.044 | 0.038 | 0.019 | 0.016 | 0.015 | 0.015
1000 0.028 | 0.026 | 0.024 | 0.020 | 0.010 | 0.008 | 0.008 | 0.006

concrete case we would select a significance level, say 0.05, and compare
the empirically calculated percentage reduction with the critical values
for the appropriate value of N. If the empirically calculated figure is
outside the interval specified by Table 8, we reject the hypothesis of ran-
domness. These tables are therefore suitable for testing against both
alternatives of very low or very high frequency oscillations.

Finally we display in Figures 1—6 the spectral densities of the residuals
for 36 cases (6 for each value of N). These may serve as a standard of
comparison in cases in which the null hypothesis is not known to be true.
Although the spectral densities displayed are not very meaningful for
small values of N, they generally behave like the spectrum of white noise.

The applicability of the various measures suggested for testing goodness
of fit to a variety of other distributions is affected by the fact that tables
of critical values for S (measuring closeness) and tables of critical values
for the percentage reduction in the sum of squares of residuals due to
fitting orthogonal polynomials were derived from sampling experiments
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based on a two-parameter family of distributions. Clearly with distribu-
tions with a different number of parameters to be estimated, our estimates
in Tables 6 and 8 are not fully valid, those being based on cases with the
wrong degrees of freedom. It appears unlikely, however, that this will
make a great deal of difference when the number of observations is large.22)

5. Coneclusion

Four standard methods of estimating the parameters of the Pareto
distribution have been discussed in some detail. These are the method
of moments, the method of maximum likelihood, the method of least
squares and the method of quantiles. In addition, some more qualitative
methods of judging whether a sample was generated by the Pareto distri-
bution have been analyzed, with particular reference to the properties
of the Lorenz curve and the properties of sequential samples. Sampling
experiments were used to obtain experimental evidence concerning the
goodness of the various (nonqualitative) methods. Strictly no great dif-
ferences were found among the four methods; more informally the methods
of maximum likelihood and of quantiles performed best.

General dissatisfaction with some existing methods of judging the
goodness of a fit has led to the formulation of a new method of estima-
tion. This method involves the minimization of the criterion function

" l 2

S = i; (F(x,) —F(xi_l) ——m) .
When a distribution has been fitted by minimizing S we judge the good-
ness of fit on the basis of two criteria: (a) the closeness of the fit as meas-
ured by the value of S at the minimum, and (b) the randomness of the fit
as measured by (i) the number of runs of positive and negative residuals

F(x) —F(#i_1) -—;jrl—ﬁl,
(i) the precentage reduction in the total sum of squares due to fitting
orthogonal polynomials to the residuals, (iii) the spectral density of the
Tesiduals. This method of estimating the parameters of a distribution
seems to yield results comparable with those obtained by standard methods
as judged by root mean square errors of estimates and similar criteria,
and seems superior to standard methods with regard to goodness of fit
Problems in providing finer discrimination among alternative hypotheses.

®%) Initial application of these techniques seems to yield finer discrimination
among alternative hypotheses than could be achieved with standard methods. See [11].
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