
Old and n e w  Methods of Estimation and 
the Pareto Distribution 1) 

By R. E. QUANDT, Princeton ~') 

1. Introduction 

Recently much attention has been paid to the statistical distribution 
of certain socio-economic quantities such as personal incomes, the assets 
of firms, the sizes of cities and the number of firms in various industries3) 
Some authors posit that  the quantities in question are generated by 
stochastic processes which have as limiting distribution either the Pareto 
distribution, or the lognormal distribution, or some other distribution 
strongly skewed to the right. In view of the fact that  some of the competing 
distributions are fairly similar, it becomes relevant to test the hypothesis 
that data have been generated by a particular distribution against the 
alternative hypothesis that  some particular other distribution(s) is (are) 
responsible for generating the data. Since many of the candidate hypotheses 
closely resemble each other, the problem of estimating the parameters of 
the various distributions is by no means trivial. 4) 

The objective of this paper is to discuss various methods of estimating 
the Pareto distribution which has been one of the most distinguished 

~) I am deeply indepted  to JOHN TUKEY whose advice and ideas have deeply 
affected this paper.  I am also grateful to MICHAEL GODFREY, STEPHEN GOLDFELD 
and HALE TROTTER for much  valuable  advice and  criticism. Acknowledgement  is 
made to Nat ional  Science Founda t ion  Grants  NSF-GS 551 and N S F - G  24462 for 
SUpport. 

2) Prof. Dr. R. E. QUANDT, Dept.  of Economics, Pr inceton/U.S.A.  
a) See [2J, [91, [111, [131, [14]. The intellectual  antecedents  of these studies 

can be found in the  works of PARETO, GIBRAT and others. See [7], [10]. 
4) For a more detailed discussion of discriminating between r ival  hypotheses, 

see [11~. 
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candidates for the honor of explaning the distribution of incomes, assets, 
etc. Some of the methods discussed are traditional; one is probably novel 
and appears to be sufficiently promising as to be generally usable in prob- 
lems of estimating the parameters of distributions. Section 2 is devoted 
to a discussion of various traditional methods of estimating the Pareto 
distribution. Section 3 presents the results of some sampling experiments 
with these methods. Section 4 discusses a new approach to estimation 
and analyzes the results of pertinent sampling experiments. Section 5 
contains some concluding remarks. 

2. Estimation of the Pareto Distribution 

We distinguish between the distribution function F(x) and the density 
X 

function /(x) of a random variable x where F(x) -~ ~/(~) d~ is the prob- 

ability that  the random variable assumes a value ~< x. The Pareto distribu- 
tion 5) is given by  

F(x)---- 1 -  (2.1) 

k > 0 ,  a > 0  and x>~k .  Its  parameters k and a (where k is the lower 
bound of the random variable x) can be estimated by a variety of methods. 
These methods are discussed and some theorems about the properties of 
the estimates are proved below. Specifically, we shall be concerned with 
the consistency of the estimates on the grounds that the convergence in 
probabili ty of the estimates to the true values represents a minimum 
standard of acceptability. 

The Method o/Moments. Provided that a > 1, the mean of the Pareto 
distribution exists and is given by  

I i a k ~ , a k (2.2)6) E(x) = xdF(x) = x ~ i a X = a _ _ l .  
k 

6) More proper ly  called the  Pa re to  d is t r ibut ion  of the  first  kind since Pareto 
himsetf  proposes three  dis tr ibut ions.  The  Pare to  d is t r ibut ion  of the  second kind 
is F ( x )  = I - -  ( K / ( x  + c) a) and t h a t  of the  th i rd  kind is F ( x )  = 1 - -  K e - -bx / ( x  + c) a' 

See [10]. 
6) I t  is well known t h a t  for a < 2 the  var iance  does no t  exist.  
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We estimate a by equating (2.2) to the sample mean 2, yielding 

d - -  __~, (2.3) 

where £ is some estimate of k. 

The estimation of k from samples of n observations is accomplished 
as follows: the probability of an observation greater than x is (k/x)" from 
(2.1). Hence, the probability that  all n sample values x 1 . . . . .  x ,  are greater 
than x is (k/x)"". This is, therefore, also the probability that the lowest 
sample value is greater than x. Thus the probability distribution of the 
lowest sample value is 

G ( x ) - -  1 - -  (2.~) 

The corresponding density function is 

a ~ / t ¢  a n  

g ( x ) -  x~.+ 1 

and the expected value of the lowest sample observation is 

a n k  ~ n  

k 

a n k  
- -  d x  = . (2.~) 

a n - - 1  

Equating the lowest sample value, x0, to the expected value, T) we obtain 

i _  ( a n - - l )  Xo (2.6) 
a n  

and therefore 

2 d---- 
d n - - 1  

2 d n x° 

yielding 

d =  n X - - x  o. (2.7) 
n(  x - -  xo) 

The estimators are thus given by (2.6) and (2.7). 

Theorem 1. The method of moments yields consistent estimates. 

~) B y  t h e  s u b s c r i p t  0, w e  d e n o t e  t h e  l e a s t  of  t h e  n v a l u e s  x t  . . . . .  , xn. 
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Proo]: Since p lim x o = k, and  since the  sample mean  is a consistent 
es t imator  of the  popula t ion mean, s ) (2.6) yields immedia te ly  

plim ~ = k. (2.8) 

Taking probabi l i ty  l imits in (2.7) we obta in  

ak  
n k 

a - -  1 = pl im a + ~ 7 -  = a n ~ - - X o  = p l i m  ~ a k  p l i m d = p l i m n ( x - - x ° )  n (  k) 

a - -  1 (2.9) 

as asserted. 

The Method o[ Maximum Likelihood. The  likelihood funct ion for a 
sample (x 1 . . . . .  x,) is 

a" k s"  

( H  Xi) a + l  
i 

and taking  logari thms,  

L = n log a + a n log k - -  (a + 1) ~ log xi. 
i 

Hence 

OL _ n + n log k __ ~ log xi = O 
0a a i 

yielding for a the es t imate  

(2.10) 

A m a x i m u m  likelihood es t imate  cannot  be ob ta ined  for k b y  differentiat ing 
L with respect  to  k since L is unbounded  wi th  respect  to k. Bu t  since k 
is the lower bound  of the r a n d o m  variable x, we m a y  maximize  L subject 

to the  const ra int  

]~ ~ min xi. (2.11) 
i 

8) We  do no t  have  to require  t h a t  the  var iance  of the  r andom var iable  exists. 
See [4J, pp. 228--233.  
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Clearly £o is maximized with respect to k subject to (2.11) when 

= rain x~ (2.12) 
t 

which is, therefore, the max imum likelihood est imate for k. 

Since the part ial  derivatives of the likelihood function do not all vanish 
at the maximum,  we convince ourselves of the consistency of the maximum 
likelihood estimates by the following argument.  

Theorem 2. The max imum likelihood estimates are consistent. 
Proo]: We first observe tha t  plim ] k - - r a i n  x~t = 0, and hence k 

i 

is a consistent estimator.  Rewrit ing (2.10) we have 

1 
= - -  ( 2 . 1 3 )  

~ ~ log xi 
i log 

n 

The consistency of d can be established if we can show tha t  

log xi 1 
plim i -- log h + - - .  

n a 

But ( ~  log xi)/n is the ari thmetic mean of a random variable 
i 

y = log x. (2.14) 

Transforming the Pareto densi ty according to the t ransformation (2.14) 
we obtain 

/(y) dy = ak" e-~y dy. (2.15) 

Since the sample ar i thmetic  mean is a consistent est imator  of the mean 
of the distribution, we require E(y). But  

i 1 E(y) = a L a y e - ~ y d y = l o g k +  a .  
log k 

Then 

1 1 
plim d = plim ~ log xi 

1 
i log ~ log k + a - -  log k 

as asserted. 
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Quantile Methods. Choose two probability levels P1 and P~ and determine 
the corresponding quantiles x 1 and x~ from 

( 2 . 1 6 )  

1 - -  P1 
log-1 - -  Po 

d = o ( 2 . 1 s )  

log x~ 
x1 

Then we obtain an estimate for a by  solving the above equations to yield 

which, when substi tuted into 
estimate for k. 

(2.16) or (2.17) yields the corresponding 

Theorem 3. The quantile estimates are consistent. 

Proo/: We merely have to observe that  sample quantiles are consistent 
estimators of the population quantiles. 

Least Squares Estimates. The (cumulative) distribution function can 
be rewritten as 

and taking logarithms on both sides 

log (1 - -F(x) )  = a log k - -  a log x. (2.19) 

The parameters of equation (2.19) are estimated by  least squares where 
the dependent variable is the logarithm of 1 minus the sample cumulative 
distribution. For the same reason as in Theorem 3, the estimates are con- 
sistent. 

In addition to mixed methods by  which several of the above methods 
are combined, we may  single out for special mention a class of methods 
which could best be designated as 

and 

(k), 1 -  . ( 2 . 1 7 )  
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Qualitative Methods. These methods  have as their  purpose not  so much 
the precise est imation of the parameters  k and a bu t  ra the r  the verification 
that the sample is genera ted  by  the Pare to  dis tr ibut ion at  all. 

Such a qual i ta t ive  me thod  consistents  of examining the  Lorenz curve 
of the sample. The Lorenz curve is f requent ly  employed  in studies of 
income distr ibut ion and  is a locus of points such tha t  the ordinate  of each 
point represents  the fract ion of income accruing to tha t  fract ion of recipients 
which is the abscissa of tha t  point.  We can define the Lorenz curve 
parametr ical ly as follows: le t t ing F(x) be the distr ibution of the random 
variable x we have 

for abscissa: F(x) 
x 

f , dF(,) 

for ordinate :  Fa(x) = k 

I x  dF(x) 
k 

where Fi(x ) is referred to  as the  i th  momen t  dis t r ibut ion funct ion cor- 
responding to F(x) and where k is the lower bound of the random variable 
x. 9) As a measure of the inequal i ty  of dis tr ibut ion we use the coefficient 
defined b y  

cO 

L ---- 1 - - ~ V l ( x  ) dE(x), 
¢1 
k 

i.e., 1 minus the  area under  the  Lorenz  curve. Clearly the Lorenz measure 
and curve are not  defined when E(x) does not  exist ;  hence we restr ict  
ourselves now to cases in which a > 1. 

Theorem 4. The Lorenz  measure  for the Pare to  dis t r ibut ion is 
a / ( 2  a - -  1) .  

Proo]: The  first momen t  dis t r ibut ion of the Pare to  dis t r ibut ion is 

x 

fx(X) -- a k[(a - -  1) J ~+1 ~ d~: = 1 - -  
k 

This provides values of the ordinate  of the Lorenz curve;  the abscissae 
are given b y  the  cumula t ive  dis t r ibut ion I - -  (k[x) ~. The  Lorenz  measure  

9) See [1]. 
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therefore is 

o o  

L - - - - l - -  1 - -  d l - -  _ a 
2 a - - 1  

k 

as asserted. 
For purposes of comparison with other distributions, it is of interest 

to examine the symmetry of the Lorenz curve arising from the Pareto 
distribution. We shall establish that  the Lorenz curve is not symmetric 
about the 45 degree line perpendicular to the line of equal distribution 
and that the point at which the slope of the curve equals unity occurs 
above the line which is perpendicular to the line of equal distribution. 
Hence, possibly, we may determine whether a sample has been generated 
by  the Pareto distribution by  examining the sample Lorenz curve. We 
shall refer to the line perpendicular to the line of equal distribution as the 
alternate diagonal. 

Theorem 5. The slope of the Lorenz curve equals uni ty  at the value 
x = E ( x ) .  

Proo]: Denoting the Lorenz curve in the parametrized form 

(¢),_1 
y = 1 -  ( 2 . 2 0 )  

z = ~ -  , ( 2 . 2 1 )  

where y and z are the ordinate and abscissa respectively, we obtain the 
slope 

dy d y / d x  _ ( a  - -  1) x 
dz --  dz/dx a k 

which equals unity when x = a k / ( a -  1) which is E(x)  by (2.2). 

Theorem 6. The  point on the Lorenz curve corresponding to 
x = a k / ( a -  1) is above the alternate diagonal. 

Proo]: B y  the definition of the Lorenz curve, the intersection of the 
alternate diagonal with the Lorenz curve occurs at the point given by 

F ( x )  = 1 - -  E l ( x )  (3.22) 
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and s u b s t i t u t i n g  f r o m  (2.20) a n d  (2.21) we o b t a i n  

or 

l = k ~ ( k +  x) (2.23) 
x ~ 

We can  r ewr i t e  (2.23) b y  cons ide r ing  the  r igh t  h a n d  side as a func t ion  
of x as  

k a - l ( k - - ~  - X) (2.24) 
~ - -  x ~ 

and e v a l u a t e  9 a t  t he  po in t  x = a k / ( a  - -  1). S u b s t i t u t i n g  d i r ec t l y  in to  
(2.24) 

- -  , 2 2 5 ,  q~-- a a 

(a - -  1)~ 

Clearly as a --, 1, ~ ~ 1 since l im u" = 1.1°) 
u--c-0 

close to  un i ty ,  

(2 a - -  1). (2 .26)  

Moreover ,  for  va lues  of a 

~-~ - -  l og  1 - -  -4- 2 a ~  < O. (2.27)  

We also o b s e r v e  f r o m  (2.25) t h a t  as a -~ ~ ,  ~ ~ 2 e -1 which  is less t h a n  
unity.  Since ~ is c o n t i n u o u s  a n d  d i f fe ren t i ab le  for  a > 1, i t  c an  b e c o m e  
greater  t h a n  1 on ly  if i t  h a s  a t  l eas t  t w o  e x t r e m e  po in t s  in t he  r a n g e  a > 1, 
one of wh ich  m u s t  be  a m a x i m u m .  H o w e v e r  

da~ - ~ ~ !  + ~ (a  - -  l )  (2 a - -  1)3 

and since ~ > 0 for  a > 1, d 2 ~ / d a  ~ > 0 for  all  a > 1 a n d  hence  ~0 can  h a v e  

lo) This is immediate from l 'Hopital 's  rule. 
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no maximum. Consequently 9 < 1 for all a > 1 and the value E ( x )  does 
not satisfy the intersection of the Lorenz curve and the alternate diagonal. 
We finally note that  9 diminishes as x increases. Thus the value of x at 
which the slope of the Lorenz curve is uni ty is greater than the value at 
which it intersects the alternate diagonal and this point is therefore above 
the alternate diagonal, as asserted. 

Such qualitative considerations for establishing that  a sample has 
been generated from the Pareto distribution are fairly crude. The property 
derived in Theorem 6 distinguishes the Lorenz curve of the Pareto dis- 
tribution from the Lorenz curve of, say, the exponential distribution but 
not from the Lorenz curve of the three-parameter family of lognormal 
distributions. Another qualitative device, the measurement of the moments 
of sequentially increasing samples, may distinguish the Pareto distribution 
(for which the sample moments may have a clear tendency to become 
unbounded) n) from the lognormal distribution but not from other dis- 
tributions with infinite means and/or variances. Although these methods 
are not without interest one obviously cannot place excessive reliance 
on them. 

3. Sampling Experiments 

For purposes of comparing the various methods by sampling experi- 
ments the Pareto distribution with k ~ 1.0 and a = 1.5 was chosen. 1~) 
Pareto distributed samples were generated by generating uniformly dis- 
tributed pseudo-random derivates between 0 and 1. For each such deviate 
u i we determined the corresponding Pareto deviate x i by solving u i 
1 -  1/x~ '5 for x~. la) The sample size N took on the values 25, 50, 100, 
300, 500, 1000, 2000. For each sample size 100 samples were generated 
and k, a, and the value of the Lorenz coefficient were estimated for each 
sample by the method of moments, the method of least squares, the method 
of maximum likelihood and four quantile methods. These latter differ 
from each other only in tha t  they are based on different quantiles. Quantile 
methods 1, 2, 3, and 4 respectively use deciles 1 and 9, 2 and 8, 3 and 7, 
and 4 and 6. Table 1 displays the mean estimates over one hundred samples; 

11) See the sampling experiments discussed in [9]. 
13) If a is less than 1, the method of moments will not yield consistent estimates. 
xa) By the well known proposition that, for any distribution F(x),  the values 

of F(x)  itself are uniformly distributed on the [0, 1] interval. The ui play a role only 
in generating the samples and are not known for estimating purposes. 
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T a b l e  1 

Mean Estimates o/ Parameters 

65 

Yethod of 
.~Ioments 

Yethod of 
Least Squares  

Maximum 
Likelihood 

Quantile 

Method 1 

Quantile 
Method 2 

~2uantile 
Method 3 

Quantile 
Method 4 

N =  25 N =  50 N =  I00 N =  300 N =  500 N =  I000 N =  2000 

1.009 1.721 

1.013 1.680 

1.033 1.626 

0.997 1.511 

0.999 

0.984 

0.991 

1.001 1.663 

1.012 1.612 

1.014 1.558 

0.995 1.432 

1.000 1.617 

1 . 0 1 3 1 . 5 9 2  

1.007 1.540 

1.000 1.498 

a 

1.000 1.570 

1.007 1.544 

1.002 1.517 

1.001 1.494 

a 

1.000 1.550 

1.005 1.527 

1.001 1.509 

1 .0001 .492  

1.000 1.533 

1.002 1.511 

1.001 1.503 

0.999 1.492 

1.464 1.004 

1.545 1,003 

1.628 0.985 

1.493 

1.520 

1.519 

:1.001 1.504 1.001 1.501 

1.006 1.531 1.003 1.516 

0.986 1.491 1.001 1.522 

0,999 

1.002 

10.999 

1.499 

1.512 

1.509 

0.998 

0.999 

0.999 

1.496 

1.497 

1.504 

d 

1.000 1.522 

1.OOl 1.500 

1.000 1.497 

1.000 1.492 

1.000 1.496 

1.001!1.500 

0.999 1.497 

Table 2 contains  the  root  m e a n  square  error,  and  Table  3 the  predic ted  
Lorenz coefficients.  Since the  t rue  value of a is 1.5, the theoret ical  value 
of the Lorenz  coefficient is L = 0.75 b y  Theo rem 4. 

.Xlethod of 

Moments 

-Xlethod of 

Least Squares 

,~laximum 

Likelihood 

Quantile 
Method 1 

Quantile 

Method 2 

Quantile 
Method 3 

Quantile 
Method 4 

N =  25 

d 

0.037 0.386 

0 .093 '0 .430  

0.049 0.356 

0.06010.412 

0.12410.363 

0.172 0.6211 

0.069 0.895 
! 

T a b l e  2 

Root Mean S 

N =  50 N =  100 

0.013 0.288 0.0o7 0.217 

o.o71 0.311 0 . 0 4 9 0 . 2 2 2  

0.019 0.240 0.009 0.166 

0.032 0.294 0 .0230 .211  

0.063 0.281 0.043!0.209 

0.078 0.305 0.058 0.214 

0.117 0.450 0.077 0.290 

uare Er~'o~'s 

N = 300 

d 

0.002 0.133 

0.032 0.124 

0.003 0.087 

0.014 0.127 

0.026 0.133 

0.032 0.121 

0.047 0.179 

N = 500 

d 

0.002 

0.026 

0.002 

0.011 

0.020 

0.028 

0.041 

I 
N =  1000 

a 

0.098 0.001 0.081 

0.096 0.019 0.065 

0.068 0.001 0.048 

0.090 0.008 0.065 

0. I05 0.012 0.063 

0.10610.018 0.076 

0.149 0.027 0.104 

N =  2000 

d 

0.000 0.065 

0.014 0.045 

0 .000 '0 .032 

0.005 0.044 

0.009 0 .041  

0.013 0.053 

0.018 0.071 



66 R. E. QUANDT 

Tab le  3 

Mean Lorenz Coe/licients 

Method of Moments 

Method of Least Squares 

Maximum Likelihood 

Quantile Method 1 

Quantile Method 2 

Quantile Method 3 

Quantile Method 4 

N = 2 5  N =  5 0 N =  1 0 0 N =  3 0 0 N =  5 0 0 N =  1 0 0 0 N =  2000 

0.725 

0.742 

0.749 

0.793 

0.774 

0.768 

0.783 

0.719 

0.736 

0.741 

0.783 

0.796 

0.796 

0.796 

0.730 

0.737 

0.746 

0.762 

0.761 

0.754 

0.773 

0.736 

0.742 

0.748 

0.756 

0.754 

0.750 

0.752 

0.740 

0.745 

0.749 

0.754 

0.753 

0.750 

0.753 

i 0.743 

0.748 

0.750 

i 0.753 
I 
I 0.752 

0.752 

0.752 

0.746 

0.750 

0.751 

0.753 

0.752 

0.751 

0.752 

We shall consider five individual performance criteria: (i) the mean 
bias in 1, (ii) the mean bias in d; (iii) the root mean square error of t ;  
(iv) the root mean square error of d; (v) the mean bias in L. The tables 
reveal the following: 

(1) By all criteria Quantile Methods 1 and 2 perform better  than 
Methods 3 and 4. The values 0.15 and 0.85 seem therefore reasonable 
values to use for P1 and P2 in the Quantile Method. 

(2) Since Quantile Methods 1 and 2 are comparable with each other 
in performance, we shall choose (arbitrarily) Quantile Method 1 to represent 
the best of the quantile methods. For each of the five criteria, we obtained 
a table of rankings in which the four methods 14) are ranked by  each of the 
seven sets of samples corresponding to the seven values of N. For each 
of these tables of rankings Kendall 's coefficient of concordance W was 
calculated. The W values are displayed in Table 4. 

W 

Table  4 

W Statistic [or Ranking o[ Estimating Methods 

Bias k Bias d RMSE k I RMSE 
t 

0.755 0.974 I 0.683 0.718 
I 

0.698 

These values are all significant on the 0.01 level and allow one to reject 
the null hypothesis that  the rankings of methods according to different 
sample sizes are random. 

x4) M e t h o d  of Momen t s ,  L e a s t  Squares ,  M a x i m u m  Likel ihood,  Quan t i l e s  - 1. 
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(3) If rank totals are obtained for each method and criterion, one 
can rerank the methods (on the basis of the rank totals) by  each of the 
five criteria. Kendall's W calculated from the resulting table of rankings 
is 0.362 which is not significant on the 0.05 level and does not allow one 
to reject the null hypothesis that  the rankings of the different methods 
by the five criteria are random. The rankings of the four methods by the 
five criteria are displayed in Table 5. 

Table 5 
Ranking of Methods 

Method 

Moments  

Leas t  Squares 

MaximumLike l ihood  

Quanti les 

Bias Bias d 

Criterion 

RMSE RMSE d L Bias 

(4) The related Friedman two-way analysis of variance test yields 
a Z ~ value (with 3 degrees of freedom) of 3.48 which does not permit one 
to reject the null hypothesis that  the rank totals are not significantly 
different. By  inspection of Table 5 one would single out the maximum 
likelihood and quantile estimates as yielding best results but such a 
distinction is casual and does not rest on a probabilistic basis. 15) 

(5) The performances of the methods as measured by  the bias and 
by the root mean square error of a given parameter are highly correlated. 
Also, the performances of the methods as measured by  (the biases or root 
mean square errors of) k and a are substantially divergent. 

(6) Since L depends only on a, it is not surprising that the ranking 
of methods according to L is substantially more similar to the rankings 
according to d than to those according to 1. 

4. A New Method of Fitting 

The previous sections discussed various traditional methods of fitting 
distributions to samples with reference to the Pareto distribution. No 
sharp differences in performance were found among the various methods 
but informally the quantile and maximum likelihood methods seemed 
to have the edge. 

1~) One mus t  note  the  diff iculty of eva lua t ing  methods  such as the Method of 
Moments which is best  by  some and  worst  by  other  criteria.  

5* 



68 R . E .  QUANDT 

All of the traditional methods, however, suffer from a distinct dis- 
advantage. Broadly speaking, this disadvantage is that  traditional methods 
of fitting do not allow one to discriminate statistically among competing 
but mathematically closely related alternative hypotheses. 

Suppose, for example, that  one hypothesizes that  a given sample was 
generated by the Pareto distribution and that  the alternative hypothesis 
is that  the sample comes from, say, the lognormal distribution. It is easily 
possible and in fact frequently the case that  two or more conflicting hy- 
potheses appear to yield good fits? 6 ) In such instances one is typically 
dissatisfied with the nature of the criteria of goodness of fit as well as with 
the inconclusive results to which these criteria lead. 

Standard Goodness o/Fit Tests. Some of the goodness of fit tests that 
might be suggested as appropriate are the following. 

(1) The Z 2 goodness of fit test. Accordingly the observations are grouped 
and the statistic 

G = X (e, - - / , )*  
i ei 

is obtained, where e i and ]i are the expected and actual frequencies in the 
ith group respectively. Under the null hypothesis that  the parent of the 
sample is the distribution in question, G has approximately the •2 distribu- 
tion with r - -  k degrees of freedom, where r is the number of groups and k the 
number of parameters fitted. According to this approach one would declare 
that  one of all competing hypotheses to be the winner which yields the G 
statistic representing the highest significance level. But this approach has 
several undesirable features: (a) the grouping of observations is arbitrary 
and if all candidate distributions fit fairly well, even small alterations in the 
method of grouping will tend to alter the resulting ranking of rivalhypotheses; 
(b) the validity of the Z 2 test does not rest on any specific alternative 
hypothesis; therefore it is not strictly proper for evaluating the fit from 
distribution X 1 when the only alternatives are, say, distributions X2 and 
X~; (c) in any particular study interest may be focused on behavior in 
the right tail of the distribution where expected frequencies are small; 
small expected frequencies are, however, a violation of the conditions that 
must be fulfilled for a valid application of the test; 17) (d) the ;~2 test essen- 
tiaUy ignores small but systematic deviations of the sample from the theo- 
retical distribution. 

16) See [11]. 
1~) See [3]. 
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(2) The Kolmogorov-Smirnov Test. Given a sample of n observations 
x 1 . . . . .  x~ and empirical and theoretical cumulative distribution functions 
S(x) and F(x), the statistic is 

D = max lS(x~) --F(x~)t 
i 

and measures the distance between the empirical and theoretical distri- 
butions. Accordingly the distribution yielding the smallest D statistic 
for a given sample would be declared to fit that sample best. This method 
also has serious disadvantages: (a) it shares difficulties (b) and (d) above 
with the ;¢~ test;  (b) critical values of the D statistic cannot be obtained 
when the parameters of the distribution have been estimated from the 
sample. Thus, even though the Kolmogorov-Smirnov test is probably 
more powerful than the Z 2 test in cases in which they can both be validly 
applied, is ) there is probably little reason for believing that either test 
is appropriate for present purposes. 

A Widely Applicable Fitting Procedure. Denote by  F(x) the distribu- 
tion to be estimated and F(x,) its value at the ith sample point. Let the 
ordered sample be (x 1 . . . . .  x,) and let there be two fictitious points x o 
and x,+ 1 such that F(xo) = 0 and F(x~+~) = 1. The quanti ty F(x,) -- 
--F(xi_l) has expected value of 1/(n + 1) for all values of i = 1 . . . . .  n + 1 
since each of the intervals F(x~)--F(x,_l) is identically distributed. 
The proposed procedure is to estimate the parameters of F(x) by minimizing 

S =  ,~1,=1 (F(x,)--F(X,_l) n + l l  )3 (4.1) 

with respect to the parameters of the distribution. The minimization of 
(4.1) is generally feasible by  gradient or other numerical methods if F(x) 
is twice differentiable. The resulting estimates have the property of con- 
sistency as shown in the following 

Theorem 7. If (1) F(x) is a member of a k-parameter family of continuous 
distributions, (2) if the parameters are continuous and single valued functions 
of the cumulative probability in the sense that k sample points x~, i = 

1 . . . .  k, x~ ~ x i for all i and i, are sufficient to determine unique values 
of the parameters, (3) if the null hypothesis that  the x~ were generated 
by F(x) is true, then the estimates resulting from minimizing 

" + I ( F  1 )  2 
s = X ( x , ) - - V ( X , _ l ) -  i=1 n + l  

are consistent. 

18) See [12], p. 51. 
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Proo/: Consider  the  quan t i t i e s  c i = F(xi) - -F(x  i_ 1)' i = l , . . . ,  n + 1, 
ca l led  the  cove rages  co r r e spond ing  to  the  o rder  s ta t i s t i cs  F(x~). W e  shall 

n e e d  the  p r o b a b i l i t y  d i s t r ibu t ions  of  t he  q .  Since t he  F(x 3 are  u n i f o r m l y  
d i s t r ibu ted ,  so are  the  c i a n d  this  d i s t r i bu t ion  is iden t ica l  for  all c~. 19) 

T h e  f irs t  cove rage  c 1 is g iven  b y  c 1 = F(xl) - - 0  a n d  hence  t he  requ i red  
p r o b a b i l i t y  d i s t r i bu t ion  is t h a t  of  F(xl). N o w  the  p r o b a b i l i t y  t h a t  the 

f i rs t  o rder  s ta t i s t i c  F(Xl) is g rea te r  t h a n  or  equa l  to  some  q u a n t i t y  z is 

T h e n  

a n d  

Pr[F(xl) >7 z] = (1 - -  z)". 

Pr[F(xl) < z I = 1 -  ( l - - z )  ~ 

a n d  c lear ly  

u la r  q ,  

Pr[ci < z ]  ---- 1 - -  (1 - - z ) " .  

T h e  c o r r e s p o n d i n g  d e n s i t y  f u n c t i o n  is 

/(z) = n(1 - -  z )"-  

N o w  let  y = n z  a n d  t h u s  

lim/(y) = e-Y. I t  follows tha t ,  for  a n y  e > 0 and  a par t ic-  

[ 11 ] l im P r c~ > 
, ~ .  n + 1 

= l i m P r [ [ ( n + l )  c , - - l [ > e V  n + l ] =  
n - - ¢ . o o  

= l im Pr[]y + c,-- 11 > s V n +  1] = l im P r [ y > - - c , +  1 + eVn+ 1] - 
n - - ~ o o  n - - ~ o o  

= l i r a  (e c~-l-*V~+--i)  = O. 
n - - - ~ o o  

T h e n  

l i m P r  A n y  ci > e  = l im n = 0  

19) See [6], p. 151. I t  is well known that  the order statistics have Beta 
distributions; furthermore, if n(r) and n(,) are two order statistics, the distribution 
of n(r) - -  n(,) depends only on v -- s and on the number of observatios, n. 
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and 

r [max I ci - -  - -  

m 

lim P 
L 

It further follows that  

n + l  -<<et = 1 .  

n ---~ o o  

and the quant i ty  S converges in probability to zero for the true values 
of the parameters. I t  is also clear that  for values of the parameters other 
than the true values S does not have zero as its limit and S asymptotically 
possesses a minimum at the true values. Thus the method of choosing 
estimates for the parameters by minimizing S yields, for n -~ 0% a sequence 
of parameter estimates converging in probability to the true values. 

Testing Goodness o] Fit.  The current procedure employs two notions 
of the goodness of fit. The first of these is called the closeness of the fit 
and is measured by  the value of S at the minimum. The second is the 
randomness of the fit and may be measured in several ways. The approach 
rests on the notion that a good fit is characterized by  two circumstances: 
(a) the residuals 

1 1 
F(x,:) - - F ( x i _ l )  P'(Xi+l) - - F ( x i )  , etc., 

n + l '  n + l  

are small; (b) the residuals are random. In general a distribution will 
be considered to give a bad fit if it fails by  either criterion. Closeness is 
a fairly natural criterion of goodness of fit and is related to the general 
notion of the distance between the sample and the fitted distribution. 
Randomness of the residuals is desirable since, if the null hypothesis is 
true, we would expect the increments in cumulative probability F(xi) - -  
- -F(x i_ l )  - -  associated with going from the (i - -  1)th to the ith sample 
point, as estimated from the fitted distribution - -  sometimes to exceed 
and sometimes to fall short of their mathematical expectation, in no 
predictable manner. One may note that  the assumption of randomness 
is not strictly correct since the coverages are not distributed independ- 
ently. They are, however, asymptotically uncorrelated wich may  explain 
why, in practice, the assumption of randomness under the null hypothesis 
appears acceptable. 

Since estimates are obtained by  minimizing S, the value of S at the 
minimum is a natural measure of closeness. The randomness of the re- 
siduals can be measured in several ways. Three particular methods are 
discussed here. 



72 R .E .  Q U A N D T  

1. A run test on the number of runs of positive and negative residuals. 
On the hypothesis that  the permutations of positive and negative residuals 
are randomly generated, the number of runs in large samples is approxi- 
mately normally distributed with mean 

and standard deviation 

2 n 1 n 2 ~ -  + 1  
n I -31- n 2 

[~ nl n~(2 nl n ~  - -  n l  - -  n ~ ) ]  1/~ 

where n 1 and n~ are the number of positive and negative residuals. For 
small samples exact tables are available for testing the hypothesis of 
randomness. ~°) 

2. The reduction in the sum of the squares of residuals due to fitting 
to the residuals orthogonal polynomials up through the kth degree. ~1) 
The value of k should be a number small relative to the total number of 
observations but  high enough to fit well fairly high frequency oscillations. 
In the experiments described below k was chosen to be 15. According 
to this method a random series of residuals will yield a low reduction in 
the sum of squares. If there are low frequency oscillations in the residuals 
indicating systematic deviations of the sample from the fitted distribution, 
the reduction in the sum of squares will be considerable. Systematic very 
high frequency deviations which are also a sign of nonrandomness will 
also yield very small reduction in the sum of squares but  this is not likely 
to occur with unimodal densities. 

3. The spectral density of the residuals according to which we consider 
the series of residuals ordered by  the subscript i as a time series and display 
the density of frequencies generating the series. The more the spectrum 
resembles that  of white noise the bet ter  the fit is considered from this 
point of view. 

Sampling Experiments. A separate set of sampling experiments sim- 
ilar to those described in Section 3 was performed. Sample sizes of 25, 
50, 100, 300, 500 and 1000 were employed and 100 samples of each size 
were generated from the Pareto distribution with k = 1.0 and a = 1.5. 
The parameters were fi t ted by  the method described in this section and 
the various goodness of fit statistics were calculated. 

~o) See [12]. 
sx) See [5] and [8]. 
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Estimated critical values for the S statistic from 100 samples are shown 
in Table 6. As an illustration, we would reject the hypothesis of a good 
fit on the 0.05 level if, for example, a sample of 100 observations yielded 

Table  6 

Estimated Critical Values /or the S-Statistic 

N 

25 

50 

100 

300 

500 

1000 

Significance Level 

0.20 

0.0362 

0.0198 

0.0106 

0.0036 

0.0021 

0.0010 

0.10 

0.0401 

0.0218 

0.0112 

0.0038 

0.0022 

0.0011 

0.05 

0.0438 

0.0239 

0.0123 

0.0038 

0.0022 

0.0011 

an S value in excess of 0.0123. The mean parameter estimates and the 
root mean square errors are displayed in Table 7, and compare favorably 

Tab le  7 

Parameter Estimates and Root Mean Square Errors 

N d h RMSE d RMSE 

25 

50 

100 

300 

500 

1000 

1.435 

1.383 

1.440 

1.480 

1.490 

1.493 

0.981 

0.993 

1.003 

1.008 

1.009 

1.009 

0.100  

0.125 

0.071 

0.033 

0.028 

0.019 

0.021 

0.008 

0.004 

0.008 

0.009 

0.009 

with other methods of estimation. For large values of N the mean bias 
of £ is slightly larger than for other estimators. For d the mean bias tends 
to be somewhat larger than for the quantile method and for maximum 
likelihood estimates, but is generally of the same magnitude. The root 
mean square errors for )~ are larger and those for d smaller than with the 
best of the alternative methods. On the basis of the apparent properties 
of the present estimating method, it seems to be a reasonable alternative 
to the others. 

The several methods discussed above of testing for randomness of 
fit were applied to the residuals arising out of fitting the Pareto distribution 
to the data. Since the data were generated from the Pareto distribution, 
the null hypothesis is known to be true. 
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Since the distribution of runs (under the null hypothesis) is known, 
the run test was performed for only 36 samples (6 for each value of N). 
In 3 out of the 36 cases we rejected the null hypothesis on the 0.05 level 
of significance. Considering the situation to be a binomial one with prob- 
ability p = 0.95 of success, the probabili ty of three or more failures in 
36 tries is 0.268 and we cannot reiect the hypothesis that  0.95 is a correct es- 
t imate of the probability of success. 

The fitting of orthogonal polynomials up to and including the fifteenth 
degree permits us to estimate empirically the percentage reduction in the 
total sum of squares of residuals due to fitting the first 15 degrees. The 
critical values of the percentage reduction are displayed in Table 8. In a 

Estimated Critical Values ]or the 
]rom 15th 

T a b l e  8 

Precentage Reduction in the Sum of Squares Resulting 
Degree Orthogonal Polynomials 

Signif icance Level  
N 

0 . 9 7 5 [  0 . 9 5 0 [  0.900 I 0 . 8 0 0 [ 0 . 2 0 0 ]  0 . 1 0 0 1 0 . 0 5 0  I 0.025 

25 

50 

100 

300 

500 

1000 

0.821 

0.462 

0.219 

0.085 

0.062 

0.028 

0.777 

0.442 

0,205 

0.077 
I 

0.051 
[ 

0.026 

0.693 
! 

0.392 
! 
i 0.188 t 
I 0.066 
[ 
[ 0.044 

0.024 

0.661 

0.351 

0.174 

0.060 

0.038 

0.020 

0.487 

0.212 

0.102 

0.034 

0.019 

0.010 

0.415 

0.177 

0.090 

0.028 

0.016 

0.008 

i 
i 0.365 
[ 0.155 

[ 0.079 

0.026 

0.015 

t 0.008 

0.316 

0.145 

0.066 

0.024 

0.015 

0.006 

concrete case we would select a significance level, say 0.05, and compare 
the empirically calculated percentage reduction with the critical values 
for the appropriate value of N. If the empirically calculated figure is 
outside the interval specified by  Table 8, we reject the hypothesis of ran- 
domness. These tables are therefore suitable for testing against both 
alternatives of very low or very high frequency oscillations. 

Finally we display in Figures 1--6 the spectral densities of the residuals 
for 36 cases (6 for each value of N). These may serve as a standard of 
comparison in cases in which the null hypothesis is not known to be true. 
Although the spectral densities displayed are not very meaningful for 
small values of N, they generally behave like the spectrum of white noise. 

The applicability of the various measures suggested for testing goodness 
of fit to a variety of other distributions is affected by  the fact that  tables 
of critical values for S (measuring closeness) and tables of critical values 
for the percentage reduction in the sum of squares of residuals due to 
fitting orthogonal polynomials were derived from sampling experiments 
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based on a two-parameter family of distributions. Clearly with distribu- 
tions with a different number of parameters to be estimated, our estimates 
in Tables 6 and 8 are not fully valid, those being based on cases with the 
wrong degrees of freedom. It  appears unlikely, however, that this will 
make a great deal of difference when the number of observations is large, z2) 

5. Conclusion 

Four standard methods of estimating the parameters of the Pareto 
distribution have been discussed in some detail. These are the method 
of moments, the method of maximum likelihood, the method of least 
squares and the method of quantiles. In addition, some more qualitative 
methods of judging whether a sample was generated by the Pareto distri- 
bution have been analyzed, with particular reference to the properties 
of the Lorenz curve and the properties of sequential samples. Sampling 
experiments were used to obtain experimental evidence concerning the 
goodness of the various (nonqualitative) methods. Strictly no great dif- 
ferences were found among the four methods; more informally the methods 
of maximum likelihood and of quantiles performed best. 

General dissatisfaction with some existing methods of judging the 
goodness of a fit has led to the formulation of a new method of estima- 
tion. This method involves the minimization of the criterion function 

S=~(F(x,)--F(x,_~),=~ n + l l  ) 3. 

When a distribution has been fitted by  minimizing S we judge the good- 
ness of fit on the basis of two criteria: (a) the closeness of the fit as meas- 
ured by  the value of S at the minimum, and (b) the randomness of the fit 
as measured by  (i) the number of runs of positive and negative residuals 

1 
F(x~) --F(xi-1) n + 1' 

(ii) the precentage reduction in the total sum of squares due to fitting 
orthogonal polynomials to the residuals, (iii) the spectral density of the 
residuals. This method of estimating the parameters of a distribution 
seems to yield results comparable with those obtained by  standard methods 
as judged by root mean square errors of estimates and similar criteria, 
and seems superior to standard methods with regard to goodness of fit 
problems in providing finer discrimination among alternative hypotheses. 

23) Initial application of these techniques seems to yield finer discrimination 
among alternative hypotheses than could be achieved with standard methods. See [113. 
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