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Summary. Studies are carried out on the unique-
ness of the stationary point on the likelihood func-
tion for estimating molecular phylogenetic trees,
yielding proof that there exists at most one station-
ary point, i.e., the maximum point, in the parameter
range for the one parameter model of nucleotide
substitution. The proof is simple yet applicable to
any type of tree topology with an arbitrary number
of operational taxonomic units (OTUs). The proof
ensures that any valid approximation algorithm be
able to reach the unique maximum point under the
conditions mentioned above. An algorithm devel-
oped incorporating Newton’s approximation meth-
od is then compared with the conventional one by
means of computer simulation. The results show
that the newly developed algorithm always requires
less CPU time than the conventional one, whereas
both algorithms lead to identical molecular phylo-
genetic trees in accordance with the proof.
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Introduction

The maximum likelihood method for estimating
molecular phylogenetic trees (or molecular trees, for
short) from nucleic acid sequence data was devel-
oped by Felsenstein (1981). Because this method
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has a sound statistical basis, it has attracted the
attention of serious molecular evolutionists who are
aware of the fact that nucleotide substitution in evo-
lution is a stochastic process. In particular, Hase-
gawa and his colleagues (Hasegawa and Yano 1984;
Hasegawa et al. 1985) have used this method ex-
tensively in making statistical inferences about the
taxonomic relationships of several eucaryotic
species. The computer program of the method de-
veloped and revised several times by the originator
has been widely distributed among concerned sci-
entists.

In the method, Felsenstein introduced an itera-
tion algorithm to search for the maximum point on
a likelthood surface for a given range of a parameter,
as a specific case of the general EM algorithm of
Dempster et al. (1977). The algorithm, however,
guarantees only that an iteration pass never goes
downhill on the likelihood surface, and thus is ef-
fective only in determining a stationary point. The
question then is how many stationary points exist
in that range: if there is one, the stationary point is
certainly the maximum point (see below); if there
are two or more, the stationary point reached may
not be the maximum point. Although this problem
is implicit in the theoretical background of his
method, Felsenstein (1981) did not pay much at-
tention to it.

In this paper, we prove that there is at most one
stationary point on the likelihood surface under a
certain condition for the case of one parameter mod-
el of nucleotide substitution (the case of no distinc-
tion between transition and transversion). It is note-
worthy that the proof is simple yet independent of
tree topology. This ensures that any algorithm to
search for a stationary point should lead to the max-
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Fig. 1. Molecular tree of four OTUs. Numbers 1 through 4

refer to the four OTUs and 0 and 5 to interior nodes, The branch
lengths, v; (i = 1, 2, 3, 4, 5), are given in number of nucleotide
substitutions. The tree is an unrooted one, in which the place of
the common ancestor of the OTUs involved is left undetermined.

imum point on a likelihood surface in those circum-
stances.

Number of Stationary Points

Let us illustrate our argument using a molecular tree
of 4 operational taxonomic units (OTUs) (Sokal and
Sneath 1963) with two interior nodes 0 and 5 as
shown in Fig. 1. In the figure, v, (k = 1, 2, 3, 4, 5)
given alongside a branch is its length in number of
nucleotide substitutions. Let us suppose that a nu-
cleotide sequence n sites long is available for each
OTU in the tree. Let us also arbitrarily designate
node O as the pivotal point, from which the likeli-
hood computation begins. Then the likelihood of
the tree at one of the n sites, say r, is given by,

L= 2 E T(So)P(Sors S1r5 V1)P(Sors 5255 V2)

S0r S35r
X P(Sqr; Sse; Vs)P(Ssys S35 V3)

X P(SSr7 Sars V4)9 (1)

in which s; is the state (base) of site r at OTU (or
node) i (Felsenstein 1981). Because the states of in-
terior nodes O and 5 are unknown, L, is defined by
taking the sum over all possible base assignments
to those interior nodes as shown in formula (1). In
the formula, 7 (s,,) is the prior probability of taking
state s, at node 0, and P(s;, 5;;; Vi) is the transition
probability that state s;, will be replaced by state s;,
after v, substitutions occur. Note that v, is the pa-
rameter that we are to estimate by maximizing the
likelihood.

We here make no distinction between transition
and transversion, and assume that the substitution
follows a Poisson process with parameter v,. Then
P(s;;, s;; Vi) is given by,

P(sira Sjr; Vk) = e_vka(sira sjr)
+ (1 — e™"¥)(s;), 2
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where 4(s;;, 8;;) is Kronecher’s delta function, which
is O for s;. # s;; and 1 for s, = s, and =(s;,) forj +
0 is the probability of replacing s, by s; on the
condition that s;. be replaced. The conditional prob-
ability «(s;) is set to the constant at any OTU or
node on the assumption that the base composition
at any site at any OTU or node be in evolutionary
steady state.

If we focus our argument on branch v in the tree,
and substitute formula (2) into formula (1), we ob-
tain a simplified expression for L

Lr = ArQS + Brp5’ (3)
where qs = e~ "5, ps =1 — e™5, and

Ar = E E 7l'(SOr)})(SOr’ Sirs V1)

S0r S5r
X P(SOr, Sor; v2)P(SSr7 S3n VS)

X P(SSr’ S4rs V4)6(Sor, SSr)) (4)
and

Br = 2 E 7I'(SOr)"r(SSr)P(SOr: slr; Vl)

Sor  Ssr
x P(sOr: S20 VZ)
X P(SSr: S3r; v3)P(SSr7 Sar; v4)7 (5)

(Felsenstein 1981). If we assume here that nucleo-
tide substitution at each site occurs independently
of the rest, we can obtain easily the total likelihood,
L, as the product of L’s for all n sites given by,

L= H(ArQS + B.ps). (6)

Parameter ps or qs (=1 — p;) is then estimated as
that which maximizes L, and v; is obtained accord-
ingly. Technically, ps is computed as the particular
point at which the first derivative of 1n L with re-
spect to ps is zero, and the iteration algorithm men-
tioned earlier is used for this purpose.

Because formula (6) is at most an n-th order poly-
nomial in ps, equation L(p;) = 0 has at most » real
roots, A,/(A, — B) (r=1, 2, ..., n). Accordingly,
equation dL(p;)/dps = O harbors at most (n — 1)
real roots, each of which exists between two con-
secutive solutions of L(p;) = 0 in descending (or
ascending) order of magnitude. It is noted that this
also holds true for the case of multiple roots of L(p;)
= 0, in which the root merges into that of dL(p;)/
dps = 0. Thus, the problem of the number of the
stationary points can be reduced to the relationship
between the root A,/(A, — B,) and a pair of A, and
B, in the parameter range at each of the » sites.
Depending on the range taken by A, and B,, the root
falls into four separate cases that are mutually ex-
clusive and comprehensive: (1) A, > 0, B, > 0, and
A #B; (DA >0,B,>0,and A, =B,; 3 A, =
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0 and B, > 0; and (4) A, = B, = 0. It is needless to
mention that L(p) is always nonnegative in the pa-
rameter range for each of the four cases.

In the first case, which occurs most frequently,
the root can be rewritten as 1/[1 — (B,/A))]. Thus,
the root always lies outside the parameter range [0,
1] as shown in Fig. 2a. In the second case, L.(ps)
becomes independent of ps, and the root does not
exist for site r. The orders of L(p;s) and dL(ps)/dps
are consequently reduced. In the third case, ps = 0
is a root of L(ps) = 0. If the root is a multiple root,
it is also a root of dL(ps)/dps = 0. In the fourth case,
the root is indefinite, making it impossible to obtain
the unique stationary point. Although the last three
cases are extreme and rare, they cannot be neglected
in the theoretical consideration of the maximum
likelihood method, in particular when implement-
ing the iteration algorithm.

From the above characterization of the root of
L(ps) = 0, we see that there are no roots in the
parameter range [0, 1] except for p; = 0. Thus, there
can be at most one stationary point excepting ps =
0, and this must be the maximum point in the range.
Even if p; = 0 is a stationary point as in the third
case, it is not the maximum point, because L(ps)
must be nonnegative in the parameter range. As can
be deduced from the argument in the first case, there
is at most one stationary point besides ps = 0, which
is the maximum point in the range (see Fig. 2b). If
L(ps) is a monotonically increasing or decreasing
function in the range, there is, strictly speaking, no
stationary point there. If this is the case, p; = 1 or
ps = 0 is taken as the substitute for the maximum
point, according to whether L(p,) is monotonically
increasing or decreasing (see Fig. 2a).

The aforementioned discussion is shown to hold
for each of the other branches, v,, v,, v;, and v,.
Moreover, it can be extended readily to any type of
tree topology with an arbitrary number of OTUs,
because we can always focus our attention on one
branch at a time and carry out the same analysis on
it

Discussion

The problem of the number of stationary points in
the parameter range possibly could be solved by
Strum’s theorem in algebra, because equation, dln
L(p,)/dp; = O for branch i, could be considered
equivalent to an algebraic equation of the (n — 1)th
order or less. In practice, however, we had difficulty
in applying the theorem to our problem. At first
glance, L(p;) = O looks like an n-th order algebraic
equation with coefficients of A,’s and B,’s. Unfor-
tunately, that is not the case; those “coefficients”
are dependent upon p;, as formulas (4) and (5) show.
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Fig. 2. Likelihood functions and the location of the maximum

likelihood point in the parameter range. a Three likelihood func-
tions are shown for the case that there exists at most one sta-
tionary point in the range. The maximum likelihood point or its
substitute is shown by a dot. The broken line and chain line are
monotonically increasing and decreasing functions, respectively,
in which the maximum likelihood point is substituted by one for
the former and by zero for the latter. b Likelihood function with
two stationary points is shown for the case of the multiple root.
Because the function is nonnegative in the range, ps = 0 is the
minimal point as shown by an open circle, and the other is the
maximum point as marked with a dot.

Namely, A.’s and B,’s are changed each time in the
iteration pass and settled as the pass converges to
the maximum point. It is still possible to use the
theorem for examination of the number of station-
ary points, because the range of coefficients can be
determined as was done in the present study. Com-
putation of the coefficients is, however, so compli-
cated that it prevents us from gaining insight into
the relationship between the coefficients and the
number of stationary points by the use of Strum’s
theorem. This approach is, in any event, more com-
plicated than the present proofin the one-parameter
case.

Because the proof ensures that any valid approx-
imation algorithm be able to reach the unique max-
imum point, it is worthwhile to develop an algo-
rithm that works better than Felsenstein’s. With this
intention in mind, we incorporated Newton’s pop-
ular approximation algorithm to obtain the maxi-
mum point, because this algorithm is believed to
quickly converge to the solution, in particular, when
the initial value given is close to the solution. Then,
to examine the performance of our algorithm in
comparison with Felsenstein’s, a computer simu-
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Fig. 3. Four model molecular trees used in the computer sim-
ulation. Trees a and b are of four OTUs, and ¢ and d of five
OTUs. The value given alongside a branch is its length in number
of nucleotide substitutions. The value was used as the parameter
of a Poisson distribution from which the actual number of nu-
cleotide substitutions was sampled.

lation was conducted. The model and method of the
simulation were the same as those of Tateno et al.
(1982) except for the model tree and the number of
replications. The model trees used in the present
study are shown in Fig. 3, whereas the number of
replications was set to be 10 for each model tree.
The results show that, as expected from the proof,
Felsenstein’s and our algorithms constructed the
identical tree in every replication for each model
tree. Our algorithm, however, always took less CPU
time than Felsenstein’s to reach the maximum point,
as shown in Table 1. In particular, when the branch
lengths of the model tree were long as in model trees
b and d, the time required by ours was about half
that by Felsenstein’s.

Though the main objective of the present paper
is to discuss the number of stationary points, it is
also of interest to see how the maximum likelihood
method performs in the construction of molecular
trees. General discussion on this subject is evidently
difficult, but we can make inference into the subject
to some extent, using the results of the aforemen-
tioned simulation study. .

In the simulation study we also obtained the mean
and standard deviation of the distortion index dr
(Robinson and Foulds 1981; Tateno et al. 1982),
which is a measure taking larger values as the to-
pology of a constructed tree deviates further from
the model tree. For a model tree with t OTUs, the
value of d; ranges from 0, for the perfect match of
the two topologies, to 2(t — 3) for the least possible
match in the unrooted tree. The d; values were 0.0
+0.0,0.2 £0.6,0.6 £ 1.0,and 2.6 * 1.6 for model
trees a, b, ¢, and d, respectively. Though 10 repli-
cations is not enough for a rigorous statistical anal-
ysis, the results show a trend that the performance
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Table 1. Mean CPU time in seconds consumed by the two
algorithms for estimating each of the four model trees

Model Algorithm®

tree Felsenstein’s New

a 0.27 £ 0.05 0.26 = 0.06
b 1.35 £ 0.51 0.55 = 0.06
c 16.64 + 4.28 13.71 = 3.37
d 63.51 = 12.35 31.17 £ 2.47

= Felsenstein’s refers to the iteration algorithm developed by Fel-
senstein (1981) and New to one devised in this paper. Number
of replications was 10 for each model tree

of the method declines as branch lengths are ex-
tended in both cases of four and five OTUs.

The trend can be explained first by considering
the arrangement of the nucleotide sequences in
question. Saitou and Nei (1986) studied phyloge-
netic relationships of primates using the nucleotide
configuration, which is a base array at a site in a set
of nucleotide sequences. In the maximum likelihood
method, the nucleotide configuration also plays an
important role in differentiating one topology from
others. For example, such configurations as (1, 1, 1,
2,2yand (2, 2, 1, 1, 1), in which 1 and 2 are any
pair of different bases, for (OTU 1, OTU 2, OTU
3, OTU 4, OTU 5) are consistent with model trees
¢ and d in Fig. 3, whereas configurations like (1, 1,
2,1, 2)and (1, 1, 2, 2, 1) are not. The probability
for the consistent configurations is about 50 times
higher than that for the inconsistent ones in model
tree ¢, whereas the former is only 3.4 times higher
than the latter in model tree d in the one-parameter
model. This clearly shows that model tree d is much
more difficult to reconstruct than model tree c,
though both trees have the same number of OTUs.

For the trend to have occurred, there seems to
be another reason that is intrinsic to the maximum
likelihood method. Let us consider an extreme sit-
uation of the tree in Fig. 1, in which all four exterior
branches grow infinitely long. In this case, formula
(1) takes its asymptotic form given by,

Lr = 7I'(S1,)7!'(52,)71'(53,)71'(54,), ( 1 O)

which is the likelihood at site r for the star topology
(Kimura 1983) with four OTUs and is no longer
dependent on tree topology, indicating that the total
likelihood in formula (6) is also free from tree to-
pology. For the star topology of t OTUSs with the
infinitely long exterior branches, L, is given by,

Lr = f_[ W(sir)’

i=1

(1n

which converges to zero as t approaches infinity, as
does the total likelihood. Thus, it is expected that
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the difference in the likelihood value between any
two tree topologies becomes less conspicuous as the
exterior branches grow longer. In this situation, it
is probable that by chance a tree topology more
different from the model tree has a higher likelihood
value than one less different.
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