
J Mol Evol (1989) 28:460--464 

Journal of 
Molecular Evolution 
(~) Springer-Verlag New York Inc. 1989 

On the Maximum Likelihood Method for Estimating Molecular Trees: 
Uniqueness of the Likelihood Point 

Kaoru Fukami I and Yoshio Tateno 2 

i Ochanomizu University, Ohtsuka, Tokyo 112, Japan 
2 National Institute of Genetics, Mishima 411, Japan 

Summary. Studies are carried out on the unique- 
ness of  the stationary point on the likelihood func- 
tion for estimating molecular phylogenetic trees, 
yielding proof  that there exists at most one station- 
ary point, i.e., the maximum point, in the parameter 
range for the one parameter model of  nucleotide 
substitution. The proof  is simple yet applicable to 
any type of  tree topology with an arbitrary number 
of  operational taxonomic units (OTUs). The proof  
ensures that any valid approximation algorithm be 
able to reach the unique maximum point under the 
conditions mentioned above. An algorithm devel- 
oped incorporating Newton's approximation meth- 
od is then compared with the conventional one by 
means of  computer simulation. The results show 
that the newly developed algorithm always requires 
less CPU time than the conventional one, whereas 
both algorithms lead to identical molecular phylo- 
genetic trees in accordance with the proof. 
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Introduction 

The maximum likelihood method for estimating 
molecular phylogenetic trees (or molecular trees, for 
short) from nucleic acid sequence data was devel- 
oped by Felsenstein (1981). Because this method 
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has a sound statistical basis, it has attracted the 
attention of  serious molecular evolutionists who are 
aware of  the fact that nucleotide substitution in evo- 
lution is a stochastic process. In particular, Hase- 
gawa and his colleagues (Hasegawa and Yano 1984; 
Hasegawa et al. 1985) have used this method ex- 
tensively in making statistical inferences about the 
t axonomic  relat ionships  o f  several eucaryot ic  
species. The computer program of  the method de- 
veloped and revised several times by the originator 
has been widely distributed among concerned sci- 
entists. 

In the method, Felsenstein introduced an itera- 
tion algorithm to search for the maximum point on 
a likelihood surface for a given range of  a parameter, 
as a specific case of  the general EM algorithm of  
Dempster et al. (1977). The algorithm, however, 
guarantees only that an iteration pass never goes 
downhill on the likelihood surface, and thus is ef- 
fective only in determining a stationary point. The 
question then is how many stationary points exist 
in that range: if  there is one, the stationary point is 
certainly the maximum point (see below); i f  there 
are two or more, the stationary point reached may 
not be the maximum point. Although this problem 
is implicit in the theoretical  background of  his 
method, Felsenstein (1981) did not pay much at- 
tention to it. 

In this paper, we prove that there is at most one 
stationary point on the likelihood surface under a 
certain condition for the case of  one parameter mod- 
el of  nucleotide substitution (the case of  no distinc- 
tion between transition and transversion). It is note- 
worthy that the proof  is simple yet independent of  
tree topology. This ensures that any algorithm to 
search for a stationary point should lead to the max- 
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Fig. 1. Molecular tree of four OTUs. Numbers 1 through 4 
refer to the four OTUs and 0 and 5 to interior nodes. The branch 
lengths, v~ (i = 1, 2, 3, 4, 5), are given in number of nucleotide 
substitutions. The tree is an unrooted one, in which the place of 
the common ancestor of the OTUs involved is left undetermined. 

i m u m  point  on a l ikel ihood surface in those c i rcum-  
stances. 

Number of Stationary Points  

Let us illustrate our  a rgument  using a molecular  tree 
of  4 operat ional  t axonomic  units (OTUs)  (Sokal and  
Sneath 1963) with two interior  nodes  0 and  5 as 
shown in Fig. 1. In the figure, Vk (k = 1, 2, 3, 4, 5) 
given alongside a branch  is its length in n u m b e r  o f  
nucleotide substi tutions.  Let  us suppose  that  a nu- 
cleotide sequence n sites long is avai lable  for each 
O T U  in the tree. Let  us also arbi t rar i ly  designate 
node  0 as the p ivota l  point,  f rom which the likeli- 
hood  compu ta t ion  begins. Then  the l ikel ihood o f  
the tree at one o f  the n sites, say r, is given by, 

L~ = ~ ~ ~r(Sor)P(so~, s,r; Vl)P(Sor, S2r; V2) 
fOr SSr 

X P(Sor , S5r; vs)P(S5r , S3r; V3) 

X P(ssr , S4r; V4) , (1) 

in which sir is the state (base) o f  site r at  O T U  (or 
node) i (Felsenstein 1981). Because the states o f  in- 
ter ior  nodes 0 and 5 are unknown,  Lr is defined by  
taking the sum over  all possible base ass ignments  
to those inter ior  nodes  as s h o w n  in fo rmula  (1). In 
the formula,  ~'(Sor) is the pr ior  probabi l i ty  o f  taking 
state Sot at node 0, and  P(Sir , Sir; Vk) is the t ransi t ion 
probabi l i ty  that  state Sir will be replaced by  state sir 
after Vk subst i tut ions occur. No te  that  Vk is the pa-  
r ame te r  that  we are to es t imate  by  maximiz ing  the 
likelihood. 

We here make  no dist inction between t ransi t ion 
and t ransversion,  and  assume that  the subst i tut ion 
follows a Poisson process with pa rame te r  Vk. Then  
P(sir, sj~; Vk) is given by, 

P(sir, sir; Vk) = e-vk6(si~, sj~) 
+ (I - e-Vk)Tr(Sjr), (2) 
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where 6(si, Sir) is Kronecher ' s  delta function,  whieh 
is 0 for sir ~ sir and  1 for sir = sir, and  ~-(sjr) for j 
0 is the probabi l i ty  o f  replacing sir by  sir on the 
condi t ion that  sir be replaced. The  condi t ional  p rob-  
abili ty 7r(sjr) is set to the constant  at any  O T U  or 
node  on the a s sumpt ion  that  the base compos i t ion  
at any site at any  O T U  or node be in evolu t ionary  
steady state. 

I f  we focus our  a rgument  on branch  v5 in the tree, 
and  substitute fo rmula  (2) into fo rmula  (1), we ob- 
tain a simplified expression for  Lg 

Lr = Arq5 + Brps, (3) 

where qs = e -vs, P5 = 1 - e -vs, and  

Ar =  (Sor)e(Sor, s,r; v 0  
S0r S5r 

• P(Sor, S2r; v2)P(ssr, s3r; V3) 

x P(ss ,  s,r; va)f(So, ss~), (4) 

and  

Br -- ~ ~ 7r(Sor)Tr(S5r)P(Sor, Sir; Vl) 
SOr SSr 

x P(so~, s2~; v2) 

X P ( s s r  , S3r; v 3 ) P ( S s r  , S4r; V4) , ( 5 )  

(Felsenstein 1981). I f  we assume here that  nucleo- 
tide subst i tut ion at each site occurs independent ly  
of  the rcst, we can obta in  easily the total l ikelihood, 
L, as the product  o f  Lr'S for all n sites given by, 

n 

L = l-[(Arq5 + Brp5). (6) 
r=l  

Parame te r  P5 or q5 (= I - Ps) is then es t imated  as 
that  which max imizes  L, and  v5 is ob ta ined  accord- 
ingly. Technically,  P5 is c o m p u t e d  as the part icular  
point  at which the first der iva t ive  o f  1 n L with re- 
spect to Ps is zero, and  the i teration algori thm men-  
t ioned earlier is used for this purpose.  

Because formula  (6) is at mos t  an n-th order  poly-  
nomia l  in Ps, equat ion  L(ps) = 0 has at mos t  n real 
roots,  Ad(Ar - Br) (r = 1, 2 . . . . .  n). Accordingly,  
equat ion dL(ps)/dp5 = 0 harbors  at m o s t  (n - 1) 
real roots, each o f  which exists between two con-  
secutive solutions o f  L(ps) = 0 in descending (or 
ascending) order  o f  magnitude.  I t  is no ted  that  this 
also holds true for the case of  mul t ip le  roots  o f  L(p5) 
= 0, in which the root  merges into that  o f  dL(ps)/  
dp5 = 0. Thus,  the p rob lem o f  the n u m b e r  o f  the 
s ta t ionary points can be reduced to the re la t ionship 
between the root  Ad(Ar - Br) and  a pair  o f  Ar and  
B r in the pa rame te r  range at each o f  the n sites. 
Depending  on the range taken  by  Ar and  B ,  the root  
falls into four separate  cases that  are mutua l ly  ex- 
clusive and  comprehens ive :  (1) Ar > 0, Br > 0, and  
Ar § Br; (2) Ar > 0, Br > 0, and  Ar = Br; (3) Ar = 
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0 and Br > 0; and (4) mr = Br = 0. It is needless to 
ment ion  that  L(p~) is always nonnegat ive in the pa- 
rameter  range for each o f  the four cases. 

In the first case, which occurs most  frequently,  
the root  can be rewritten as 1/[1 - (Br/Ar)]. Thus,  
the root  always lies outside the parameter  range [0, 
1] as shown in Fig. 2a. In the second case, Lr(p5) 
becomes independent  o f  ps, and the root  does not  
exist for  site r. The  orders o f  L(p~) and dL(ps)/dp5 
are consequently reduced. In the third case, Ps = 0 
is a root  o f  L(Ps) = 0. I f  the root  is a multiple root,  
it is also a root  ofdL(ps)/dp5 = 0. In the fourth case, 
the root  is indefinite, making it impossible to obtain 
the unique stat ionary point. Although the last three 
cases are extreme and rare, they cannot  be neglected 
in the theoretical considerat ion o f  the m a x i m u m  
likelihood method,  in particular when implement-  
ing the i terat ion algorithm. 

F rom the above  characterizat ion o f  the root  o f  
L(ps) -- 0, we see that there are no roots in the 
parameter  range [0, I] except for  P5 = 0. Thus,  there 
can be at most  one stat ionary point  excepting P5 = 
0, and this must  be the m a x i m u m  point  in the range. 
Even i f  P5 = 0 is a stat ionary point  as in the third 
case, it is not  the m a x i m u m  point,  because L(ps) 
must  be nonnegat ive in the parameter  range. As can 
be deduced f rom the argument  in the first case, there 
is at mos t  one stat ionary point  besides P5 = 0, which 
is the m a x i m u m  point  in the range (see Fig. 2b). I f  
L(ps) is a monotonica l ly  increasing or decreasing 
function in the range, there is, strictly speaking, no 
stat ionary point  there. I f  this is the case, p5 = 1 or 
P5 = 0 is taken as the substitute for the m a x i m u m  
point, according to whether  L(Ps) is monotonica l ly  
increasing or decreasing (see Fig. 2a). 

The aforement ioned discussion is shown to hold 
for each o f  the other  branches,  vt, v2, v3, and v4. 
Moreover ,  it can be extended readily to any type o f  
tree topology with an arbi t rary number  o f  OTUs,  
because we can always focus our  at tent ion on one 
branch at a t ime and carry out  the same analysis on 
it. 

Discussion 

The  problem of  the number  of  stat ionary points in 
the parameter  range possibly could be solved by 
Strum's  theorem in algebra, because equation,  dln 
L(pi)/dpi = 0 for branch i, could be considered 
equivalent  to an algebraic equat ion o f  the (n - 1)th 
order  or less. In practice, however,  we had difficulty 
in applying the theorem to our  problem. At  first 
glance, L(pi) = 0 looks like an n-th order  algebraic 
equat ion with coefficients o f  Ar's and Br'S. Unfor-  
tunately, that  is not  the case; those "coefficients" 
are dependent  upon Pi, as formulas (4) and (5) show. 
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Fig. 2. Likelihood functions and the location of the maximum 
likelihood point in the parameter range, a Three likelihood func- 
tions are shown for the case that there exists at most one sta- 
tionary point in the range. The maximum likelihood point or its 
substitute is shown by a dot. The broken line and chain line are 
monotonically increasing and decreasing functions, respectively, 
in which the maximum likelihood point is substituted by one for 
the former and by zero for the latter, h Likelihood function with 
two stationary points is shown for the case of the multiple root. 
Because the function is nonnegative in the range, P5 = 0 is the 
minimal point as shown by an open circle, and the other is the 
maximum point as marked with a dot. 

Namely,  Ar's and Br's are changed each t ime in the 
i teration pass and settled as the pass converges to 
the m a x i m u m  point. It is still possible to use the 
theorem for examinat ion  o f  the n u m b er  o f  station- 
ary points, because the range o f  coefficients can be 
de termined  as was done in the present study. Com-  
putat ion o f  the coefficients is, however,  so compli-  
cated that  it prevents  us f rom gaining insight into 
the relationship between the coefficients and the 
n u m b er  o f  stat ionary points by the use o f  Strum's  
theorem. This approach is, in any event,  more  com- 
plicated than the present p roo f  in the one-parameter  
case. 

Because the p roo f  ensures that any valid approx-  
imat ion algori thm be able to reach the unique max- 
im u m  point,  it is worthwhile to develop an algo- 
r i thm that works bet ter  than Felsenstein's. With  this 
intent ion in mind,  we incorporated Newton ' s  pop- 
ular approximat ion  algori thm to obtain the maxi-  
m u m  point,  because this algori thm is bel ieved to 
quickly converge to the solution, in particular, when 
the initial value given is close to the solution. Then,  
to examine the performance o f  our  algori thm in 
compar ison  with Felsenstein's, a compute r  simu- 
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Fig. 3. Four  mode l  molecular  trees used  in the  c o m p u t e r  s im-  
ulation. Trees  a and  b are o f  four  O T U s ,  and  c and  d o f  five 
O T U s .  The  value  given alongside a b ranch  is its length in n u m b e r  
o fnuc leo t ide  subst i tu t ions .  T he  value  was used  as the  pa rame te r  
o f  a Poisson  dis t r ibut ion f rom which  the  actual  n u m b e r  o f  nu-  
cleotide subs t i tu t ions  was sampled .  

lation was conducted.  The  model  and me thod  o f  the 
simulat ion were the same as those o f  Ta teno  et al. 
(1982) except for the model  tree and the number  o f  
replications. The  model  trees used in the present 
study are shown in Fig. 3, whereas the number  o f  
replications was set to be 10 for each model  tree. 
The  results show that,  as expected f rom the proof,  
Felsenstein's and our  algorithms constructed the 
identical tree in every replication for each model  
tree. Our  algorithm, however,  always took  less CP U  
time than Felsenstein's to reach the m a x i m u m  point, 
as shown in Table  1. In particular, when the branch 
lengths o f  the model  tree were long as in model  trees 
b and d, the t ime required by ours was about  hal f  
that  by Felsenstein's. 

Though  the main  objective o f  the present paper  
is to discuss the number  o f  s tat ionary points, it is 
also o f  interest to see how the m a x i m u m  likelihood 
me thod  performs in the construct ion o f  molecular  
trees. General  discussion on this subject is evident ly 
difficult, but  we can make  inference into the subject 
to some extent,  using the results o f  the aforemen-  
t ioned simulat ion study. 

In the simulation study we also obtained the mean 
and standard deviat ion o f  the distort ion index d r  
(Robinson and Foulds 1981; Ta teno  et al. 1982), 
which is a measure taking larger values as the to- 
pology o f  a constructed tree deviates further f rom 
the model  tree. For  a model  tree with t OTUs,  the 
value o f  dT ranges f rom 0, for  the perfect match  o f  
the two topologies, to 2(t - 3) for  the least possible 
match  in the unroo ted  tree. The  dT values were 0.0 
+_ 0.0, 0.2 _+ 0.6, 0.6 _+ 1.0, and 2.6 _ 1.6 for model  
trees a, b, c, and d, respectively. Though 10 repli- 
cations is not  enough for a rigorous statistical anal- 
ysis, the results show a t rend that  the performance 

Table  1. Mean  C P U  t ime  in seconds  c o n s u m e d  by the  two 
a lgor i thms for e s t ima t ing  each o f  the  four  mode l  trees 

Model  Algor i thm" 

tree Felsens te in ' s  New 

a 0.27 _+ 0.05 0.26 _+ 0.06 
b 1.35 _ 0.51 0.55 _+ 0.06 
c 16.64 + 4.28 13.71 + 3.37 
d 63.51 _+ 12.35 31.17 _+ 2.47 

"Felsenstein's refers to the iteration algorithm developed by Fel- 
senstein (1981) and New to one devised in this paper. Number 
of replications was 10 for each model tree 

o f  the me thod  declines as branch lengths are ex- 
tended in both  cases o f  four and five OTUs.  

The  trend can be explained first by considering 
the arrangement  o f  the nucleotide sequences in 
question. Saitou and Nei (1986) studied phyloge- 
netic relationships o f  primates using the nucleotide 
configuration, which is a base array at a site in a set 
ofnucleot ide  sequences. In the m a x i m u m  likelihood 
method,  the nucleotide configuration also plays an 
impor tan t  role in differentiating one topology f rom 
others. For  example,  such configurations as (I ,  1, 1, 
2, 2) and (2, 2, 1, 1, 1), in which 1 and 2 are any 
pair of  different bases, for (O TU  1, O T U  2, O T U  
3, O T U  4, O T U  5) are consistent with model  trees 
c and d in Fig. 3, whereas configurations like (1, 1, 
2, 1, 2) and (1, 1, 2, 2, 1) are not. The  probabil i ty 
for the consistent configurations is about  50 t imes 
higher than that  for the inconsistent  ones in model  
tree c, whereas the fo rmer  is only 3.4 t imes higher 
than the latter in model  tree d in the one-parameter  
model.  This clearly shows that  model  tree d is much  
more  difficult to reconstruct  than model  tree c, 
though both  trees have the same n u m b er  o f  OTUs .  

For  the trend to have occurred, there seems to 
be another  reason that  is intrinsic to the m a x i m u m  
likelihood method.  Let  us consider  an ext reme sit- 
uat ion o f  the tree in Fig. 1, in which all four exterior  
branches grow infinitely long. In this case, formula 
(1) takes its asymptot ic  form given by, 

L r = 7l'(Slr)'/I'(S2r)Tl'(S3r)TT(S4r), ( 1 0 )  

which is the l ikelihood at site r for the star topology 
(Kimura  1983) with four O TU s  and is no longer 
dependent  on tree topology, indicating that  the total 
l ikelihood in formula  (6) is also free f rom tree to- 
pology. For  the star topology o f  t O T U s  with the 
infinitely long exterior branches,  Lr is given by, 

t 

L~ = 1"I 7r(si~), (11) 
i - I  

which converges to zero as t approaches infinity, as 
does the total l ikelihood. Thus,  it is expected that  
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the difference in the l ikelihood value between any 
two tree topologies becomes less conspicuous as the 
exterior branches grow longer. In this situation, it 
is probable that  by chance a tree topology more  
different f rom the model  tree has a higher l ikelihood 
value than one less different. 
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