A.L. MARTIN DEL POZZO

Instituto de Geofísica, Universidad Autónoma de Mexico, Ciudad Universitaria, México 20, D.F. 04510 Mexico

ABSTRACT

The variation in the activity patterns of the Chichinautzin volcanic rocks is discussed. This sequence of lavas and pyroclastic deposits is located in the central part of the Mexican Volcanic Belt, directly south of Mexico City, and is typical of its Quaternary monogenetic vulcanism.

One-hundred and fourty-six volcanoes and their deposits covering 952 km² were mapped. Cone density is 0.15 km² with heights ranging from to 315 m and crater diameters from 50 to 750 m. Ratios of cone height/diameter decreased from 0.20 to 0.12 with age. Basal diameters varied from 0.1 km to 2 km.

Lavas are mainly blocky andesites but some dacites and basalts were found. Lengths of flows range from 1.0 to 21.5 km with heights of 0.5 to 300 m and aspect rations of 21.4 to 350.

Three types of volcanic structures are found in the area: scoria cones, lavas cones and thick flows lacking a cone. Pyroclastic deposits are basically Strombolian although some deposits were produced by more violent activity and lava cones seem to have formed by activity transitional to Hawaiian-type vulcanism.

Therre is a dominant E-W trend shown mainly by the orientation of cone clusters.

The Chichinautzin volcanic centers are compared to the monogenetic volcanoes of the Toluca and Paricutin areas which are similar.

INTRODUCTION

Monogenetic volcanisn is a poorly understood subject and the Mexican Volcanic Belt (MVB) is rich in this type of activity. The evolution of the Chichinautzin Formation, a sequence of lavas and tephra located in the central part of the MVB, is typical of Quaternary monogenetic volcanism in the MVB. The purpose of this paper is to contribute to

Bull. Volcanol., Vol. 45-1, 1982

the understanding of the eruptive style through the geometry, products and distribution of cones. Special attention is given to this area because of its proximity to heavily populated areas.

The mapped area covers 952 km^2 directly south of México City (19° 15 N) and north of Cuernavaca (19° N). To the east (99° 00') and west (99° 20') Tertiary volcanic rocks limit the Chichinautzin formation.

Volcanic stratigraphy has always been uncertain because different volcanic sequences may be lithologically similar while individual flow units vary considerably within the same flow. Interdigitation of lavas and tephra also pose stratigraphic problems.

However, the use of morphological parameters for the subdivision of volcanic units may provide a rough guide to age. The morphological and radiometric data are listed in Table 1. Characteristic samples of the stratigraphic sequence were analysed petrographically.

Field studies included a detailed description and sampling of cones, lavas and pyroclastic deposits of the different units of the Chichinautzin Formation. Tephra size distribution was obtained through sieving.

Heights, basal and crater diameter and radii (horizontal distance from the rim to the base of cone) for 146 cones were determined (Tables 2, 3, 4, 5 and 6) from the topographic maps and field measurements. The area, volume, and aspect ratio of the lavas were also calculated (Tables 7 and 8).

The Chichinautzin Formation lies unconformably on older Tertiary volvanic rocks. The thickness of the formation

was estimated by FRIES (1960) in 1800 m. since it was obtained from the difference This should be considered an upper limit, in elevation between the Valley of Cuer-

TABLE $1 - G$	eomorphological	parameters	used	the	stratigraphy	of	the	area.
INDEE OF	comorphotogica	parameters	uocu	onc	Suaugraphy	01	mic.	arca.

Age Unit	Geomorphological parameters	Age (year	rs)*
Hv Holocene Volcanics	Thin pockets of soil -Uniform cover of short trees and shrubs All flow structures perfectly preserved -Individual flow-units mappable -Not cultivated ("pedregal").	8,44	0 <u>+</u>	70
Plv4 Pleistocene Volcanics 4	-Individual flow-units have mar- ked levees with thin tree cover -Centers of flows have thin soil cover	19,53	0 <u>+</u>	160
Plv3 Pleistocene Volcanics 3	-Thin impersistent soil cover -All pressure ridges visible -Outlines of flows very marked -Little erosion of terminal cliffs	21,86	0 <u>+</u>	380
Plv2 Pleistocene Volcanics 2	-Very distinct flow margins and terminal cliffs -Surface of flow covered with soil (<2m to 3m) -Rare pressure ridges protrude and indicate flow direction	30,50	0 <u>+</u>	1,160
Plv1 Pleistocene Volcanics 1	-Rounded lobate outlines of low margins only -Rounded, eroded and subdued te <u>r</u> minal cliffs -No internal flow features -Thick soil cover (<4m) -Intensively cultivated	38,59	0 <u>+</u>	3,210

* Based on Bloomfield's C_{14} ages (1975).

MONOGENETIC VULCANISM IN SIERRA CHICHINAUTZIN, MEXICO

Crater Diameter/ Basal Diameter Heith Radius Diameter Diameter H/ Nате r (m) r/H Diameter Unit of the base of the cone of crater 11 (m) rim 138* Mezontepec Plvl 100 300 3.0 100 800 .12 .12 .50 .12 139 Mezontepecito Plvl 50 100 2.0 200 400 140 3.0 250 800 .12 . 31 Acopiaxco I Plvl 100 300 .30 .40 141 200 200 1.0 150 500 Acopiaxco II Plv1 .13 . 46 200 2.0 350 750 142 El Guarda Plv1 100 . 20 .24 Plv1 250 400 1.6 300 1250 143 Oyameyo .10 300 500 .60 Mechatepec Plvl 50 150 3.0 144 250 1250 .20 . 20 500 1.8 Plvl 250 145 Quepil I . 24 .24 Quepil II Plvl 300 500 1.8 300 1250 146

TABLE 2 - Geomorphological parameters of the Plv1 cones.

* Number of volcano based on relative age.

TABLE 3 - Geomorphological parameters of the Plv2 cones.

	X a pe v	thu i t	Beight R (#)	Radio 8 En	15 (1 r/11	Diameter of crater rim	Diameter of the base of the cone	ll/ Blameter	Crater Diameter/ Rasal Diameter
127	Zorillo	Plv2	50	-	-	-	1000	.05	-
128	Malacatepetl I	Plv2	50	250	5.0	200	600	.08	. 33
129	Malacatepetl II	P1v2	200	500	2.5	350	1200	.16	. 29
130	Muñeco	Plv2	150	550	3.6	200	1500	.10	.13
131	Muñequito	Plv2	100	250	2.5	200	750	.13	. 26
132	Malinale	Plv2	100	250	2.5	275	750	.13	. 36
133	Malinalito I	Plv2	40	100	2.5	200	500	. 08	. 40
134	Malinalito II	Plv2	-	75	-	150	300	-	.50
135	Cuauzontle	Plv2	50	100	2.0	250	500	.10	.50
136	Toxtepec	Plv2	20	50	2.5	200	300	- 06	.66
137	Cocinas	Plv2	150	-	~	150	600	. 25	. 25

TABLE 4 - Geomorphological parameters of the Plv3 cones.

	Xame	Unit	lieight II (m)	Radiu r (N	18 11 17/34	Diameter of crater rim	Diameter of the base of the cone	N/ Diameter	Crater Diameter Basul Diameter
82	Yololics	P1v3	190	300	2.0	275	750	. 20	. 14
83	Yololicita	P1v3	20	50	2.5	125	250	. 06	. 50
84	Tezontle	P 1v3	225	300	1.3	275	1000	. 22	. 27
85	Baices I	91v3	130	300	2.3	300	1000	.13	. 30
8t	Maices II	Plv3	100	300	2.0	150	700	.14	. 21
87	Maíces III	P1 v3	100	300	3.0	200	700	.14	. 28
88	Raíces IV	Plv3	150	250	1.6	250	900	. 16	. 26
89	Cajete	Plv3	140	300	2.1	350	1000	.14	. 35
90	Tepeysyualco I	Plvj	50	-	-	-	650	. 08	-
91	Tepeyeyusico II	Plv3	40	100	2.5	400	€00	. DE	. 6,6
92	Agus Grande	Plvj	50	200	4.0	250	500	.10	. 50
93	Tetzalcoatl Grande	Plv3	100	300	3.0	200	800	.12	.25
94	Tetzalcoatl I	P1v3	20	100	5.0	150	300	. Ot	.50
95	Tetzalcoatl II	Plv3	20	100	5.0	150	400	. 05	. 37
94	Tetralcoati III	Piv J	•*1	125	e.3	100	300	. OE	. 50
97	Tulmingui	P1+3	150	350	2.3	350	1100	.14	. 32
98	Tulmiaqui II	Plv J	20	100	5.0	350	500	. 04	.70
99	Tuxtepec	Piv 3	100	150	1.5	300	€ 5 0	. 15	.46
100	Teconzi	Plv3	50	200	4.0	150	(00	. 06	. 25
101	Teconzita	F1v3	50	150	3.0	100	400	.12	. 25
102	Pájaros	P1v3	-	-	-	250	-	-	-
103	Pajaritos	Plv3	100	-	•	350	-	-	-
104	Jaras Verdes	Plv3	-	-	-	300	-	-	•
105	Lobos	Plv3	30	100	3.3	100	350	.09	. 20
106	Çadenitê I	Plv3	50	100	2.0	300	450	. 11	.66
107	Cadenita II	Plv3	50	100	z.0	200	450	.11	. 44
108	Cădenă	P1v3	200	+ 00	4.0	300	1000	.12	.19
109	Tuștepec	P1v3	100	200	2.0	300	÷00	.1e	.50
110	San Miguel	P1v3	50	150	3.0	150	400	.12	. 37
111	Sistune I	P1v3	50	150	3.0	250	6 00	.08	.42
112	Xistune II	F1v J	75	250	3.)	175	450	. 1e	. 39
113	Nistune III	P1v3	20	50	2.5	200	250	. 08	.80
114	Xistune IV	P1v3	10	50	5.0	150	250	. 04	.60
115	Tlalocito	P1v3	80	150	1.9	275	500	. 16	.55
111	Faional	P1v3	100	350	3.5	350	750	.13	,44
117	Fanza	Plv J	100	250	2.5	400	1000	. 10	- 40
118	Pancite	Plv 3	40	200	5.0	200	500	. 08	. 40
119	Cima 1	riv)	40	200	5.0	250	ŧ 00	. Of	. 42
120	Cime II	riv)	30	100	3.3	150	400	. 07	. 30
121	cautillo	r1x3	RØ	150	1.9	÷00	800	.10	.75
122	Cime III	F1v3	20	50	2.5	150	350	. 0e	.43
123	Cimi IV	Pix 3	20	50	2.5	250	400	. 05	.62
124	Camilia V	Plv J	10	-	-	-	250	-	-
125	Cime VI	Plv3	10	-	-	-	100	.10	-
121	Cime VII	Plv)	30	-	-	-	200	. 15	•

navaca and the Chichinautzin volcano and does not consider the irregular underlying topography.

BLOMFIELD (1975) obtained C^{14} ages between 9.4 and 3.5 k.y. for the Chichinautzin Formation west of the area studied. LIBBY (1951) dated the youngest Chichinautzin volcanic rocks, the Xitle flows, at 2,400 years, also using radiocarbon dating. All the rocks showed

Table 5 –	Geomorphological	parameters	of	the	Plv4	cones.
-----------	------------------	------------	----	-----	------	--------

	Xanic	Unit	Height H (m)	Randau rim	s 1 r/fl	Diametei of cater rim	Diamter of the base of the cone	117 Dyameter	Crater Diameter/ Basal Diameter
51	Tres Cumbres I	Plv4	250	400	1.6	175	1500	.16	.12
52	Tres Cumbres II	Plv4	250	500	2.0	500	1250	. 20	. 40
53	Oclayuca	Plv4	120	850	7.0	100	1600	.07	. 0 (
54	El Hoyo	Plv4	50	100	2.0	300	500	.10	. 60
55	Tepetl III	Plv4	50	300	٤.0	200	400	. 1 2	. 50
5£	Quimixtepec	Plv4	€5	300	4.4	275	1.00	.11	.41 a .50
57	Los Otates I	Plv4	100	250	2.5	275	(00	.16	. 45
58	Los Otates II	Plv4	50	250	5	250	£ 00	. 08	. 42
59	Los Otates III	Plv4	-	100	-	100	€00	-	. 16
ŧ٥	Yecahuzzac	Plv4	100	300	3	375	800	. 1 2	. 47
εı	Cuiloyo	Plv4	100	-	-	-	500	. 20	-
€2	Cuiloyito	Plv4	80	250	9.1	175	400	. 20	. 44
£3	Ocotecatl I	Plv4	150	300	2.0	350	1000	.15	. 35
€4	Ocotecatl II	P1v4	70	200	2.8	500	800	. 09	. 6 2
£S	Piripitillo	Plv4	40	125	3.1	300	500	, 08	. € 0
EE	Chinguiriteria I	Plv4	50	250	5.0	125	500	.10	. 25
£ 7	Chinguiriteria II	Plv4	(0	200	3.3	200	500	.12	. 40
٤B	San Bartolo	Plv4	70	200	2.8	200	750	.90	. 26
€9	San Bartolito	Plv4	50	250	5.0	250	1000	. 20	. 25
70	La Comalera I	Plv4	170	375	2.2	300	1500	.11	. 20
71	La Comalera II	Plv4	20	-	-	200	250	.08	.80
72	La Comalera III	Plv4	70	-	-	250	500	.14	. 50
73	Cuautzin I	Plv4	250	500	2.0	750	2000	.12	. 37
74	Cumutzin II	Plv4	100	400	4.0	300	1250	. 08	. 24
75	Cuautzin III	Plv4	70	150	2.1	100	400	.17	. 25
7£	Cuautzin IV	P1v4	50	-	-	200	500	.10	. 40
77	Тевоуо	Plv4	150	300	2.0	350	1000	. 15	. 35
78	Tesoyito	Plv4	20	100	5.0	250	300	.0£	. 83
7 9	Teuctli I	Plv4	100	200	2.0	250	750	.13	
80	Teuctli II	Plv4	50	100	2.0	200	250	. 20	. 80
61	Teuctii III	P1+4	15	100	£.€	100	300	. 05	. 33

	h & a e	Unit	lleight If (m)	Radius r (m)	r/4	Diameter of crater rim	Diameter of the base of the cone	ll. Planeter	crater Diaceter Nasal Diameter
	Zitle	- m	100	250	2.5	350	750	·	.44
2	Xicontle	Hv.	70	300	3.8	150	500	.14	. 30
د د	Chichinautain	HV	100	225	3.2	250	750	.13	. 33
4	ChichinAutain II	18 1 1	15	75	5.0	250	400	. 10	.62
5	Pelomito	*	100	200	2.0	390	700	.14	. 50
•	Palomito II	184	30	75	2.5	100	250	.12	. 40
,	Caballito	19v	125	200	1.4	300	750	. 16	.40
•	Caballito II	Her.	50	150	3.0	125	600	.12	. 31
,	Matecs	H**	80	175	2.2	150	500	.16	. 30
10	Junentos	18v	150	250	2.0	300	750	. 20	. 40
11	Los Cardos I	m.	150	250	1.6	150	600	. 25	. 25
13	Los Cardos 11	HV	e0	150	2.5	150	650	. 09	. 23
13	Los Cardos III	Hv	150	200	1.1	150	-	•	-
14	Los Cardos IV	Hv	60	150	2.5	150	500	.12	. 10
15	Los Cardos V	Hv	100	200	2.0	150	\$00	. 20	. 30
16	Thequillo	Htv	200	61 7	cono	-	1500	.13	-
17	Meilotito	Hv	125	200	1.6	100	750	. 16	- 40
18	Muilate	Ħv	250	400	1.6	250	1000	. 25	. 25
19	Chaichibuites	Hv	315	700	2.2	350	1500	. 21	. 23
20	empulin	**	150	200	1.3	250	650	. 23	. 38
21	Eloumulco	H-	125		cano	٠	1200	. 10	-
22	Tetequillo	Hv	200	a 10	cono	-	1250	.16	-
23	Tioca	Hv	90	100,150	2	250	750	. 1 2	. 11
24	Tsempoli	×	65	150	1.0	250	600	. 10	. 416
25	Tepetlapan	Hv	40	100	2.5	300	500	. 0B	. 60
26	Timmeneco	Htv	100	esn c	ráter	-	1100	. 09	-
27	Tioquitas I	HV	50	100	2.0	250	400	.12	.+2
29	Tioquitas II	Hv	50	100	2.0	250	400	.12	. 6 2
29	Tincualicii (itv	40	100	2.5	200	400	.10	. 50
30	Tiecuailcii II	÷	30	100	3.3	125	250	.12	. 50
31	Pelsdo	He	150	300	3.0	425	1100	.14	. € 2
32	Хохосо1	88v	40	75	1.9	250	400	. 10	. 38
33	Cerro del Agua II	Hv	~40	•	-	100	1000	.04	, 30
34	Tieloc I	**	150	300	2.0	~ 150	1000	. 15	. 35
35	Tieloc II	Hv	80	250	3.1	250	750	.11	. 33
36	Tieloc III	Hv	•	40	•	250	-	-	-
37	Tisloc IV	Hv	-	•	-	250	-	-	-
30	Tisloc V	Hv	15	50	5.0	50	250	.06	. 20
39	Tieloc VI	Hu	40	100	2.5	150	750	.05	. 20
40	Cerro del Agus I	Hv	100	150	1.5	300	750	.13	. 40
41	Deusacéyo 1	HV	50	100	2.0	125	500	. 10	. 25
42	Ocusacayo 11	184	50	150	3.0	125	400	.12	. 31
43	Ocusacayo III	Hv	50	150	3.0	150	500	.10	. 10
44	Ocusscayo IV	H **	20	100	5.0	199	400	. 05	. 25
45	Suchior Grande	*	150	400	2.4	450	750	. 20	.10
44	Suchioc Chico	H	10	200	ŧ.ŧ	250	500	. 04	.50
47	Ololica	an-	120	350	2.9	350	1000	. 12	. 35
48	Cadenita III	¥.	30	100	5.0	300	~ 500	. OL	0
49	Tepetl I	Hv	30	100	3.3	250	500	. 04	. 50
50	Tepeti II	HV:	80	150	1.9	250	550	. 12	.50

TABLE 6 - Geomorphological parameters of the Hv cones.

	× • • •	Maximum height of Flow (m)	Avorage thickness (m)	Maximum length (Km)	Aspect, ratio LengthAcidth	Width	Arça (Km²)	Votume (Km ³)	Unit
1	Xitle		40	13.5	337.5	· -	75-80	3.2	 Hv
3	Chichiaautsin	100	50 vær	ía	220				
5 6 7 8	Palomito Palomito II Caballito Conjun Caballito II	to 40	40	14	350		25	1.0	Bv
9	Manteca	-	-	1.0	-		1.0	-	Ħv
10	Juneato	50	50	2.75	55		3.0	.15	Hiv
16	Tubaquillo	200	80	6.0	754	1.5	9.0	.72	Rv
17	La Gloria	250	100	21.5	215	1.5	32	3.2	Bv
17	Builotito	150	80	2.0	25	1.0	1.5	.12	Blv
11 12 13 14 15	Cardos I Cardos II Cardos III Conjunt Cardos IV Cardos V	0	50	6.0	120	2.5	15	.75	Βv
21	Xicomulco		75	4.5,1.0	60	4.5+	1.5 6	. 45	Hv
22	Tetequillo	300	100	3.5	35	5.25		.52	Hv
23	Tioca	70	70	1.5	21.4	3.0		. 21	Ħ٧
24	Trempoli		20	2.0	100	1.5		.03	Hv
25	Tepetlapan		20	2.0	100	1.5		.03	Hv
29	Tlecualleli	50	5 0	1.75	35	3.0		.15	Hv
	Zona Xicomulco conj	unto	70			30		2.1	Hv
31	Pelado		30	£.5	216	€3.5		1.9	Hv
33 34 35 36 37 38	flaloc I Tlaloc II flaloc III conj flaloc IV flaloc V flaloc V flaloc VI	unto	40	7.0	175	96		4.8	Hv
41 42 43 44	Ocusacayo I Ocusacayo II conj Ocusacayo III Ocusacayo IV	unto	35	7.0	200	14		. 49	Hv
45	Suchioc Grande		20	4.5	225	14		. 28	Hv
47	Ololica		20	2.0	100	3.0		. 0E	Hv
49	Tepetl I		30	3.0	100	3.0		. 09	Ηv
50	Tepetl II		50	1.5	30	3.0		.075	Hhu

TABLE 7 - Dimensions and volumes of the Plv1, Plv2, Plv3 and Plv4 lavas.

normal magnetic polarity (MOOSER *et al.*, 1974), which places a lower limit of 700,000 on the Chichinautzin Formation.

The lavas and pyroclastic deposits are composed of oxihornblende andesites and dacites, hyperstene andesites and olivineaugite basaltic andesites and basalts.

PREVIOUS STUDIES

The first geological study in the area was carried out by HUMBOLDT (1826). In 1890, FELIX and LENK published chemical analysis of some of these volcanic rocks. Further research was reported by ORDOÑEZ (1890, 1895); WITTICH and WAITZ (1910), WITTICH (1917), LIBBY (1951), SCHMITTER (1953), and RZEDOWSKI (1954).

FRIES (1960) named the Quaternary volcanic rocks Chichinautzin Group after rocks he studied south of México City. It should be pointed out that according to article 9 of the Stratigraphic Code, Fries' Chichinautzin Group should be classified as a Formation since it has not been formally subdivided. SCHLAEPFER'S studies (1968) in the same region resulted in a map of region on a scale (1:100.000).

LUGO (1970) made detailed petrologic and geomorphological studies of the northwestern part of the area. BLOOM-FIELD (1973, 1975) carried out petrographic, geochemical and stratigraphic studies over an area of 700 km² which included the outcrops of the Chichinautzin Formation to the west of Mexico City in the Valley of Toluca.

GUNN and MOOSER (1971), NEGENDANK (1972, 1976) and RICHTER and NEGEN-DANK (1976) examined the chemical

TABLE 8 - Dimensions and volumes of the Hv lavas.

•	Xame	Maximum height of flow (m)	Average thickness (m)	Maximum Tength (Km)	Aspect ratio Length/Width	Kidth	Arça Dur)	Verlage (Kn ³)	141.11
51 52	Tres Cumbres conjunto Tres Cumbritas		50	10	200		50	2.5	plv4
53	Oclayuca		50	35	70		70	. 35	Plv4
5€ 57 58 59	Quimixtepec Los Otatem I conjunto Los Otatem II Los Otatem III		50	10	200		60	j	piv4
73 74 75 76	Cuautzin I Cuautzin II conjunto Cuautzin III Cuautzin IV		80	5	£25		40	3.2	Plv4
77	Tesoyo		-	1.2	-		-	3.75	Plv4
79	Teuctli I		-	4	<u>-</u>		-	3E	Plv4
80	Teuctli II		40	2	50		2	. OB	Plv4
82	Yololica	50	50	10	200		25	1.25	Plv3
92	Agua Grande	80	30	6	200	1.15	6.9	. 207	Plv]
93	Tetzacoatl Grande	-	10	1.5	150		3	.03	Pìv J
100	Teconzi		10	1.5	150		2	. 02	Plv3
103	Pájaros II	-	-	1.0	-		1.5	-	P1v3
104	Jaras Verdes	-	-	3,0	-		£.2	5 -	Plv3
108	Cadena	-	-	2.5	+		2	-	Plv]
127	2011110	50	40	2.75	68.7	2	4	.16	Plv2
129	Malacatepet1 II	-	-	2.0	-		5.5	-	P1v2
132	Malinale	-	-	-	-		1.5	-	Plv2
1 38	Mezontepec	-	-	3.5	-		12.2	5 -	Plv)
140 141	Acopiaxeo I conjunto Acopiaxeo II	-	-	8	-		21.0	-	Plvl
143	Ovanevo	-	-	2.5	-		17.5	-	Plvl

FIG. 1 – Generalised map showing the area studied.

composition of the rocks in the Valley of Mexico and MOOSER *et al.* (1974) reported paleomagnetic studies in the same region.

The origin and structure of the MVB has been discussed by MOOSER (1957, 1961, 1963, 1975), and DEMANT (1976, 1978) considered the area in a regional context. A more detailed study has recently been carried out by MARTIN-DEL POZZO (1980).

CHARACTERISTICS OF THE VOLCANIC ACTIVITY

The morphological factors are usually good indicators of the age of cones. Nevertheless, since some cones overlap and others are partly covered by other volcanic deposits, their morphology shows some variation. The average values of the morphological parameters for each unit are given in Table 9. Theoretically, the ratio of crater to basal diameter should increase with age but the values for Plv1 and Plv2 units are lower than expected (Tables 2, 3 and 9). This is probably due to the fact that some cones are partly covered and others have a high percentage of lavas. A decrease in the ratio of height to diameter with age (from 0.20 to 0.11) proved to be very useful in the separation of units (Tables 2, 3, 4, 5, 6 and 9). This is consistent with WOOD's findings (1980 b).

Basal diameters (Tables 2 to 6) varied from 0.1 km to 2 km. According to FEDOTOV (1976), MCGRECHEN and SETTLE (1975) and WOOD (1980 a), this would correspond to nominal volumes of between, 0.04 km³ with effusion rates of close to 30 m³/sec, and 0.6 km³ with effusion rates of 400 m³/sec; this would imply magma reservoirs at dephts between 3

Unit	Radius/Height	Height/Basal diameter	Crater diameter/ Basal diameter
		.20 corrected value	
Hv	2.2	.14 average	.35
Hv-Plv4	2.9	.15	.42
Plv4	3.4	.15	.40
Plv3	3.0	.12	.50 corrected value
			.30 average
Plv2	2.9	.11	.48
Plv1	2.0	.11	.40

TABLE 9 -Average values of the geomorphological parameters of the volcances in the Chichinautzin Formation.

km for the smaller cones and from 35 to 40 km for the larger. Corrections must be made for the larger volumes of Mexican monogenetic volcanoes (Tables 7 and 8).

Chichinautzin's earliest acitivty began in Pleistocene times with the andesitic volcanism that produced the rocks in unit Plv1. Cinder and lava cones (Table 2) covered the central part of the area (Fig. 2). The proportion of lavas to pyroclastics, defined as the explosive index, seems to have been intermediate, owing to the predominance of Strombolian activity. The vertical and lateral extent of this unit is not clearly known, since it is obscured by younger volcanic rockes (Table 7).

The volcanoes in unit Plv2 (Table 3, 7 and Fig. 2) are concentrated in the northwestern part of the area. Volcanism varied from andesitic to basaltic and though more mafic than the earlier Plv1 unit its explosive index and morphology are similar. Rocks in unit Plv3 have the same andesitic to basaltic character and explosive index, but their distribution is widespread (Table 4,7 and FIg. 2).

The cones in unit Plv4 are concentrated in the southern part of the area with the exception of Cuautzin Volcano which is located in the central part (Table 5 and Fig. 2). This unit is made up primarily of andesitic and basaltic lava flows which extend over large areas. The explosive index is lower than in the earlier units, owing to a higher proportion of lavas.

Holocene volcanic activity was located in three different parts of the area (Table 6 and 8, and Fig. 2). Thick blocky lava flows of hypersthene and olivine andesites were erupted in the northeastern part (Tetequillo-Xicomulco zone) with individual flow units of up to 300 m. No cone is associated to these northward flowing lavas, and flow ridges show that they covered their vents as they flowed.

Volcanic activity must have been of a quiet type with slow viscous flows with associated very little pyroclastic material. The hornblende dacite flows in the region of Laguna de Zempoala are very similar to these andesites except that thay flowed southward and show more contamination (SANCHEZ-RUBIO and MARTIN-DEL POZZO, in praparation). Basaltic (and andesitic basalt) vulcanism during this time was widespread with thin flows covering most of the area. Though some of the volcanoes have scoria cones, the lava proportion is much higher than that of pyroclastic deposits. The morphology suggests rapid fluid flow.

As can be seen in Fig. 3 the types of volcanic structures in the area can be devided into three basic groups:

FIG. 3 – Diagram showing variation of volcanic profiles. 1. - Flows with heights of 70 to 300 m of andesitic composition without a cone. Tetequillo, Xicomulco and Tabaquillo belong to these kind of structures (Figs. 2 and 3).

2. - Scoria cones with outward dips of 30°, such as the Panza Volcano or the Xitle and Pelado cones (Fig. 2).

3. - Lava cones. These volcanoes are of two types: (a) shield type, such as the bases of the Teutli and Pelado volcanoes and (b) the conical type with steeper slopes, such as the Chichinautzin volcano (Fig. 2). No basic petrographic difference was found between these types possibly because their viscosities were similar and probably a higher effusion rate for the shield volcanoes should account for the morphological variations. WALKER (1973) has found the same effect in other volcanoes.

In general, the explosive index seems to have been intermediate. Tephra sections and distribution for three characteristic volcanoes are showed in Fig. 4. Fine grained particles, clasts (crystals and fragments) with angular faces, and beds less that 1 cm thick showing little oxidation are considered typical of Surtseyan-type volcanism (WALKER, 1971): coarser grained and more exidized deposits are characteristic of Strombolian activity; in the area the deposits are intermediate both classes. The median between diameter of the particles $(MD \emptyset)$ for the Strombolian type varies from $+1 \emptyset$ to -4σ (0.5 to 5 mm) and for the Surtseyan type from $+3 \ \emptyset$ to $-1 \ \emptyset$ (0.12 to 2 mm) (WALKER, 1971). The Mdø of the samples studied ranged from 2 \emptyset to 0 \emptyset (0.25 to 1 mm) (Fig. 5) while the standard deviation ($\sigma \emptyset$) was 0.5 or Strombolian, since 1.5 is the limit between these types. Cone aspect ratios are also Strombolian (Tables 2, 3, 4, 5 and 6).

Some volcanoes, such as Chichinautzin, could have had activity similar to the Hawaiian volcanoes, since they have a high lava proportion and some have lava cones as well. There are both blocky lava cones and spatter cones. All of the cones are monogenetic; many have overlapping adventive cones. They have an E-W alignement, although there are also other older less conspicuous alignments trending NE and NW.

The lavas of the Hv unit cover the largest portion of the area (Fig. 2) with an extent and volume estimated at 413.75 km² and 20.325 km³ respectively. Most lavas are blocky, but a few are of the *aa* and even pahoehoe types. It seems that the velocity and volume of the emissions, as well as topography determined the length of the flows. Some flows of similar composition have a wide range of lengths (2 to 21.5 km). This is the case of the La Gloria and El Huilotito flows (Table 8 and Fig. 2).

Chichinautzin's volcanic activity is very similar to that of Michoacan's monogenetic cones. Paricutin's lavas varied from olivine basaltic andesites to orthopyroxene andesites (WILCOX, 1954); morphology, explosive index, and lava type (aa to blocky) are also alike. Paricutin's lavas flowed from 6 to 15 m per minute to 100 m a day (WILLIAMS, 1950), at an average temperature of 1, 100° (EGGLER, 1971); the conditions seemed to have been similar in some of the volcanoes of the area studied.

VOLCANIC HAZARD

Monogenetic activity in the Sierra Chichinautzin has continued through historical times. The lavas of Xitlè volcano, on which the University of Mexico and large residential areas are

FIG. 4 - Isopach map showing characteristic sequences of tephra for three volcanoes.

FIG. 5 - Cumulative curves for tephra from three volcanoes.

Ţ

6

built, covered part of the Cuiculco pyramid, 2,400 years ago. The eruption of Chichinautzin volcano itself (Burning Lord in the Indian language) was also witnessed by early inhabitants. By observing the tephra distribution on the isopach map (Fig. 3) and the length of the lava flows (Tables 7 and 8) one might conclude that if new activity were to take place, it would most likely affect Mexico City.

CONCLUSIONS

The Chichinautzin Formation owes its origin to monogenetic vulcanism with volcanoes of a short lifespan and intermediate explosive index for most of them. Pyroclastic deposits are basically Strombolian although a few have several characteristics of Surtseyan-type eruptions. The activity that produced the lava cones may be transitional to Hawaiian-type vulcanism.

The lavas are predominantly blocky andesites with aspect ratios between 21.4 and 350. The lenghts of the flows range between 1 and 21.5 km with thicknesses between 0.5 m and 300 m. Cone heights range from 10 to 315 m and diameters from 50 to 750 m (Tabels 2 to 6). Cone density is 0.15 km².

Basal diameters ranging from 0.1 km to 2 km could imply magma reservoir depths between 3 km for the smaller cones and 35-40 km for the larger ones, although larger volumes in Mexican monogenetic volcanoes would probably offset these calculations.

These values resemble those reported by BLOOMFIELD (1975) for the Southern Valley of Toluca and the petrological characterization of the two areas are also similar, but Bloomfield's statement that the longest flows are more differentiated does not seem to be justified. The Paricutin region in Michoacan is also similar in its monogenetic volcanism morphology, and in the composition of its rocks.

ACKNOWLEDGEMENTS

I would like to thank Gerardo Sànchez-Rubio, Juan Manuel Espìndola and Servando de la Cruz for their helpful assistance and valuable suggestions.

REFERENCES

- BLOOMFIELD, K., 1973, The Age and Significance of the Tenango Basalt, Central Mexico. Bull. Volcanol., 37, p. 586-595.
- , 1975, A Late Quaternary Monogenetic Volcano Field in Central Mexico. Geol. Rundschau, 64, p. 476-497.
- DEMANT, A., 1976, Contribución a la definición del as diferentes fases volcánicas y tectónicas del Eje Neovolcánico mexicano. Abst. III, Cong. Latinoamer. Geol. Acapulco, México, p. 41.
- , 1978, Characterísticas del Eje Neovolcánico Transmexicano y sus problemas de interpretación. Rev. Inst. Geol. UNAM, 2, Mexico, p. 172-188.
- EGGLER, D. H., 1971, Water Saturated and Under Saturated Melting Relations in a Paricutin Andesite and an Estimate of Water Content in the Natural Magma. Contr. Miner. Petrol., 34, p. 261.
- FEDOTOV, S. A., 1976, Ascent of Basic Magmas in the Crust and the Mechanism of Basaltic Fissure Eruptions. Int. Geol. Rev., 20, p. 33-48.
- FELIX, J., and LENK, H., 1980, Beitrager zur Geologie und Pälaontologie der Republik Mexico. Stuttgart Schweizerbart, 1, p. 78, 88 and 102.
- FRIES, C., 1960, Geologia del Estado de Morelos y partes adyacentes de México y Guerrero, región central meridional de México. Bol. Inst. Geol. UNAM, 60, México, 236 pp.
- GUNN, B. M., and MOOSER, F., 1971, Geochemistry of the Volcanics of Central Mexico. Bull. Volcanol., 34, p. 577-616.
- HUMBOLI, A., 1826, 1944, Cosmos. Glem, Buenos Aires, p. 509-593.
- LUGO-HUBP, J., 1970, Introducción al estudio de los conos volcánicos en la parte Noroccidental de la Sierra de Chichinautzin, D. F., México, D. F. Ing. Thesis, Inst. Politec. Nal., Esc. Sup. Ing. Arq. unpublished.
- LIBBY, W. F., 1951, Radiocarbon Dating. Chicago, 124 pp.
- MC GETCHIN, T. R. and SETTLE, M., 1975, Cinder Cone Separation Distances: Implications fo the Depth fo Gabbroic Xenoliths. EOS, 56, p. 1070.
- MARTIN-DEL POZZO, A. L., 1980, Vulcanología de la Sicrra Chichinautzin. M. A. Thesis, Geology, Science School, Univ. Nal. Aut. de México, 131 pp. unpublished.
- MOOSER, F., 1957, Los ciclos del vulcanismo que formaron la Cuenca de México: México, D. F. XX Internal Geol. Cong., 2, p. 337-348.

MOOSER, F., 1961, Informe sobre la geología de la Cuenca del Valle de México: México, D. F. Sría. Rec. Hidráulicos, Com. Hidrol, de la cuenca del Valle de México, 99 pp.

(1956), 1962, Bosquejo geológico del extremo de la cuenca de Mexico: Mexico, D. F. XX Internal. Geol. Cong. p. 9-16.

- , 1963, Historia tectónica de la Cuenca de México. Bol. Asoc. Mex. Geól. Petrol., 15, p. 239-246.
- 1975, Memorias de las obras del Sistema de Drenaje Profundo del D.F.: México, D.F. Dept. del D.F., México, 1, p. 9-38.

, NAIRN, A., and NEGENDANK, J., 1974, Paleomagnetic Investigations of the Tertiary and Quaternary Igneous Rocks. Geol. Rundschau, 63, p. p. 451-483.

- NEGENDANK, J., 1972, Volcanics of the Valley of Mexico. In Part I: Petrography of the volcanics. n. Jb. Miner Abh., 116, p. 308-320. , 1976, The Crustal Origin of the
- Valley of México Volcanics. Abst. III. Cong. Latinoamer. Geol., Acapulco, México, p. 98.
- ORDONEZ, E., 1980, *El Pedregal de San Àngel.* Mem. Soc. Antonio Alzate (México), 4, p. 113-116.

1895, Las rocas eruptivas del suroeste de la Cuenca de México. Inst. Geol. México, Bol., 2, p. 5-46.

- SANCHEZ-RUBIO, G., and MARTIN-DEL POZZO, A. L., Crystalline Xenoliths of the Zempoala Volcanics (in preparation).
- RICHTER, P., and NEGENDANK, J., 1976, Spurenelementuntersuchungen and volkaniten des Tales von Mexiko. Münster. Fosrch. Geol. Paleont., 38/39, p. 179-200.
- RZENDOWSKI, J., 1954, Vegetación del Padregal de San Angel. Inst. Politec. Nal., Esc. Nal. Cienc. Biológicas, Anales, 8, p. 59-129.

- SCHLAEPFER, C., 1968, Hoja México 14Q-h (5), con Resumen de la Hoja México, Districto Federal Y Estados de México Y Morelos. Univ. Nal. Autón. México, Inst. Geol. UNAM, Carta Geol. México, Serie 1:100.000, map with text.
- SCHMITTER, E., 1953, Investigación petrológica en las lavas del Pedregal de San Angel: México, D. F. Cong. Cient. Mexicano Mem. 3, p. 218-237.
- WAITZ, P., and WITTICL, W., 1910, Tubos de explosión en el Pedregal de San Angel. Bol. Soc. Geol. Mexicana, 7, p. 169-186.
- WALKER, G., 1971, Compound and Simple Lava Flows and Flood Basalts. Bull. Volcanol., 35, p. 580-590.
- ——, 1973, Lengths of Lava Flows. Phil. Trans. Royal Soc., London, ser. A., 274, p. 107-118.

, and CROASDALE, R., 1971, Characteristics of Some Basaltic Pyroclastics. Bull. Volcanol., 35, p. 303-317.

- WILLIAMS, H., 1950, Volcanoes of the Paricutin Region Mexico. U. S., Geol. Surv. Bull., 965 B, p. 165-279.
- WILCOX, R., 1954, Petrology of the Paricutin Region, Mexico. U. S. Geol. Surv. Bull., 965 c, p. 281-353.
 WITTICH, E., 1917, Los fenómenos miccrovolcá-
- WITTICH, E., 1917, Los fenómenos miccrovolcánicos en el Pedregal de San Angel. Mem. Soc. Cient. Antonio Alzate (México), 38, p. 101-120.
- WOOD, C. A., 1980 Morphometric Evolution of Cinder Cones. J. Volcan. Geoth., res., 7, p. 387-413.
- , 1980, Morphometric Analysis of Cinder Cone Degradation. J. Volcan. Geoth. Res., 8, p. 137-160.

Ms. received March 1982; sent to review and accepted March 1982.