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ABSTRACT - This paper is devoted to the numerical analysis of a multidimensional 
two-phase Stefan problem, with a non-linear flux condition on the fixed 
boundary; the enthalpy formulation is used. A numerical approach suggested 
by the theory of non-linear semigroup of contractions in L1(~2) is introduced; 
some converging algorithms based on the Crandall-Liggett formula and on the 
non-linear Chernoff formula are studied. The algebraic non-linear equations 
are solved by a modified Gauss-Seidel method. The results of several numerical 
tests are exhibited and discussed. 

1. Introduct ion.  

Let  Y2 C IR  N be a bounded connected open set, with smooth boundary;  we fix 

T > 0  and set Q=~2•  Z = F •  We introduce directly the enthalpy 

formulat ion of  the two-phase Stefan problem with non-linear flux: 

(P) 

OU 
- A f ( u )  = 0 in Q 

Ot 

oft(u) 
+g(fl(u)) = 0 on Z 

Ov 

u(O) = Uo i n / 2  
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352 C. VERDI: On the Numerical Approach to a Two-phase 

where u denotes the enthalpy density; 0=fl(u) is the temperature. The 
non-decreasing function fl is characteristic of the material; fl can be assumed of 
the form 

(1) fl(~) = 

al(~-L ) ~ > L 

0 O~<~<L, 

a2~ ~ < 0 

~eIR 

L being the latent heat; thus u>L  corresponds to the liquid phase, u < 0  to the 
solid phase, and 0=0 is the phase transition temperature. Finally 

(2) g : IR --~ IR is non-decreasing, of class C o and g(0) = 0. 

In the case of a single space variable, the classical formulation of this 
problem has already been extensively studied starting from [22]. In the case of 
several space variables, weak formulations in terms of enthalpy or o f  freezing 
index have been considered (see [33, 44] for references). When g is non-linear, 

weak variational formulations of the problem have been studied recently [46, 37, 
12]. Many converging algorithms and error estimates are available for the 
numerical approximation of the problem with a linear g or Dirichlet data: the 
approximation for the enthalpy formulation can be found in [27, 26, 38, 39, 20, 3, 
14, 35, 47, 48, 49]; the approximation for the freezing index formulation is studied 
in [7, 43]. For a non-linear g, some numerical algorithms have been proposed, with 
no theoretical justification and no error estimates (see [33] for references). As far 
as the author knows, convergence of an algorithm has been proved for the first 
time in [45] (see also [33]). Recently error estimates have been given (see [40]). 

A weak approach based on the theory of non-linear semigroups of 
contractions in L 1 (g2) has been introduced by BrSzis for Dirichlet conditions; the 
numerical approximation has been studied in this framework in [6]. A similar 
approach for the problem with non-linear g is given in [34, 51, 52], following ideas 
and techniques used for instance in [5, 6, 9, 16, 17]. The non-linear operator 
A : q9 ~ -Afl(q~) with domain 

(3) 
D(A) = {ge Ll(~) : fl(~) eWl,i(~),Afl(9) e Ll(~),g(fl(q0) e LI(F), 

+g(fl(q~)) = 0 on F in the ~weak>~ sense} 
0u 
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is m-accretive in Ll(12). H e n c e - A  : D(A) ~ Ll(g2) generates a non-linear 
semigroup of contractions denoted by S(t), that can be defined by Crandall-  
Liggett 's formula: 

(4) V u0eLl(g2), S(t)u0 = lim ( I+  t A)_ku ~ uniformly in [0,T]. 
k--,~ k 

Then  u(t)=S(t)u0eC~ and u(t) is the generalized solution of 
problem (P) in the sense of Crandall-Liggett [15] and B6nilan [4]. 

This approach seems to be expecially useful also for numerical  purposes; 
infact Crandall-Liggett 's  formula and other formulae of the type of Chernoff  
suggest several converging algorithms, as we shall see in this paper following the 
suggestion of [6]. 

2. Algorithms based on the theory of non-linear semigroups of contractions. 

We first present the algorithms without spatial discretizations. 

Let ;t=__~_ T , n>_-l, be the time-step. Let ok : ]0,o0[ ~ ]0,oo[ be a function s.t. 
n 

(5) l imok = 0 and ok-->o-2 for e a c h 2 > 0  
).----~0 

where a=max(al,a2) is the Lipschitz constant of  ft. 
G(f  i) denotes the piecewise constant function 

(6) G(fi)( ' , t) = 
fo(.) for t = 0 

fi(.) for te](i-1)2,i).], i=l , . . . ,n .  

Let u0 be in L l(g2). 

2.1. Algorithm (S1) based o n  CrandaU-Liggett's formula. 

We consider the following algorithm 

W O ~--- U0  

(7) 
w~+l--2A/~(w) +1) = wa i in t2 

i + l  

O/~(wx ) + g ( f l ( w ) + l ) ) =  0 o n F  
Ov 

i=0,1,. . . ,n-1 
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that  is, if we define J(t)q)=(I+tA)-lqo, q)e Ll(I2), then w~i+l=Ji+l(it)uo . 

Remark 1. One can prove that, if uoeL| then 

(8) sup IIw211L-r luoll,=(  , 
i 

Sketch of the Proof Let be M2~<Uo~<M 1 a.e. in I2, M2~<0, Mx~>L. D e f n e  the 
positive function: 

(~-M1) 2 i f ~ > M l  

q~(~) = 0 if M2~<~<M~. 
(se-M2) 2 if ~<M2 

Mult iplying (7) by v~+'= (fl(w~i+l)-fl(M1))+-(fl(w~i+l)-f(M2))-, integrat ing on g2 
and summing  on i, we get: 

1 m-1 ( m 2 
Z d (wi+,_w~)v2+ldx t> 1 II (w  )ll L2(~) 

it i=o u 2). 

1>0 m,/ m,f z~ V ~ ( w z i + l ) ' V v ~ i + l d x  = X . IVv~+l[2dx 
i=O i=O 

Q K2 

m-If Z g(fl(wai+~))v~i+ ida 
i = 0  

F 

t>0  

for each m~<n, whence @(w~m)=0 a.e. in s i.e. M2~<w~m~<M1 in t2, i.e. (8). [] 

Remark 2. I f  uo eD(A),  then the convergence result (4) can be improved as 
follows: 

(9) sup I[w~i(')-u(';i2)lL,(~) ~ CV'-]-, C depending upon Uo. 
i 

In fact, we have ([15]): 

i ( i +  t A)_iu0_u(.,t)liL,(~ ) ~ 2t i V'-i'-x [[AUolL,(a), V t e [0,T]; 

setting t=i2, i=  1,...,n, (9) follows with c=2VTllAuolk,<   
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Remark 3. To solve the problem (7), we can approach the functions/3 and g by 
sequences {fl~}, {g~}, e>0, respectively, as follows: 

(10) fl~C2(IR),  e--.<fl'--.<a, fl~(0)=0, fl~ ~ / 3  uniformly in IR 

t g(~) if [g(~)l ~< Ve 
(1 1) g~(~) 

Ve if [g(~)l > Ve 

and we consider the e-regularized problem corresponding to (7) 

0 WA,e = Uo,e 

i+l ~ /W i+l~ = W i in Wx,e --  P c \  X,e ] ~.,e 

(12) i+l for i=0,1,... ,n-1 
Ofle(W~.,e ) d - ~  /.q / w i + l \ x  

0v 

where u0,~ belongs to C~(~).  By [9] this problem has one and only one solution 
i+1 belonging, in particular, to HI(~) f3 C~ if u0 z L2(g2), we can show that: W,l.,e 

wi~,e ~ wia weakly in L2(g2) 
(13) for i= 1,...,n 

W i fie(~,~) ~ fl(wi~) strongly in L2(g2) 

if Uo,, ~ Uo in L2(g2), as e--*0. 
In fact, by using standard monotonicity and compatness techniques (see, 

e.g., [9, 34, 52]) we can prove that i i (w~,,--*wz weakly in L2(g2)) entails: 

i + l  w ~ + l  w~,~ ~ weakly in L2(g2) 

i+ l  fl~(wx,, ) ~ fl(wz i+l) strongly in L2(g2). 

2.2. Algorithms based on non-linear ChernofJ's formula. 

Algorithm ($2). It is known that the operator ,~ : 7~ --> -d~p with domain 

D(A)={~0~ wl'l(~),zl~0zLl(s162 El(F), 0~0 +g0p)=0 on F in the weak 
0v 
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sense} is m-accretive in Ll(g2) [21], hence it generates a non-linear semigroup of 
contractions S(t). We define 

(14) F(t)9 = (I---~--t (#--g(ot)fl))9, 9e l ) ( t2 )  
at 

and we shall prove now that F(t) : D(A) --~ L 1(12) fulfils the hypothesis i), ii) of 
theorem 3.2 of [8] (the non-linear ChernotTs formula): 
i) F(t) is a contraction in L x(g2), i.e. 

(15) ]F(t)q01-F(t)q021L~(~ ) ~ llgl--~02]lL,(s'2) Vt > 0, Vgz, q02r �9 

Recalling that S(t) is a non-linear semigroup of contractions, from (14) we get 

(16) 
]F(t)(pl_F(t)q~21L,(n) ~< t i~(q0,)__/~(q92)]L,(~ ) + 

Ot 

(l t 

As fl(~) and ~- t fl(~) are non-decreasing functions in IR, we have 
(7 t 

(17) t i / 5 ( ~ , ) _ f l ( ~ 2 ) l + ] ( ~ , _ ~ 2 ) _ _ ~ t  ( f l (~ , )_f l (~2)) l  = l ~ - ~ 2 l  
or t (l t 

for ~1,~2 e IR, 

therefore (15) follows. 

ii) 

(18) lim (I+--~-(I-F(t)))-19 = (I+2A)-19 
t---,0 t 

i n  L I ( Q ) ,  V 3 , > 0 ,  V q ~  Ll(t2) 

or equivalently 

(19) lim 9---F(t)q~ = Aq~ 
t---,o : t 

Using (14), this is true if 

(20) lim (I-S(ot)_) fl(q0) =-Afl(cp) = A9 
t--*O Or t 

in LI(~),  Vge  D(A). 

in LI(12), VqeD(A)  
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or, as q~D(A)  ~ >  fl(qo)eD(,~l), if 

(21) lim " " ~I--~(et) ) ,  - -  ~p =-A~0 = Aq, 
t--*0 O t 

in L1(O), V~,~ D(A). 

Since A is m-accretive in Lt(g2) and accretive in L| [21], - i t  is a strong 
infinitesimal generator of the semigroup S(t) (theorem 1 of [30]), i.e. (21) is true. 

Then,  by means of theorem 3.2 of [8], we have: 

(22) ~u~ k-~=,lim F k ( + ) U o  = u(t) uniformly in [0,T]. 

This suggest the following algorithm 

(23) 
W ?  ~ U 0 

wk +~ = r(~)w~ i=0,1,...,n-1. 

Consequently for i=0,1,...,n-1 we solve the problem 

(24) 

and set 

vi(0) = fl(w~) in Y2 

0vi-Avl = 0 in g2• 
0t 

8v i 
+g(v  i) = 0 on F• 

(25) w2 +' = wl -  ~ ha(w~)-vi(o~)]. 
oa 

Algorithm ($3). We define 

(26) 
at at 

and we still apply theorem 3.2 of [8]. 

i) From (26) we have 
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(27) 
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[[F(t)q01--F(t)q02llL,(~) ~ ~ I[j(u,)/3(qo,)-j(od/3(q~2)llL,(~) + 
ot 

+ [l(q~v--~2)- - - t  (/3(q~,)-~(gv2))llL,(O). 
O" t 

As ,~ is m-accretive in L l (I2), J(ot) is a contraction in L 1 (I2), whence (15) follows. 

ii) Thanks to (26) we must prove 

(28) lim (I-J(a'))/3(q~)= Aq) 
t----~0 O" t 

\ / 
in Ll((2), Vq0~D(A) 

i.e. 

(29) lim (I-j(ot))~p = A~0 
t--~O (7 t 

in L1(s Vvd~D(,~ ) 

and this is true also for [30]. 
Then the convergence result (22) is still valid. 
We perform the algorithm (23) solving the following problem 

z i - - - o ' 2 A z  i = fl(W)) in g2 

(30)  i 
0z' +g(zi) = 0 on F 
0v 

for i=0,1,...,n-1 and setting 

(31) w2 +t = w)- 2 [fl(w))_zi]" 
o~ 

Remark 4. For all u0 eLX(I2), we have sup [[wxilL,(a) ~< [[U0[[L,(a), where w~ is 
i 

given by (7), or (25), or (31). 
In fact, as (I+2A) -I (resp. F(2)) is a contraction in L 1 (g2), and (I+;tA)-10=0 

(resp. F(;t)0=0), then: 

iw2+lb,( ) Iw211,,( ) ... Uu011L,( ). 

We shall prove now the following convergence result: 
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Proposition 1. For all u0eLl(g?), we have lim G(w))=u in LX(Q), 
n----} oo 

i n {wz} i=o is given by algorithm (S1), or ($2), or ($3). 

where 

Proof. Let be Uo s L 1 (D). Set uimu(ti), ti=~; as u e C~ ;L 1 (D)), we have 
lim G(ui)=u in LI(Q), therefore it is enough to prove: lim G(w,ti)=G(u i) 
n....+ oo n....} oo 

( ') in LI(Q). Setting wt/k=(I+--~tk A)-ku~ (resp. wt/k=F k T uo), Crandall- 

Liggett's formula (resp. ChernotFs formula) implies that 

(32) 

lim wt/k = u ( t )  
k - - ~  ~o 

in L~(~2), uniformly in [0,T], 

i.e. re>O, 3 k,: Vk~>k,: Ilwd-u(t)IlL,( ) ~ ~, ~:t ~[O,T]. 

For any e>0, let k~ be as in (32). For every n>k~, we get 

IG(w))-G(ui)IL,(Q) = ~. ~ [Iw2-uitL,(~)+X -~ Ilw2-ui]L,(~) 
i =  1 i = k t +  1 

(as w) = wtji) ~< ,a.k~ sup Ilw)-uillLl(~,)+it(n-k~)e. 

As sup (c independent of).), it is sufficient to take n such that 
i 

k~ <e in order to obtain 
n 

UG(w2)--O(ui)IIL,~Q) ~ T(l+C)e. [] 

2.3. Numerical implementation of the algorithms. 

For the sake of simplicity, in this section 2.3 we shall require the following 
assumption: 

(33) 3 C,,C2 > 0 such that Ig(~)[ ~< Cl1~1+C2 ~ I R .  

We note that this growth condition is not restrictive; indeed if it did not hold, 
then it is not difficult to introduce a further approximation, replacing g by a 
sequence {g~} as in (11), and finally to take the limit as e-+0. 

We always use linear finite elements for the spatial discretization. Therefore 
we must employ convergence results in L 2 together with aforesaid convergences 
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in L x. Let us introduce some notations. Let {Ah} be a family of triangulations of 
g2. We suppose that ~2=g2h= 13 r, hence Fh=0g2h=F. We assume that  the 

r e  -4 h 

family {Ah} is regular (see [13]) and of acute type (see [50]). Let 

Mh = { x ~ C ~  : xlr l inear  V r ~ d h } ,  

{Xj}]=1 be the canonical base of Mh, (xJ}]=p+t be the set of  nodes from F. 

We will use only piecewise linear functions because the regularity of the solution 
of Stefan problem does not justify the use of higher order elements. We choose the 
following quadra ture  formula for a N-dimensional simplex r of vertices xJ: 

1 N + I  
m e a s  (r)j,~-Y' 1 f(x j) and we set the following approximations: I~( f )=N+ 1 = 

(v,w) = / vwdx ~ (v,w)h = 2; I~(vw) 
t ~ d  h 

(34) a 
< v , w >  = J vwda -~ < v , w >  h = ~'  I r , ( vw) ,  ~P face o f F ,  

r 
~ l E / "  h F 

At last we define: 

r 
M = ((~i,~j)h)ij=l ~" (mij) 

(35) K = ((VXi, VXj))rd=l = (kij) 

= r = (blj)- B (<Zi,:tj>h) i j= l  

We have (see [50]): 

mii > 0, mij = 0 for i:~j 

(36) bu ~> 0 ,  bij = 0 for iq=j 

27 kij = 0, kii > 0, kij ~< 0 for i~j ,  kij=kji . 
j----I 

Let Uo be in L2(Y2). 
Algorithm (S1). In order to solve problem (7) numerically, we can discretize 
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by linear finite elements either the problem itself or the e-regularized problem 
(12), with g , = g  thanks to (33). Here we make a unique t reatment  by setting 

i _ i i ~ M  h to i wz-wz,0, fl=flo. To obtain the approximation w~,,,h wz,, we introduce the 
following problem: 

(37) 

(38) 

0 _ _  wa.~,h-- Ph(u0,,) (Ph projection of L2(I'2) onto Mh) 

(w~+r~,)~) h +2 ( 7 1 ~ (w~)+h~), $7)C) + ; t < g ~  (w~+,hl)),X> h = 

~ X  E M h ,  fo r  i=O,1,...,n-1 (Ih interpolation in  M h ) .  

i__ i j We set W]-w~,e,h(x), j=l , . . . , r ;  choosing X=;~j, j= l , . . . , r  in (38) we see that the 
computat ion of i+~ wa,~,h is equivalent to the solution of the non-linear algebraic 

system 

(39) Mwi+I+AKfl(wi+I)+ABg(fl(wi+I)) = M W  i 

for i=0,1, . . . ,n-1,  where 

w i  --- ~ ( W i l , . . . , w i )  T 

(40 )  f l ( W  i) = ( f l e ( W i l ) , . . . , f l e ( w i ) )  T 

g(fl(wi))  = (0,...,0,g(fl~(wip+l)),...,g(fl~(wi))) T. 

It  is easy to show that, for every e.-->0, the system (39) has one and only one 
solution, which can be approximated by the following non-linear Gauss-Seidel 
method (see [42, 45, 47]). We set A=2M-1K,  C=AM-IB, and we define the 
function R : 1R--> IR r 

(41) ~ z I R :  Rj(~) = ~ + a ~ e ( ~ ) + ~ g ( ~ ( ~ ) )  j=l ,2 , . . . , r .  

I f A = D - A I - A 2  is the usual splitting of the matrix A, we set xi0 = W i and construct 
�9 ~ i+l_/~i+l  ~i+X~T k=  1,2,..., by solving the following non-linear the sequence,~k --~.CSl,k ~'",CSr,k J 

equations: 

(42) ~j,ki+~ = RT'([A,fl(X~+~)+AW3(Xd+~)]j+W]) j= l , . . . , r .  

= ( ~ , e , h , X )  h 
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As the function ~---~Rj(~) is strictly increasing, we can easily evaluate ~ i+l ~j,k+X �9 
For every e>0,  one can show that the sequence fl(X~ +l) converges at least as 

fast as the linear Gauss-Seidel method for the positive definite matrix VaM+~.K 
(see [50]). An analogous convergence result is true also for s=0,  that is: 

Proposition 2. I f  s=0 ,  the sequence ~ k  i + l  converges to the solution of  the 
system (39) at a rate not lower than that of the linear Gauss-Seidel method 
corresponding to the positive definite matrix 1/aM+~K. 

Proof. (For g linear, see [47]). As fl and g are monotone, we have: 

(43) ]Rj(~)-Rj(t2)I- I~l-t21+a~[t/(~,)-C~(~2)l+@g(/3(#,))-g(fl(#z))[ 

V~l,~2 �9 IR, j = 1,2,...,r 
whence: 

(44) l l-- 21 IRj( l)-Rj( 2)l 

and, as fl is also Lipschitz-continuous (here we suppose with constant 1): 

(45) lfl(~l)-fl(r ~ 1 Igj(t~)-Rj(~2)]. 
l+aij  

Therefore (Rj(~],k)--~Rj(Wi)j=l , . . . , r)entails  xik---~W i. We have 

(46) Rj(W]) -- Wi+a.af l (Wj)+~g(f l (Wi)  ) = wj i - '+ [ (A,+A2)f l (wi ) ] j .  

(47) 

setting 

(48) 

Taking the difference between (46) and (42), we get: 

i i Rj(Wj)-Rj(~],k+I) = [al(fl(wi)-fl'(xik+l))]j+[A2(fl(wi)--fl(Xik))]j; 

a],k = and a~ = ( a i l , k , . . . , a i r , k ) T  , 

as Ab A2 are positive, by (48) and (45) we have 



(49) 

that is 

(50) 
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a],k+l ~ [Al(D+I)-la~+x]j+[A2(D+I)-laik]j 

(I-Al(D+I)-l)aik+l ~ A2(D+I)-laik. 

363 

As the inverse of I -AI(D+I)  -1 is positive, (50) yields: 

(51) aik+l ~< (I -a l (D+I)- l ) - lA2(D+I)- la~.  

Therefore Rj(~],k)-*Rj(W])j = 1,...,r, as the spectral radius of X =  ( I -AI(D+ I)-~) -l 
A2(D+I) -l is less than 1; in fact X is the iteration matrix of the linear Gauss- 
Seidel method corresponding to the non-singular M-matrix (A-D) (D + I)-l + I = 
= M - I ( M + 2 K ) ( D + I )  -1. [] 

Finally we shall prove the convergence of the solution of system (39) to the 
solution of problem (P). Setting - i+l X--I~,(wz,~,h) in (38), by using standard 
monotonicity and compatness techniques, one can prove that: 

wix,,,h ~ wix,~ weakly in L2(f2) 

(52) fl~(wi~,~,h) ---~ fl~(wi~,~) strongly in L2(~2) 

as h ~ 0, for every e~>0, for i=l, . . . ,n.  

Then, by means of (52), proposition 1 (and also (13) if e>0), we have that: 

G(wi~,~,h) -* u weakly in Ll(Q) 

(53) G(/3~(wix,~,h)) ~ fl(u) strongly in LI(Q) 

as h --* 0, e --~ 0, ;t ~ 0 (in this order), 

in the sense that: lim (lim (lim G(wix,~,h)))=u weakly in LX(Q). " 
~l---*0 e---~0 h - * 0  

We observe that (wix,,,h---~wi~,~ weakly in Ll(g2), as h--*0, for i=  1,...,n) entails 
(G(wi~,,,h)---~G(wi~,,) weakly in LI(Q), as h-*0). 
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Algorithm ($2). Let W~.A,h=PhU0 . We discretize the heat  problem (24) by 
backward Euler  method in time and linear finite elements in space. 

Hence,  setting At--- ox (where m ~  > 1 is an integer), for i=0,1,. . . ,n-1, we solve the 
m 

following non-linear system: 

(54) 

v i ' ~  = 8 ( w i )  

M V i'k+ 1 +A tK V i'k+ l +A tBg( V i 'k+ 1) = M V i'k for k=0,1, . . . ,m-1 

where: 

(55) 

~(w' )  = (~(w~,),...,~(w~)) T, w i = w~t,,(xJ) 

v i ,k=  (v(k,... ,vi,k) T 

g ( V i , k )  i,k i k T = (O,...,O,g(Vp+l),...,g(V~')) 

and we define 

(56) . i + l  = i ~ T , , q ( ~  

oh o ] . J  =1 

Since the operator  ,~ with domain {~p ~ D (,~) f] L 2(D), A~p ~ L 2 (g2) } is m-accretive 
in L2(g2) ([21]), the Crandall-Liggett 's formula implies 

(57) lim ( I +  ~ ,~)-mfl(wi~) = vi(,~) 
rre-* no m 

in L2(g2), for i=0,1,. . . ,n-1 

from which, using results on finite element method (see, e.g., [10, 24]) one 
obtaines 

(58) lim (lim k vji'mzj) = vi(2) 
At---*0 h-*O j = l  

in L2(~), for i=0,1,. . . ,n-1. 

Finally, by means of  proposition 1 and of (58), we have that: 
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G(wiz,,at,h) ~ U strongly in El(Q) 

(59) G(fl(wiz~at,h)) --o fl(u) strongly in LI(Q) 

as h --) 0, At --> 0, 2 -o  0 (in this order). 

Algorithm ($3). Let wz,~ . Using linear finite elements for approximat ing  
the elliptic p rob lem (30), for i=0,1, . . . ,n-1,  we solve the following non-l inear  
system 

MZi+l+azKZi+l+axBg(Zi+ 1) .= Mfl(W i) (60) 

where: 

(61) 

Z i i i T = ( z l , . . . , z r )  

g ( Z  i) i i T = (0,.. . ,0,g(Zp+l),. . . ,g(Zr)) 

i) = T, w]  = wi ,h(X j) 

and we define 

i+ l  __ 2 ,~ 
WX, h = wi, t,h Ih f l (W~,h )+  '~" (62) Z]~j. 

0,l o 'xJ =1 

By means  of proposit ion 1 and of results such as [10, 24], one has that  

G(w~ ,h )  ~ U weakly in LI(Q) 

G(fl(wi~,h)) ~ fl(u) strongly in L1(Q) 

as h --~ 0, 2 ~ 0 (in this order). 

Remark 5. T he  problem (P) is well-posed with respect to Uo ([5]). I f  
u0 e L 1 (f2), let uo k e Lz(f2), k =  1,2,..., and denote by uk(t) the function constructed 
by means  of Crandal l-Ligget t  formula: if u0k-->uo in Ll(f2) then uk--oU in C~ 
Ll(f2)). Whence,  the convergence results of algorit.hms (S1), ($2), ($3) are also 
true for uoeLl(f2) .  
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3. R e m a r k s  o n  the variat ional  formulat ion.  

The usual formulation of the problem (P) is the weak variational formulation 
in L2(Q), and is essentially due to [28, 41, 23]; it can be set as follows: 

Given Uo~ L2(t2), find u such that 

(Pv) 
u e L2(Q), fl(u) ~ L 2(0,T;Hl(n)), g(fl(u)) ~ L2(~ v) 

-Qf u OVdxdt+ f Vfl(u) 'Vvdxdt+ f g(fl(u))vdxdt+ / Uov(O)dx 
Ot Q ~, 

V v e K  = {v~HI(Q), v(',T)=O}. 

= 0  

It has been proved that ifu0~ L=(g2), then (Pv) has one and only one solution 
such that u ~L=(Q), fl(u) ~ L~(Q), see [46, 37, 12]. Moreover if fl(Uo) ~ C~ 
then 3(u) ~ C~ see [11, 18]. 

It is easy to show that if u0 ~L| then the generalized solution (4) and the 
variational one coincide. We just sketch the a priori estimates and the limit 
procedure which are similar to those of [46]. As the solutions fulfil a maximum 
principle, it is not restrictive to assume that g fulfils the order of growth 
assumption (33). Ifuz denotes the piecewise linear interpolate of {wiz}~=0, setting 
fia=G(wiz), we get: 

0ux 
= o 

0t 

(63) 

in Q 

Ov 
+g(fl(fix)) = 0 on ~v 

ua(x,0) = u0(x) in Y2. 

Multiplying (63) by 3(fia) and integrating on Q, we have: 

(64) U3(C*x)k2(0,T;H,(~)) ~< C (constant C independent of;t) 

whence I[/~(fix)lL~(z)~<C, and by assumptions on g: 

(65) UgGa(fi ))lL,(Z) C; 

by assumption on fl, (64) entails also: 



(66) 
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(67) 

Then, there exist u,O,q such that, possibly taking subsequences 

fi~ ~ u weakly in L2(Q) 

fl(fiz) --~ 0 weakly in Lz(0,T;HI(g2)) 

g(fl(fiz)) ~ ~/ weakly in L2(X) 

as 2--~0. Using standard monotonicity techniques, taking A--*0 in (63), one can 
show that u is the solution of problem (Pv)- Moreover, by-the Crandall-Liggett's 
formula we have fiz--~u=S(t)Uo in LI(Q). 

The numerical approximation of (Pv) is based on the numerical solution of 
the non-linear heat equation: 

0 
8t 

(p,) 0pe(u~) +g(fl~(u~)) = 0 
,gv 

u~(O) = Uo,e in f2. 

in Q 

on X 

Indeed, one can show (see, e.g., [46]) that if Uo,~--'~Uo strongly in L2(g2), then as 
e----~0 

(68) 

ue ~ u weakly in L2(Q) 

/~,(u,) --~/~(u) strongly in LZ(Q). 

The discretization of problem (Pc) by means of the implicit Euler method with 
respect to time and by linear finite elements with respect to space would yield the 
same algorithm (Sl). The following convergence results are deduced by using 
(68) and [50]: 
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G ( w i , , t , h )  ~ U weakly in L2(Q) 

(69) G(fl~(wi,x,h)) --* ft(u) strongly in L2(Q) 

as (h,A) ~ 0, e ~ 0 (in this order). 

All methods existing in literature for the approximation of the non-linear 
heat equation with non-linear boundary condition can be used; they generally 
require a higher regularity on the non-linear therm of the equation. The problem 
(P~) is certainly regular enough, but such a regularity is not preserved in the limit 
problem (Pv). Whence these methods are generally less efficient than the previous 
one (see, e.g., [32] where an extrapolated Crank-Nicholson method is used; see 
also the final remark of the present work). 

4. Numerical results. 

Remark 6. In some of our tests there is a second member f(x,t) in the equation. 
I f  feC~ l (g2)), then VUo e L 1 (D) 

k ( . _ ~  ( ( t ) ) ) _ l U o ( u n i f o r m l y i n [ O , T ] )  Uf(t)u0 = k~-lim i=l/7 I+  A- f  i T 

is the generalized solution (see [16]) of the problem (P) with the equation 
0u 
- - -Af t (u)  =f. The aforesaid numerical algorithms carl be easily extended. 
0t 

For numerical purposes, we can choose a piecewise linear ft~: 

f t , ( r  = 

ax(r ~ > L 

0 ~ < L ,  
L 

a2~ ~ < 0  

with al = kl/cl, a2 = k2/c2. 

We stop the Gauss-Seidel iterations when the relative error is less than .0001, i.e. 
i i [~,k+i--~,kl ~< .0001 IZ~+,I| j=l , . . . , r .  

First, we describe the numerical experiences concerning tests for which the 
exact solution is known (exs. 1,2,3); then we show the evolution of a mushy region 
(ex. 4,5). Example 1 is for just one space variable, whereas the other ones are in 
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two space variables with g2=]0,a[• The mesh (ZJh) 15 uniform; the sides of 
the triangles are parallel to the axes and to the diagonal y=b/aX of ~ .  

Notations. 

n = number  of time steps; nx,ny = number  of grid points; 
e t% = discrete relative LLerror  in the temperature; 
CPU = processing time. 

Example 1 (see [6]). Q=]0,2[,  T =  1; cl =2, kl =2,  c2 = 1, k~= 1, L =  1. The exact 
solution is 

u(x,t) = 

cl(e-X+t+l-1)+L q~ I> 0 

c2(e-X+t+l-1) q~ < 0 

where ~ ( x , t ) = - x + t +  1 =0 is the free boundary. A non-linear Neumann  condition 
is assigned on the boundary. 

n nx el % CPU 

(Sl) 

20 20 1.56 4 
40 20 0.93 7 
80 40 0.38 32 
160 40 0.23 50 

(s2) 

20 20 4.00 0.8 
40 20 2.59 1.4 
80 40 1.58 3 
160 40 1.09 6 

Table 1. Discrete relative Ll-error for several implementations of algorithms (S1) and 
($2) for problem (1). 
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Figure 1. Discrete free boundary of problem (1), obtained using the algorithms: 
(S1) with n=160, nx=40, e=0.001 (fig. la), 
($2) with n=160, nx=40, m=2 (fig. Ib). 

Example 2 (see [14]). Q=]-V2,1/2[x ]-1&,1/2[, T=0.1; Cl=6, kl=2, c2=2, k2 = 1, 
L=  1. The exact solution (enthalpy) is: 

u(x,y,t) = 
clq~(x,y,t)+L q~ ~> 0 

c2q~(x,y,t) q~ < 0 

where r is the free boundary. As the solution is 
symmetric, we can solve our problem in ]O,l/2[x]O, V2[, requiring a vanishing flux 
condition on the sides x=0 and y=0. A non-linear Neumann condition is 
assigned on the sides x=V2 and y=l/2. 

n nx ny el% CPU 

40 10 10 8.18 71 
(S1) 80 20 20 2.99 568 

40 10 lO 13.60 21 
(S2) 80 20 20 8.16 166 

Table 2: Discrete relative Ll-error for several implementations of algorithms (S 1) and 
($2) for problem (2). 
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,5 
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Figure 2: Numerical solutions of problem (2), obtained using the algorithms: 
(S1) with n--80, nx=ny=20, e=0.0005 (fig. 2'), 
($2) with n=80, nx=ny=20, m=2 (fig. 2"). 

Figure 2a: Free boundary at times: t=0 (solid line), t=T/3 (circle), t=2T/3 
(diamond), t=T  (triangle). 

Figure 2b,c,d: Temperature values at times t=T/3, 2T/3, T: free boundary (solid line), 
0=0.1 (open circle), 0=0.2 (solid circle), 0=-0.05 (open diamond), 0=-0.1 (solid 
diamond). 
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Example 3. g2=]0,2[x]0,2[, T = I ;  q = 2 ,  k1=2, c2=1, k2=l,  L = I .  The exact 
solution (enthalpy) is 

u(x,y,t) = 

cl(e-X-y+2t+l-l)+L �9 ~ 0 

c2(e-X-y+2t+l-1) �9 < 0 

where ~ ( x , y , t ) = - x - y + 2 t + l = 0  is the free boundary. A non-linear Neumann 
condition is assigned on the boundary. 

n nx ny el% CPU 

10 I0 10 8.06 10 
(S1) 25 10 10 4.24 42 

100 20 20 1.51 423 

10 10 10 12.84 1.5 
($2) 25 10 10 6.48 17 

100 20 20 2.25 168 

Table 3: Discrete relative L l-error for several implementations of algorithms (S 1) and 
($2) for problem (3). 
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Figure 3: Numerical solutions of problem (3), obtained using the algorithms: 
(S1) with n=80, nx=ny=20, e=0.001 (fig. 3'), 
($2) with n=80, nx=ny=20, m=2 (fig. 3"). 

Figure 3a: Free boundary at times: t=0 (solid line), t=2T/5 (circle), t=T/2 
(diamond), t=T  (triangle). 

Figure 3b,c,d: Temperature values at times t=2T/5,T/2,T: free boundary (solid line), 
0--2 (open circle), 0=5 (solid circle), 0=--0.2 (open diamond), 0=--0.5 (solid 
diamond). 
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Example 4 (see [7]). g2=]0,V2[• T=0.04; cx=l,  kl=2, c2=1, k2=l,  
L=I .  The exact solution is not known. We set Uo(x,y)=V2, i.e. g2 is a mushy 
region for t=0. A non-zero Dirichlet data is assigned on the sides y=0  and y=  1; a 
zero Neumann conditions is assigned on the sides x=0 and x=1/2. 

0 s . 5  

/ / / / ~  
/ / / / / / / F / E  
/ / / i / / t / / ~  
/ / / / / / / F / ~  

/ / V / I / I / / I  
/ / V / / F I / / ~  

~ / Z / L  
~ / ~  

. , .  \ . /  

b r 

f 
' [ 2  

d f i g .  4 t 

O a . 5  b c 
t s g .  4 ~ 

Figure 4: Numerical solutions of problem (4), obtained using the algorithms: 
(S1) with n=100, nx=10, ny=20, e=0.001 (fig. 4'), 
($2) with n= 100, nx = I0, ny=20, m=2 (fig. 4"). 

Figure 4a,b,c,d: Temperature values at times t=T/4,T/2,3T/4,T: mushy region (solid 
region), 0=0.1 (open circle), 0=0.3 (solid circle), 0=-0.05 (open diamond), 0=-0.1 
(solid diamond). 
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Example 5. This is a classical counterexample due to Friedman [23] (see also 
[1]). g2=]0,1 [x]0 ,3[ ,  T=0.5; c1=2, kl=2,  c2=1, k2=l,  L=I .  The exact solution 
is not known. At the initial time we have a <~bone-shaped>> ice-block, which melts 
and then disconnects. On account of the symmetry, we can solve our problem in 
]0,V2[• requiring a vanishing flux condition on the sides x=l/2 and y=3/2. 
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Figure 5: Numerical solutions of problem (5), obtained using the algorithms: 
(S1) with n=100, nx=10, ny=30, e=0.001 (fig. 5'), 
($2) with n=100, nx=10, ny=30, m=2 (fig. 5"). 

Figure 5a',b', .... 0': Temperature values at times: t--0, 0.1, 0.12, 0.1275, 0.13, 0.14, 
0.145, 0.1475, 0.17, 0.2, 0.25, 0.4, 0.5. 

Figure 5b",...,o": Temperature values at times: t=0.1, 0.12, 0.1275, 0.13, 0.14, 0.15, 
0.1525, 0.17, 0.2, 0.25, 0.4, 0.5. 
Free boundary (solid line), 0=0.5 (open circle), 0--1 (solid circle), 0=-0.5 (open 
diamond), 0=-1 (solid diamond). 

Final remarks. Further numerical results were obtained using both algorithm 
($3) and the Crank-Nicholson extrapolated method already mentioned in Section 
3; as expected, the latter was found less competitive (see [45]). Algorithm (S 1) is 
a natural generalization of backward difference in time and linear finite element 
in space methods (see [27, 35, 47, 50]) to the case of non-linear flux condition. 
Algorithm (S1) seems to give good results when the exact solution is known as 
wellas when the mushy region is present. On the contrary, algorithms ($2) and 
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($3), which have similar precision, are less usual; basically they are a 
linearization of problem (P). Of  course in the literature one can find many other 
methods, but with an incomplete theoretical justification (see, e.g., <<moving finite 
element method~ [1, 36], or methods such as <<front-tracking~, see, e.g., [25]). 
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