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O N  T H E  S I N G U L A R  S E T  O F  S T A T I O N A R Y  H A R M O N I C  
M A P S  

Fab r i ce  B E T H U E L  

Let M and N be compact riemannian manifolds, and u a stationary harmonic map 
from M to N. We prove that Hn-~(E) = 0, where n = dimM and ~ is the singular set 
of u. This is a generalization of a result of C. Evans [7], where this is proved in the special 
case N is a sphere. We also prove that, if u is a weakly harmonic map in WI'n(M,N), 
then u is smooth. This extends results of F. ttdlein for the case n = 2, or the case N is a 
sphere ([9], [10]). 

I I n t r o d u c t i o n  

Let (M, g) and (N, h) be two compact riemannian manifolds of dimension n 
and k respectively. We assume furthermore that  ON = ~.  We may also assume 
(using Nash-Moser Theorem) that  N is isometrically imbedded in some euclidean 
space/R g. We consider the Sobolev space Hi(M, N) defined by 

HI(M,N) = {u 6 HI(M,/RK) ,  u(z) 6 N a.e}, 

and for a map u in HI(M,N), the energy functional E(u) = IM [Vul 2. 

We say that a map u in Hi(M, N) is a weakly harmonic map if u is a critical 
point of E(u) in the following sense 

u 6 C~(M, IRK), d E ( I I ( u  + t%o)) = 0, (I.l) 

where II denotes the nearest point projection onto N. It is easy to verify tha t  (I.1) 
is equivalent to the following system 

- Agu = W) ,  (I.2) 
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where A(u) is the second fundamental form of N, and where we have used the 
notation 
A(u)(Vu, Vu) = g'~OA(u) [ o,, o,, k0-~', 0~--~] �9 Note that 

Au • T,~(~)N, (1.3) 

which is actually equivalent to (1.2). 

In [9], F. Hdlein has proved that any weakly harmonic map from M to N is 
smooth in the case n = 2. For higher dimensions (n i> 3), this is no longer true 
however, as the following example shows : the map ~1 is a harmonic map from 
B 3 to S 2, and is singular at the origin. More generally, one can produce weakly 
harmonic maps having a singular set of dimension n -  3 quite easily. Very recently, 
T. Rivi~re [16] has constructed weakly harmonic maps from B "~ into the sphere 
S k which are singular on the whole domain B",  and therefore no partial regular- 
ity theory can be derived for "general" weakly harmonic maps. For that reason, 
we are going to turn our attention to a more restrictive class of weakly harmonic 
maps, namely stationary harmonic maps. 

D e f i n i t i o n  : A map u 6 Hi(M,  N) is a stationary harmonic map, if u satisfies 
(I.2) and if, for any smooth one-parameter family of diffeomorphisms ~, of M, 
satisfying OtIeM = IdioM, we have 

~tE(u o O,) = (1.4) 0. 

(I.2) expresses the fact that u is criticM for E(u) with respect to variations on 
the target N, whereas (I.4) expresses the fact that u is critical for E with respect 
to variations of the domain. 

Our main result is the following. 

T h e o r e m  1.1 Let u 6 H I ( M , N )  be a stationary harmonic map. There eziata a 
closed subaet ~ of M ~uch that 

H"-2(r~) = 0 (1.5) 

and 

u e N). 

Here H "-2 denotes the (n - 2)-dimensional Hausdorff measure. 

(I.S) 

Remark 1.1 : Minimizing harmonic maps axe weakly stationary harmonic maps. 
A minimizing harmonic map minimizes the energy functional E(u) on HI(M, N) 
among all maps having the same boundary value. For a minimizing harmonic map, 
R. Schoen and K. Uhlenbeck [18] have proved that the (n - 3)-dimensional Haus- 
dor~ measure of the singular set is locally finite (compare with Theorem L1 above). 
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Remark/-$ : In the special case where N is a standard sphere, Theorem I-1 
has already been proved by C. Evans [7]. Our proof of Theorem I-1 will strongly 
rely on ideas introduced in [9] and [7]. 

As a by-product of our methods, we are also going to prove the following. 

T h e o r e m  1.2 Let u be a weakly harmonic map in WI'"(M, N). Then u is smooth 
in M. 

Remark I-3 : This result has already been proved by F. H61ein in the special 
case Y is an homogeneous space ([10]). 

For sake of simplicity, we will assume throughout the paper that M is flat, that 
is a bounded domain ~ in ~ "  (the proof in the general case M is any compact 
manifold is essentially the same, but technically a little more complicated). 

The following monotonicity formula for stationary harmonic maps is crucial in 
our proof of Theorem I-1. 

T h e o r e m  1.3 Let x be a point in ~. We have 

That/~ 

d-7 (.,.) Iwl  0. 

1 1 

provided rx ~ r2 and B(x,  r2) C ~. 

(I.7) 

(I.8) 

Theorem I-3 was proved by R. Schoen and K. Uhlenbeck (see [18]) in the case 
of minimizing harmonic maps, and by P. Price [15] for stationary harmonic maps. 

Remark I-4 : The conclusion of Theorem L1 would still hold, if instead of con- 
sidering a stationary harmonic map, we would consider a weakly harmonic map 
satisfying (I.8). 

The proof of Theorem I-1 is organized as follows. The main point is to prove 
the following e-regularity theorem. 

T h e o r e m  1.4 There ezints some eo > 0 such tha t i f  B(xo, ro) C f~ and u Jatiafiea 

I f 2 Iv,H < 

~hen u ~ smooth o~ B(xo, ~). 

(1.9) 
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It is a standard procedure, based on a covering argument (see e.g [8]) to show 
that Theorem 1.4 and the monotonicity formula (I.8) imply Theorem I-1 (see Sec- 
tion VII). In order to prove Theorem I-4 we are going to make use of Morrey-type 
inequalities (see e.g. [8]) for some suitable norm. For that purpose, we introduce 
the following notations. 

Set, for xo E 12, and for r such that B(x0, 2r) C ~, 

I ./" IV,~I,B(~,p) c B(~o,r)}, (1.10) M(xo,r) = s u p  7 (x,,) 

(the supremum is taken all balls B(z, p) included in B(xo, r)). We first observe 
that M(zo, r) is bounded : this follows from the monotonicity formula and the 
assumption B(zo, 2r) C ft. Indeed, we have, by the Cauchy-Schwarz inequality 

1 (o  

On the other hand Theorem I-3 yields 

(I.11) 

1 1 C 
(I.12) 

and hence combining (I.11) and (I.12) and taking the supremum for all balls 
B(z, p) c B(xo, 3, T), we obtain 

1/~ +oo. 1 < (I.13) 

We also remark that 

M(xo,rl) < M(x0,r2) if rl • r2. 

We are going to prove the following. 

T h e o r e m  1.5 : There ezisf sl > 0 and 0 < 81 < 1/2 such that, if B(xo,2r) C f~ 
and if 

the~ 

1 JB(.o,20 [vu[2 (2r)._ 2 ~< el, (I.14) 

M(xo, O:) ~< �88 r). (I.15) 
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Remark I-5 : Related estimates (based on Campanato Spaces) have been used 
recently by F. Pacard [14]. 

Combining Theorem 1-5 and the monotonicity formula, we deduce by routine 
arguments Theorem I-4 (see Section VI). Therefore~ the main part  of this paper 
is devoted to the proof of Theorem I-5. 

The three main ingredients in the proof are the following : 

�9 Hodge de Rham decompositions of forms, 

�9 Compensation properties related to 3acobians and maps satisfying (I.8), 

�9 An appropriate choice of an orthonormal frame on T,(=)N (as in H41ein [9]). 

This paper is organized as follows. In section II we recall some useful facts 
concerning differential forms, with an emphasis on the Hodge de Rham decompo- 
sition, which has already been used in a similar context in [1] and by P. Chon~ [4]. 
In Section III we present some compensation properties related to Jacobians. This 
was discovered by R. Coifman, P.L. Lions, Y. Meyer and S. Semmes, who proved 
that certain non linear quantities, which are of interest for us, belong to the Hardy 
space H1 (a space a little smaller than LI). We include some very useful observa- 
tions due to C. Evans, in particular the fact that maps satisfying the monotonicity 
property (I.7) belong to BMO (a space a little larger than L ~ and which is in 
duality with H 1 ). In Section IV, we briefly describe H41ein's method for finding 
an appropriate tangent frame. In Section V we give the proof of Theorem I-5. 
In Section VI we show how Theorem I-4 can be derived from Theorem I-5, and 
we complete the proof of Theorem I-l,  in Section VII. In Section VIII  we prove 
Theorem I-2. 

Acknowledgements : The author would like to thank F. H41ein and P. Haszlasz 
for interesting discussions. Part  of this work was completed while the author was 
visiting Rutgers University. He thanks the Math. Department for its support and 
hospitality. 

II Differential forms and Hodge  de R h a m  de- 
compos i t ion  

Since we shall use quite extensively the formalism of differentials forms, we 
recall next some useful facts and notations. For n t> 1, we consider the euclidean 
space/R ~, and denote by e l , . . . , e ,  the standard dual basis. For 0 ~< I ~< 1, At(R) 
is the set of 1-forms on/R ~ and consists of linear combinations of exterior products 

el = el I Ae i2 . . .Ae~ ,  

where I = ( i l , . . . i t )  is on ordered 1-tuple, i.e 1 ~< ia < i2 . . .  < it; [eli is the 
standard basis of A I. For a = ~ aler and ~ = ~, fllel we define the inner product 
of a and ~ by 
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< (~,5 > =  y] ,x*f l ' .  (II.1) 

By convention, we set A0 = ~ ,  and if I ~ {0, 1 , . . .  n}, A~ = {0}. The  Hodge 
s tar  opera tor  * is a linear operator  from A~(/R) to A " - I ( ~  ~) given by the rules 

and 

*l=etAe2A..Ae. (11.2) 

A*fl = # A * a  = <  (x,# > et A.. Aen, 

for all forms (x,fl in At(/R). We have the identity 

(II.3) 

* *  = (_#),,C--0 

where I denotes the identity map  from A t. 

We consider now a domain (2 C /R", and differential 1-forms on ~,  tha t  is 
distr ibutions with values in AJ(~),  and we set At(~) ---- T)'(D, A ~) (by convention 
A~ ---- :P'(fl; /R) and A' ---- {0}, if I • {0, 1 . . .  n}). The  exterior derivative opera- 
tor  

d: A'-X(n) A'(n) 

satisfies 

d(wl A w=) = wl A dw2 + dwl A wa, (II.4) 

for any two differential forms wl, w2. Moreover, if (xl ,  . - .  , x ") are cartesian coor- 
dinates o n / R " ,  we have 

dx'  = ei, Vie {1,... ,n}. (II.5) 

Similarily, we write dx i = el, and for every differential form w, we have the 
decomposi t ion 

w = ~E] w ,  dz*. (II.6) 
I 

The conjugate opera tor  of  the exterior differential is the Hodge opera tor  

given by 

a*: #(n) (II.7) 

d* = *d*. (II.8) 
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For every ~ in C~~ At), and ~ in C~r Al+X), we see indeed tha t  

-I nl+X / o < ~ , d * Z > = (  ) fo<d,~,Z> 
We have the following impor tant  proper ty  

423 

(II.9) 

dd = O, d*d ~ = 0. (II.10) 

Remark  that ,  for functions d plays the role of the familiar grad opera tor  
(dr = Ei  ~r~.dx i) whereas at* from Aa((2) --+ AO(f~) plays the role of the divergence 
operator ,  in the sense that  d*( u, dx x + u2 dz 2 + . . . )  = (-1)"t[ div(u )]. Similarly the 
curl operator corresponds to d: ^x(~) __+ ̂ ~(~). 

The Laplace operator  for differential forms is given by 

A = dd* + d*d A : Al(f~) --+ Al(12). 

It acts only on the coefficients of the form, since 

Aw = (-1) "'+x y]~(Aw,)dzt,  (11.11) 
I 

where Awl  denotes the usual Laplacian for functions. For a function f ,  d*f  = 0, 
and therefore A f  = d*df, and we recover the classical formula A = div(grad). 

H o d g e - d e  R h a m  d e c o m p o s i t i o n  : The  following result, due to Iwaniec and 
Mart in,  is an extension of the classical Hodge de R h a m  decomposit ion (HDR) to 
forms in L p, 1 < p < +oo. 

Theorem II.1 ([11]) Zet w be in I2(IR", At). Then there i8 a (l - 1)-[orm a and 
a (l + l).form ~ such ~h=t 

w = da + d*/3 (II.12) 

cra=a~= o. 

The differential forms a and ~ belong to W I'p and 

(II.13) 

II~llw~,.(~ =) + II~llw~,.(~") ~ c(p, k, n)llwliL~. 
Moreover a and j3 are unique. If dw = 0 (~sp. d*w = O) then 

(II.14) 

= 0 (reap. ~ = 0). .(II.15) 
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Sketch of the proof : Let G be the fundamenta l  solution of the Laplacian in R" 
and set 

= G ~ r w .  

Then  ~ is in W2'P(/~ ", A t) and satisfies 

A ~  =(dd* + d*d)qa = d(d*v) + @(d~) = w. 

w e  take a = d*qa,~ = d~ and easily verify that  (II.13), (II.14) and (II.15) are sat- 
isfied. In the case dw = 0 (reap d*w = 0), Aft  = 0 (reap Acx = 0) and therefore 
fl = 0 (reap. oL = 0). 

We will also use the following (classical) result. 

P r o p o s i t i o n  I I . 1  Let f~ be a smooth bounded domain in .OZ". Let w be a form in 
Z~( f~, ^ t) 
(1 < p < +oo) auch that 

dw = 0 (reap. d*w = 0) (II.16) 

and 

to = 0 on On (reap. * w  = 0). (II.17) 

There is some ( l -1 ) - fo rm ~ in W'"( f2 ,  A t- l)  (reap. ( l+ l ) . form 13 in W1"(~2, At+l)) 
such that 

w = da (reap. w = d*/3) (II.IS) 

and 

il~llw~., ~ CpHwllL, (reap. I11311w~., ~< CpIJWHL,). (II.19) 

Proof:  Extend w by w = 0 o n  /R"\f~, and note tha t  dw = 0 on /R". The  
conclusion than  follows directly from Theorem IL l .  

Next,  w e  are going to apply the HDR-decomposi t ion to the following special  
c a s e .  

H D R - D e c o m p o s i t i o n  o f  t h e  p r o d u c t  o f  a gradient  by a f u n c t i o n  : Let 
B(p) be a b~ in ~", and let f be in H~(B(p), ~) n L~ and g be in H~(B(p), Z~). 
We consider the 1-form w = f A dg, which can be wri t ten in coordinates 

Og dz ~ Og dz" to= f ̂  dg= f d= ~ + f-~-~=~ +...+ !-5~: . 

Let C be a smooth  function from .~" to ~ +  such that  

(II.20) 
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C --= 1 on B(p/2), (II.21) 

-= 0 on R"\B(p) ,  (II.22) 

4 
IVCl ~ - .  (II.23) 

P 

Let ~ be the 1-form defined on R" by 

ff~ = f ^ d(Cg). (II.24) 

Note that ~ = w on B(p/2). 

Applying Theorem IL l  to t~ we find a function a in H I ( R  ", R )  and a 2-form 
/~ in H i ( R " ;  A 2) such that  

,~ = / ̂  d(Cg) = de + d*,8 on R",  (II.25) 

de  = 0, d*~ = 0 on R " ,  (II.26) 

[I~I[H1(R ") + [[/~'HH~(R ") < CllfHL~I[CgHH,. 

In particular, we have 

(II.27) 

,1, = / ^ @ = de  + d*~ on B(p /2 ) .  

Taking the exterior derivative of (II.25), we obtain 

dd*~ = df A d(~g) on R " .  

Since dfl = 0, (II.29) reads as 

(II.28) 

(II.29) 

A~ = df ̂  d(r on R ". 

Expressing 3 in the s tandard basis of A 2, that  is 

= ~ ~'Jdz ~ ̂  dz~, 
i<j 

(II.30) 
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we are led to the equation 

A/3i,i = {/, Cg},j 

We have used the notation 

o r ,  m". (II.31) 

{f, g},., = L ,g , ,  - g , ,h , ,  

where subscripts stand for partial derivatives. 

(II.32) 

A Remark on r~ota$ion : In the sequel, we will often have to deal with vector- 
valued forms, that is forms whose coefficients take values in ]RK instead of ~ .  We 
will denote by At(/R";/R K) the set of these forms. Let ( f l , . . . ,  fk) be the standard 
basis on /R g. A form a in Az(~";/R K) writes in coordinates as 

k 

= Z] ~Jf~" (II.33) 
j=1 

where o~j is a real-~ra]ued form o~i E AJ(~";/~). We will use the notation, for a in 
^t(/~.; ~x) and/3 in ̂ q(/R";/~K) 

k 
a A fl = ~ (~j A flj (II.34) 

j= l  

and hence a A/3 will represent a real-valued form. If a is a zero-form, we will write 
indistinctibly a A/3 or a./3, where the point stands for the scalar product. 

Most of the previous results extend in a straightforward way to forms in 
n~(~.; ~K). 

III  C o m p e n s a t i o n  p h e n o m e n a  

For f and g in H~ the right hand side of (II.31) (that is {f, g}~,~) is clearly in 
L 1. Thanks to its divergence stucture, namely 

{ f '  g},.i = ( f g ' ~ ) "  - ( f g " , ) ' ,  (III.1) 

R. Coifman, P.L. Lions, Y. Meyer and S. Semmes were able to prove the following. 

T h e o r e m  II I .1  ([5]): Assume that f and g are in HI(1R"). Then {f ,  g}i,j belongs 
~o the Hardy space Tla(~ n) and 

II{f,g},a[[w(~") ~< O[IVf[[L, llVgI[z,, (III.2) 

where C is an absolute constant. 
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We recall that the Hardy space T/I(/R ") is the set of functions r in L 1 such 
that the maximal function 

r 1 6 2  d r , > o  r" J (III.3) 

is also in L 1. In (III.3), r represents any smooth function with Support in the unit 
ball, such that f r = 1. A norm on 7~ 1 is 

I1'r = I I r  + I r  

For equivalent definitions, and more information we refer the reader to Meyer [13], 
Stein [17], or Torchinsky [19]. 

A fundamental theorem of Fefferman asserts that the dual space of 7-/1 is BMO, 
the space of function ( such that 

IICIl~MO=SUp{/~(=,,)IC-(C)~,,rJ,z e ~t",r > 0} < +oo, 

where we have set 

t 1 F 

( c ) . , .  = = IB(:,,-)I c. 

The duality ~.{1 - -  BMO can therefore been expressed as 

f~. r162 < 011r162 
In particular, for f ,g in HI(/R ") and h in BMO we see that 

(III.4) 

lJ~, .h <~ CIIV flIL~IIVglIL21[hlIBMO. (III.5) {/,g},,, 

This will be very useful in our context, in view of the following observation (due 
to C. Evans). 

P r o p o s i t i o n  I I I . 1  I, et 1 <<. p < +oo, and h be a map in WI'P(1R ") such tha~ 

Then u belongs ~o BMO(E~") and 

IIhlIBMO(/R-) ~ C/V/. (III.6) 
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Proof : By the Poincar6 inequality we have 

/ 1 " \ I/n ) 
which yields (III.6). 

Combining (III.5) and (III.6), we are led to 

]f~. {f,g},,, h <. ClIVulIL~IlVwlIL2M. (III.7) 

Remark : In the case p # 1, S. Chanillo ([2] for p I> 2) and S. Chanillo and 
Y.Y. Li ([3] for p > 1) have given a more elementary proof of (III.7), which does 
not rely on the 7"/1 - B M O  duality theorem. 

We notice that in the definitions above, we have taken the domain to b e / ~ "  
whereas we mainly need estimates for bounded domains. Using a tronchation 
argument (as in [7]) we may prove the following local version of inequality (III.7), 

P r o p o s i t i o n  I I I .2  Let f and g be in H'(B(r ) ) ,  and assume that 

f = C t" on OB(r) or g = C t* on OB(r). (III.8) 

Let h be in W~'P(B(2r)) (1 ~< p < +cr such that 

2tT/(2r) = sup (~.,) IVhl' , B(x,  p) c B(2r) < +cr 

We have 

f~(.) {f,g},,h I <. CllV flb.,llVgllL, Pi(2r), (In.9) 

where C is an absolute constant. 

Proposition III.2 is due to Evans [7]. For sake of completeness we will give a 
proof in the Appendix. 

We end this section with an elementary, yet crucial remark. 

Proposition I I I .3  Let f , g  and h be )%nctio~ in HI(B(r) )  N L ~176 such that 

f = o on aB(r) or g = 0 on aB(r) or h = 0 on an(r). 

We have 

(III.lO) 

{/,g},,, A = {g, A},,, / = {h, f},,, g. 

P r o o f  : use (III.1) and integrate by parts. 

(III.11) 
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IV Construct ion of a tangent frame and rewrit-  
ing of the equation 

We first briefly recall some of the main arguments in H~lein's paper [9] which 
are going to be useful for us. 

The first observation is that we may always assume that the image of fl by 
u hes in an open subset of N where there exists a smooth orthonormal tangent 
frame ~ = (~1,"" ,~k); that is ~i.~j = 61j and ~i(Y) E TuN. Indeed, if that were not 
the case, one may construct a larger manifold/~', such that N C -N, such that u 
is still harmonic as a map into .N, and such that the assumption holds. Therefore 
we might replace N by ~r. 

The second key idea is to construct a frame which is more adapted to u. 
Consider a ball B(p) C fl, the gauge transformation of ~ given by 

ei(x) ---- P~j(x)[~ju(x)], (I'V-.I) 

where R = P~j is a rotation in H'(B(p), SO(k)) and the functional 

f s  ~ < Ve ' ' e j  >~ (IV.2) F(R)  = (p) , 

By a result of Dell' Antonio and Zwangiger [6], it can be proved that 

p = inf{F(R), R 6 HI(B(p); SO(k))}  

is achieved. We denote by R0 a minimizer, and e = ( e l , ' " ,  ek) the corresponding 
tangent frame. Clearly ei(x) E T,,(~)N and el.ej = 6~j. 

The Euler-Lagrange equation for e is 

- 0 0e,~ 
~ ~ < e, ~ >= 0, vz, m in {1,... k}, (IV.3) 

with a Neumann type boundary condition 

Oe,n 
< e,, ~ >= 0, (IV.4) 

where v is the exterior normal to OB(p) (see [9]). From (IV.2) and some geometric 
arguments, we deduce that 

,.[(.) IVe, l 2 .< C ,,f-(,)Iwl , vl {i,..., k}. (Iv.5) 
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Equation (IV.3) can be written in a slightly form different using the formalism 
of forms, namely 

d* < el ^ de,,, > =  0. (IV.6) 

Hence by Proposition (II.1), (IV.6) and (IV.4) we see that there is some 2-form 
Dt.m in HI(B(r) ,  A 2) such that 

and 

aVD:,,,, = ea A de,,, = el.dem (IV.7) 

/8r IVD'"~I2 <~ c /m~) IVul2' (1v.8) 

(for (IV.8) we have used (IV.5)). 

We turn now to equation (I-2) (or its equivalent (I-3)). Since Vu lies in T,,(~:)N 
which is spa.~ned by the orthonormal frame ( e l ( x ) , . . . ,  en(x)) we may write 

We have for 1 6 {1 , . . . ,  k} 

W, = ~., < Vu, el > e,. (IV.9) 
I 

div (< Vu, ez >) = Au.el + Vu.Vet .  

By (I.3) we see that 

(rv.10) 

Au.et = O, ( IV.n)  

since el 6 T~,(,:)N and Au.I_T,,{,:)N. On the other hand, we may write according to 
(rv.9) 

~u.Ve l  = ~_, < Vu.em~ Vel.em > 

= ~ < du.em, d*Dt,,,, >= ~_, < aVDl,,,,, du > .e,,,, 

where we have used (IV.7). By (II.3) we may write the vector < d*Dl,,,,, du > as 

< d*Dl.~, du > = - *  < d ( * D l , , , )  h du  > 

= 

i<j 
(rv.12) 
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Fin~ly, combining (]V.IO), (W.n) and (W.a~,) we obt~n 

div ( < Vu, ~, > ) : ( -  l l~"+'l E ~ { Di:~, ,, } ,,i (IV.13) 

Rewr i t ing  (IV.13) as an elliptic s y s t e m  : Let ~ be a cut-offfunction satisfying 
(II.21), (II.22) and (II.23). For I in {1, . . . ,  k} let wt(u) be the 1-form defined on 
B(p) by 

w l ( u )  = ez A du, 

and ~z(u) be the 1-form on ~ defined by 

~(~) = e~ ^ d(r - ~)), 

where 

Note that 

~ t p : / B  It . (p) 

wl = ff'l in B ( p / 2 ) .  (IV.14) 

We use Proposition II-2 and write the HDR - decomposition of @t(u) o n / ~ ,  

,~,(it) = d , ,  + d%,  (ZV.15) 

where at is a function in HI(/R"; ~ K )  and/gt a 2-form in HZ(~"; ~K)  such that 

fl~llu,(m"l + llZll,~,r176 ~< CllVullL~, (IV.16) 

and 

d*a = 0, dE = 0. (ZV.17) 

Clearly, we have by (IV.9) and (IV.14) and (IV.15) 

k 
Ivitl ~< c ~ ( I w , I  + Ivz, I) in B(p/2). (rr 

I=1 

By (II.31), the coeffflcients ~;'~ of 13t in the standard basis satisfy the equation 

A3~a = let, C(u - uo)},o in ~ " .  (IV.iO) 

On the other hand, applying the Hodge operator at* to (IV.15), we obtain 
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ora l (u )  = d*dal = A a l  

(since d~,~ = 0). This yields in view of the equation (rv.13) ~ d  of (rv.14) 

a~, = (-1) "§ y ,  y ,  {D~:L ~},., . ~  in B(p/2). (W.20) 
m i<j  

Hence, we have written equation (IV.13) in the form of an elliptic system 
(IV.19) and (IV.20) for al and Bt. 

V P r o o f  o f  T h e o r e m  I - 5  

Let B(xo, r) be a ball in f /such that B(xo, 2r) C fl and such that the smallness 
assumption (I.14) holds, for some r to be determined later. Let B(x, p) be a ball 
included in B(zo, ~) (in particular p < ~). We deduce from (L12) and (I.14) that 

(-~ I/2 M(. ,  2p) < M(.0, r) < v~, . 

On the other hand, the monotonicity formula (1.8) and (1.14) yield 

(v.~) 

f~" Iv/3['q= = f~r  {~'' C(~ - (*,)=,A},.,/~J'J, 
for all indexes, i , j  and l. By Proposition III-3 we have 

By Lemma A-1 of the Appendix, we have 

I1r - (~)=,.)IIBMoC~"~ ~< M(x, 2p). 

Applying Proposition II-2, we see that 

i,j <. ClIW,IIL=IIV~; IIL~M(x,2p) 
i,j 

~< CIIVUlIL=IWD~ IIL~M(z,P) 
<~ Cpa~el/ZM(x,p)llVP~'Jll~=, 

(v.a) 

(V.4) 

(v.5) 

(v.6) 

1 /B(~,.) Wul2 /,,-2 ~ Cel. (V.2) 

We construct the tangent frame e = (e l , . . .  ,e~) as in section IV, on the ball 
B(z,p). We are going to estimate IVat] and IVfl, l, which will give us by (IV.15) 
an estimate for IVul. 

E s t i m a t e s  for  fit : Multiplying (IV.18) by fl['J and integrating on s we obtain 
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where we have used (IV.5) and (V.2) for the last inequalities. Going back to (V.3) 
we axe led to 

which gives, by Cauchy - Schwaxz inequality, 

1 
p"-' JB(~:o.,) lVfl~J[ <" Cr (V.7) 

We estimate next a~. We write, on B(x, p/2) 

where a~ is the solution to 

~, = ~? + ~ ,  (v.8) 

Aa ~ = 0 in B(x, p/2) (v.9) 

~ = ,~, on aB(~, p/2), (V.10) 

and al  is the solution to 

"J B(x, p/2) (V.11) 
rn ,  i<j 

,~ = 0 on OB(x,p/2). (V.12) 

E s t i m a t e  for  al  : Let r be the solution to 

Ar = div k[va~[ ] in B(x,p/2) (V.13) 

r = 0 on OB(~ , , / 2 ) .  (V.14) 

Since l ~ l  = 1, the r.h.s, of (V.13)is the divergence of a bounded function 

and therefore, by standard elliptic estimates r is bounded in Wl'q(B(x, p/2)) for 
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every I < q < +cx~. Hence by the Sobolev imbedding Theorem r is bounded in 
L 0~. We have 

I1r174 < cp (v.15) 

and 

IIVr ~< CP "/=, (v.16) 

where C is an absolute constant. 

Since a~ = r = 0 on OB(x, p), we see that, integrating by parts 

JBc=,,.) \lW, ll] "~ 

Therefore we obtain, using equation (V.11) 

m i<j  (='P/) 

Since e,n is uniformly hounded (1",.I = 1), and since r is bounded by (V.15), 
r  belongs to re(B(=,  p/9.); ~K).  More precisely 

IIV(r < IIr174 + IIVr 
which yields, in view of (V.15), (IV.5) and (V.16) 

IIV(r ~< ca"'. 
By Proposition III-3, we see that 

. i j  

and by Proposition II-2 (with p = 1) we obtain 

i,j 
<~ CIIV(r 

<~ Cp"-le~/2M(x,p). 

(vas) 

(v.19) 

We have used (V.18), (IV.S) and (V.2) for the last inequality. Combining (V.20) 
and (V.17) we are led to 

(v.20) 
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B 1/2 1 IV,~l <~ C~1 M(xo,r), Vle {1, . . . ,k}.  
p.-1 (=,~12) 

(vm) 

Es t ima tes  for a~:  By (V.8) and (V.15) we have 

Iw?[ < Iw~[ + [w,[ ~ IwI[ + c(Iw[ + IV~,l). 
Therefore by (V.7) and (V.21) we obtain 

1 
JB ivan[ <" CM(xo, r). (V.22) 

p,-1 (~0,p/2) 

Since a~ is a harmonic function, it follows from standard elliptic estimates that 
for any 0 ~< 0 ~< �89 we have 

1 1 

which yields, combined with (V.22) 

1 (op).-, f~(=,o,) lW?l ~ COM(xo, r), 

f o r O ~ O < � 8 9  

(v.23) 

Choice of 80 and  el, and  comple t ion  of  the  p r o o f  : Since 

we see that 

k 

IWl < c ~(IW~l + Iw~f + IVN), (v.24) 
I=1 

Q 

Combining the previous inequality with estimates (V.8), (V.21) and (V.23) we are 
led to 

(Op),-1/m~,o,) [Vul <<" C kO + ~'=-;) M(z~ 

0 1 We first choose some number 00 in ( , g) such that 

(v.25) 
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1 
COo <~ g. 

We then determine el such that 

1An 1 C1/2el <~ g0 o- , 

and we set 

(v.26) 

(V.27) 

1 
01 = g0o.  

Going back to (V.25), we see that for any ball B(z, p) C B(zo, ~) we have 

1 1M(xo,r). 
(00o) "-1/m~,0o,~ IW, I < 

We consider the sets 

.4o = {B(z, fi), such that B(z, fi) C B(zo, 01r)} 

and 
,41 = {B(x, Oop), such that B(x, p) C B(xo, r ~)}, 

and we easily verify that 

(V.28) 

(V.29) 

Ao c .41. (v.30) 

Indeed, let B(x, fi) be such that B(z, fi) C B(xo,01r). Since 0o = 201, we see that 
B(z, ~) C B(zo, ~), and hence B(z, fi) e .41. From (V.29), we therefore deduce 
that 

1 4M(xo,r)" (V.31) ~.-1 

If we take the supremum of the left-hand side of (V.31) for all balls B(z, ~) E A1 
we are led to 

1 
M(zo, elr) <~ iM(xo ,  r), 

and this completes the proof of Theorem I-5. 

V I  P r o o f  o f  T h e o r e m  I-4 

We assume that (I.9) holds, for some s0 to be determined later. Let zl be a 
point on B(xo, r~). From the monotonicity formula (I.8) we deduce that for any 
0 ~ r ~ w e h a v e  
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1 1 

.4. ._= (VI.1) ~< (~) ~0, 

where we have used (I.9) for the last inequality. We determine the value of to by 

3 r, 2 
gO = ( ~ )  - g l .  

Going back to (VI.1) we see tha t  for 0 ~< r ~< -~, and xl in B(xo, "~) 

( V I . 2 )  

1 r /B (V'~ ]2 <~ ~:1. (VI .3 )  
r " - 2  (~l,r) 

On the other hand,  we deduce from (I.13) that  for every 0 ~ r ~< r~ and =1 in 
B(=o, 9) we have 

,~a~.1/2 (VI.4) M ( z l , r )  ~< - - - ~ 1  �9 

Since (VI.3) holds, we may  apply Theorem I-6 to u restricted to B(x l ,  r)  (for 
0 ~< r < r~). This yields first for r = -~, 

ro 1 ,  r r0~ M(xl, 01u <. ~lv~ tzl,-U" 

Taking then successively r = 01 9 ,  r = 8~ 9 ,  " " ,  r = O~ ~ and i terating in- 
equality (I.15) we are led to, for any m E/N* 

.1.,~M. x to .  

For 0 ~< r <~ ~-, there is some rn 6 /N* such that  

(vI.~) 

e =+lr~ ~< r ~< e~4. 
1 4 

Clearly we have 

m ~< l o g ( ~ l / r  ). 

Hence, it follows from (VI.5) that  

(vI.6) 

M ( x l , r )  ~ M(=I,O'~4) c(�88 ~ 

~< C e x p  

<<. Cr ' ,  

log I/4 
(m log r(%Q-~)) 

(vLT) 
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On the other hand, from the definition of M(zl, r) we see that where # = log s, �9 

1 
/~ IWl .< M(zl , r ) ,  

r "-I (x,,r) 

and hence, by (VI.7) 

/B(~I,,} J~7uJ { Cr"+{'*-l}, (vi.s) 

for every Zl in B(Xo, r~) and r <~ ~4" By a classical result due to Morrey (see e.g. 
[8], Theorem 1.1 p 64) that u is hSlder continuous in B(zo, -~). Higher regularity 
can thereafter be derived by standard arguments. 

VII Proof  of Theorem I-1 completed  

We use a standard covering argument (see e.g. [18], Corollary 2-7). Let B(A) 
be a ball in fl of radius A. Let 6 > 0 be small, and B(x,, 6), B(xz, 6) , . . . ,  B(xl, 5) 
be a maximal family of l balls covering B(,~). By maximality of this family, we 
have 

l ~< c6-", (vii.l) 

where C is some absolute constant. We also see that 

B(~) c oI=IB(z,, z,). (vii.z) 

Relabelling if necessary the points zl, let zx, xz, . - . ,  zp be the points such that 

1 
/s{~,,s61 Ivul2 ~> ,o. (vii.3) (86)"-~ 

It follows from Theorem I-4 (~- regularity) that 

:C n B({)  c U~__lB(z~, 25). (VII.4) 

Integrating JVuJ 2 on U ~  B(x~,86), we obtain, in view of (VII.3) (by maximality 
of the family B(z~, 6)) 

p6 ~-= .< ceo'/~.,s{,,,ss} Iv=12 "< c ~ '  /IVulL (vii.s) 

and therefore 7-/"-2(ECIB(})) < CZ(u) (letting 6 ~ 0); hence ~"(O~=lB(Z;,86)) 
tends to zero as 6 ~ 0. It follows that 

li~ f l W l  ~ = o. 6 od~.lB(~i,s5 ) 
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Going back to (VII.5), this yields 

~.-2(E n B(~)) = O, 

and completes the proof of Theorem I-1. 

V I I I  P r o o f  o f  T h e o r e m  I - 2  

The proof is essentially the same as the proof of Theorem I-1. 
WI'"(M, N) we have, by HSlder's inequality 

r n -2  (x,r) IVul2  ~ C (x,,) < 

and 

r n-1  (x,r) 

It follows from (VII.2), that for every ball B(x, r) C 

Since u is in 

(viii.l) 

(VIII.2) 

M(xo, r) ~ CE,~(u) '1~, (VIII.3) 

where we have set E.(~) = f .  IWI". In view of (vm.1)  and (VIII.3) we may e~ily 
adapt the proof of Theorem I-6, and obtain, the following. 

T h e o r e m V I I I . 1  : There are constant e2 > 0  and O < 02 < ~ such that if u in 
W',"(f~, N) is weakly harmonic and if, for B(xo, r) C a 

then 

fBc~o,~) IWl~ ~ ~' (vm.4) 

1 
M(xo, 82r) <~ 4M(xo, r). (VIII.5) 

Readily reproducing the arguments of Section VI, we may prove that there is 
some constant e3 > 0~ such that if 

f~(~o,,~ IW, l" <~ e3, (viii .6) 

then, ~ is r e ~  in B(x0, 5)" S ince one may always choose some r su~clently 
small such that (VIII.6) is satisfied, this completes the proof of Theorem I-2. 
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A P P E N D I X  

L e m m a  A.1 Let h be a function in Wla(B(xo, 2r)) such that 

(h)=o,2,=]s h=O 
(zo,~r) 

and 
M(xo,2r) < +c~. 

Let ~ be a smooth function from ~l" --* ]R + such that 

r = I on B(~o, r), 

(A.~) 

(A.2) 

(A.3) 

4 
IV~l <~ - ,  (A.4) 

r 

Then ~h is in BMO(IR") and 

[[~h[lsMO(ll~) <. CM(zo,2r), (A.5) 

where C is an absolute constant. 

Proof : The argument is due to C. Evans [7]. For sake of completeness, we 
recall it. We have for any ball B(x, p) C B(xo, 2r) 

.< c 1 f,(=,~) IVh[ <~ CM(xo, 2r), (A.6) 

which implies by the John and Nirenberg inequality ([JN]) that h is bounded in 
L p, for every 1 ~< p < +(x~ and, since (A.1)) holds, 

(fB(~o.m ,h,') ll" <. C.r"/'M(xo,2r). (A.7) 

We see "that for any ball B(z, p) C B(xo, 2r) we have, for any y in B(x, p) 
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I(r - r = I f . c . p -  h I 

< cs Ihl, r ao(x,p) 
(A.S) 

where we have used assumption (A.4) for the last inequality. It follows that 

L(~,~)l(:h - (r 
"< f~-~ Ih- (h)~'~l + C-p ~:~c~,.)lhl 

~< CM(2r)  + c(j Ihl") w'  

<~ CM(2r), 

the last inequalities resulting form (A.6) and (A.7) with p = n. This completes the 
proof of Lemma A-1. 

P r o o f  of  P r o p o s i t i o n  I I -2  : We assume that, for instance f = C t~ on OB(r). 
Substracting if necessary suitable constants, we may always assume that 

and 

/ = 0 on 0B(r) (A.9) 

s 

~c,) g = o. (Aa0) 

We may therefore find an extension ~ of g t o / E "  such that t7 = g on B(r),  ~ = 0 
on ]R~\B(2r) and 

II#llH,(m") < C]]gllH~(~"). 

We extend jr by ] to ~ " ,  such that ] = 0 on ~" \B( r ) .  Set 

= h - fBi2,)h = h - (h).0,2,, 

and let r by as in (A.2), (A.3) (A.5). By Lemma A-1 we have 

(A.n) 

[1~ h + (h)o,2,1]BMo{1R") = H~hIIBMO(]IF) <~ OM(2r).  

On the other hand 

(A.12) 
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Hence 

JB{,) {f,g}i,j'h ~ CllV]llL ( -)llV. llL (  lllph + (h)o,=,lIBMO(a') 
<. C[[V f[IL2(S(,))I[Vg]]L,S(~)}M(2r), 

where we have used (A.11) and (A.12). This completes the proof of Proposition 
II-2. 
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