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ON L 1 - V O R T I C I T Y  F O R  2-D I N C O M P R E S S I B L E  F L O W  

Ita/o Veccl~, Sljue Wu 

We prove the existence of a classical weak solution for the 2-D incompressible Euler 
equations with initial vorticity wo = w~ + w~', where w~ is in LI(R 2) N H-I(R2) ,  
compactly supported, and w~' is a compactly supported positive Radon measure 
in H-I(R2). 

1. I n t r o d u c t i o n  

by 

The Euler equations for an inviscid incompressible 2-D fluid flow are given 

+v. Vv=-Vp z E R  2, t>0 

diVV = 0 

where v = (vl, v2) t is the fluid velocity, p is the scalar pressure, and vo is an initial 

incompressible velocity field, i.e. div v0 = 0. 

In Di Perns-Majda's fundamentalpaper [3], the following problems are studied, 

(we refer to [3] for notation and terminology.) 

P r o b l e m  1. Assume that  the initial incompressible velocity field v0 vanishes as 

[z I --* co and that  the vorticity wo = curlvo is a Radon measure contained in 

Sobolev space H~-~(R2). Is there a classical weak solution v(z, t )  of 2-D Elder 

equation with initial velocity field v0? 
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P r o b l e m  2. Given an initial velodty field r0 with the same properties as in 

Problem 1, assume that re(z, t) is an approximate solution sequence for 2-D Ettler 

equations such that  at time zero 

r'(~,  0) = ~ ( ~ )  + v'(~)  

and 

I1 '~'(o) - '~oll + I I ' v ' (o )  - % II �9 0 

as e ~ O. Does r~(z, t) converge to a classical weak solution of the Euhr  equation 

with initial data r0(z) as e - ,  0 ? 

The definition of a classical weak solution for the 2-D Eu]er equations is given 

in [3] as follows. 

Def in i t ion .  A velocity t~eld v ( z , t )  E L~176 for any T > 0 

and  vanishing as [z I --+ co is a classical weak solution of  the 2-D Euler equations 

w/th inltial data v0(z) provided that 

(1) fo.  ~ Zest f,m~tlons r ~ c~~  2 • R+; R2) ~ t h  d i v e  = 0, 

f fC., 
(2) the velocity/s incompressible in the weak sense, i.e., for all q~ E C~~ R 2 x 

R+ ), 

f /V,.r&dt=o; 
(3) rC.,t)  ~ Z~p([0,T],H~-~(R~)) for s o ~  L > 0 and ~0( . , 0 )  = r0(~) in 

-L 
Hio r �9 

Here r @ r = (r i r j ) ,  V ~  : (Oq~i/azj),  and A : B denotes the matrLx product 

In [3], Di Perna and Majda construct approximate solution sequences r  t) 

in different ways and study the related concentration-cancellation phenomena. 

There are many other works devoted to these problems. See, among others, [4], 

[g]. 
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The key point in proving that a weak Umit v(z, t) of an approximate solution 

sequence v~(z,t) is a classical weak solution of the 2-D Euler equations is to 

prove that v~v~ --~ VlV2 and v~ 2 - v ~  2 ~ v~ - v ~ .  Here "---~" denotes weak 

convergence in the sense of distributions. By assuming that initial vorticlty 

w0 = curl v0 E L~co,ap(R~), with p > i ,  Di Perna and Majda [3] prove that the 

weak limit v(z, t)  is a classical weak solution for 2-D Euler equation by using 

Sobolev embedding theorem, whereas J.M. Delort [1] proves it for initial vorticity 

w0 = w~ + w~', where w~ is a compactly supported positive Radon measure in 

H-I (R2) ,  and w~' is in ~ ' ,  p > 1, and compactly supported. 

In this note, we prove the existence of a classical weak solution v(z , t )  for 

the 2-D incompressible Euler equations with initial vorticity w0 = w~ + w~ w, 

where w~ is in LI(R ~) N H-I(R2) ,  compactly supported, and w~' is a compactly 

supported positive Radon measure in H-I (Rz) .  Moreover, we prove that  the 

vortlcity w(.,t) = curlv(. , t)  stays in r ) (R  ~) for each time ~ > 0 if the initial 

vorticity w0 is in LI(R2). The new dement in the present paper is the idea of 

using Dunford-Pettis theorem to show that weak Llloe-convergence is preserved 

by the flow. Again by Dunford-Pettis theorem, this is sulBcient to apply Delort's 

argument. 

No te .  After completion of this paper J.M. Delort kindly informed us that 

that P.L. Lions had commented to him on the possibility of proving the result 

described here. Actually such remark is referred to in a footnote on page 9 of [2]. 

However, to our knowledge, not even the hint of a proof has ever been published. 

We would like to thank Prof. Delort for his remarks and for making reference [2] 

available to us. Moreover, we would like to thank Bob Kohn for his support. 

2. M a i n  Resu l t s  

N o t a t i o n s .  Let z = (21,22) be the coordinates on R 2, ~D'(22) denotes the 

space of distributions on R 2 and M ( R  2) is the space of Radon measures on R 2. 

If ~ E ~D~(R2), we denote 

a i~  -- 82i ,  j = 1,2, V~o = (~o,~)2~) ' ,  

= = + 
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If  v = (~a, v~)t and w = curl v is compactly supported, we have 

v = V •  

w h e r e  
r 

= ~-~,o = .]log I~, - ul,~,Cu) du. lg 

Moreover we recall that  if w is a radially symmetric function in C~(R2) ,  then 

v --- V •  is a stationary solution of 2-D Euler equation, 

T h e o r e m  1. Suppose wo is a compactly supported function on L 1 91H-I ( R2 ) 
o o  . 2 2 and let vo = V •  Then there exists a function v E Lioc(R, Lzoc(R ;R2)),  

and ~ function p e L ~ ( R ; ~ ( R ' ) ) ,  s.t. (~,p) is a c l~s ic~  , , , e~  ~ointlon of the 

2-D Euler equation: 

{ ~-  + , , . v , , = - v p  ~ e R ' ,  t > 0  
(2.1) divv = 0 

~(x, 0) = ~o(x) 

Mo,eove, ,  ~ ( , , t )  = ~(~) + ~(~,0 ,  ,~he,~ ~ = V •  With ~ e C ~ ( R  2) 

r ~ y  symmet~C ~ d  f ~(~)d~ = f~0 ,  ~ �9 LF~(R; L~CR2;R~)). The ~o~i~y  

w(. , t )  = curlv(. , t)  is in L I ( R  2) for everyt  > 0 and 

l[~(',t)ll~fCR,) -< [l~o01l~,. 

By combinning with the result of J.M. Delort [1], we have T h e o r e m  2. Suppose 

1 - -1  '~ ee Wo = w~o +w~ ', wherewto E Lcompn H ( R ), w o is a compacily supported positlve 

Radon measure in Sobolev space H - I ( R 2 ) .  Let vo = V• Then there 

o o  . 2 2 .  2 ~ s t s  a ~c~inn ~ e L~(R,  L~,(R ,R )), and a ~c~inn p e L~(R;~(R~)) ,  

s.t. (v,p) is a classical weak solution of  the 2-D Euler equation (2.1). Moreover, 

~(x,t) = e( - )+e(- ,0 ,  ,~h~ee = v •  Withe e C~~ 2) r ~ y s y m m e t ~ c  

and $ ~(~) d, = $ ~0, e e L~(R; ~2(R'; R')). The vorti~y ~(.,t) = c~r~(., ~) 

c ~  be decomposed as~(=, t) = ~'(~, t)+~"(x, t), ~ h e r ~ ' ( , ,  ~) e Z~~ L'(R'))  

With 

I I~'(-,t) l l~*(~,) < [1"[,11~,, 

for a l / t  > 0, and ~ ' ( - , t )  is a poMt/ve Radon measure for each t > 0 with total 

mass bounded by the total  mass of  ~v~. 
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3. P r o o f  o f  t he  t h e o r e m s  

In [3] Di Perna and Majda construct approximate solution sequences for the 

2-D Euler equation by smoothing the initial data. For completeness we repeat 

their construction here. 

We consider an initial velocity field v0 such that  

(3.1) o o :  ou,1 oo e n M(R2)" 

Choose p 6 C~~ p >_ O, f p  = I, and define v~ = p, * vo, with p,(z) = 
1 z 

~.p(-~), then v~ E C~(R ') and w~ = curlv~ = p, * Wo 6 C~~ It is well 

known (see [6]) that the 2-D Euler equations have a smooth global solution 

v'(z,Z) so that v ' (z ,0)  = v~(z). Setting w'( . , t )  = curlv ' ( . , t ) ,  we have that 

(3.2) W + (v ' .  V)w" = 0 

, , , , (~ ,o)  = w~(x).  

z G R  2, t > 0  

So ~ . ( ~ ,  t) = , .g(v~, , (~) ) ,  where Vg,,(~) is a solution of the OI )g  

(3.3) ~s U:,tCz) = v'(U:,t(z), s) 
u : , , ( ~ )  = x 

The Jacobian of z ~ U~,t(z ) is identically equal to I for all t > 0, e > 0, since 

divv" = O, (see [6]). Consequently, 

(3.4) for O, 

j ,  h "  
t,e >0 .  

It is shown in [3] that  v ' (z , t )  -- ~ ' (z , t )  -t- ~(z), where fi" E L~(R;L2(Rn;R2) )  

uniformly in e, i.e. for all T > 0, there is a constant CT, such that  

(3.6) sup sup llfi'(-,Oll~fcR,,s,) < o r .  
o___t_<T o<~__.'n 
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Moreover e(z) = V•  with @ E C~~ 2) chosen s.t. ~ is radially 

symmetric and f @(z)dz = f ~o. The velocity field ~(z) is  a stationary solution 

of the 2-D Euler equation and satisfies 

(3.7) o  T(ll(1 + I'l)'vll ,= + II(1 § <_ CT, 

for all T > 0, where C T 18 a constant depends only on T. Therefore for all T > 0, 

v' G L~([0,T], L~o~(R2; R~)) uniformly in e. Moreover v" E Lip([0,T], HT~(R2)) 

and v r is uniformly Lipschitz [3, Lemma I.I]. So there is a subsequence of v ' ,  w]~ch 

we do not relahel, such that for a~ t > 0 fixed, there is a function v(-, t) G L~oe(R 2), 

which is the weak limit of v'(. , t)in L~oc(R2), so that 

(3.8) - -  0. 

For the corresponding vortlcity sequence to~(z,/) one has 

(3.9) ~v~(.,t) --~ w(.,t) weak * in M(R2).  

with ~o(.,t) = curlv(. , t )  E M(R2)(~H-I(R3), since for all t > 0, ~c(z , t )  E 

LI(R ~) uniformly in e (3.5). It is easy to see that  v(z , t )  is also a weak limit of 

v~(z, t) under the topology L~oc(R ~ x R +) (by Lebesgue's convergence theorem). 

Therefore v(z , t )  satisfies all the properties in Theorem 1.1 of I31, and moreover, 

v(z) = ~(v,t) + e(z , t ) ,  where #(z , t )  G L~(R;L~(R ~ : R~)). In order to show 

that v(z , t )  is a weak chmsical solution of Enler equation, we only need to show 

that for any ~b ~ C~~ ~ x R+), 

(3.10) 

and 

(3.11) 

We o~ty prove that (3.10) is true under the conditions of Theorem I or 

Theorem 2. The proof of (3.11) is similar. By Lebesgue's convergence theorem, 

we only need to show that for any ~b E C~~ 

(3.12) / ~ (z, ,)'v.'~ (z, t )~(z) d.z , / v l  (z, t)v-,(z, t)qb(z) d.z, 
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for  a .e .  t > O. W e  proceed as i n  [1]. 

Fix t > O, take ~b 6 C~~ 2) and assume that supp~b 6 BR(O). 

~b e C~~ s.t. ~b(z) = 1, for Ir < R, since , '  = v-LA-Xw ' ,  we have 

f ,~(z,t),~(z,t)*(z)dz = / we(z,t)xve(p,t)H,(z,ll)dzdy, (3.13) 

where 

(3.14) 

(3.15) 

where 

(3.16) 

Now setting 

(3.17) 

we have 

(3.18) 

Taking 

f =l - zl ~2 - z2 
H ~ ( = , y )  = ~,.,,. ~ : Ul' ~ : zl -~ 

~(z) dz, 

c being a unlversa] constant. (In the following, we use the letter c to indicate a 

universal constant, which may be different in each case.) We know that (see [7]) 

f zl - zl ~/2 - z2 dz h(z Y), c 

Zl - - Z l  Y~ --z2 , (~ ,~)  = cp., .  ~ - - z ~  ~ - ~  ( ~ ( z ) e ( ' ) -  ~(r  

H,C= ,u )=ch (= -~ )~ (= )~ (U )+ ,Cr  

It is easy to check that r (z ,y )  E Liplt2(R2) and 

(3.19) r (= ,9  ) _< 

Therefore by the fact that 

I=1 + I,~1' 
when I=l + lul > 1. 

~'( ' ,0 -~ ~(.,0 weak �9 in M(~),  

and by Ascoli-Arzela's Theorem, 

(3.20) 

/ ~ ' ( r  t)~'(~,t)(O - x(= - y))h(r - u)~(=)~(u) + , (=,u))  ~ dz 

' r w(z , t )w(y , t ) ( (1  _ x(z - y ) ) h ( r  - y)~(z)xbCy) + 1"( r  tl) ) dz aN, 
J 
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where X is any C~ ~ function satisfies that  X(Z) -- 1, when [z[ < 6, for some 6 > 0. 

As in [1], the following lemma implies (3.12). Lemma 1 Assume the conditions 

as in Theorem 1 or Theorem 2. Then for any integer ] ,  there is 65, ej, s.t. 

I .  I ~ ' (= ,~ ) l l ~ ' (~ , t ) l l ~ (= ,~ ) l  d = @  < I I ] ,  for all 0 < e < (3.21) -~l<~J Ej. 

Proof. Suppose that w0 = w~ + w~', where zo~ E LI(R ~) and zoO' is a positive 

Radon measure. Then 

(3.22) w ' ( z , t )  w~(U~,~(z)) " ' "' ' = = zo o(U;,,(,)) + zo oCU;,,(-)), 

I @ I f where zo o = zo~ * P,, and zo"~ = zoO' * p,, therefore we have that  zoo "* zo~ 

in LI(R2). We write u/'(z,t) = zo'~(U~,r zo"'(z,t) = zo"'iU" 'z ~ where Ok O,'~l. / 3  

zo"'(z, t) is positive. 

As in [1], it is enough to prove that  there exist sequences 6j, and ej, s.t. 

(3.23) sup r [zo'(y,t)[dy~_l/], for all 0 < e < ej. 
�9 eva(0) Jl~,-~l<% 

If (3.23) were not true, then for some 6 > 0, there would be a subsequence e. ~ 0, 

and a sequence z ,  E BR(0), z ,  ~ zo E BIt(O), s.t. 

(3.24) 6 _< [ Izo"(~,t)[ dy. 
JIv -..l<11- 

We recall that level sets of zo" axe preserved by the flow since the Jacobian of 

z ~-* U~,t(z ) is identically equal to 1, and so by Dunford-Pettis theorem (see [5, 

,c zo"~, which p.240]), since zo o --} zo~ in LI(R2), there is a subsequence of to"',  

we do not re.label, s.t. 

(3.25) 

and 

(3.26) 

~" ' ( . , ~ )  -~ zo'(.,t) weak in L~oc(R2), 

~" ' - ( . ,~)  -~ ~"(. ,~) weak �9 ~ MCR~). 

The same Dunford-Pett is  theorem also implies that  there is an N > 0 s.t., when 

n > N ,  we have 

(3.27) 31,/-=.1<1/- nzo"-(~,t)l dy _< 612. 
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So (3.24) and (3.27)implies that 

(3.28) /~/2 < ~ly-| [<1/,~ w"'" (y, t) dy, 

for n > N. This is impossible since the measure wt = w(.,t) is diffuse, and so is 

w;' = ~'"(', 0, since w'(., 0 e L 1 (see [1]). This concludes the Lemma. 

It is easy to see from (3.25), (3.26) that 

= + O, 

and w'(.,t) e LI(R2), 

(3.29) II f, ll ,. 

Moreover w"(., t) is positive with total measure bounded by the total measure of 

w~. This proves Theorem 2. Theorem 1 follows by assuming that w~ I = 0. 
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