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Jun Li 

In this note we prove that  the number of irreducible components of 
Hom(~r, G) is the same as ~rl(G), where ~r is a surface group and G is com- 
plex semisimple. This is established by studying the fiat bundles on Riemann 
surfaces. 

0. I n t r o d u c t i o n  

Let X be a closed oriented Riemann surface of genus g > 1 and let 7r 

be its fundamental  group. For any connected Lie group G, we denote by 

Hom(7r, G) the analytic space of all homomorphisms from 7r to G. In this 

paper, we calculate the number of connected components of ttom(Tr, G) when 

G is complex semisimple. We prove 

T h e o r e m  0.1: Let G be a connected complex semi-simple Lie group. Then 

~r0(Hom(~r, G)) is isomorphic to ~rl( G). 

For any homomorphism p : zr -+ G, there is a canonical flat connection 

on the marked principal G-bundle P = )~ x G/~r and vice verse, where 

is the universal covering space of X.  We fix such a topological principal G- 

bundle P .  According to [GM1], if we denote by Hom(Tr, G)p the subset of 

ttom(Tr, G) consisting of all homomorphisms p whose associated flat bundles Pp 

is topologically equivalent to P and denote by F(P) the space of flat connections 

on P, then F(P) is a principal bundle over Hom(Tr, G)p. Theorem 0.1 will follow 

if we prove 

T h e o r e m  0.2: Let G be a connected complex semi-simple Lie group and P be 
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an arbitrary principal G-bundle over X such that F(P) is non-empty. Then 

F(P) is an irreducible and simply connected infinite-dimensional complex vari- 

ety. 

T h e o r e m  0.3: Let G be any connected complex semi-simple Lie group. Then 

there are exactly 1rl ( G) many distinct topological principal G-bundles and for 

each of  such bundle P, F(P)  is non-empty. 

When G is simply connected, we calculate the fundamental group of 

Hom(z,  G), 

T h e o r e m  0.4: Assume that G is a connected, simply connected complex semi- 

simple Lie group, then ~l(Hom(~, G)) = {e}. 

We now turn to the situation when G is a compact semisimple Lie group. 

Observe tha t  G acts on Hom(lr, G) by conjugation. In case that  G is compact, 

the quotient space Hom(~r, G)/G is a Hausdorff space carrying rich geometric 

structures. It has been extensively studied by [Ra] and by [AB]. Though they 

haven' t  s tated explicitly, a combination of their argument shows: 

T h e o r e m  0.5: Let G be a compact, connected semi-simple Lie group. Then 

7r0(Hom(~r, G)/G) is isomorphic to ~rl(G). 

Theorem 0.1 was conjectured by W.Goldman. He showed that theorem 

0.1 is true when G is SL(2, C) [Go]. 

We now outline the proof of theorem 0.2. Clearly, every flat structure on 

P induces a holomorphic structure on the same bundle. Let q : F(P) ~ Cp be 

such a correspondence, where Cp is the set of all holomorphic structures on P. 

If we let C ~ be the set 

{-0 E Cp [ H~ adPy) = {0}}, 

then r / :O-l(C0)  --* C ~ is a fiber bundle with affine fibers. Now using the fact 

that  C~ is zariski open in Cp and Cp is affine, r/-l(C~) is connected (irreducible). 

Theorem 0.2 will be proved if we can show that  y - l (C~) i s  dense in F(P). We 

will prove this by showing that  any fiat structure on P can be deformed to flat 

structures in q-l(C~).  
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I. C o n n e c t i o n s  

Let X be a complex manifold, G be a complex Lie group and P be a 

principal G-bundle over X. The goal of this section is to understand the space 

of complex s tructures  and the space of flat structures on P. We refer to standard 

text [AB][Ko] for the definition and basic properties of connections on principal 

bundles. 

We first introduce two relevant vector bundles associated to P. Let au tP  

be the twisted product  a n t P  = P x a  G, where G acts on G via conjugation. 

Clearly, associated to every G-invariant fiber preserving map p: P ~ P there is 

a global section of the bundle autP.  We call G = C ~ ( a u t P )  the gauge group 

of P. The adjoint bundle adP is the vector bundle adP = P x c  g, where g is 

the Lie algebra of G and G acts on g via the adjoint representation. Let D be a 

connection on P. D is given by a connection form w which is a g-valued 1-form 

on P. Equivalently, D is defined by a G-equivariant splitting of the following 

exact sequence of vector bundles over P, 

iD 
0 , T V p  , T P  --~ p*xTX ,0 ,  (1.1) 

where T v P is the vertical tangent bundle and Px : P ---* X is the projection. 

If  we denote by J a  the complex structure on g and by Jx  the complex 

structure on T X ,  we can define an almost  complex structure JR on T P  which 

is the direct sum J x  @ Jc  induced by the splitting iD. We have the following 

L e m m a  1.1: [Ko] Let D be a connection on P and w be its connection form. 

Then there is a unique almost complex structure JR on the manifold P such 

that for any tangent vector v E T P ,  we have 

(1) w(Jpv)  = J~ ~(v) ,  

(2) p x . ( J P v )  = J x ( p x . v ) .  

Moreover, JR is integrable i f  and only i f  the (0,2) part of the curvature form 

{9(9) = dw + �89 w] e ~2(X, adP) is identically zero. D 

When X is a Riemann surface, there is no non-trivial (0,2) forms on X. 

So we have 

C o r o l l a r y  1.2: Lf d i m X  = 1, then any connection D on P induces a holo- 

morphic structure on P such that both Px : P -'-* X and the multiplication 
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map  P x G --~ P are holomorphic. Moreover, the connection form w of  D is a 

g-valued (1,0)-form on P. [] 

A principal bundle P with such a holomorphic structure is called a holo- 

morphic principal  bundle. A connection on the holomorphic principal bundle 

whose connection form is of (1,0) type is called a compatible connection. Since 

the difference of two connection forms is in f~l (X,  adP), the space of compatible  

connections on P is an affine space isomorphic to f~l,~ adP) and the space 

of holomorphic s t ructures  on P is an affine space isomorphic to f~~ adP). 

Since we intend to s tudy  the relation between the flat structures and holo- 

morphic  s t ructures  on P ,  it is convenient if we can find a canonical compatible  

connection on P .  Let G be a semi-simple complex Lie group and let K be 

a maximal  compac t  subgroup of G. If  we denote by go and g~ the (real) Lie 

algebra of K and G respectively, then g~ = go + Jgo, where J is the complex 

structure of  g~. go is called a compact  real form of g. We fix a compact  real 

form go C g]~ once and for all. Then we can canonically express any ele- 

ment  Z E g as Z = X + J Y ,  X , Y  E g o .  Consequently, g c a n  be written as 

g0 |  We define the c o n j u g a t i o n ~ : g - - ~ g b y  6 r ( X + J Y )  = X - J Y .  If 

B(-, .) is the killing form of g, the hermit ian form < .,. >K on g x g defined by 

< u, v >K = - B ( u ,  av) is positive definite. One notes that both  the conjuga- 

tion ~r and the hermi t ian  form < .,. >K are invariant under the adjoint action 

of K. We first reduce the s tructure group of P to K.  

L e m m a  1.3: A n y  principal G-bundle can be reduced to a principal K-bundle. 

That  is, there is a principal K-bundle PK such that  P = PK XK G. 

Proof. The proof  follows from the fact tha t  K is homotopic equivalent to C. 

See [Ra]. [] 

L e m m a  1.4: Let  PK be a principal K-bundle,  P = PK x KG.  Let adP be 

the adjoint bundle. Then adP is a complex vector bundle and on adP,  there 

is a hermit ian metr ic  < .,. > such that  at  every point z E X,  < . ,  - >J~dP~----< 

"," >K. 

Proof.. Clearly, g = g0 |  induces a complex structure on the vector bundle 

adP. We define a hermit ian  metric  as follows: Since P = PK x KG,  adP = 

P x a  g - PK • g, where K acts on g via the induced adjoint action. The 

hermit ian metr ic  < .,. > g  on g = go | C induces a hermitian metric  H on 

PK x g. Since H is invariant  under the adjoint action of K, H descends to a 

hermit ian metr ic  on PK x K  g = adP with the desired property. [] 
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Let P = PK • KG be a holomorphic G-bundle.  A connection D on P is 

said to be unitary if D is compat ib le  and if D is induced from a connection on 

PK. 

l e m m a  1.5: There is a unique uni tary connection on any holomorphic prin- 

cipal G-bundle P = PK • 

Proof. Since adP = PK x Kg, the conjugation r on g extends to a conjugation 

cr : adP --* adP. Combined  with the conjugation on T~X, we can define an 

involution 0 : adP| --* adP| Let D be any compatible connection 

on P and D1 be a connection induced from a connection on PK. We can write 

D = D1 + r  where w E ~ ~  adP) and ~b E ~ l ' ~  adP). Define a new 

connection D'  by 

D' = D1 + w + Ow. 

One checks directly t h a t  D'  is a unitary connection. The uniqueness of the 

uni ta ry  connection is obvious and we leave it to the readers. [] 

2. Flat  c o n n e c t i o n s  a n d  the i r  de format ions  

In the remainder sections, unless otherwise is stated,  we assume that  X is a 

R iemann  surface of genus g > 1, that  G is a connected complex semi-simple Lie 

group and that  P is a principal  G-bundle with a fixed reduction P = PK • g G. 

Hence adP admits  a canonical hermit ian metric and any holomorphic structure 

on P defines a unique un i ta ry  connection. For the moment ,  we assume F(P)  

is non-empty.  

I t  is known that  bo th  the space Ap of connections on P and the space 

Cp of holomorphic s t ructures  on P are affine spaces. Further, if we fix a 

connection D E ,Ap, then  there are identifications .Ap ~- f~l(X, adP) and 

Cp ~- f~~ adP). Under these identifications, the projection ~I(X,  adP) -~ 

~~  adP) is compat ib le  with the projection 770 :.Ap "-"+ Cp introduced by 

corollary 1.2. If we endow .ZIp and Cp the complex structures induced by the 

affine structures, r/:~4p --* Cp is complex linear. 

A connection D is said to be flat if its curvature O(D) E f~2(X, adP) 

is identical to zero. I t  is known tha t  the parallel t ransform guided by a flat 

connection has vanishing local holonomy and its global holonomy induces a 

homomorph i sm p : 7rx(X) ~ G. In fact, if we fix a base point z0 G X and let 

C0 = {h E ~ ] hlP~o = id}, the global holonomy m a p  7 / f r o m  the space of flat 
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connections F(P)  to Horn(r ,  G)p defines a principal bundle 

~l : F(P)  --~ Hom(Tr, G)p (2.1) 

with structure group Go [GM1]. In order to rigorously justify our argument, we 

need to introduce the Sobolev norms on the spaces of sections of the relevant 

bundles. We topologize the space f~ij(X, adP) by using the sobolev L~ norm 

induced by a Kahler metric on X and the hermit ian metric < -,. > on adP 

with p large and k = 3 - i - j .  Similarly, we use L~ to topologize the space 

G0. A standard argument  shows that  both .Ap, Cp and Go are smooth infinite- 

dimensional Banach manifolds and the gauge group C0 acts on Ap and Cp 

smoothly. Unfortunately, our primary interest F(P)  is not smooth in general. 

But  nevertheless, it is a complex analytic variety. 

D e f i n i t i o n  2.1: An infinite-dimensional space V is said to be an a/fine variety 

i f  there are complex Banach spaces B1 and 132, a smooth holomorphic map 

: B1 ---* B2 such that V = 4-1(0). V is said to be irreducible if  there is a 

dense open subset V ~ C V such that V ~ is connected and smooth. 

L e m m a  2.2: F(P)  is an infinite dimensional a/~ne variety. 

Proof. Ap is a complex Banach space and F(P)  is a subset of Ap.  Fix a 

D E Ap,  then F(P)  C A p  is the set of connections D + r + w, where (r w) E 

f~l'~ adP) x f~~ adP), such that  

e3((r = O(D) + D(w + r  + [w,r = 0. 

The map ~) :Ap --~ f~l ' l(X, adP) is smooth and holomorphic. By definition, 

F(P)  is an affine subvariety of.Ap. It is easy to see that  the complex structure 

so defined is independent of the choice of D. [] 

L e m m a  2.3: Let Hom0r,  G) C_ G x . . .  x G be the complex subvariety de- 

fined as the preimage 7-1(e)  of the holomorphic map 7 : (G) • --* G, 

7 : ( z l ,  . , z ~ , y l ,  yg) 9 ly71 . . . . .  , ~'~ r I i=l  ziyix~- �9 . Then 

~ : F(P)  --~ Hom(~r, G) 

is holomorphic. 

Proof. Let v be any holomorphic tangent vector of F(P)  at P.  Since .Ap is 

smooth,  there is a holomorphic family of connections D~, OzD~ = 0 such that  

OzD~[~=o = v.  On the other hand, because v belongs to the tangent space of 
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F(P), O(D~) vanishes up to first order. Tha t  is, O(D,)  = O(M2). Let 7(0 

be any fixed smooth arc in X and let h~(t) be smooth sections of P over 7(t) 

parameterized by z with hz(O) fixed such that  dh~(t) is parallel via D~. The 

lemma will be proved if we can show that  for any t,-Ozhz(t)l~= o = O. 

Let # : ~7 ---. X be the universal covering and let /5 be a trivialization 

of #*P so that  #*D is the trivial connection. Let &z be the connection form 

of/~*D~, let 7(/) be a lifting of 7(t) and /%,(t) be lifting of h~(t) with fixed 
d h~(0). Then since ~h~( t )  is parallel, ~5,(dh~(t)) = 0. On the other hand, 

-O.Wz = 0, so ~0(dS.h~( t ) l .=0)  = 0. Assume hz(t) = (5(t) , f (z , t ))  6 f f  x G, 

then ~-O.f(z,t)l.=o = 0. Note that  since f (z ,  O) = coast.,-O.y(z, 0)1.=0 = 0. 

So 8~I(z,t)l.=o = 0 for any t. Therefore 0zh.(t)) .=a = 0. The lemmahas  been 

established. [] 

The fibration 7/ : F(P)  ~ Hom(rr, G)p is very powerful in studying both 

the local and global geometry of ttom(rr, G)p. However, we find the map 

: F(P) ~ Cp, rl is induced from the projection Ap -* Cp, is also helpful in 

deriving the topological information of F(P). 

L e m m a  2.4: With the notation as before, then the map r/: F(P) ~ Cp is 

holomorphic. Moreover, for any complex structure 0~ 6 ~(F(P)), r1-1(0~) is 

an a n n e  space isomorphic to the space of-O~ closed forms f21,~ adP)~ C 
~21'~ adP). In particular, it is irreducible. 

Proof. Since F(P)  is a subvariety of Ap and r/ : Ap ~ Cp is holomorphic, 

the restriction of r 1 to F(P),  71: F(P) ---, Cp is still holomorphic. To prove 

the second statement,  we assume D is a fiat connection with rl(D ) = 0~. Let 

D1 = D + r  r ff ~ I ,O(X ' adP). Di is flat if and only if 

1 
0 = O(D~) = O(D) + D(r + ~[r r = 8~0(r 

That  is, r 6 f21'~ adP)g .  [] 

Since F(P)  C .Ap is a complex variety, it makes sense to talk about sub- 

variety of F(P). Let V be any finite dimensional complex analytic variety. A 

map r : V --. F(P)  is said to be holomorphic if r : V ~ Ap is holomorphic. 

We call the image r a subvariety of F(P).  It is not difficult to see that 

if r : V -~ Cp is a holomorphic map, then there is a holomorphic structure 

on P x V such that  the induced holomorphic structure on P x {v} is exactly 

the holomorphic structure given by r In this sense, a holomorphic map 

r : V --~ Cp is equivalent to a holomorphic family of holomorphic structures on 

P x V parameterized by V. 
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Now we study the following question. Suppose P is a holomorphic principal 

G-bundle and that D is a compatible flat connection. Let t be the complex 

parameter and let w~ 6 f~~ adP) be a smooth family of forms with ca0 = 0. 

D + wt induces a smooth deformation of complex structure on P. The question 

is under what condition can we find a family %b~ 6 ~l'~ adP), r = 0, such 

that D + cat + r is a family of flat connections. 

It is obvious that in order to have D 4- cat 4- Ct flat, r must satisfy the 

equation 

O(D) + D(wt) + [w,, r 4- 0D (r = 0. (2.2) 

We solve this equation by using the method developed by Kuranishi and 

Taubes. In the following, we fix a D and denote 0 = OD. Let Hi(X, adP | T~c ) 

be the space of 0 harmonic forms in ~*,~(X, adP) (with respect to the Hermi- 

tian metric introduced in w 1). We have the following orthogonal decomposition 

f~l,i(X, adP) = f~l,i(X, adP)o @ Hi(X, adP @ T~:). Let II : fP , I (x ,  adP) 

HI (x ,  adP | T~) be the orthogonal projection. II is complex linear. 

L e m m a  2.5: Let D be any fiat connection, then there is an open neighborhood 
U of 0 6 f~~ adP) and a smooth f : U ~ f~I,O(x, adP)o such that for any 

w E U, f(w) is the solution of the equation 

(I  - H) (0(D) 4- Dw 4- [ca, f(w)] 4- -Of(ca)) = O. (2.3) 

Moreover, f is unique and holomorphic. 

Proof. Let Q : ft~ adP) x ~l,~ adP)o --+ ~I,I(x, adP)o be defined by 

Q(w, r = (I - II)(O(D) 4- Dca 4- [w, r + 0r (2.4) 

Since D is flat, Q(0, 0) = 0. When w is small enough, the first order variation 

of Q along the second variable r 

6r r162 -- (I  - r)([ca, r + 0 r 

is an isomorphism between ftl,~ adP)o and f]I,I(X, adP)o. Applying the 

implicit function theorem, for some neighborhood U of 0 6 f]~ adP), there 

is a unique function f : U ~ ftl '~ adP)o, f(0) -- 0, such that (2.3) holds. 

To show that f is holomorphic, let 0 be the R-operator of f~~ adP). 

Then 

0 = 0((I - II)(6)(D) + Do; + [w, f(w)] + Of(ca))) 

= ( x -  n) + (2.5) 
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Therefore, b f  must be zero in a neighborhood of 0. [] 

An easy consequence is the following corollary which is our main tool in 

constructing deformation of flat connections. 

P r o p o s i t i o n  2.6: Let Z C f~~ adP) be any complex subvariety, 0 E Z 

and Z C U where U is the open neighborhood of 0 introduced in lemma 2.5. 

Then the subset 

Zo = {w E Zl @(D +w + f(w)) =0}  

is a complex subvariety whose complex dimension is no less than dim Z - 

hl(X,  adP | T~c ). In particular, V = {(f(w),w) [ w E Z0} C F(D) is a 

complex subvariety of dimension no less than d i m Z  - hi(X,  adP | T~c ). 

Proofi. Since D is flat, Z0 is non-empty. Further 

| + w + f(w)) = II(O(D) + Dw + [w, f(w)] + bf(w)) (2.6) 

is a holomorphic map from U C f~~ adP) to HI(X,  adP | T~c ). By dimen- 

sion comparison, dimZ0 > d i m Z  - d i m H l ( X ,  adP | T~c ). [] 

Since G is semisimple, the Killing form B(.,-) provides a non-degenerate 

bilinear map adPx adP ~ C. This is a holomorphic correspondence. Therefore 

adP is isomorphic to its own dual. By Serre duality, Hi(X,  adP | T~c ) = 

H~ adP) v and the induced pairing 

(., . ) :  H~ adP) x Hi(X,  adP | T~c ) , C (2.7) 

is nondegenerate. Therefore we have proved the following corollary. 

C o r o l l a r y  2.7: Suppose h~ adP) = O, then there is an open neighborhood 

0 E U C f~~ adP) such that for anyo; EU, D+w+f(oJ) is aflat connection. 
[] 

3. S t a n d a r d  f i l t r a t i o n  o f  s E H~ adP) 

The goal of the following two sections is to show that  for any flat connection 

D, there is a (smooth) deformation D § w~ + Ct of flat connections such that  for 

generic ~, H~ adP-6, ) = {0}. Let us first examine the effect of the existence 

of sections s E H~ adP) on the structure of P. 

Let P be any holomorphic principal G-bundle. Assume H~ adP) ~ {0}. 

Let s E H~ adP) be a non-trivial section. Then ad(s) : adP ~ adP is 
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holomorphic. The characteristic polynomial det(A,  id - ad(s)) of ad(s) is a 

polynomial of A whose coefficients are holomorphic functions of X. So they 

must  be constant functions. The Jordan decompositions of p(s) at points z E X 

provide a decomposition of the vector bundle adP. The proof of the following 

lemma can be found in [Gu]. 

L e m m a  3.1: There are sub-bundles Eo,. �9 El of  adP, distinct complex num- 

bers A0,.- . ,Ai and nilpotent endomorphism Nj : Ej --* Ej such that 
a).  z ~j=oEj = adP, 
b). ad(s)(E ) C 
c). ad(s)lt~j = A t �9 id + Nj .  [] 

Since zero is always an eigenvalue of ad(s), we agree A0 = 0. We call 

s E H~  adP) a nilpotent element if ad(s) is nilpotent.  The nilpotent endo- 

morphism No :E0 ~ Eo further defines a filtration of Eo as follows: Let O(Jvi) 

be the subsheaf of O(Eo) defined by 

O(Fi )  = {h e 0(t?,o) I Nio(h) = 0}. 

Since d i m X  = 1, O(~i )  is the sheaf of a subbundle of E0 which we denote by 

Fi. We call filtration 

O= Fo c F1 c . . . c  F~ = Eo (3.1) 

the canonical filtration of (E0, s) and call decomposition 

0 =  F0 C F1 C . . .  C -fir = Eo, E I , . . . , E t  (3.2) 

the canonical s-decomposition of adP. We denote r(s) = r and l(s) = I. Let 

n = d img.  We define the length of s E H~ adP) by 

length(s) = n"+2(n - l(s)) + E nn-irank Fi. (3.3) 
i----1 

We have the following observation. 

L e m m a  3.2: Let Pi be holomorphicG-bundles and si E H~ adPi), i = 1, 2. 

Then length(s1) > length(s2) i f  the first nonzero integer of  

- ( l ( s l )  - l(s2)), rank Fl (Sl )  - rank Fl(s2), rank F2(sl) - rank F2(s2), . . .  

is positive. 



JUNLI 233 

Proofi. The lemma follows directly from the fact that  l(s) and rank Fi are no 

more than n. [El 

L e m m a  3.3: The length function is upper-semi-continuous in both zariski 

topology and classical topology. That is, if ( P, Or) is any holomorphic (resp. 

smooth) family of holomorphic structures and st E H~ adPt) is any holo- 

morphic (resp. smooth) family of sections parameterized by complex variety 

V, then for any k, {t E V ] length(st) _> k} is a closed subset of V in zariski 

(resp. classical) topology. 

Proof:. It is obvious that  the number of distinct eigenvalues of ad(st) is a lower- 

semi-continuous function and rank Fi = dimKer(ad(st)) i is an upper-semi- 

continuous function in both topologies. Therefore, by Lemma 3.2, length(st) 

is an upper-semi-continuous function in both topologies. [] 

We now state in what sense a flat connection D E F(P) is generic in 

its irreducible component. Let M C F(P) be any irreducible component and 

since F(P) ~ Hom(zr, G)p is a fiber bundle, there is a corresponding irreducible 

component M C Horn(r, G)p. Let v E M be a generic point such that M is 

smooth at r (without loss of generality, we can assume M is reduced). Let 

U C M be an open neighborhood of r such that h~ adP~) = h~ adP~,) 

for v ~ E U. We claim that  there is an analytic subvariety V C_ F(P) such 

that  U C 7-/(V). Indeed, let Uo C F(P) be a (finite dimensional) submanifold 

surjects onto U via 7-/: F(P) ---* Hom(Tr, G)p and let W0 = rl(U0) C Cp. 

Shrinking U (and U0) if necessary, we can find a smooth complex subvariety 

W C Cp such that the image of Wo C Cp ---* Cp/~o is contained in the image 

W C Cp ""+ Cp/~o [AB, w Let V = ~)-1({0} • W), where ~) : Ap 

~1,1(X, adP) x Cp is defined by O :  (r ~ (O(D + r + w),w). A standard 

argument shows that  ~) is Fredholm and holomorphic. Therefore, V is a finite- 

dimensional subvariety of.Ap. It is clear that V C F(P) and U C 7/(V). 

By further shrinking V (and U) if necessary, we can assume V is smooth, 

connected and U = 7-/(V). Let Pv be the holomorphic principal G-bundle over 

X • V such that for any D E V, P[xx{~) = PD. Let Hv =pv,(adPy)  be 

the direct image sheaf over V, where Pv is the projection X x V ~ V. Since 

h~ adP,) is constant for v E V, by base change theorem, pv.(adPv) is 

locally free. Let P ( H v )  be the projective bundle of Hv over V. Since every 

point of P ( H v )  corresponds to a multiple of global section of adP, the length 
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function defined in (3.3) provides a stratification of P (Hv)  as follows: 

Sk(V) = {s E P ( H v )  [length(s) _ k}. (3.4) 

If we agree that  Sk(V) have reduced scheme structures, by lemma (3.3), Sk (V) 

are closed (in Zariski topology) subset of P(Hv) .  

D e f i n i t i o n  3.4: D E V is said to be generic if  for any s E H~ adPD) 

and any (smooth) deformation 19, 6 V of D, there is a smooth deformation 

st E H~ adPD,) ors such that length(st)=length(s) for t small enough. In 

general, D E F(P) is said to be generic if same conclusion holds when V is 

replaced by F(P).  

We show that the set of generic points of V is a dense subset of V. (Then 

the set of generic points of F(P) is also dense in F(P).) Let pk:Sk(V) ---* Y be 

induced from the projection. Since S~(V) C P(Hv)  is closed, p~ is proper. Let 

qk :Sk(Y) ~ S~(V) be the desingularization and let 16k = pk o qk :Sk(V) -+ V. 

Define 

Sk(V) d*9 = { v E Sk(V) [/5~. : T, Sk(V) ---* Tr is not surjective}. 

Sk(Y) ar is a closed subvariety of Sk(Y) and moreover,/bk(Sk (Y) d~g) is a proper 

subvariety of V. Let V k = V \~k(Si(Y)deg). V k is a dense open subset of Y. 

L e m m a  3.5: Let D E V k and s E H~ adPD) with length(s)=k. Assume 

Dt is a smooth deformation of D. Then there is a family st E H~ adPD,), 

so = s, such that length(st) =k for t small enough. 

Proof. Since D E V k, there is S E Sk(V), Pk(~ = s such that  Pk. : TsSk(V) 

T o Y  is surjective. Since both Sk(Y) and V are smooth, for any deformation 

Dt of D, there is a family St E Sk(Y) such that/bk(St) = Dr. Put st = qk(S,), 

then st E H~ adPD,) is the family with the desired property. [] 

C o r o l l a r y  3.6: The set of generic points of V is a dense open subset of V. 

Proof. Since V ~ is a dense open subset o f V  a n d A  = {k ] Sk(Y) ~k 0} is a 

finite set. V0 = NkeaV~ is a dense open subset of V. It is clear that  any point 

in V0 is a generic point of V. [] 

Our intention is to show that  if D is generic in F(P), then H~ adPo) = 

{0}. Assume D is generic and s E H~ adPz)) r {0}, s r 0. Let (3.2) be 

the canonical s-decomposition of adPD. There is a subsheaf ~nd(adPD)s C 
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gnd(adPD), 

gndCadPD)~ = (p e g.dCadP ) l p(E') c- Ei, O < j < l and}  
p(F ) c_ Fj, 0 < j < 

It is well-known that  the infinitesimal deformation of holomorphic structures 

(up to gauge equivalence) on P is HI(X,  End(adPD)). In the following, we 

say v E Hi(X ,  End(adPl))) is a direction that preserves the canonical s- 

decomposition (3.2), where s E H~ adPD), if there is a smooth deformation 

-6t, P-5o = PD, ~ *lt=o = v, and a family st E g ~  adPg,), so = s, such that 
for t small enough, 

length(s,) = length(s0). (3.5) 

L e m m a  3.7: Let s E H~ adP) and let v E Hl(X,  Cnd(adP)) be any vector 

that preserves the canonical s-decomposition, then v e H i ( x ,  ~ nd( adP ) , ). In 

particular, i f  D E V is a generic point, then the set 

Im{TDV ~ Hi (X ,  s 

is contained in H i (X ,  End(adPD),) for any s E H~ adPD). 

Proof:. By definition, there is a family of holomorphic structures Ot d - -  , ~ O t l t = o  = 

v, and a family of sections st E H~ adP-~,) such that (3.5) holds for small 

t. Let 

0 = Fo(t) C Fl(t) C ' "  C Fr(t) = Eo( t ) ,El ( t ) , . . . ,Er( t )  

be the canonical filtration of st. Since length(s~) =length(s), by lemma. 3.3, 

dimF~(t) and dimE/( t )  are constants for t small enough. Then Fi(t) and Ei(t) 

are smooth families of holomorphic vector bundles over X. Therefore, Dt is a 

deformation of complex structures that  preserves the filtration (3.2). By lAB, 

w the image of v in Hi(X,  End(adPD)) is contained in Hi(X ,  End(adPD),). 
[] 

4. P r o o f  o f  t h e  t h e o r e m  2 

We adapt the notation developed in the previous sections. Let s E 

H~ adP), D E V and P = PD, be a generic point. Let Eo~g E~I @...@E~T 

be the spectral decomposition of adP. For any v~ E E~ and v~ E E, ,  a 

consequence of Jacobi-identity shows that [v~,v,] E E~+,. Therefore, any 

v E @z#0H~ Ez) is nilpotent and, 
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L e m m a  4.1: The pairing 

(., . ) :  Hi(X, E~) | H~ E, | T~) ~ C 

is non-trivial only ira + i~ = O. In such cases, the pairings are non-degenerate. 

Proof. The first part is obvious. The second part is the consequence of the fact 

that  (., .) : HI (x ,  $~Ex) | H~ @xE~| --~ C is a non-degenerate pairing. 
D. 

Let A0 C H 1 (X, adP) be the largest linear subspace consisting of directions 

that  preserve the canonical decomposition (3.2) of all s 6 H~ adP). We have 

the following proposition which provides a bound of the codimension of A0. 

P r o p o s i t i o n  4.2: Let D E V be a generic point. Suppose H~ adP) ~ {0}, 

then 
cod• Hi(X, adPo)) >_ h~ adPD) + 1. 

Before going into the detail of the proof, let us state several technical 

lemmas which we need. Let 

H~ = {s E H~ adP) I ad(s) is a nilpotent endomorphism}. (4.1) 

It is clear tha t  H~ C H~ adP) is an algebraic subvariety. Let W be 

the linear space spanned by H~ and W • be a linear compliment of W in 

H~ adP). 

L e m m a  4.3: Let l(s) be the number of distinct nonzero eigenvalues of ad(s) 
and l(D) = max{/(s) I s E H~ adP)}. Then 

l(D) >_ dim W • 

Proof. Let p(s, A) = A n § al(s)A "-1 + - . .  § an(s) be the characteristic poly- 

nomial of ad(s), hi(S) are holomorphic. If we restrict the polynomial p(s, A) to 

W • we can find a branched covering ~ : Z --* W • and holomorphic functions 

fi  on Z such tha t  
l(D) 

A) : A "~ I I  (A - (4.2) 
i----1 

Let (f) = ( f l , f ~ , ' " ,  ft(D)) : Z  ---+ ~ ( ~  be the holomorphic map. Clearly, 

the set ( f ) - l ( 0 )  in Z corresponds to nilpotent elements in g ~  adP). Thus 

( f ) - l ( 0 )  is discrete. Therefore, l(D) >_ d i m Z  = d i m W  • [] 
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L e m m a  4.4: Let E be a vector bundle on X and let A C H~ E) be any linear 

subspace. Then the dimension of the image A | H ~ (X, T~c) ---* H ~ (X, E | T~c) 

is at least dimA + (g - 1). 

Proof. Without  loss of generality, we can assume E is a line bundle. Let x E X 

and let s l , - - ' ,  sk be a basis of H~ E) such that si has vanishing order ai at 

x with a l  < --. < ak. Let t l , . . . , t g  E H~ be a basis of H~ of 

the same natural .  Then sit1,. �9 s~tl, s~t2,.. . ,  sktg are linearly independent. 

Thus 

d imIm{A | g ~  T~:) ~ H~ E | T~c)} > dimA + (g - 1). [] 

Lemma 4.5: Assume s E H~ adPD) with ad(s) nilpotent. Then the fol- 

lowing pairing induced by integrating the trace over X 

trx  : Hi(X,  gnd(adP)s) | (ad(s) | H~ --+ C 

is trivial. 

Proof. Let 0 = Fo C F1 C " -  C Fr = adPo be the canonical s-decomposition 

of adP. For any g E s | f~o,  v(Fi) C Fi | fl~0. On the other hand, 

ad(s)(Fi) C Fi-1. Thus 

o ad(s)(Fd C F _I | ~ 

Therefore trx(r, o ad(s) | h) = 0 for any h E H~ [] 

Proof of proposition 4.2: By definition, any v E A0 preserves the canonical 

filtration (3.2) of all s E H~ adP). In particular, if s is nilpotent, by lemma 

3.7 and lemma 4.5, (v, s | h) = 0 for any h E H~ T~c). Since W is spanned 

by nilpotent elements, 

(., .):  Ao @ (W |176  --* C (4.3) 

is trivial. Let s E H~ adP) be a generic point, l(s) = l(D). Let 

O = Fo C FI C . . . C Fr = Eo, . . " , Et 

be the canonical s-decomposition. Since Ao preserve the decomposition, A0 C 

HI(X,  Eo). By lemma 4.1, and lemma 4.4, if we let Wo = W M H~ Eo), 

then 

codim(Ao, H I ( x ,  Eo ) ) > dimIm{Wo | g ~  T~c ) ~ H~ Eo | T~c)} 

>__ dim Wo + (g - 1). 
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So 

codim(A0, Hi(X, adP)) >_ dimW0 + (g - 1) + B hl(X' E~). (4.4) 

On the other hand, Ez = EvA. By Riemann-Roch theorem, 

y~ hl(X, Ex) = B ( - d e g E ~  + ( g -  1). rank(E~)+ h~ 
~r ;~r 

Therefore, 

codim(Ao, H 1 (X,adP) 

>_ dimW0 + (g - 1) + B ( ( 9  - 1). rankE~ + h~ 

_> dimW0 + (g - 1) + l(s) + B h~ E~) 

dimW0 + (g - 1) + d imW • + Z h~ Z~) 

= h~ adP) + (g - 1). 

The third inequality follows from Iemma 4.3 and the last equality holds since 

Ha(X, Eo) = Wo @ W a-. [] 
Now we are ready to prove the first part of theorem 2. 

P r o p o s i t i o n  4.6: Assume F(P) is non-empty, then F(P) is irreducible. 

Proofi. We first show that for any generic point D in F(P), H~ adP) = {0}. 

Suppose HO(x, adPD) # {0}. By proposition 2.6, there is a germ of subvariety 

V' C F(P), D E V' such that dimV' _> hl(X, adPD)- h~ adPD) and 

dim Im{TDV' --+ Hi(X, adPD)} > hi(X, adPD) -- h~ adPD). (4.5) 

Now let D' E V' be a generic point in V' so that V' is smooth at D and so 

that (4.5) still holds. Since D is generic and since h~ adPD) is an upper- 

semicontinuous function when D varies, ha(X, adPD) = h~ adPo,). On the 

other hand, we have Im{TD, V' --+ Hi(X, adPD,)) C A0, A0 C Hi(X, adPD,), 
and then thanks to proposition 4.2, if h~ adPD,) 5s 0, then 

dim Im{TD, V --+ Hi(X, adPD,)} < hi(X, adPD,) -- h~ adPD,) - 1. (4.6) 

This contradicts to (4.5). Therefore, h~ adPD) = h~ adPD,) = O. 
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Let F(P)I = {D �9 F(P) I h~ r 0} and F(P)o = F(P) \ F(P)I. 
We just showed that  F(P)o is open and dense in F(P). Further, r(P)o is a 

smooth Banach manifold because ~) : Ap --+ f l l ' l ( x ,  adP) x Cp is regular at D 

when h~ adPD) = O. F(P) will be irreducible if we can show that F(P)o 

is connected. By lemma 2.4, 7/: F(P)o ---} Cp is a fiber bundle over its image. 

Applying corollary 2.7, 7](F(P)o) is dense in Cp. Indeed, it is dense in the 

Zariski topology. Therefore, rl(F(P)o ) is connected and so F(P)o is connected. 
•. 

5 T h e  T o p o l o g y  of  Hom(Tr, G)p 
The goal of this section is to complete the proof of theorem 0.2. First we 

state a generalization of Weil's theorem which says that  a holomorphic vector 

bundle is flat if it is indecomposable. 

P r o p o s i t i o n  5.1 (Weil): Let P be a holomorphic principal G-bundle. Assume 

H~ adP) is spanned by nilpotent elements, then P admits holomorphic con- 
nections (compatible fiat connections). 

Proof Let D be the unitary connection of P and @(D) be its curvature. P 

admits  a holomorphic connection if there is a r E ~l '~ adP) such that  

@(D + r = 0. Clearly, the curvature of the connection adD on adP induced 

by D is ~) = ad(@) E f~l'l(X, End(adP)). By Well's theorem [Gu] 

xtrx(~3 op) = 0 (5.1) 

for any nilpotent endomorphism p E H~ gnd(adP)). Since H~ adP) is 

spanned by nilpotent elements, for any s E H~ adP), 

x trx(ad({~) o ad(s)) = O. 

Thus @ is R-exact by Serre duality. In particular, there is r E fll '~ adP) 

such that  @(D + r = 0. [] 

By lemma 2.4, the map 77 : F(P) -+ Cp is a fiber bundle near ~ if 

hi(X, adPy) is locally constant. By Riemann-Roch, hi(X, adPy) = (g - 1)- 

rank(g) if h~ adPy) = O. Let Z be the set of exceptional points, that is 

Z = {~ e Cp [ h~ adPy) ~s 0 }. (5.2) 

We have the estimate, 
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L e m m a  5.2: Z C Cp is a closed subvariety of finite codimension. If  Z is a 

proper closed subset, then codlin(Z, Cp) _> 2. 

Proof. The first part  follows from dim Hi(X,  adP) <_ oo. To show the second 

part,  we estimate the dimension of the normal bundle of Z in Cp. Let 0 be a 

generic point of Z, s E H~ adPy). Let 

0 = F0 C F1 C .- .  C Fr = E0 ,E1 , . . - ,E~  

be the canonical s-decomposition. If I >_ 1, since [vx, v,] E Ex+,,  where vx E 

Ex, @xr E~) is contained in the normal bundle to Z [AB, p566]. By 

R.iemann-R.och, 

hi(X,  Zx @ E-h)  -= h~ Ex @ E-h)  + 2.  rank(Ex)(g - 1) > 2. 

If  l = 0, by l emma 4.5, the tangent directions of Z is orthogonal to s | 

H~ T;c ). By lemma 4.4, the dimension of the normal bundle is at least 

l + ( g -  1) >_ 2. [] 

We now prove the second part of theorem 0.2. 

P r o p o s i t i o n  5.3: When F(P)  is non-empty, F(P)  is simply connected. 

Proof. We first claim that  ~rl(F(P)o ) --+ 7rl(F(P)) is surjective. Let r  S 1 --+ 

F(P)  be any homotopy class. Since F(P) is an affine variety, we can assume 

tha t  when r is in generic position, r  1) n F(P)I  is a discrete point set. More- 

over, since ~l(r(P)o) is dense in Cp and, adding lemma 2.4, F(P) is locally 

irreducible, we can further perturb r so that  r  1) fq F(P)I = 0. Finally, since 

F(P)o ---* Cp \ Z is a fibration with affine fiber, 7rl(F(P)o ) = 7h(Cp \ Z) = {0}. 

Here, the second equality holds because Cp is affine and codim(Z, Cp) > 2. 

Therefore, ~rl(F(P)) = {0}. [] 

Since F(P) --* Hom(~r, G)p is a fiber bundle with fiber C0. The induced 

sequence 
-~ 7rl(F(P)) -+ ~'l(Hom(Tr, G)p) -* ~o(~o) 

(5.3) 
--+ lro(F(P)) --+ ~ro(Hom(~r, G)p) ~ 0 

is exact. Combined with theorem 0.2, we see 7r0(Hom(~r,G)m) = {0} and 

rl(Hom(Tr, O)p) = ~r0(~0). 

P r o p o s i t i o n  5.4: / / '~h(G) = {0}, then ~h(Hom(Tr, G)p) = {0}. 

Proof. We only need to show that r0(G0) = {0}. Since when ~rl(G) = {0}, 

the only smooth principal G-bundle is P = X x G. Then autP = X x G. A 
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standard application of obstruction theory shows that  ~0 is connected. So the 

proposition is established. [] 

6. E x i s t e n c e  o f  f ia t  s t r u c t u r e s  

So far, we have proved that  when F(P) r O, then 7ro(F(P)) = {0}. It is 

also known that  the number of topological G-bundles (and K-bundles) on X 

is exactly 7rl(G) = ~rl(K). In this section, we will show that  any topological 

K-bundle  comes from a representation p:~r --~ K. Combined with lemma 1.3, 

theorem 0.3 then follows. 

We first describe the obstruction map 

o:  Hom(~r, K) - - ~  ~r 1 (K). 

Following IRa, w a K-bundle P can be constructed as follows: Let D be 

a small disk around P0 E X. Since RID and PIx\vo are trivial bundles, P is 

determined by the transition function ~ : D \ {P0} -+ G. On the other hand, 

D \ {P0} is homotopy equivalent ot S 1. Therefore, the bundle P is uniquely 

determined by [~] E 7rl(K). 

Now let p:~r --~ K be any representation and let Pp be the associated flat 

bundle. Let 

{=,,..., Vl , . . . ,  vg I nf=l= yi= -ly; = 1} 

be the canonical presentation of 7r and let Ai, Bi be simple contours of X so 

that  [A~] xi, [B~] = Yi and X \ E, E = U = U~=I(Ai Bi), is homeomorphic 

to the disk. We assume Ai and Bi are initiated from same point P0 E X. 

By definition, P; = ) ~ x K / w ,  where 7r acts on K via p : 7r --+ K. Fix a 

150 E )~ over P0 and let Ai and /~i be lifting of Ai and Bi respectively with 

initial point 150. Clearly, any trivialization of P;  along ~ is equivalent to a 

g - '  /~i) K such that  if denote by ui and vi the continuous map h : Ui=l(A, U --~ 
end point of Ai and /~i other that  150 respectively, then h(ui) = p(zi) and 

h(vi) = p(yi). We fix such a trivialization (denoted by hl~ : E x g  ~ P~). We 

let f~ : [0, 1] --~ K and g~ : [0, 1] --~ K be induced by hlx ' and hl~,, based on 

a choice of parameterization of-~i and /~i, respectively, where we agree that  

fi(O) = gi(O) = e. We claim that  the obstruction class o(p) is represented by 

the loop 

II~=,fi(.)gi(.)f~-l(.)g71(.): [0, 1] ~ g .  (6.1) 

Indeed, over the interior of X \ E, there is an obvious trivialization given by 

e E K (denoted by hlx\~ : ( X \ E )  xG---* PIX\~). Then if we extend the 
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trivialization hl~ to a tubular  neighborhood T(E) of E, say hlT(~), and let 

c~ : S 1 ~ T(E) N (X \ E) be the generator of its ~rl, then o(p) is represented by 

(h[x\~.(a(.), e))- (hlT(~)(a(.), e)) -1 : S 1 ~ K. (6.2) 

One checks directly tha t  (6.1) is homotopic equivalent to the class given by 

(6.2). 

It remains to show tha t  any element of ~rl(K) can be represented by class 

of type (6.1). But this follows from the surjectivity of the multiplication map 

x K --* h' ,  where K is the universal covering of K and (a, b) ~-~ aba-lb -1, 

which is true because K is semisimple, compact and for any finite covering 

K ~ ---* K,  the same map K ~ x K' ~ K ~ is surjective. Thus we have proved 

P r o p o s i t i o n  6.1: Let P be any K-bundle, where K is connected, compact and 

semisimple. Then P is topologically equivalent to Pp for some p E Hom(Tr, K). 

7. Compact  group cases 

In this section, we assume K is a compact, connected semisimple Lie group. 

We will combine the argument of IRa] and [AB] to prove the following 

P r o p o s i t i o n  7.1: Let K be a compact, connected semisimple Lie group and 

let P be any principal K-bundle. Then Hom(Tr, K ) p  is irreducible. 

We first recall tha t  a set F C K is called irreducible if we have 

{H e k [AD(s) (H)  = H, Vs E F} = {0}, 

where k is the Lie algebra of K.  A representation p: ~r --. K is called irreducible 

ifp(~r) is irreducible. Let P be any principal K-bundle and let Hom(Tr, K)~  r" _C 

Hom0r, K ) p  be the set of all irreducible homomorphisms. Following the argu- 

ment  of w we see that  Hom(Tr, g)~g r '  is dense in Hum(r,  g ) p  when g > 1. So 

to prove that  Hom0r, K ) p  is irreducible, it suffices to show that Hom(~r, K)~g ~" 

is irreducible. 

Now let G be the complexification of K. Let PG = PXKG be the associated 

G-bundle. For any complex structure 0 E Cp G of PC, Ramanathan introduced 

the concept of stable principal bundles. For the precise definition of stability, 

we refer to IRa]. We quote the following two properties that we need: 

P r o p o s i t i o n  7.2: A holomorphic principle G-bundle is stable if and only i f  it 

is isomorphic to Pp for some irreducible p E Hom(Tr, K).  
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P r o p o s i t i o n  7.3: The condition of being stable is a Zariski open condition. 

In particular, the set of  all stable holomorphic structures on P (denoted by C;, 

) is a zariski open subset of Cp and hence is irreducible when it is non-empty. 

By proposition 7.2, any stable holomorphic structure on the G-bundle P 

associates to a canonical homomorphism p 6 Hom(~r, K)~r~/K and therefore, 

this map defines a fibration 

C~ ---* Hom(Tr, K)~r~/K. 

Since C~ is irreducible, I-Iom(Tr, K)~r*/K is irreducible. Therefore, 

Hom(r ,K)~  r~ and hence Hom(r ,K)p  are irreducible. This proves theorem 

0.6. 
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