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The Space of Surface Group Representations

Jun Li

In this note we prove that the number of irreducible components of
Hom(w, G) is the same as m1(G), where 7 is a surface group and G is com-
plex semisimple. This is established by studying the flat bundles on Riemann
surfaces.

0. Introduction

Let X be a closed oriented Riemann surface of genus ¢ > 1 and let #
be its fundamental group. For any connected Lie group GG, we denote by
Hom(w,G) the analytic space of all homomorphisms from = to G. In this
paper, we calculate the number of connected components of Hom(w, G) when

G is complex semisimple. We prove

Theorem 0.1: Let G be a connected complex semi-simple Lie group. Then

#mo{Hom(w, B)) is isomorphic to 71(G).

For any homomorphism p : # — G, there is a canonical flat connection
on the marked principal G-bundle P = X x G/7 and vice verse, where X
is the universal covering space of X. We fix such a topological principal G-
bundle P. According to [GM1], if we denote by Hom(w,G)p the subset of
Hom(, G) consisting of all homomorphisms p whose associated flat bundles P,
is topologically equivalent to P and denote by F(P) the space of flat connections
on P, then F(P)is a principal bundle over Hom(w, G) . Theorem 0.1 will follow

if we prove

Theorem 0.2: Let G be a connected complex semi-simple Lie group and P be
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an arbitrary principal G-bundle over X such that F(P) is non-empty. Then

F(P) is an irreducible and simply connected infinite-dimensional complex vari-
ety.

Theorem 0.3: Let G be any connected complex semi-simple Lie group. Then
there are exactly m1(G) many distinct topological principal G-bundles and for
each of such bundle P, F(P) is non-empty.

When G is simply connected, we calculate the fundamental group of
Hom(x, G),

Theorem 0.4: Assume that G is a connected, simply connected complex semi-
simple Lie group, then mi(Hom(x, G)) = {e}.

We now turn to the situation when G is a compact semisimple Lie group.
Observe that G acts on Hom(, G) by conjugation. In case that G is compact,
the quotient space Hom(w, G)/G is a Hausdorfl space carrying rich geometric
structures. It has been extensively studied by [Ra] and by [AB]. Though they

haven’t stated explicitly, a combination of their argument shows:

Theorem 0.5: Let G be a compact, connected semi-simple Lie group. Then
wo(Hom(7, G)/G) is isomorphic to 71(G).

Theorem 0.1 was conjectured by W.Goldman. He showed that theorem
0.1 is true when G is SL(2,C) [Go).

We now outline the proof of theorem 0.2. Clearly, every flat structure on
P induces a holomorphic structure on the same bundle. Let n: F(P) — Cp be
such a correspondence, where Cp is the set of all holomorphic structures on P.
If we let C} be the set

{8 € Cp | H'(X,adP5) = {0}},

then n:9~1(C%) — C} is a fiber bundle with affine fibers. Now using the fact
that C$ is zariski open in Cp and Cp is affine, n7(C%) is connected (irreducible).
Theorem 0.2 will be proved if we can show that n7}(C%) is dense in F(P). We
will prove this by showing that any flat structure on P can be deformed to flat
structures in 771(C%).
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l. Connections

Let X be a complex manifold, G be a complex Lie group and P be a
principal G-bundle over X. The goal of this section is to understand the space
of coruplex structures and the space of flat structures on P. We refer to standard
text [AB][Ko] for the definition and basic properties of connections on principal
bundles.

We first introduce two relevant vector bundles associated to P. Let autP
be the twisted product autP = P xg G, where G acts on G via conjugation.
Clearly, associated to every G-invariant fiber preserving map p: P — P there is
a global section of the bundle autP. We call G = C™(autP) the gauge group
of P. The adjoint bundle adP is the vector bundle adP = P x4 g, where g is
the Lie algebra of G and G acts on g via the adjoint representation. Let D be a
connection on P. D is given by a connection form w which is a g-valued 1-form
on P. Equivalently, D is defined by a G-equivariant splitting of the following

exact sequence of vector bundles over P,

0— TVP — TP 5 pi TX — 0, (1.1)

where TV P is the vertical tangent bundle and px : P — X is the projection.
If we denote by J¢ the complex structure on g and by Jx the complex
structure on 7°'X, we can define an almost complex structure Jp on T'P which

is the direct sum Jx @ J¢ induced by the splitting ip. We have the following

Lemma 1.1: [Ko] Let D be a connection on P and w be its connection form.
Then there is a unique almost complex structure Jp on the manifold P such
that for any tangent vector v € TP, we have

(1) w(Jpv) = Jg w(v),

(2) px+(JpPv) = Jx(pxsv).

Moreover, Jp is integrable if and only if the (0,2) part of the curvature form
O(D) = dw + %[w,w] € Q2(X, adP) is identically zero. g

When X is a Riemann surface, there is no non-trivial (0,2) forms on X.

So we have

Corollary 1.2: If dimX = 1, then any connection D on P induces a holo-
morphic structure on P such that both px : P — X and the multiplication
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map P x G — P are holomorphic. Moreover, the connection formw of D is a
g-valued (1,0)-form on P. 0O

A principal bundle P with such a holomorphic structure is called a holo-
morphic principal bundle. A connection on the holomorphic principal bundle
whose connection form is of (1,0) type is called a compatible connection. Since
the difference of two connection forms is in Q1(X, adP), the space of compatible
connections on P is an affine space isomorphic to Q1°(X, adP) and the space
of holomorphic structures on P is an affine space isomorphic to 2%1(X, adP).

Since we intend to study the relation between the flat structures and holo-
morphic structures on P, it is convenient if we can find a canonical compatible
connection on P. Let G be a semi-simple complex Lie group and let K be
a maximal compact subgroup of G. If we denote by go and g® the (real) Lie
algebra of K and G respectively, then g® = go + Jgo, where J is the complex
structure of g%. go is called a compact real form of g. We fix a compact real
form go C g® once and for all. Then we can canonically express any ele-
ment Z € gas Z = X +JY, X, Y € go. Consequently, g can be written as
go ®r C. We define the conjugationoc:g - gby o(X +JY) = X - JY. If
B(-,-) is the killing form of g, the hermitian form < -,- >x on g x g defined by
< u,v >g= —B(u,0v) is positive definite. One notes that both the conjuga-
tion ¢ and the hermitian form < -, - >k are invariant under the adjoint action
of K. We first reduce the structure group of P to K.

Lemma 1.3: Any principal G-bundle can be reduced to a principal K-bundle.
That is, there is a principal K-bundle Px such that P = Pg xg G.

Proof. The proof follows from the fact that K is homotopic equivalent to G.
See [Ra]. O

Lemma 1.4: Let Px be a principal K-bundle, P = Px x kG. Let adP be
the adjoint bundle. Then adP is a complex vector bundle and on adP, there
is a hermitian metric < -,- > such that at every point ¢ € X, < -, >|q4p, =<

DK

Proof: Clearly, g = go®gC induces a complex structure on the vector bundle
adP. We define a hermitian metric as follows: Since P = Px x kG, adP =
P xg g = Pk Xk g, where K acts on g via the induced adjoint action. The
hermitian metric < -, > on g = go ®g C induces a hermitian metric H on
Pk x g. Since H is invariant under the adjoint action of K, H descends to a
hermitian metric on Px xx g = adP with the desired property. O
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Let P = Pg X kG be a holomorphic G-bundle. A connection D on P is
said to be unitary if D is compatible and if D is induced from a connection on
Pg.

leinma 1.5: There is a unique unitary connection on any holomorphic prin-
cipal G-bundle P = Pg x g G.

Proof: Since adP = Pk X g g, the conjugation o on g extends to a conjugation
o : adP — adP. Combined with the conjugation on 73X, we can define an
involution § : adPRQcTE X — adPQcT¢X. Let Dbe any compatible connection
on P and D, be a connection induced from a connection on Pg. We can write
D = D; + ¢ +w, where w € Q%1(X, adP) and ¢ € Q1°(X, adP). Define a new

connection D' by

D =Dy +w+buw.

One checks directly that D’ is a unitary connection. The uniqueness of the

unitary connection is obvious and we leave it to the readers. a

2. Flat connections and their deformations

In the remainder sections, unless otherwise is stated, we assume that Xis a
Riemann surface of genus ¢ > 1, that G is a connected complex semi-simple Lie
group and that P is a principal G-bundle with a fixed reduction P = P x ¢ G.
Hence adP admits a canonical hermitian metric and any holomorphic structure
on P defines a unique unitary connection. For the moment, we assume F(P)
is non-empty.

It is known that both the space Ap of connections on P and the space
Cp of holomorphic structures on P are affine spaces. Further, if we fix a
connection D € Ap, then there are identifications Ap = Q!(X, adP) and
Cp = Q%1(X, adP). Under these identifications, the projection Q!(X, adP) —
Q%(X, adP) is compatible with the projection np : Ap — Cp introduced by
corollary 1.2. If we endow Ap and Cp the complex structures induced by the
affine structures, n: Ap — Cp is complex linear.

A connection D is said to be flat if its curvature ©(D) € Q2%(X, adP)
is identical to zero. It is known that the parallel transform guided by a flat
connection has vanishing local holonomy and its global holonomy induces a
homomorphism p: m1(X) — G. In fact, if we fix a base point z; € X and let
Go = {h € G | hjp, = id}, the global holonomy map H from the space of flat
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connections F(P) to Hom(r,G)p defines a principal bundle
H : F(P) — Hom(w,G)p (2.1)

with structure group Go [GM1]. In order to rigorously justify our argument, we
need to introduce the Sobolev norms on the spaces of sections of the relevant
bundles. We topologize the space Q*7(X, adP) by using the sobolev L% norm
induced by a Kahler metric on X and the hermitian metric < -,- > on adP
with p large and k = 3 — i — j. Similarly, we use L} to topologize the space
Go. A standard argument shows that both Ap, Cp and Gy are smooth infinite-
dimensional Banach manifolds and the gauge group Gy acts on Ap and Cp
smoothly. Unfortunately, our primary interest F(P) is not smooth in general.
But nevertheless, it is a complex analytic variety.

Definition 2.1: An infinite-dimensional space V is said to be an affine variety
if there are complex Banach spaces By and Ba, a smooth holomorphic map
® : By — B; such that V = ®~1(0). V is said to be irreducible if there is a

dense open subset VO C V such that V° is connected and smooth.
Lemma 2.2: F(P) is an infinite dimensional affine variety.

Proof. Ap is a complex Banach space and F(P) is a subset of Ap. Fix a
D € Ap, then F(P) C Ap is the set of connections D + % + w, where (¥,w) €
QLO(X, adP) x Q%1(X, adP), such that

O((¢,w)) = O(D) + D(w + ¥) + [w, ¥] = 0.

The map © : Ap — QV1(X, adP) is smooth and holomorphic. By definition,
F(P) is an affine subvariety of Ap. It is easy to see that the complex structure
so defined is independent of the choice of D. a

Lemma 2.3: Let Hom(n,G) C G x --- x G be the complex subvariety de-
fined as the preimage v !(e) of the holomorphic map v : (G)** — G,
7 (171, T Y1, ';yg) — H?:l Iiyiz‘_ly‘-_l. Then

H : F(P) — Hom(~w,G)

is holomorphic.

Proof. Let v be any holomorphic tangent vector of F(P) at P. Since Ap is
smooth, there is a holomorphic family of connections D,, 8,D, = 0 such that
8, D;|.=0 = v. On the other hand, because v belongs to the tangent space of
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F(P), ©(D;) vanishes up to first order. That is, O(D.) = O(|z|?). Let 4(t)
be any fixed smooth arc in X and let h,(t) be smooth sections of P over ¥(t)
parameterized by z with h,(0) fixed such that %hz (t) is parallel via D,. The
lemma will be proved if we can show that for any t, 0k, (t)},=0 = 0.

Let u: X — X be the universal covering and let P be a trivialization
of u* P so that u*D is the trivial connection. Let &, be the connection form
of 4*D,, let ¥{¢) be a lifting of y(¢) and £,(t) be lifting of h,(2) with fixed
h,(0). Then since %hz (t) is parallel, Qz(%ﬁ,(t)) = 0. On the other hand,
d,w, = 0, so G)g(%_gzilz (t));=0) = 0. Assume hy(t) = (3@®), f(z,1)) € X x G,
then ;ﬁ-ng(z,t)h:o = 0. Note that since f(z,0) = const., ?')'Zf(z,O)lz:D = 0.
So 5,f(z,t)lz=0 = 0 for any t. Therefore 3, h:(t)),=p = 0. The lemma has been
established. a

The fibration H : F(P) — Hom(r, G)p is very powerful in studying both
the local and global geometry of Hom(x, G) p. However, we find the map
n: F(P) — Cp, 7 is induced from the projection .Ap — Cp, is also helpful in
deriving the topological information of F(P).

Lemma 2.4: With the notation as before, then the map n: F(P) — Cp is
holomorphic. Moreover, for any complex structure 8., € n(F(P)), n~1(3,,) is
an affine space isomorphic to the space of 8, closed forms Q'°(X, adP)5 C
QY°(X, adP). In particular, it is irreducible.

Proof: Since F(P) is a subvariety of Ap and n : Ap — Cp is holomorphic,
the restriction of  to F(P), n: F(P) — Cp is still holomorphic. To prove
the second statement, we assume D is a flat connection with n(D) = 8,,. Let
Dy =D+, ¢ € V%X, adP). Dy is fat if and only if

0= ©(D1) = (D) + D(¥) + £ %, ¥] = Bu(¥).
That is, v € QVO(X, adP)5 . a

Since F(P) C Ap is a complex variety, it makes sense to talk about sub-
variety of F'(P). Let V be any finite dimensional complex analytic variety. A
map ¢:V — F(P) is said to be holomorphic if ¢ : V — Ap is holomorphic.
We call the image ¢(V) a subvariety of F(P). It is not difficult to see that
if $:V — Cp is a holomorphic map, then there is a holomorphic structure
on P x V such that the induced holomorphic structure on P x {v} is exactly
the holomorphic structure given by ¢(v). In this sense, a holomorphic map
¢:V — Cp is equivalent to a holomorphic family of holomorphic structures on
P x V parameterized by V.
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Now we study the following question. Suppose P is a holomorphic principal
G-bundle and that D is a compatible flat connection. Let ¢ be the complex
parameter and let w; € 2%1(X, adP) be a smooth family of forms with wq = 0.
D + w; induces a smooth deformation of complex structure on P. The question
is under what condition can we find a family ¢ € Q19(X, adP), ¢g = 0, such
that D + w¢ + ¢ is a family of flat connections.

It is obvious that in order to have D + w; + v, flat, ¥; must satisfy the
equation

O(D) + D(w:) + [we, %e] + 8p (%) = 0. (2.2)
We solve this equation by using the method developed by Kuranishi and
Taubes. In the following, we fix a D and denote 9 = dp. Let H:(X, adP ® T%)
be the space of 8 harmonic forms in Q'(X, adP) (with respect to the Hermi-
tian metric introduced in §1). We have the following orthogonal decomposition
QLi(X, adP) = QY(X, adP), ® H'(X,adP ® T%). Let I : Q1(X, adP) —
HY(X, adP ® T%) be the orthogonal projection. II is complex linear.

Lemma 2.5: Let D) be any flat connection, then there is an open neighborhood
U of 0 € Q%Y(X, adP) and a smooth f : U — QV°(X, adP), such that for any
w € U, f(w) is the solution of the equation

(I - M)(O(D) + Do + [, f(w)] + f(w)) =0. (2.3)
Moreover, f is unique and holomorphic.
Proof: Let @ : Q%1 (X, adP) x QH%(X, adP), — QYY(X, adP), be defined by
Q,¥) = (I - I)(O(D) + Dw + [w, ¥] + 9Y). (2.4)
Since D is flat, Q(0,0) = 0. When w is small enough, the first order variation
of € along the second variable 1,
6,Q(w, $)(¥) = (I = m)([w, ¥] + T ¥)

is an isomorphism between Q1'%(X, adP), and Q11(X, adP),. Applying the
implicit function theorem, for some neighborhood U of 0 € 2%}(X, adP), there
is a unique function f: U — Q4%(X, adP),, f(0) = 0, such that (2.3) holds.

To show that f is holomorphic, let 8 be the 8-operator of Q1(X, adP).
Then

0= §((I -~ I)(O(D) + Dw + [w, f(w)] + 3f(w)))
= (I- 1) (lw, f(w)] + 8(Bf (w))). (2.5)
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Therefore, 8f must be zero in a neighborhood of 0. O

An easy consequence is the following corollary which is our main tool in

constructing deformation of flat connections.

Proposition 2.6: Let Z C Q%'(X, adP) be any complex subvariety, 0 € Z
and Z C U where U is the open neighborhood of ( introduced in lemma 2.5.
Then the subset

Zo={we Z|O(D+w+ f(w)) =0}

is a complex subvariety whose complex dimension is no less than dimZ —
h (X, adP ® Ty). In particular, V = {(f(w),w) |w € Zo} C F(D) is a
complex subvariety of dimension no less than dim Z — h'(X, adP @ T%).

Proof. Since D is flat, Zp is non-empty. Further
O(D +w + f(w) = I(O(D) + Dw + [w, )] + Tfw))  (26)

is a holomorphic map from U C Q%1(X, adP) to H!(X, adP ® T}). By dimen-
sion comparison, dim Zp > dimZ — dim H}(X, adP @ T%). 0

Since G is semisimple, the Killing form B(:,-) provides a non-degenerate
bilinear map adPxadP — C. This is a holomorphic correspondence. Therefore
adP is isomorphic to its own dual. By Serre duality, H'(X,adP @ T%) =
HO(X, adP)" and the induced pairing

(-,-): H%(X,adP) x H(X,adP  T¢) — C (2.7)

is nondegenerate. Therefore we have proved the following corollary.

Corollary 2.7: Suppose h°(X,adP) = 0, then there is an open neighborhood
0 e U C Q¥Y(X, adP) such that for anyw €U, D+w+ f(w) is a flat connection.
]

3. Standard filtration of s € H°(X, adP)
The goal of the following two sections is to show that for any flat connection
D, there is a (smooth) deformation D +w; + 4, of flat connections such that for
generic ¢, H°(X, adP5 ) = {0}. Let us first examine the effect of the existence
of sections s € H%(X, adP) on the structure of P.
Let P be any holomorphic principal G-bundle. Assume H%(X, adP) # {0}.
Let s € H%(X, adP) be a non-trivial section. Then ad(s) : adP — adP is
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holomorphic. The characteristic polynomial det(XA - id — ad(s)) of ad(s) is a
polynomial of A whose coefficients are holomorphic functions of X. So they
must be constant functions. The Jordan decompositions of p(s) at points z € X
provide a decomposition of the vector bundle adP. The proof of the following

lemma can be found in [Gu].

Lemma 3.1: There are sub-bundles Ey, - - -, E; of adP, distinct complex num-
bers Ao, -+, A\ and nilpotent endomorphism N; : E; — Ej such that

a). EB}=0E]- = adP,

b). ad(s)(E;) C Ej,

c). ad(s)|g; = Aj -id + Nj. O

Since zero is always an eigenvalue of ad(s), we agree A\g = 0. We call
s € H%(X, adP) a nilpotent element if ad(s) is nilpotent. The nilpotent endo-
morphism Ny: Eo — Ejp further defines a filtration of Ey as follows: Let O(F;)
be the subsheaf of O(Ep) defined by

O(F;) = {h € O(Ey) | N3(h) = 0}.

Since dim X = 1, O(F),) is the sheaf of a subbundle of Ey which we denote by
F;. We call filtration

0=FRCF C---CF.=Eg (3.1)
the canonical filtration of (Ey, s) and call decomposition
OZFOCFIC"'CFr:EO)Ely'”)El (32)

the canonical s-decomposition of adP. We denote 7(s) = r and I(s) = {. Let
n = dimg. We define the length of s € H(X, adP) by

r(s)
length(s) = n"+2(n — I(s)) + Z n"‘rank F;. (3.3)

i=1
We have the following observation.

Lemma 3.2: Let P; be holomorphic G-bundles and s; € H°(X, adP;),i=1,2.
Then length(s; ) > length(sy) if the first nonzero integer of

—(I(s1) = I(s2)),rank Fi(s;) — rank Fi(s2),rank Fy(s1) — rank Fa(sz2),- -

is positive.
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Proof: The lemma follows directly from the fact that I(s) and rank F; are no

more than n. a

Lemma 3.3: The length function is upper-semi-continuous in both zariski
topology and classical topology. That is, if (P,E) is any holomorphic (resp.
smooth) family of holomorphic structures and s; € H°(X, adP;) is any holo-
morphic (resp. smooth) family of sections parameterized by complex variety
V, then for any k, {t € V | length(s:) > k} is a closed subset of V in zariski
(resp. classical) topology.

Proof: 1t is obvious that the number of distinct eigenvalues of ad(s;) is a lower-
semi-continuous function and rank F; = dimKer(ad(s;))' is an upper-semi-
continuous function in both topologies. Therefore, by Lemma 3.2, length(s;)

is an upper-semi-continuous function in both topologies. |

We now state in what sense a flat connection D € F(P) is generic in
its irreducible component. Let M C F(P) be any irreducible component and
since F'(P) — Hom(w,G)p is a fiber bundle, there is a corresponding irreducible
component M C Hom(w,G)p. Let 7 € M be a generic point such that M is
smooth at 7 (without loss of generality, we can assume M is reduced). Let
U C M be an open neighborhood of 7 such that A°(X, adP,) = h°(X, adP/)
for ¥ € U. We claim that there is an analytic subvariety V' C F(P) such
that U C H(V). Indeed, let Uy C F(P) be a (finite dimensional) submanifold
surjects onto U via H : F(P) — Hom(w,G)p and let Wy = n(Us) C Cp.
Shrinking U (and Up) if necessary, we can find a smooth complex subvariety
W C Cp such that the image of Wy C Cp — Cp/Gp is contained in the image
W C Cp — Cp/Go [AB, §14]. Let V = ©-1({0} x W), where 6 : Ap —
QUY(X, adP) x Cp is defined by © : (¢,w) = (O(D + ¥ + w),w). A standard
argument shows that © is Fredholm and holomorphic. Therefore, V is a finite-
dimensional subvariety of Ap. It is clear that V C F(P) and U C H(V).

By further shrinking V' (and U) if necessary, we can assume V' is smooth,
connected and U = H(V). Let Py be the holomorphic principal G-bundle over
X x V such that for any D € V, P|xx{p} = Pp. Let Hy = py,(adPy) be
the direct image sheaf over V, where py is the projection X x V — V. Since
h%(X, adP,) is constant for v € V, by base change theorem, py.(adPy) is
locally free. Let P(Hy) be the projective bundle of Hy over V. Since every
point of P(Hy) corresponds to a multiple of global section of adP, the length
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function defined in (3.3) provides a stratification of P(Hy) as follows:
Sk(V) = {s € P(Hv) | length(s) > k}. (3.4)

If we agree that S;(V) have reduced scheme structures, by lemma (3.3), Sx(V)
are closed (in Zariski topology) subset of P(Hv).

Definition 3.4: D € V is said to be generic if for any s € H°(X,adPp)
and any (smooth) deformation D, € V of D, there is a smooth deformation
st € H°(X,adPp,) of s such that length(s;)=length(s) for t small enough. In
general, D € F(P) is said to be generic if same conclusion holds when V is

replaced by F(P).

We show that the set of generic points of V' is a dense subset of V. (Then
the set of generic points of F(P) is also dense in F((P).) Let px :Sp(V) — V be
induced from the projection. Since Sp(V) C P(Hv) is closed, px is proper. Let
qk :§k(V) — Si(V) be the desingularization and let fx = pr o ¢ :§k(V) - V.
Define

Sk(V)¥9 = {v € 5 (V) | Bre : Tu S (V) — bx(v)V is not surjective}.

S1(V)49 is a closed subvariety of S (V) and moreover, p(Si(V)%9) is a proper
subvariety of V. Let V* = V \ p(Sk(V)%9). V* is a dense open subset of V.

Lemma 3.5: Let D € V¥ and s € H%(X,adPp) with length(s)=k. Assume
D; is a smooth deformation of D. Then there is a family s; € H°(X,adPp,),
so = 8, such that length(s;) =k for t small enough.

Proof: Since D € V*, there is § € Sp(V), pr(3) = s such that py. : T;Se (V) —
TpV is surjective. Since both S;(V) and V are smooth, for any deformation
Dy of D, there is a fa.miiy & € §k(V) such that px(5:) = D;. Put s; = q&(5:),
then s; € H%(X, adPp,) is the family with the desired property. O

Corollary 3.6: The set of generic points of V is a dense open subset of V.

Proof: Since V* is a dense open subset of V and A = {k | Se(V) # 0} is a
finite set. Vo = Nkea Vi is a dense open subset of V. It is clear that any point
in V is a generic point of V. O

Our intention is to show that if D is generic in F(P), then H%(X,adPp) =
{0}. Assume D is generic and s € H°(X,adPp) # {0}, s # 0. Let (3.2) be
the canonical s-decomposition of adPp. There is a subsheaf End(adPp), C
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End(adPp),

End(adPp), = {p € End(adPp) | p(E)CE;, 0<j<I and}.

p(F;)CFj,0<j<r

It is well-known that the infinitesimal deformation of holomerphic structures
(up to gauge equivalence) on P is H'(X,€nd(adPp)). In the following, we
say v € HY(X,End(adPp)) is a direction that preserves the canonical s-
decomposition (3.2), where s € H%(X, adPp), if there is a smooth deformation
s, Ps = Pp, %5”::0 =, and a family s; € H(X, adP; ), so = s, such that
for t small enough,

length(s;) = length(so). (3.5)

Lemma 3.7: Let s € H°(X,adP) and let v € H(X, End(adP)) be any vector
that preserves the canonical s-decomposition, then v € H'(X, End(adP),). In

particular, if D € V is a generic point, then the set
Im{TpV — HY(X,End(adPp))}

is contained in H'(X,End(adPp),) for any s € H°(X,adPp).

Proof. By definition, there is a family of holomorphic structures &, ,,%5:|¢=o =
v, and a family of sections s; € H(X, adPj ) such that (3.5) holds for small
t. Let

0= Fo(t) C Fi(t) C -+ C Fo(t) = Eo(t), Er(t), - - -, En(2)

be the canonical filtration of s;. Since length(s;) =length(s), by lemma 3.3,
dim F;(t) and dim E;(t) are constants for ¢ small enough. Then Fj(t) and E;(t)
are smooth families of holomorphic vector bundles over X. Therefore, D, is a
deformation of complex structures that preserves the filtration (3.2). By [AB,
§2], the image of v in H'(X, End(adPp)) is contained in H(X,End(adPp),).
O

4. Proof of the theorem 2

We adapt the notation developed in the previous sections. Let s €
H®(X,adP), D € V and P = Pp, be a generic point. Let Eo@ Ex, ®---® E»,
be the spectral decomposition of adP. For any vy € Ej and v, € E,, a
consequence of Jacobi-identity shows that [vy,v,] € Ex;y. Therefore, any
v € ®azoHO(X, E») is nilpotent and,
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Lemma 4.1: The pairing
(») H(X,E\)® HY(X,E, ® T%) — C

is non-trivial only if A+ p = 0. In such cases, the pairings are non-degenerate.

Proof. The first part is obvious. The second part is the consequence of the fact
that (-,-) : H}(z,®1E2) ® HY(X, ®A EA®T%) — C is a non-degenerate pairing.
.

Let Ag C HY(X, adP) be the largest linear subspace consisting of directions
that preserve the canonical decomposition (3.2) of all s € H%(X, adP). We have
the following proposition which provides a bound of the codimension of Ag.

Proposition 4.2: Let D € V be a generic point. Suppose H(X, adP) # {0},
then
codim(Ag, H*(X, adPp)) > h%(X, adPp) + 1.

Before going into the detail of the proof, let us state several technical
lemmas which we need. Let

HY, = {s € H°(X, adP) | ad(s) is a nilpotent endomorphism}. (4.1)

It is clear that HY, C H%(X, adP) is an algebraic subvariety. Let W be
the linear space spanned by HZ,, and W+ be a linear compliment of W in

H°(X, adP).

Lemma 4.3: Let I(s) be the number of distinct nonzero eigenvalues of ad(s)
and I(D) = max{l(s) | s € H°(X, adP)}. Then

(D) > dimW*t.

Proof: Let p(s,2) = A" +a1(s)A"~1 4+ ... 4+ a,(s) be the characteristic poly-
nomial of ad(s). a;(s) are holomorphic. If we restrict the polynomial p(s, A) to
W+, we can find a branched covering ¢:Z — W+ and holomorphic functions

Ji on Z such that
(D)

pp(3),A) = A™ H (A= £ (4.2)

Let (f) = (fi,fo, - fypy) : 2 — C(®) be the holomorphic map. Clearly,
the set (f)~2(0) in Z corresponds to nilpotent elements in H°(X, adP). Thus
(f)~1(0) is discrete. Therefore, {(D) > dimZ = dimW+*. 0
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Lemma 4.4: Let E be a vector bundle on X and let A C H°(X, E) be any linear
subspace. Then the dimension of the image A®@ H*(X,Ty) — HY(X,E®T%)
is at least dimA + (g — 1).

Proof: Without loss of generality, we can assume FE is a line bundle. Let z € X
and let sy, - -, s; be a basis of H°(X, E) such that s; has vanishing order o; at
¢ with a1 < -+ < ap. Let t1,---,t, € HY(X,T%) be a basis of H%(X,Ty) of
the same natural. Then s:%y,---, skty, skty, - -, sty are linearly independent.
Thus

dimIm{A ® H%(X,T%) — HY(X,E @ T})} > dimA + (g — 1). m

Lemma 4.5: Assume s € H°(X, adPp) with ad(s) nilpotent. Then the fol-
lowing pairing induced by integrating the trace over X

trx : HY(X, End(adP),) ® (ad(s) ® H*(T})) — C
is trivial.

Proof. Let 0 = Fy C F} C --- C Fy = adPp be the canonical s-decomposition
of adP. For any v € End(adP), @ Q3°, v(Fi) C Fi ® Q;io. On the other hand,
ad(s)(Fg) C Fi;_1. Thus

voad(s)(F;) C Fi_1 @ Q3°.

Therefore trx (v o ad(s) ® h) = 0 for any h € H(X,T%). a
Proof of proposition 4.2: By definition, any v € Ao preserves the canonical
filtration (3.2) of all s € H%(X, adP). In particular, if s is nilpotent, by lemma
3.7 and lemma 4.5, (v,5®h) =0 for any h € H(X,T%). Since W is spanned
by nilpotent elements,

():A®@(WRHYX,T}))—C (4.3)
is trivial. Let s € H°(X, adP) be a generic point, I(s) = I(D). Let

0=FChC- - CF=E, K

be the canonical s-decomposition. Since A preserve the decomposition, Ay C
H'(X,E;). By lemma 4.1, and lemma 4.4, if we let Wy = W N H(X, Ey),
then
codim(Ao, H*(X, Eo)) > dimIm{W, ® H°(X,T%) — H°(X, Eo ® T%)}
> dim Wy + (¢ — 1).
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codim(Ao, HY(X, adP)) > dim Wy + (g — 1) + Y _ A'(X, B»). (4.4)
A#£0

On the other hand, E) = EY,. By Riemann-Roch theorem,

S ORNX,Ex) =) (~degEr+ (g 1) - rank(E») + h°(X, En)).
A#£0 A#£0

Therefore,

codim(Ag, H!(X,adP)
>dimWo + (g - )+ Y _((g — 1) -rank Ex + h%(X, En))

A#£0
> dimWo + (9 - 1) +1(s) + > h%(X, E»)
A0
> dimWo + (¢ — 1) + dimW* + ) h%(X, E»)
A#0

= h(X,adP) + (g —1).

The third inequality follows from lemma 4.3 and the last equality holds since
HYX,Ep)) =W W+. O
Now we are ready to prove the first part of theorem 2.

Proposition 4.6: Assume F(P) is non-empty, then F(P) is irreducible.

Proof: We first show that for any generic point D in F(P), H%(X, adP) = {0}.
Suppose H°(X,adPp) # {0}. By proposition 2.6, there is a germ of subvariety
V' C F(P), D € V' such that dimV’ > h!(X,adPp) — h°(X,adPp) and

dim Im{TpV’ — HY(X,adPp)} > h'(X,adPp) — h°(X,adPp).  (4.5)

Now let D’ € V/ be a generic point in V' so that V’ is smooth at D and so
that (4.5) still holds. Since D is generic and since h%(X,adPp) is an upper-
semicontinuous function when D varies, h®(X, adPp) = h%(X,adPp/). On the
other hand, we have Im{Tp: V' — H'(X, adPp:)} C Ao, Ao C H(X,adPp»),
and then thanks to proposition 4.2, if R%(X,adPp:) # 0, then

dim Im{Tp/V — H(X,adPp:)} < h*(X,adPp:) — h(X,adPp;) — 1. (4.6)

This contradicts to (4.5). Therefore, h°(X,adPp) = h°(X,adPp,) = 0.
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Let F(P), = {D € F(P) | h°(X,adPp) # 0} and F(P), = F(P)\ F(P),.
We just showed that F'(P), is open and dense in F(P). Further, F(P)o is a
smooth Banach manifold because © : Ap — QbY(X, adP) x Cp is regular at D
when h°(X, adPp) = 0. F(P) will be irreducible if we can show that F(P),
is connected. By lemma 2.4, 5 : F(P), — Cp is a fiber bundle over its image.
Applying corollary 2.7, n(F(P)o) is dense in Cp. Indeed, it is dense in the
Zariski topology. Therefore, n(F(P),) is connected and so F(P), is connected.
0.

5 The Topology of Hom(w,G)p
The goal of this section is to complete the proof of theorem 0.2. First we
state a generalization of Weil’s theorem which says that a holomorphic vector

bundle is flat if it is indecomposable.

Proposition 5.1 (Weil): Let P be a holomorphic principal G-bundle. Assume
H°(X, adP) is spanned by nilpotent elements, then P admits holomorphic con-

nections (compatible flat connections).

Proof. Let D be the unitary connection of P and ©(D) be its curvature. P
admits a holomorphic connection if there is a ¥ € Q¥°(X, adP) such that
(D + ¢) = 0. Clearly, the curvature of the connection adD on adP induced
by D is © = ad(0) € Q1(X, End(adP)). By Weil’s theorem [Gu]

/trx(éop) =0 (5.1)
X

for any nilpotent endomorphism p € H°(X,End(adP)). Since H°(X, adP) is
spanned by nilpotent elements, for any s € H°(X, adP),

/ trx(ad(©) o ad(s)) = 0.
X

Thus © is d-exact by Serre duality. In particular, there is ¢ € QY%(X, adP)
such that ©(D + ) = 0. O

By lemma 2.4, the map  : F(P) — Cp is a fiber bundle near § if
h'(X, adPy) is locally constant. By Riemann-Roch, h'(X, adP75) = (g9 - 1) -
rank(g) if h°(X, adP3) = 0. Let Z be the set of exceptional points, that is

Z={8€Cp|h(X,adP5) #0 }. (5.2)

We have the estimate,
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Lemma 5.2: Z C Cp is a closed subvariety of finite codimension. If Z is a

proper closed subset, then codim(Z,Cp) > 2.

Proof: The first part follows from dim H!(X, adP) < co. To show the second
part, we estimate the dimension of the normal bundle of Z in Cp. Let 0 be a
generic point of Z, s € H%(X, adP3). Let

O=FhCRhC---CF,=FEyF, -, E

be the canonical s-decomposition. If { > 1, since [vx,v4] € Exyp, where vy €
E, ®xz0H' (X, E)) is contained in the normal bundle to Z [AB, p566]. By
Riemann-Roch,

RYX,Ex® E_») = h%(X,E»® E_)) + 2 - rank(E))(g — 1) > 2.

If | = 0, by lemma 4.5, the tangent directions of Z is orthogonal to s ®
H°(X,Ty%). By lemma 4.4, the dimension of the normal bundle is at least
14+(g—-1)>2 O

We now prove the second part of theorem 0.2.
Proposition 5.3: When F(P) is non-empty, F(P) is simply connected.
Proof: We first claim that my(F(P),) — n1(F(P)) is surjective. Let ¢:S! —

F(P) be any homotopy class. Since F(P) is an affine variety, we can assume
that when ¢ is in generic position, ¢(S*) N F(P), is a discrete point set. More-
over, since n(F(P)y) is dense in Cp and, adding lemma 2.4, F(P) is locally
irreducible, we can further perturb ¢ so that ¢(S*) N F(P), = 0. Finally, since
F(P), — Cp\ Z is a fibration with affine fiber, 1 (F(P),) = m(Cp\ Z) = {0}.
Here, the second equality holds because Cp is affine and codim(Z,Cp) > 2.
Therefore, = (F(P)) = {0}. O

Since F(P) — Hom(w,G)p is a fiber bundle with fiber Go. The induced

sequence

b d 7!'1(F(P)) - 7r1(Hom(7r, G)P) -— Wo(go)
— mo(F(P)) — mo(Hom(w,G)p) — 0

is exact. Combined with theorem 0.2, we see mo(Hom(w,G)p) = {0} and
7y (Hom(w, G)p) = mo(Go).

Proposition 5.4: If m,(G) = {0}, then m (Hom(x,G)p) = {0}.

(5.3)

Proof We only need to show that o(Go) = {0}. Since when m(G) = {0},
the only smooth principal G-bundle is P = X x G. Then autP = X x G. A
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standard application of obstruction theory shows that Gy is connected. So the

proposition is established. 0O

6. Existence of flat structures
So far, we have proved that when F(P) # @, then mo(F(P)) = {0}. It is
also known that the number of topological G-bundles (and K-bundles) on X
is exactly 7 (G) = m1(K). In this section, we will show that any topological
K-bundle comes from a representation p: 7 — K. Combined with lemma 1.3,
theorem 0.3 then follows.

We first describe the obstruction map
o: Hom(n, K) — m(K).

Following [Ra, §5], a K-bundle P can be constructed as follows: Let D be
a small disk around po € X. Since Pp and Pjx\p, are trivial bundles, P is
determined by the transition function ¢: D \ {po} — G. On the other hand,
D\ {po} is homotopy equivalent ot S!. Therefore, the bundle P is uniquely
determined by [p] € m1(K).

Now let p:m — K be any representation and let P, be the associated flat
bundle. Let

{z1,-,zg,01, -,y | W iy ty7t =1}

be the canonical presentation of = and let A;, B; be simple contours of X so
that [A;] = zi, [Bi] = yi and X \ E, £ = U!_,(Ai U B;), is homeomorphic
to the disk. We assume A; and B; are initiated from same point pp € X.
By definition, P, = X x K/m, where w acts on K viap: 71 — K. Fix a
po € X over po and let /I,- and E; be lifting of A; and B; respectively with
initial point fp. Clearly, any trivialization of P, along X is equivalent to a
continuous map h: Ule(g,- U §,) — K such that if denote by u; and v; the
end point of A; and B; other that py respectively, then h(u;) = p(z;) and
h(vi) = p(y;). We fix such a trivialization (denoted by hjz:Zx K — Pg). We
let f;:{0,1] — K and g;:(0,1] — K be induced by h]Z, and hlﬁi’ based on
a choice of parameterization of A; and B;, respectively, where we agree that
fi(0) = ¢i(0) = e. We claim that the obstruction class o(p) is represented by

the loop
e, fi()g: ()7 (e 1 () : [0,1] — K. (6.1)

Indeed, over the interior of X \ X, there is an obvious trivialization given by
e € K (denoted by hjx\5 : (X \ X)xG — Px\z)- Then if we extend the
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trivialization hjs to a tubular neighborhood T(X) of X, say hjr(x), and let
a:S* - T(X)N (X \ X) be the generator of its 71, then o(p) is represented by

(hix\s(a(-),e)) - (hirzyal(),e))™' : S = K. (6.2)

One checks directly that (6.1) is homotopic equivalent to the class given by
(6.2).

It remains to show that any element of 71(K) can be represented by class
of type (6.1). But this follows from the surjectivity of the multiplication map
K x K — K, where K is the universal covering of K and (a,b) — aba~1b7?,
which is true because K is semisimple, compact and for any finite covering

K’ — K, the same map K’ x K’ — K’ is surjective. Thus we have proved

Proposition 6.1: Let P be any K-bundle, where K is connected, compact and
semisimple. Then P is topologically equivalent to P, for some p € Hom(w, K).

7. Compact group cases
In this section, we assume K is a compact, connected semisimple Lie group.
We will combine the argument of {Ra] and [AB] to prove the following

Proposition 7.1: Let K be a compact, connected semisimple Lie group and
let P be any principal K-bundle. Then Hom(w, K)p is irreducible.

We first recall that a set I' C K is called irreducible if we have
{H € k| AD(s)(H) = H,Vs € T'} = {0},

where k is the Lie algebra of K. A representation p: 7 — K is called irreducible
if p(rr) is irreducible. Let P be any principal K-bundle and let Hom(w, K)¥%7 C
Hom(r, K)p be the set of all irreducible homomorphisms. Following the argu-
ment of §5, we see that Hom(w, K)%"° is dense in Hom(7, K)p when ¢ > 1. So
to prove that Hom(x, K)p is irreducible, it suffices to show that Hom(r, K)i5"e
is irreducible.

Now let G be the complexification of K. Let Pg = Pxg G be the associated
G-bundle. For any complex structure 8 € Cp, of Pg, Ramanathan introduced
the concept of stable principal bundles. For the precise definition of stability,
we refer to [Ra]. We quote the following two properties that we need:

Proposition 7.2: A holomorphic principle G-bundle is stable if and only if it
is isomorphic to P, for some irreducible p € Hom(r, K).
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Proposition 7.3: The condition of being stable is a Zariski open condition.
In particular, the set of all stable holomorphic structures on P (denoted by Cp

) is a zariski open subset of Cp and hence is irreducible when it is non-empty.

By proposition 7.2, any stable holomorphic structure on the G-bundle P
associates to a canonical homomorphism p € Hom(r, K)%7°/K and therefore,
this map defines a fibration

€3 — Hom(r, K)§™¢ /K.

Since C} is irreducible, Hom(w, K)¥™¢/K is irreducible.  Therefore,
Hom(w, K)$%™ and hence Hom(w, K)p are irreducible. This proves theorem
0.6.
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