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1 I n t r o d u c t i o n  

This year has been declared by UNESCO as World Year of Mathematics. 
This year of mathematical celebrations also commemorates the centenary 
of some landmarks in the history of Mathematics. In the 2IM. International 
Cong.Tess of Mathematics,  held in Paris in 1900, David Hilbert  postulated 
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iris celebrated 23 problems as tile main challenges to which the mathemat- 
ical commmfity should pay attention, without any reference to Probability 
or Statistics. The development of statistical methods becaine, though, a 
major source of motivation %r the mathematical research in this century. 

It was also in 1900 that  Karl Pearson proposed the first test of goodness- 
of-fit: the X 2 test. Tile subsequent research devoted to enhancements of this 
elementary goodness-of-fit procedure became a major source of motivation 
%r the development of key areas in Probability and Statistics, such as the 
theory of weak convergence in general spaces and the asymptotic theory of 
empirical processes. Comniemor~ting this centemlial we ~isti to analyze, 
with absolute subjectivity, some aspects which arise from the development 
of the asymptotic theory of goodness-of-fit tests through this century. 

We will pay special attention to stressing the parallel evolution of the 
theory of empirical processes and the asymptotic theory of goodness-of-fit 
tests. Doubtless, this evolution is a good indicator of the vast transforma- 
tion that Probability and Statistics experienced during this century. Cer- 
taizfly, the names that contributed to the theory are the main guarantee for 

this assertion: Pearson, Fisher, Cram6r, yon Mises, Kolmogorov, Smirnov, 
Feller, et al. laid the foundations of the theory. In some cases, the math- 
ematical derivation of the asymptotic distribution of goodness-of-fit tests 
in that period had the added merit that, in a certain sense, the limit law 
was blindly pursued. In Mathematics the main difficulty in showing con- 
vergence consists of obtaining a conducing candidate for the limit. Thus, 
proofs in that period could be considered as major pieces of precision and 
inventiveness. 

A systematic method of handling adequate candidates for the limit law 
begins in 1950 with the heuristic work by Doob (1949), revised by Donsker 
through the Invariance Principle. The subsequent construction of adequate 
metric spaces and the developme~R of the corresponding weak convergence 
theory as the right probabilistic setup for the study of asymptotic dis- 
tributions had a wide and rapid diffusion, with notable advances due to 
Prohorov and Skorohod among others. The contribution of Billingsley's 
book (Billingsley 1968) to this diffusion must also be pointed out. 

The study of Probability in Banach spaces has been another source of 
useful results for the goodness-of-fit theory. The names of Varadhan, Dud- 
ley, Araujo, Gin6, Zilm, Ledoux, Talagrand, et al. are necessary references 
to anyone interested in asymptotics in Statistics. For example, the Cen- 
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t ral  Limit Theorem (C.L.T.) ill Hilbert spaces played a main role in the 
obtaining of the asymptotic behaviour of Cram6r-von Mises-type statistics. 

Lastly, we rnust indicate the sigll.ificance of tile "Hungarian school", 
developing the strong approximation tectmiques initiated by Skorohod with 
his "embedding". Breiman's book (Breiman 1968) had the merit  of initially 
spreading Skorohod's embedding. Today, the strong approximations due to 
Kornlds, Major~ Tusns M. and S. Cs6rg6, R6v~sz, Deheuvels, HorvSth, 
Mason, et al. are an invaluable tool in tile s tudy of asymptotic  in Statistics, 
as we will point out in the last section of this paper. 

Tiffs paper is organized in two sections concerning, respectively, tests 
of fit to a fixed distribution, Section. 2, and tests of fit to a parametric 
family of distributions, Section. 3. A major goal in ou.r approach consists of 
providing an adequate setup for tile analysis of regression and correlation 
tests of fit, associated with the well-known probability plots. Subsection 
3.2 is devoted to these tests. The analysis of correlation tests in the setup 
provided by the \Vasserstein distance, Subsection 3.3, ~411 give additional 
justification to the good behaviour of the most popuhr  representatives of 
this class of tests, and will also explain their poor performance in testing 
fit to a family of heavy-tailed distributions. The asymptotic for tests of fit 
based on Wasserstein distance will be obtained through the use of strong 
approximations. Of course, we do not pretend to cover the wide range of 
existing tests of fit. 

The notation to be employed in this paper is as follows. All tile ran- 
dom variables will be defined on the same, rich enough, probability space 
(fl, c~, P) .  Given X I , . . . ,  X~ independent and identically distributed (i.i.d.) 
real valued random variables, X---, and S~ ~, will, respectively, denote their 
sarnple mean and  variance and iV.,, ~11 denote the associated empirical dis- 
t r ibut ion fimction, i.e., F , , ( x )  = r,, 1 ~<~<~  I{x~_<,~},:r E R. {(i,,} will 
represent a sequence of i.i.d, random variables uzfiformly distr ibuted on 
the interval (0, 1) and G~, will denote its associated empirical distribution 
function. As usual, the uniform empirical process is defined by 

: (0, 1). 

Tile so-called Brow~fian bridge, {B(t)  : 0 < t < 1}, is a Caussian process 
with continuous trajectories and covariance operator Cov(B(.s) ,B(t))  
,s A t st, 

Two metric spaces will appear very frequently. The space C[O, 1] w~fich 
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consists of all real, continuous functions on the  interval [0, 1], endowed with 
the  s pre  ,um It<t  : * e c[0 ,1] ;  a ,d the space 
D[0, 1] (respectively D [ - c o ,  co] ) of all real mnct ions  on [0, 1] (resp. on 
[ co, co]) which are r ight-continuous and have left limits, cgdlgg (from the 
French "continue g ckoR avec limRs 'g gauche"),  endowed with the 8korohod 
distance (see Skorohod 1956). 

Convergence in distr ibut ion and in probabil i ty ~qll be respectively de- 

noted  by J2. and  ~..  g iven  a r andom variable X its probabili ty dis t r ibut ion 
will be represented by s  Finally, �9 and  o will, respectively, denote the 
dis t r ibut ion funct ion and  density funct ion of a s t andard  normal  r andom 
variable. 

2 T e s t i n g  fit t o  a f i x e d  d i s t r i b u t i o n  

Tile simplest goo&less-of-fit problem consists of tes t ing fit to a single 
fixed distr ibution,  namely, given a r a n d o m  sample of real r andom variables 
X1, X 2 , . . .  , X,~ wi th  c o m m o n  dis t r ibut ion funct ion F,  tes t ing the  null hy- 
pothesis F =  F0 for a fixed distr ibut ion function F0. While this procedure 
is usually of l imited interest in applications,  the solutions proposed for this 
problem provided the main idea in subsequent  generalizations designed for 
tes t ing fit to composi te  mill hypotheses.  

Pearson's  chi-squared test  can be considered as the fit'st approach, to 
the problem of tes t ing fit to a fixed distribution.  The  solution, proposed 
by Pearson consisted of dividing the  real line into k disjoint categories or 
"cells" C j . , . . . ,  C~, into which da ta  would fall, under  the null hypothesis,  
~qth probabilities /)1,--. ,P~,. T h a t  is, if F F0 were true, t hen  P ( X 1  E 
Ci) = P.i, i = 1 , . . .  , k. If Oi is the  number  of observations in cell i, t h e n  
Oi has a binomial dis tr ibut ion with parameters  r~, and p.i" hence, the  de 
Moivre-Laplace C.L.T. states t h a t  (np.i(1 pi.))-U2(O.i np . i )~N(O,  1). 

The  mult ivariate C.L.T. shows tha t ,  if t _< k, then  B, = n-U~(Oj .  
rip-l , . . .  , O z -  np~) r has a limit dis t r ibut ion which is centered Gaussian and 
has covariauce mat r ix  2l whose ( i , j )  element, o-<j, satisfies ~r.i, j = P.iPj, 
for i r j ,  and crs,~ pi(1 - p . ; ) .  On the other hand,  ifp.i > O,i 1 , . . .  , k ,  
P~,_~ is nondegenerate  and 2 2 1  has element (i,.j), 7~,;,.j, satisfying ui.j = 

p~l ,  for i # j ,  and  us,s = Ps 1 + pI:.l Simple matr ix  algebra shows t h a t  
B r E-~ ~--I ~.-I~ J converges in law to a X 2~.-I distribution. Further, straight- 
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forward computations show tha t  

X 2 - -  B T 
j 1 nP.i 

providing, therefore, a well-kno~al result in tile asymptot ic  theory of tests 
of fit: 

T h e o r e m  2.1. Under He.�9 X "~ h.as asymptot ic  distribzttion X~2_1 �9 

Theorem 2.1 reduces the problem of testing fit to a fixed distr ibution 
to analysirlg a multinomial distribution, tht~s providing a widely applicable 
and easy-to-use method  for test ing fit which immediately carries over to 
the multivariate setup. Moreover, this test also allows some freedom in 
choosing the number, the  location or the size of the cells C~, . . .  , Ct.. This 
point w'ill be discussed in the next section. 

However, as pointed out by many authors (see, e.g., Moore 1986), con- 
sideri ig only the ceU hequencies when F is continuota produces a loss of 
information that  results in lack of power (the X 2 statistic will not distinguish 
two different distributions sharing the same cell probabilities). Therefore, 
in order to improve ore" method  for test ing fit, we should try to make use of 
the complete information provided by the data.  However, the  multivariate 
C.L.T. and elementary matrix algebra were the only tools needed in the 

derivation of the  asymptot ic  distr ibution in Theorem 2.1. This will not be 
the case when handling more complicated statistics. 

One way to improve Pearson's statistic consists of employing a fimc- 
tional distance to measure the discrepancy between the hypothesized dis- 
t r ibut ion fimction F 0 and the empirical distribution function F~,. The first 
representatives of this method were proposed in the late 20's and in the 30's. 
Cram&" (1928) and, in a more general b rm,  von Mises (1931) proposed 

F O 0  

for some suitable weight function p as an adequate measttre of discrepancy. 
Kohnogorov (1933) studied 

m,.=,/7 sup Fo(: )l 
o z < ~ < e o  
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and Smiruov (1939, 1941) the closely related statistics 

D,,+ ~7. sup (V,,(~)- ~,(.:)), 
- o o < m < o o  

D,, , / 7  sup (g , ( . , ) -  V,,(.)), 
- o o < r  

which are more adequate for tests against one-sided alternatives. The 
statistics D,,., D + or D~ are known as Kohnogorov-Srnirnov statistics and 
present the advantage of being distribution-free: for any continuous distri- 
bution function F0, D ,  has, under the null hypothesis, the same distribu- 
t ion as su.p0<t<l ]~,(t.)l. Similar s tatements hold for D~ and D , .  Thus, 
the same p-values can be used to obtain the significance level when testing 
fit to any continuous distribution.. Tiffs desirable property is not satisfied 
by va~, but  i~ 'also holds for the following modificgfion: 

~g~(~)  =~ .  e(Fi,(~))(~,( .~.)  Fi,(:~))' dFo(.), 
OO 

which was proposed by Smirnov (1936, 1937). All the statistics which can 
be obtained by v~rying �9 are usually referred to as statistics of CramP, r-yon 
Mises type. Consideration of different weight flmctions �9 allows the statis- 
tician to put  special emphasis on the detection of particular sets of alter- 
natives. For this reason, some weighted versions of Kohnogorov's statistics 
have also beers proposed, namely, 

IF. (:~) - ~,( .01 

Th. ~on..nien~,e of .,.ployin~ W~(~)instead of O~ .s. ~es~ s~.tis~i~, 
can be understood when taking into account tha t  D,.~ accounts only for 
the largest deviation between F,,(t) and F(t ) ,  while W,~(~)is  a weighted 
average of all the deviations between F,,(~) and F(~). Thus, ~s observed 
toy Stephens (1986a), l . l ~ ( ~ ) s h o u l d  have more chance of detecting alter- 
natives tha t  are not very far from F at any point t, but  are moderately 
far from F for a large range of points t (think of location alternatives). 
These heuristic considerations are confirmed by sinmlation studies (see, for 
reference, Stephens 198fia). 

Two particular statistics have received special a t tent ion in. the litera- 
ture. When �9 1, 

F ~.~ _-,. (~,(.~) F0(,~)) ' d&(~)  
OO 
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is called the Cram6r-von Mises stat ist ic; when $ ( t )  (t(1 - t ) ) - '  then  

is called the Anderson-Darling statistic. A,.~ has the additional appeal of 
weighting the deviations according to their expected value, and this re- 
suits in a more powerful statistic for testing fit to a fixed distribution, see 
Stephens (1986a). 

To be able to use any of these appealing statistics in practice we should 
be able to obtain the corresponding sigzfificance levels. Snfirnov (1941), 
using combinatorial techniques, obtained an explicit expression for the  ex- 
act distribution of D + . Kokn.ogorov (1933) also gave an expression that  
enabled the tabulation of the distribution of D~,. Further difficulties were 
fotmd when dealing wRh the exact distributions of statistics of Cram6r-von 
Mises type. But even in those cases where a formula allowed the com- 
puta t ion  of the  exact p-values, the interest in obtaining the asymptotic 
distribution of the test  statistics was clear, for it would greatly decrease 

the computat ional  effort needed to obtain the (approximate) p-values (and 
this was of crucial importance by the t ime these tests were proposed). The 
celebrated first asymptotic results regarding D,,. and  D,+ are smmnarized 
in the following theorem: 

T h e o r e m  2.2. F o r  ever?f x > O: 

i 9s,'# 

o o  

E " 9 -2, 2 l i m P ( D ,  _< z ) =  ( 1)Se -.J '~ 
Ti. 

ii) (s,.,.,.i,,,.o.,, i a i) 
l im.P(D,+ > z )  = e  2:~ . 

Kolmogorov's proof of i) was based on the consideration of a limiting 
diffusion equation. Smirnov used tile exact expression of P (D~, + > z) to 
show ii) .  Also, Smimov (1936) derived the asymptotic  distribution of the 

F f Cramer-xon Mises statistic, IV,~. 
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Feller (1948) claimed that  Kohnogorov's and Snfirnov's proofs were 
"very intricate" and were ':based on completely different methods" and 
presented his paper as an a t t empt  to give "unified proof" of those theo- 
rems (which could provide a systematic method of deriving the asymptot ic  
db t r ibu t ion  of other test  statistics expressible as a ftmctional of the empi> 
ical distribution function) It seemed unnatural  that ,  since D , ,  D + and t,.V~ 
are measures of the discrepancy between F ,  and F0 based on the same ob- 
ject, namely, the empirical process, a particular technique had to be used 
in the derivation of the asymptot ic  distribution of each statistic. Thus, 
Feller's paper  is a remarkable step in the development of a unified asymp- 
totic theory for tests of fit based on the empirical process. Nevertheless, 
a study of the empirical process itself and of its asymptot ic  distr ibution 
(a concept which would have to be made precise) was not  coI~idered and, 
as claimed in Doob (194~), all these proofs (including Feller's) "conceal to  

some extent . . .  the naturalness of the resuRs (qualitatively at least) and 
their mutu.al relations". 

It was Doob (1949) who, considering the fiifite dimensional distribu- 
fioI~, conjectured the convergence of the uniform, empirical process to the 
Brownian bridge. A usefu] consequence of this fact would be that ,  under 
some (non explicit) hypotheses, the  derivation of the asymptot ic  distribu- 
tion of a functional of the uniform empirical process could be reduced to 
the derivation of the distr ibution of the same functional of the Brownian 
bridge. Doob proved tha t  

p sup Im(~)l _< ,~ -- ~( 1).J~ ~=~= (~,1) 
\ 0 < f < l  j : - o o  

and 

Thus, justification of Doob's conjecture would provide a new, simpler 
proof of the  results of Kohnogorov and Smirnov. 

This justification was given by Donsker t h ro t gh  his invariance princi- 
ple in Donsker (1951, 19.52). His results showed that  the distr ibution of a 
continuous functional of the  partial sum process (obtained from a sequence 

of i.i.d, random variables with finite second moment)  converges to the dis- 
t r ibut ion of the corresponding functional of a ]~rownian motion, and tha t  
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the distr ibution of a continuous functional of the  tmi%rm empirical process 
converges to the  distribution of the corresponding functional of a Brownian 
bridge. 

The development of the theory of weak convergence in metric spaces 
by, among others, Kohnogorov, Prohorov and Skorohod in the  fifties (see 
Prohorov 1953; Kolmogorov and Prohorov 1949; Prohorov 1956; and Sko- 
rohod 1956) allowed a bet ter  understanding of this invariance prin.ciple, 
as presented in. Billingsley (1968). The space C[0, 1] was on.e of the first 
metric spaces for which this theory  was developed, through the work of 
Prohorov (1956). The scheme consisting of proving the convergence of 
the finite dimensional distributions plus a tightness contrition allowed the 
obtaining of distributional limit theorems for slight modifications of the 
partial stun and the uniform empirical processes, because bo th  processes 
could be approximated by "equivalent" processes obtained fk'om them by 
linear interpolation~ so that  all the random objects considered in the limit 
theorems remained in C[0, 1]. 

This last approximation is somewhat artificial. In order to avoid it, a 
wider space had to be considered. A proper s tudy of the weak convergence 
of the uniform empirical process could be a t tempted  in the space /)I0, 1]. 
The fact that  the empirical process is not measmable  when the uniform 
norm is considered led to the introduction of a more involved topology, 
namely the Skorohod topology that  turned /?[0, 1] into a separable and 
complete metric space in which the empirical process was measmable .  In 
this setup the weak convergence of the empirical process could be properly 
s ta ted (see, e.g., Billingsley 1968, pp. 141) 

T h e o r e m  2.3. I f  we co,Tsider a'~, and B as random elements  taking values 

in/)[0, 1], th.e~. 
L Ct~ B. 

Theorem 2.3 enables us to rederive Ttteorem 2.2 in a very natural  way. 
Note that  D,~. It(.t~,.I]~o and that  the map ;t: ~-+ ]txltoo is continuous for the 
Skorohod topology outside a set of B-measure zero. Thus, we can conclude 
tha t  ltBtJoo ana  this, combined with (2.1), gives a proof of tile first 
s ta tement  in Theorem 2.2. The same method, works for D,~+. 

The use of the Skorohod space is not  the only means of circumventing 
the difficulty posed by the nonmeasurabil i ty of the empirical process. A dif- 
ferent approach to the problem colfld be based on the following scheme. If 
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we could defiue, on a rich enough probabili ty space, a sequence of i.i.d, ran- 
dora variables uniformly distr ibuted on (0~ 1) w~ith an associated empirical 
process c~?, (t) and a Browufian bridge B( t )  such that  

sup t<;(t)- s(t) l  0<t<J 
then we would easily obtain that ,  for any functional H defiued on D{0, 1] 

and continuous on C[0, 1], H(c~*,) ~ H(B) ,  obtMmng a new proof of The- 
orem 2.2. The s tudy of results of type (2.2), genericaUy known as strong 

approximations, began with the Skorohod embedding, consisting of imi- 
ta t ing the partial stun process by using a Brownian motion evaluated at 
random times (see Breiman 1968). Successive refinements of this idea be- 
came one of the most important  methodologies in the research related to 
empirical processes. 

Returning to the applications of Theorem 2.3 in the asymptot ic  theory 
of tests of fit, we should note tha t  the functional a ~+ J't] z(t) 2dr is also 
continuous for the Skorohod topology outside a set of B-measure  zero. We 
can use this fact to obtain the asymptot ic  distribution of the Cranl6r-von 
Mises statistic. Namely, 

~q2. ~. js /~(~)2~. 

Then, a Karhunen-Lohve expansion of B(t) allows us to easily compute 
the characteristic function of JJ  B(t)Zdt and the inversion of this character- 
istic ftmction allows us to tabula te  the asymptot ic  distribution of IV,~ (see, 
e.g., Shorack and \Vellner 1986, pp. 215 for details). Tiffs methodology 
makes the arguments used by Smirnov to  derive the asymptot ic  distribu- 
tion of t Iq~ unnecessary. A recent full account of all the presently available 
information concerning the exact and limiting distributions of IVy, as linked 

by an asymptot ic  expansion, is given by Csgrg6 and Farmvay (1996), with  
a comparable theory for \Vatson's circularly im~ariant version referred to 
at Theorem 3.4 below, where many errors that  have accumulated on this 
topic are also corrected. 

A little extra effort allows us to extend tiffs method for deriving the 

asymptot ic  distr ibution of other statistics of Cram&-von Mises type. As a 
consequence of the Law of the I tera ted Logari thm for the Brownian motion, 
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Anderson and Darling (1952) showed that,  provided 

/ ]  i dt 5r ~dt and qJ ( t ) (1 -  t) loglog 1 t 

are tflfite for some d E (0,1), tile functional ~: ~ J'J ~(t)z(t)2dt is contin- 
uous with respect to the  Skorohod distance, outside a set of B-measure 
zero and, consequently, I.Iq~(~) ~ j'J ~(t)B(t)2dt. This result covers the 
Anderson-Darling statistic A~.. 

Although all the limit theorems for goodness-of-fit tests that  we have 
described so far are based on the weak com~ergence of the empirical pro- 
cess considered as a random element taking values in the space of c~dl~g 
functions, with the Skorohod topology plus the continmty of a suitable 
functional, there is a more natural  way to s tudy the  asymptotic proper- 
ties of statistics of Cram~r-von. Mises type and, more generally, of integTal 
ftmctionals of the empirical process. 

The uniform empirical process can be viewed as a random element tak- 
ing values in the  separable Hilbert space L2((0,1), ~)  of all real, Borel 
measurable functions f on (0, 1), such tha t  ill l $(t)f(t)2dt is finite, where 
we consider the norm given by 

II/1t~,~, e(0,f(0 2~za 

In this setup W,.~(e) The theory of probability in Banach 
spaces, developed in the  60's and 70's, turned the problem of s tudying the 
asymptot ic  distribution of I,V/~ (~)  into an easier task~ because the C.L.T. for 

random elements taking values in L2((0, 1), ~ )  (see, e.g., Araujo and Cin~ 
1980, pp. 205, ex. 14) asserts that  a sequence {Y,(t)},  of i.i.d. L~(0, 1)- 
valued random elements satisfies 

r(t), 

if and only if Jl] E(Y'(t))2~(t) dt < oo and, in that  case, Y is a Caussian 
random element with the same covariance function as Y1. 

Therefore, if we set Y/.(t) /g:.~_<t} - t, i 1 , . . . , n ,  then c~,~.(t) 
n 1/2 ~ ' --1 ~.(t) and }<l(t) has the same cov~riance function as the Brow- 

nian bridge B(t). Hence, c~,~ ~ B in L2((0, 1), ~ ) i f  and only if j'tl j t ( 1 -  
< 
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A further application of Hoffmann-Jorgensen's inequMity (see del Barrio 
2000) allows us to conclude that  has a limiting distribution if and 

only if f ]  t(1 t)~g(t)dt < o% proving the following result. 

T h e o r e m  2.4. (Asymptotic distribution of statistics of the Cram6r-vorx 
Mises type).  W~,z(~) has a limiting distribution if a~d only ~f f~] t(1 
t )~  (t)dt < co. In  tt~at case 

~0 
1 

While the development of probability in Banach spaces provides this 
tiual result for statistics of the Cram&-von Mises type, the use of strong 
approxime~tions produces a similar result for supremmn norm statistics. 
Chibisov (1964) and  O'R,eilly (1974) used the Skorohod embedding and 
a special representation of the uniform empirical process in terms of a 
Poisson process (see, e.g. Shora, ck and Wellner 1986, pp. 339) to obtain 
necessary and sufficient conditions for l, he weak convergence of the em- 
pirical process to the Bro~alian bridge in weighted uniform metrics. If g* 
is a positive funcl, ion on (0, 1) nondecreasing in a neighborhood of 0 and 
nonincreasing in a neighborhood of 1 and we consider the norm given by 
It 11  -- supo<t<l(Ix(t)l/~g(t)) on :D[0, 1], then  eh, u~ B in It" Ib noHn (with 
the necessary modifications in the definition of weak convergence to avoid 
measurabili ty problems)~ if and only if 

t(1 t) exp \ t(l t) < (2.3) 

for every e > O. An  immediate corollary of the Chibisov-O'Reilly theorem 
is that  (2.3) is a sufficieiat condition for ensuring the convergence 

K, , (~)  ~ sup IB(t)t 
o<r ~ ( r  

A modification of the so-called Hungariars construction due to Komlds, 
Major and  Tusngdy (1975, 1976) and to Csgrg6 and R~v6sz (1978) was 
used in CsgrgS et al. (1986) to give the following final result for statistics 
of tim Kohnogorov-Smirnov type. 

T h e o r e m  2.5. (Asymptotic disl, ribution of statistics of the Kohnogorov- 
Sniirnov type).  I f  g2 is a positive funct ion  on (0, 1), nondecreasinq i~ a 
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neighborhood u.f 0 and noninc~easin 9 in a neighborhood of 1, then K ~ ( ~ )  

conve<qes in distribution to a non,degenerate limit law if a~.d only if  

jl i__ e x p  , < 00, 

for  so.me ( > O. B~, that ease.. 

i<(~')  ~ sup IB(t)l 
o<~<:, q ~ ( t )  ' 

3 T e s t i n g  fit to  a f a m i l y  o f  d i s t r i b u t i o n s  

We consider in this section the problem of testing whether the underly- 
ing distribution function of the sample, F ,  belongs to a given family of 
distribution functions, Z.  We will assume 5 is a parametric family, i.e., 

f = { F ( . , 0 )  : 0 6)}, 

where 6) is some open set in II~ d, F -]  (., 0) is the  quantile function associated 
with F( . ,  O). 

Perhaps tile most interesting case occurs when S is the Oaussian fanL- 
fly. It seems that  the first statistics for detecting possible departures from 
normality ,,,ere introduced in Fisher (1930), Pearson (1930) and Williams 
(1935), and were based on the s tudy of the standardized th i rd  and fourth 
moments~ usually denoted by v~l. and bB~ respectively. 

To streng;hen these procedures, some composite tests,  intended to  take 
into account bo th  features sinmltaneously, were proposed. For instance, in 
Pearson, D 'Agosdno and Bowman (1977) the K 2 and the/~ tests, consisting 
of handling two suitable functions of the v~]  and b2 statistics, namely, 
/fg~ K(V/bl,b2) and R ~(.V#gl,b2), were introduced. In that  paper a 
Monte Carlo s tudy comparing those tests to the most popular normality 
tests was accomplished. The authors select many alternative distributions 
and the power of both. tests seems to be similar to tha t  of the  competing 
o n e s ,  

However~ tests based on kurtosis and ske~]ess  are not too reliable be- 
cause they  are based on properties which do not characterize Gaussian 
distributions. For instance, Ali (1974) exhibits a sequence of distributions 
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{P,.} which converges to the  s tandard Caussian distribution while the k.ur- 
tosis of Pt. goes to infinity. Thus, if we consider a random, sample obtained 
from P~., the bigger the index k, the  greater chance to reject the normality 
of the sample. On the other hand, some examples of' symmetr ic  distribu- 
tions, ~dth. shapes very far from normali ty (some of t hem even muRimodal),  
and .(~2 3 are known (see, for instance, Balanda and McGillivray 1988; 
Kale and Sebastian 1996). As a consequence, none of the v/bj, b2, K 2 or R 
tests detects the non-normali ty of the parent distribution in all cases. 

Other tests of normality are the u-test (see David, Hart ley and Pearson 
1954), based on the ratio between the range and the s tandard  deviation in 
the sample, and the  ~.-test (see Geary 1947), which studies the ratio of the 
sample mean to the s tandard deviation. These tests are broadly considered 
as not being too powerful against a wide range of alternatives (although it is 
known tha t  the u-test has good power against alternatives with light tails; 
see Shapiro, Wilk and Chert 1968~ in fact, according to Uthoff 1970, 1973, 
the u-test is the most powerful against the  uniform distribution while the 
a-test is the  most powerful against the double exponential distribution). 

For these reasons, other tests, focusing on features that  characterize 
completely (or, at least, more completely) the family under consideration, 
h~ve been proposed. These tests can be divided, broadly speaking, ii,to 
three categories. The first, more general category consists of tests tha t  
adapt  other tests devised in the fixed-distribution setup. When we special- 
ize on loc~tion scale families, new types of tests tha t  t ry  to take advantage of 
the particular structure of Y-, can be employed. Tests based on the  analysis 
of probability plots, usually referred to as correlation and regression tests, 
lie in tNs class. A third category, whose representatives combine some of 
the most interesting features exhibited by goodness-of-fit tests lying in the 
first two categories, is composed of tests based on a suitable L~-distance 
between the empirical quantile function and the quantile functions of the 
distributions in S ,  the so-called W ,  ssers te in  distance. 

Tests based on \Vasserstein distance are related to tests in the first 
category in the sense tha t  all of them depend on functional distances. On 
the other haIM, it happens that  the s tudy of \Vasserstein-tests gives some 
hints about several properties of the probability plot-tests. These two facts 
have led us to present them separately. Our approach will t ry  to show tha t  
tests based on \Vasserstein distance pro~dde the right setup to apply the 
empirical and quantile process theory  to study probability plot-based tests. 



Em.pir~ic.al prvcesses and goodness-of-fit tests 15 

3.1 A d a p t a t i o n  o f  tes ts  c o m i n g  from the  f ixed-d is tr ibut ion  setup 

All the procedures cousidered in Section 2 were based on measuriug the 
distance between a distribution obtained fl'om the sample and a fixed dis- 
tribution. Oue way to adapt  this idea for the uew setup consists of choosing 
some adequate estimator 0 of 0 (assuming the null hypothesis is true) aud 
replacing the fixed distribution by F(. ,  0). This simple idea was suggested 
by Pearson for his X2-test. Tha t  is, Pearsou suggested using the statistic 

j = l  

where pj(O) denotes the probability, m~der F( . ,  0), tha t  X1 fails into cell j .  

Pearsou, however, did not realize the change in the asymptotic distri- 
bution of j(2 due to the  estimation of parameters.  It was Fisher, in the 
20's, who pointed out that  the limiting distribution of ;~2 depends on the 
method of estimation and  showed that ,  under regaflarity conditions, if 0 is 
the maximum likelihood estimator of t) from the  grouped data  (O1, . . . ,  OA.), 
then j~2 has asymptotic  '~ X~ d 1 distribution (see, e.g., Cochran 1952, for a 
detailed review of Pearson's and Fisher's contributions). 

Fisher also observed that  estimating 0 from the gTouped data  instead 
of using the complete sample (e.g., by estimating 0 from the complete like- 
lihood) could produce a loss of iuformation resulting in a lack of power. 
Further,  est imating 0 from the original data  is often computationally sim- 
pler. Fisher studied the asymptotic distribution of 2 ~ when O is unidimen- 
sional and t} is its maximum likelihood estimator from the ungTouped data. 
His result was extended by Chernoff and Lehmann (1954) for a general 
d-dimensional parameter  showing that ,  trader regularity conditions (essen- 
tially conditions to ensm'e the consistency and asymptotic normality of the 
maximum likelihood estimator),  

k - - d - I  k - I  

j 1 j = k - d  

where Zj are i.i.d, s tandard  normal random variables and Aj ~ [0, 1] may 
depend on the parameter  O. This dependence shows a serious drawback to 
the use of j~2 for testing fit to some families of distributions, the normal 
family being one of them (see Chernoff and Lehmann 1954). 
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The practical use of ;~2 for testing fit presented another  difficulty: the 
S choice of ceils. The asymptotic X~.-1 distribution, of Pear :on s statistic ~as 

a consequence of the asymptotic  normality of the cell frequencies. A cell 
~qth a very low expected frequency would cause a very slow convergence to 
normality and this could resNt in a poor approximation of the distribution 
of X 2. This (somewhat oversimplifying) observation led to the diffusion 
of rules of thumb such as "use cells ~ i th  at least 10 observations". Hence, 
combining neighboring ceils with few observations became common practice 
(see, e.g., Cochran 1952). 

From a more theoretical point of view, in the setup of testing fit to a 
fixed distribution, Mann and \u (1942) and Gmnbel (1943) suggested 
using equally likely intervals under the null hypothesis as a reasonable way 
to reduce the arbRrariness in the choice of ceils (this choice offers some good 
properties; for instance, it makes the X 2 test unbiased, see, e.g., Cohen 
and Sackrowitz 1975). Trying to adapt  this idea to the  case of testing 
fit to parametric families poses the problem tha t  different distributions in 
the null hypothesis lead to different partitions into equiprobable cells. A 
n~tural  solution im~olves choosing, for cells, equally likely intervals under 
F(.,~)), where 0 is some stfitable estimator of 0. 1 consequence of this 
procedure is that ,  again, the cells are chosen at random. 

Allo~;fing the cells to be chosen at random introduces a deep modifica- 
t ion to the statistical structure of X 2 because the distribution of the random 
vector (O~, . . . ,  Q-) is no longer muRinomial~ remarkably, however, it can, 
in some important  cases, eliminate the dependence on the  parameter  8 of 
the asymptotic distribution in (3.1). \Vatson (1957, 1958) noted tha t  if 0 
is the maximum likelihood estimator of 0 (from the ungrouped data) and 
cell j has boundaries F "((j  1)/k, 0) and F "( j / l%0),  then (3.1) remains 
true. Further,  if Y- is a location scale family, then the Xd's do not depend 
on 0, but only on the family S .  As a consequence, an improved X 2 method  
could be used for testing normality or exponentialRy. 

The development of the  theory of weak convergence in metric spaces 
provided valuable tools for further insights in x2-testin.g. Using the weak 
convergence of the empirical process in /9[0, 1], Moore (1971) obtained a 
short rigorous proof of Watson's result which was also valid for multivariate 
observations and random rectangular cells. Later, Pollard (1979), using a 
general C.L.T. for empirical measures due to Dudley (1978), e•  the 
result to very general random cells under the mild assumption tha t  these 
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random cells were chosen from a Donsker class. 

Despite the fact tha t  all these theoretical  contributions have ~Jdely 
spread the applicability and reliability of x2-tests, the limitations of this 
procedure, noted when testing fit to a fixed distribution, carry over to the 
case of testing fit to a Gmily (see, e.g., StepheILs 1974, or 1986a). 

The use of supremum or quadrat ic  statistics based on the empirical dis- 
t r ibut ion function with parameters est imated from the da ta  could provide 
more powerful tests, jus t  as in the fixed distribution setup. ~l~he adapta t ion  
of II~ or /t%, to  this situation can be easily carried out. Let (),, be some 
estimator of 0. We can defffle the statistics 

F ~;~(~,) ., ~,(F(. , ,~,,))(F..( . ;)-  F(.; ,C.)) 2 dF(~.,C), 
O 0  

and 

IF,,.(~.) - FO~., C.)I sup ~<~.<~ ~'(f'(:.., C))  

and use them as statistical tests, rejecting the null hypothesis when large 
values of I lq2,(~) or /~%,(~) are observed. However, it took a long time 
for these statistics to be considered as serious competitors to the Xg"-test; 
little was kno~m about  these versions of Cram6r-von Mises or Kohnogorov- 
Smirnov tests until the 50% (see, e.g., Coct~'an 1952). 

The property exhibited by IVj~ and K~, of being distr ibution-kee does 
not carry over to ~ 2 ( ~ )  or s  If we set Z~ = F (X~ ,4 , )  and let G,( t )  
denote the empirical distr ibution function associated with Z j ,  . . . ,  Z,, then, 
obviously, 

[~..(~) v/~, sup IG"(t) - tl, (3.3) 
o<t<:J. ~' (t) 

but, m llike in tile fixed distr ibution case, Zj, . . . ,  Z~ are not i.i.d, uniform 
random variables. 

HoweveL in some important cases the distribution of ZI~... ~ Z~ does 
2 not depend on O, but only on f ~n these cases, the distribution of ~%, (~') or 

~%, (@) is parameter-free. This happens if 7- is a location scale family and 
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0~, is an eqtfivariant estimator, a fact noted by David and Jotmson (1948). 
Therefore ~ ~  ($)  or _~  (~)  can be used in a straightforward manner  as test  
statistics in this situation. Lilliefors (1967) took advantage of this property 
and, from a sinmlation study, constructed his popular table for using the 
Kohnogorov-Smirnov statistic when testing normality. 

The first a t tempt  to derive the asj~nptotic distribution of any statistic 
of t , ~ ( ? )  or _~.($)  type was du.e to Darling (1955). His s tudy concerned 
the Cram~r-von Mises statistic 

F Z' 1~7 ~,. (F,,(~) r ( ~  ~ " (d . . (~ , ) -  t)~dt., - , e , , ) ) -  d F ( ~ , O , , )  , , ,  

o o  

assuming that  0 was one-dimensional. Let us define 

H,, := n F,,(z) F(:r,O) (0,,. O) F(z,O) dF(z,O) 
s j' = (~/n(G,,,(t) t) T,,.g(t))Zdt, 

where ~, r 0), and 

9(t) g(t,O) (.~.4) 

Darling's approach was based on showing that ,  when the underlying 
distribution of the sample is F(- ,0)  and Or and 0 satisfy some adequate 
regularity conditions, then  

~j~ -H, ,  o~(~). (3.5) 

Thus, the asymptotic distribution of IV,~ can be studied through that of 
H... Darling showed that  the finite dimensional distributions of v/~(G~ (t) - 
f) - T,9( t  ) converge weakly to those of a Oaussian process Y(f) with co- 
v~riance function K(.s, t) = s a t  .st "~)(.s)'~;,(t), where '~)(t) = ~9(t) and ~r s 
is the asymptotic variance of T,,. He showed, further,  tha t  trader some ad- 
ditional assumptions on ~),,,, Donsker's invariance principle could be applied 
to conclude that  
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and, as in the fixed distributiorl case, a Karhunen-Lo~.ve expansion for 

ft](Y@))2d~ can provide a good way to tabulate  the limiting distribution 

of l.l"~. Sukhatme (1972) extended Darling's result to multidimensional 
parameters  and gave very valuable information for the Karhunen-Lo~ve 
expansion of the limiting Gaussian process. 

Instead of considering the process {x/G(G,.(t) - t) - T,g(t)}~, a direct 
s tudy of the est imated empirical process, {v/~(d,,.(t) t)}t, could yield the 

asymptot ic  distribution of general and  Kt,,(r statistics (recall (3.2) 
and (3.3)) without having to rely on a different asymptotic equivalence as in 
(3.5) for every different statistic. Kac, Kiefer and Wolfowitz (1955) were the 
first to study this est imated empirical process in a particular case: if we are 
testing fit to the family of normal distributions N(t~, ~r 2) and  we estimate 
0 (t~, o2) by O, ( s  S;2,), then the finite dimeiLsional distributions of 
{.v/Tr(G,(t) t)}~ converge weakly to those of a centered Caussiar~ process 
Z(t)  with cov~riance function 

(I) 1(8)0((I) 1(8))(I) l(t)~((I) 1@)), (3,6) 

where �9 j is the quantile inverse of fl~ (note tha t  the difference between 
Darling's result and (3.6) is the introduction of an extra  te rm corresponding 
to the second parameter  to be estimated). Although they (lid not prove 
weak convergence of the est imated empirical process itself, they  used this 
result (combined with a particular invariance result du.e to Kac) to conclude 

2 tha t  1,17 a dl](Z(t))2dt' providing, therefore, the asymptotic  distribution 
of the Cram6r-von Mises test of normality. 

A general s tudy of the weak convergence of the est imated empirical 
process was carried out by Durbin (1978) using the theory of weak conver- 
gence in..iO[0, 1]. Durbin's result can be essentially summarized as follows. 
Assume 0, satisfies 

1 z(x,,, o) + 
- , = ,  

P 
where e. -~ 0 and l(Xj,O)is centered and has covariance m a t r i x  L L(O). 
Assume further that  F(:c,O) is cont im,  ous in ~: for all 0. Set lift, 0) = 

f ~ ( t , o )  l(x,O)dF(:r,O) and assume tha t  the vector (with the same dimen- 
sion as 0) 9(t,O), as defS~ed in (3.4), is con t inuous  in  (t, 0). T h e n  we have 
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T h e o r e m  3.1. Under th.e ,rull hypothesis and provided th, e above ass~rn.p- 
tio,,s tzold, tt,,e e,<,z~,ted e,,.pi,'i~:'~.l p,'oce*~, v~(O, .  (t) t), eo,,.t,e,'ges .we~.kly 
b,, D[0, 11 to a eente,'ed Gaussian process" Z(t) with cova,'ic~nee #nc t ion  

K(.s, t) s A t -  , s t -  h.(,s)'g(t ) - h.(t)'g(,s ) + 9( s)'Lg( t ). (a.r) 

When ~- satisfies some regaflarity conditions and 0,, is an efficient es- 

t imator (in the sense given in Durbin 1973), then  L in (3.7) is the inverse 
of the information matrix, I I(O), and h(t) I :tg(t ). In this case (3.7) 
simplifies to 

/ ( ( s , t )  = . s A t  .st 9 ( s ) ' I  lg(t,). 

Note that  this covariance hmction can be expressed as s A t st 
E d &j(s)Oj(t,) for some real ftmctions &j. A very complete s tudy of the j = l  

Karhunen-bo~ve expansion of Gaussian processes wRh this type of covari- 

ance flmction w~s c~rried out in Sukhatme (1972). Note also that  a variaut 
of Durbin's  theorem in the fornt of weak approximation, given by Theorem 
a.l(a) in Burke et al. (1979), proved useful later from the technical point  
of view. 

Theorem 3.1 provides, as an easy corollary, the asymptot ic  distr ibution 
of a variety of ~ 2 ( $ )  and A~, ($)s ta t i s t i cs  trader the mttl hypothesis.  In 
fact, Durbin 's  results also give a valuable tool for s tudying its asymptot ic  
power because they irlclude too the asymptot ic  distribution of the esti- 
ma ted  empirical process under contiguous alternatives. A survey of results 
connected, to Theorem 3.1 as well as a simple derivation of it based on Sko- 
rohod embedding can be found in Shorack and \Vellner (1986). Among the 
statistics whose asymptot ic  distribution can be derived from Theorem a.1, 
three representatives have deserved special at tention in the literature: the 

Cramer-von Mises statistic, and 

K,,~ .v/77, sup 
-cx0 < ~.<oc 

and 

F(. ,  

(r,,.(:4 

which are kno~ l ,  as in the fixed distr ibution setup~ as Kohnogorov-Smiruov 
and Anderson-Darling statistics respectively. Also, as in the fixed distribu- 
tion case, quadratic statistics offer in general bet ter  power properties than  
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_h'~,, wi th  :t~ outperforming t~[if. Any of these statistics offers considerable 
gain in power x~-ith respect to the  X 2 test  (see, e.g., Stephens 1974 or 1986a). 

Let us conclude this subsection by comment ing ,  briefly, t ha t  the  achieve- 
menCs of subsequent  advances in the  theory of empirical processes have 
allowed the development  of oCher goodness-of-fit procedures.  

For instance, in Feuerverger and Mureika (1977) the asymptot ic  distri- 
but ion of the empirical characteristic function is obtained; see also Cs6rg6 
(1981a). Analogous versions of Durbin 's  theorem for empirical characteris- 
tic and quantile functioiLs were developed by Cs6rg6 (1981b) and LaRiccia 
and  Mason (1986). This was applied in MuroCa and Takeuchi (1981), Hall 
and Welsh (1983), Epps and Pulley (1983) and CsSrg5 (1986a, 1989) to 
propose new normali ty  tests. Simulations in Hall and  Welsh (1983) sug- 
gest t ha t  these tests have good beha~dour against symmetr ic  alternatives. 
Related ideas for tes t ing for the broader model  of all stable distributions 
are in CsSrg6 (1986b) and references therein, and these tests were recently 
s inmlated by Koutrouvelis and  Meintanis (1999). 

A different way to adapt  the f ixed-distr ibution tests is the mi~dmum 
distance method. Assume tha t  5(F, G) is a distance between dis t r ibut ion 
functions. Set A ( F , , , S )  : inf0 5(F , , ,F( . ,0 ) ) .  A(F,, ,  S )  is a reasonable 
measure of the discrepancy between the sample distr ibut ion and  the family 
Y tha t  can also be used for tes t ing fit to Y. Dudley's  theory  of weak 
convergence of empirical processes can be used for deriving the l imiting 
dis t r ibut ion of A(F,, ,  Y-) when ~(F, G) = [IF C]t with tt '  1t being some 
norm on D[0, 1] or i ) [ -oo ,  oo] (see, e.g., Pollard 1980). An alternative 
derivat ion can be based on Skorohod embeddi~lg (see Shorack and \Velhier 
1986, pp. 254-257). 

3 .2  C o r r e l a t i o n  a n d  r e g r e s s i o n  t e s t s  

In this and in tile next  subsection we will assume t h a t  f is a location 
scale famil�90 i.e., given a dis t r ibut ion function H0, we will assume tha t  .7- is 
the  family of dis t r ibut ion functions obta ined from H0 by location or scale 
changes. We will assume H0 to  be standardized.  

Goodness-of-fit tests in this subsection focus on the  analysis of the  pop- 
ular probability plot. Some reviews on this subject  have appeared  recently 
(see, %r instance, Lockhart  and  Stephens 1998, or Stephens 1986b). The  
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idea behind the probability plot is as follows. 

Let X 1 , . . . ,  X ,  be a random sample whose conmion distribution func- 
tion belongs to ~- and has mean # and variance a2. Let X0 (X 0), . . . ,  X00 ) 
be the corresponding ordered statistic. Let Z0 = ( Z o o , . . . ,  ZOO ) be an 

ordered sample with underlying distribution function H0 and let rr/ 
( rn~, . . . ,m~,)  and V = (v.~j) be, respectively, the mean vector and the co- 

Th.en, 

X(i.) - l* + o-Z(.i), in distribution, i - 1 , . . . ,  r~,. (3.s) 

Thus, the plot of the ordered values X O ) , . . .  , X(,) against the points 
m-j,...,~,~,, should be approximately linear; lack of linearity in tiffs plot 
suggests tha t  the distribution function of X~ does not belong to S .  Check- 
ing this linearity is often done "by eye", but, some analytical procedures 
have been devised. They were proposed according to two different crite- 
ria, which essentially lead to equivalent tests, the main difference being the 
point of view employed by the proposer to justify his/her proposal. 

The first cri terium relies on the idea of selecting an estimator (f2 of cr 2, 
assmning the  linear model (3.8) is correct, and comparing it ~4th. 6'~ which, 
in any case, is a consistent estimator of cr ~, Under the null hypothesis gr2/S.~ 
should take values close to 1. Hence, values of ~:~/6'~, far from 1 would lead 
to rejection of the null hypothesis. These procedures are called regressio~ 
~es~s. 

A second class consists of tests assessing the linearity in (3.8) through 
the correlation coefficient between, vectors X0 and m, p(m, X0) (notice tha t  
here we have no real correlation coefficient because rrz is not random).  
When model (3.8) is true, we expect p2(m, X0) to take values close to 1 
and, consequently, small vanes  of p>-(r~~,,Xo) would indicate tha t  the null 
hypothesis is not true. Tests of this kind are called cor'rela~io~ tests. The 
vector m. can be replaced by other vectors .s = ( / ~ , . . . ,  .3, ) satisfying, under 
the null hypothesis, some approximate linear relation with X0. Coordinates 
of the vector/4 are usually kno~al as p lo t t i ,g  positions. 

The first example of these tests was the Shapiro-\u W-test  of nor- 
reality, proposed in Shapiro and Wilk (1965). There, the authors state 
tha t  they are t rying to proxdde an analytical procedure "to summarize for- 
really indications of probability plots" (pp. 591). The best linear unbiased 
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estimators, BLUE, of 1~ and r in model (3.8) are 

rn/V J X0 
X~,. and & 

T Y i ' / ~  --  ] ??% 

(this holds for any symmetric  H0). Hence, under the null apothesis, a'2/S~ 
should take values close to 1. The Shapiro-Wilk statistic, W, is a normal- 
ized version of s narnel 5 

( m ' V  :'Xo) 2 (3.9) 
W = m'V  :'.V l m . E , ( X ;  f(_)2 

The normalization ensures that W always takes ~lues between 0 and i 

(since IV equals p2 (K-]  m, Xo)), Small values of I.'V would lead to rejection 
of the null hypothesis. This is a regression test, since it is based oil the 

comparison of & and S~z,, but, obviously, it can also be seen as a correlation 
test with plotting positions V ira. According to simulations (provided, for 
ins tant  G in Shapir% \Vilk and Chen 1968) it seems tha t  the W-test  is one 
of the most powerful normali ty tests against a wide range of alternatives. 
This fact has made the test very popular, and it can be considered the gold 
s tandard  for comparisons. However, employing W for testing normali ty 
presents several difficulties of different kinds. 

One problem concerns computat ional  aspects. Computat ion of W re- 
quires previous computat ion of m and V -1 . This task is difficult and, 
in fact, when W was introduced, elements in V were tabula ted  only for 
n <_ 20. For ~his reason some numerical approximations ~ha~ allowed ~he 
computat ion of IV quite accurately for sample sizes up to 50 were proposed 
in Shapiro and Wilk (1965). 

An equally important  concern regarding W was the tabulat ion of its 
null distribution. Except in case n 3, when the IV-test is equivalent 
to the "a-tes~ (see Shapiro and Wilk 1965) the exact distribution of IV is 
unkno~m. Percentiles of IV were computed by simulation in Shapiro and 
Wilk (1965) for sample sizes up to 50. However, the asymptotic  distribution 
of W remained uukno~ul for a long tim.e. In fact, it was not obtained until 
20 years later, in Leslie, Steph.ens and. Fotopoulos (1986) who showed the 
asymptotic  equivalence, raider normality, of IV and another  correlation tes~ 
whose distribution was already known at this time (see the considerations 
concerning the de Wet-Venter test below). 
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Some transformations of W that  made its distribution approximately 
Gaussian were proposed (see Shapiro and Wilk 1968, or R.oyston 1982). It 
is curious to notice that,  in Shapiro and Wilk (1968), the authors employ 
normal probability plots, whose fit is addressed "by eye", to analyze the 
goodness of the proposed approximation. However, these results must be 
used ~i th  some caution because, as shown in Leslie (1984), they  rely on 
approximations which (to not hold with the necessary accuracy. 

An additional weakness of the Shapiro-Wilk test is tha t  the procedm'e 
may be not consistent for testing fit to non-normal families of distributions. 
For instance, if Y is the exponential location scale family then the Shapiro- 
Wilk statistic becomes 

= 

IVe = (-, 1 ) q '  

which is a function of the coefficient of variation. There are some families of 
distributions with the same coefficient of variation as the exponential family 
(see SarkaN 1975; Spinelli and Stephens 1987). Thus, the ~VE-test is not 
consistent when testing for exponentiality. In particular, simulations in 
Spinelli and Stephens (1987) suggest tha t  the power of the lI / )- test  against 
the beta  (1/4, 5/12) distribution decreases with the sampling size. 

The limitations of the Shapiro-Wilk test led to the introduction of mod- 
ifications of W, which aimed to ease them. The first examples were the 
D'Agostino test (see D'Agostino 1971) and the Shapiro-Francia test (see 
Shapiro and Francia 1972). They were intended to replace the W-test for 
sample sizes greater than  50. Both tests are easier to compute t h a n  the W- 
test. The D'Agostino test  employs an estimator of ~r proposed in Downton 
(1966) to get the statistic 

/.?,2 ~ r t  

The Shapiro-Francia test  is based oil an idea suggested (without proof) 
in g u p t a  (1952) (see also Stephens 1975) according to which the matrix 
V -]  in (3.9) can be replaced with the identity [,  obtaining the statistic 

r 2 
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Both tests are correlation tests. The plotting positions are (1, 2 , . . . ,  .n) 
for the D-test and m for the W'-test.  Simulation studies in D'Agostino 
(1971) and Shapiro and Fraucia (1972), respectively, suggest that  the pro- 
posed tests are approximately equivalent to the W-test.  The D-test  has 
the advantage of being asymptotically normal  and its distribution can be 
approximated by a CoHffsh-Fisher expansion for moderate  sample sizes. 

Apart  from the ease of computation,  an interesting feature of the  W'- 
Shapiro-Francia test is its consistency for testing fit to any location scale 
family ~Jth f51ite second order moment,  a fact show~l in Sarkacti (1975). 
However, it is cttriotts to notice that  this consistency disappears if one you 
employ the asymptotic  distribution. Tiffs happens, as shown in sub-section 
3.3.3, because if the family under testing has tails a bit heavier than  those 
of the (laussian distribution (this includes, for instance, the  exponential 
family), then the  asymptotic distribution only depends on the tails of the 
distribution. Therefore, if we have a distribution in the alternative ~dth 
the same tails than a distribution in the family, then the asymptotic  dis- 
tributions of W'-Shapiro-Francia test under the null hypothesis and under 
the distribution in the alternative coincide (see also the comments about 
the power of the Shapiro-Francia test below). 

A further simplification of the W'- test  was proposed in Weisberg and 
Bingham (1975) by replacing m, by the vector ~, (~7~, . . . ,  r~,),  where 

+ 1 / 4 / '  = 1 , . . . , . . .  

Tiffs statistic is easier to compute t han  l.l/~', and a Monte Carlo s tudy in 
\u and Bingham (1975) suggests that  the two tests are equivalent. 

Another  modification of W was proposed by de \Vet and Venter (1972), 
It seems that  the  concept of the correlation test was introduced for the first 
t ime in tha t  paper. The de \Yet and Venter test  is the correlation test  ~Jth 
plotting positions 

or, equivalently, the test  which rejects normality when large values of 

2 

-F  
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are observed. 

Subsequent tests continued this approach. For installce, Filliben (1975) 
proposed a correlation test  with the medians of the ordered statistic Z0 as 
plotting positions. Some simulations comparing tiffs and the W and W' 
tests were given. The distribution of this statistic was also computed via 
the Monte Carlo method.  

An inl, eresting feature of tile, W*-test is tha t  it was the first correla- 
t ion normality test  with known asymptotic distribution. To be precise, 
it was sho,,~ in de \Vet and Venter (1972) that ,  if {Z~} is a sequence of 
independent  s tandard Gaussian random variables, then 

~ Z 2 -  1 

Z 

for a certain sequence of constants {aTe}. The key to the proof relied on 
showing, through rather involved calculations, the asymptotic eqNvalence, 
under normality, of W* and a certain quadratic form and using the asymp- 
tol, ic theory %r quadratic %rms given in de \'Vel, and Venter (1973). 

Since the  publication of de \Vet and Venter (1972), the possibility of 
obtaining the asymptotic distribution of other correlation tests of normal- 
ity by showing their asymptotic  equivalence with the W*-test has been 
considered. An important  paper in this program was that  of Verrill and 
Johnson (1987), where the asymptotic equivalence of correlation tests uu- 
der some general conditions (satisfied by most of the correlation tests in the 
literature) is shown. In particular, it is shown that  the Shapiro-Erancia, 
the \Veisberg-Bingham and the Filliben tests are asymptotically equiva- 
lent to the de \u test, having consequently the same asymptotic 
distribution. 

The asymptotic  distribution of the Shapiro-Wilk test  could, then, be 
obtained using its asymptotic equivalence with the Shapiro-Francia, shown 
in Leslie, Stephens and Fotopoulos (1986). This solved an important  prob- 
lem that  had existed for around twenty years. It would be unfair not to 
mention Leslie (1984), which proved the validity of the key step in pre~4ous 
heuristic reasonings based on assuming tha t  the vector m is an '%symptotic 
eigenvector" of V 3. More precisely, the main result of tha t  paper is tha t  
there exists a constant C which does not depend on n, such tha t  

IIV ' , . . -  2 ,, tt < 
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where, given the matrix t9 = (b~j), then  ItB]I z = ~ j  b? i j  ' 

The possibility of extendi ig  the use of correlation tests to cover goodness- 
of-fit to other families of distributions has also been explored, for instance, 
in Smith and ga in  (1976), for the exponential distribution, or in Gerlach 
(1979) for the extreme value distributions. In this setup, correlation tests 
do not present the same nice properties exhibited when testing normalRy. 
In Lockhart  (1985) the  asymptotic normality of the Shapiro-Francia test 
when applied to the exponential family is obtained. The rate of conver- 
gence is extremely slow: (log r~,) 1/2. This result was generalized in McLaren 
mad Lockhart  (1987) to cover extreme-value aim logistic distributions ~ t h  
the same rate and the same asytnptotic distribution as in the exponen- 
tial case. However, the asymptotic efficiency of the Shapiro-Francia test in 
these situations was found to be 0 when compared with tests based on the 
empirical distribution function, since it was possible to find a sequence of 
contiguous alternatives such tha t  the asymptotic power coincides with the 
nominal level of significance of the test  (on this question, see also Lockhart 
1991). 

3 . 3  T e s t s  based on Wasserstein d i s t a n c e  

A different approach to correlation tests was suggested in del Barrio, Cuesta- 
Albertos, Matrs  and Rodrfgalez-Rodrfgalez (1999) and  will be widely de- 
veloped in the remainder of this work. The methodology consists of analyz- 
ing the L2-Wasserstein distance between a fixed distribution and a location 
scale f~mily of probability distributions in IR. Our s tudy will cover different 
kinds of distribution tails, including as key examples the uniform, normal, 
exponential and a more heavily tailed lmv. 

Let ~2(IR) be the set of probabilities on R with a finite second moment.  
For probabilities ~j. and P~ in ~( IR)  the L2-\Vasserstein distance between 
PI and P2 is defhled as 

W ( P 1 , P 2 )  : i n f { [ E ( X l - X 2 ) 2 1  ~/2 " tZ(X1)  P1,F-.(X2) P2} .  

For simplification of notation we will identify probability laws with their 
distribution functions. In particular, if F~, i i, 2, are the distribution 
functions associated with the probability laws Pi E iPz(II~), w~ will say that  
F~. E 7~ (R), i 1, 2 and write )32 (Fj, F2) instead of ~/V (P~, P.)). 
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An important  fact, which makes W useful > r  univariate statistics (the 
multivariate setting is very different), is that  it can be explicitly obtained 
in terms of quantile functions. If F~ C ~( IR) ,  i = 1,2, then (see, e.g., 
Vallender 1973; Bickel and Freedman 1981) 

w(n,,r~) [ s  '/~ - ( 3 . 1 0 )  

Some relevant well-known properties of the \Vasserstein distance are 
included in the following proposit ion for future reference. Tile reader in- 
terested in properties and uses of the general Lp-\Vasserstein distance can 
refer to Bickel arid. Freedman (1981), Cuesta-Albertos,  Matrgn, Rachev and 
Riischendorf (1996) oi" Rachev and R/ischendorf (1998). 

Propos i t ion  3.1. 

distribution functior,, defined by & (:r) = Fi(a  rn.i). T h e n  

w~( r , ,F~ )  W~(F; ,F2)  + (-,~ - m~) ~. 

(b) Let  {F~,},,. be a seq.uence in P-.e(R). The followin.g s ta tements  are 
equivalent: 

ii. F , ~ F  a,zd j ' l t i 2 d s  ~ J '] t l2dF < co. 

iii. F,, 1 --+ F J ~,.s. a , d  in L2(O, 1). 

As in Subsection 3.2 we assume .7- to be a location scale family of 
distr ibution functions, tha t  is, f = {H : H ( z )  = H0((:r ~*)/~),# c 
IR, o- > 0} %1' some lif0 c ~2(IR) which we choose, for simplicity, ~@h zero 
n~ean and unit v~riance (thus, given H(.)  Ho((~' -#)/o-) in :F, # and.  
are its m e , n  ~nd its s tandard  deviation, respectively). 

Note that tile quantile fimction associated with H(~') H0((z  - t*)/c*) 
satisfies H - '  (*) = tt + a H o  ~ @). There>re ,  if F is a distr ibution function 
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in P2(I~) with mean pr and s tandard  dexdation a0, (3.10) and  Proposition 
3.1 (a) imply tha t  

inf{14?2(F,H), H E f }  

{1' } inf (F  l ( t . ) - / t o -  crH0 J ( t ) )  2 dt 
or>I} 

( ; ) = inf ~r~§ 2 2o ( F  l ( t ) p . o ) H o l ( O d t  
a ) 0  

2 
= . o -  (F ~(0- t,o) H~;~(t)dt 

(,B.IO 

Thus, the law in f ~:losesC to F is given by/~ =/~o and cr = Jl] F J(t) 

Ht~ -] (t)dt, wtfich is the  covariance between F -] and Ht~ -] when seen as 
random variables defined on (0, 1). The ratio W'2(F, f ) / c r  o is not affected 
by location or scale changes of F.  Hence, it can be considered as a measure 
of dissimilarity between F and jr. For exampl.e, the best W-approximation 
to F in the set ~.\.- of normal laws will be the normal law with mean ~.0 
and standard deviation ft] F-1(t)gP-] (t) dr, and the ratio 

2 
cr I Cr o 

measures the non-normali ty of F .  

The invariance of W2(F, f ) /c r~  against location or scale changes of F 
suggests tha t  it is convenient to use a sample version of it for testing fit to 
the location scale family jr. More precisely, if X1, X ~ , . . . ,  X;, is a random 
sample ~i th  underlying distribution function F,  

w*CF,,,m) ~I 
5I sI' 

where &,, = f~ F~71(t~)H(~l(t~)dt, can be used as a test  statistic: for tile null 
hypothesis F E f, L~rge v~lues of 7~, wotflfl le~fl to the rejection of ~he 

null hypothesis. 
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This testing procedure belongs to the class of minimuni distance tests 
described in Subsection 3.1. A nice feature of \Vasserstein tests is tha t  
we have an explicit expression for the minimum distance estimators and, 
consequently, for the minimum distance statistic, unlike what happens for 
other metrics (e.g., those leading to Kolmogorov-Smirnov or Cram~r-von 
Mises statistics). 

The connection between ~ and correlation and regTession tests can be 
clearly seen by noting tha t  large values of ;g, correspond to small values 
o f  " 2 .2 ~r/S~,, which, ~dth the notation employed in Subsection 3.2, can be 
expressed as 

p~(~, Xo) ( E ' / ,  ~i.x(,)) ~ 

t , i / ,  where u ( v ~ , . . . ,  u , ) '  and ui a(i. 1.)/, H(Tl(t) dt, i 1 , . . . , . n  (observe 

tha t  u is centered and lira,, u~v 1 since H0 is assumed to be standard- 
ized). Hence, the ~ ,Ttes t  is eq~fivalent to a correlation test with plotting 
positions le ( v l , . . .  , u,~) ~. In fact, the plotting positions in the  Shapiro- 
Wilk, Shapiro-Francia or & \u tests are approximations to the 
\Vasserstein plotting positions. Tiffs was noticed, in the context of normal 
probability plots, by Brown and Hettmansperger  in (1996)~ which consid- 
ered the problem of finding the opt imum plotting positions. Tha t  paper 
presented a heuristic explanation, based on an orthogonal expansion of ; a  
of the power properties of the 7Z, normality test  against general alterna- 
tives, observed by Stephens (197.5). Our results (Theorems 3..5 and 3.6) 
will justify those heuristic considerations. 

We now consider the problem of obtaiifing the  asymptotic distribution 
of 7~,~ under the null hypothesis. The invariance of 7~, x~qth respect to 
location or scale changes of F allows us to assmne tha t  F = /t0. By 
the convergence of S~. ~ u2(/-/o) = 1 a.s., we ~dll be able to study the 
asymptot ic  behaviour of 7~,,. through that  of S~,7-4,,. which in t u rn  (recalling 
tha t  H0 is standardized and F H0) pemfits the following decomposition 

(/0' 0_< v,*; :=  <7'(OHo'(t?dt  

t ~.01 ) '2 

= ff(F,;J(t) F'(Oy   (J/(F.'(t) F '(t0)d 0 
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2 

=: rr re?). (3.12) 

Let us remark that nT4!} ) = (nUz2~,)2 which, since F ~ T~2(IR), has a 
X~ asymptot ic  lmv. On the other hand,  

( (]/ .nT~!~;)= n j/~ F , . J ( t ) F  ]( t )dt  1 =(n)/2(&~, 1)) 2, 

which, under not-too-restrict ive conditions, has a scaled X~ asymptot ic  

law (but see (3.26)). Finally note that ,  in the normal  case, rt, T~, j) is 
similar to the  statistic L~ J, of de \Yet and Venter. However, the  deriva- 
t ion of the asymptot ic  dis t r ibut ion of T~,*~ requires a joint t r ea tment  of 
(~!,I ~, ~!?), ~!f). 

A look at (3.12) suggests tha t  this joint t r ea tmen t  can be based on the  
asymptot ic  theory of quantile processes. This ~ l l  be our approach.  If F 
has derivative f ,  the general quantile process, p~,, is defined by 

D~,(t) : = n ~ / z f ( F - ' ( t ) ) ( F - J ( t )  - F~TJ(t)), 0 <  t < 1. 

This  general quantile process can be approximated,  under certain regu- 
larity conditions, by Bro~nfian bridges in a way tha t  we will s tudy in more 
detail  below. This approximat ion can be used in the  s tudy of ~*;, since 

(ti' ~ o  \ f ( F  ~(t))/ ,t(F '(0) 7 ,t(F ,(t)) 
(3.13) 

For tile approximat ion of the  general quantile process, we x~dll assume 
the  following regularity conditions on F.  

A s s u m p t i o n s .  L e t a  = s u p { z  : F ( z )  = 0 } , b  = i n f { z  : F ( z )  = 1}, oo_< 
a < b < oc. W e  will  asswm, e tha t  

1. F is twice di f fercnt iable  on, (a, b). 

2. F'(:~;) , f (~)  > o, :,: e (~,,, b). 
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3. For some 7 > 0 we have 

sup t(1 t ) l . f ' (F - l ( t ) ) l / f 2 (F- l ( t ) )  <_ ~'. 
0 < t < l  

Tile following strong approximation result for p,, (Theorem 6.2.1 in 
Cs/;rg5 and Horvgth 1993) will enable us to use expression (3.13): 

T h e o r e m  3.2. Under Assumptions 1, 2 and 3. we carz define, o~ a rich 
eu.ou.qh probability space, a sequence of Br'o.wnian bridges {B,~(t),O < t < 
1}~ such th.at 

Ip,,(t) B,,(t)t ~t (1/2) ~ sup 
(t(1 t))," ..~<_*<_1 77T 

Under tile additional assump~,ion 

{ Op(logn), fits, = 0, 
_ _  .~, 

< (3.14) OO, 
f(F ~(t))" 

we can use Theorem 3.2 and tile same techniques employed in tile proof of 
Theorem 6.4.2 in CsSrg5 and Horvs  (1993) to show that  

�9 I s  .... , f(F "(t)) f ( F  "(t)) 

\ f ( F - ' ( t ) )  (tt 

(3.1.5) 

where B(t)  is a Brownian bridge. Therefore, if tile following conditions oil 
the behaviour of the extremes hold 

L .1__ 

(3.16) 
~'1 ~'1 (X  ..... - P - ' ( t ) )2  dt ~. O, 

-5(F2:'(~)-F-~(~))2d~ " -5 
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taking into account that  %r every Borel set, A C [0, 1], 

i (F,;  ~ (t,) - F - '  (t))~dt 

JI( F.  ' ( t )  - :7 '(t))~dt 

> ( F , ; '  (t) - F -~ (t))dt �9 and 

> (./i(tV,, 1(/~) - iV 1(:))/b~ l(,)d,) (3.17) 

we can conclude from (3.13) that  the asymptotic distribution of nTiS;, is 
given by the limiting expression in (3.15). The following theorem summa- 
rizes this fact. 

T h e o r e m  3.3. 
(3. i6) hold, then 

. , ~ . ~  jr \ h(Ho,.(t))  d r -  
�9 :,,(H~(O) I 

where h denotes ~h,e derivative of Ho. 

Under A~,~umptions 1, 2 and Y, if F e ,T and (3.i4) and 

h , ( H ~ ( 0 )  " /  , 

We will now consider the application of Theorem 3.3 to several location 
scale families f .  

3.3.1  U n i f o r m  p a t t e r n  

The hypotheses in Theorem 3.3 are easily checked %r the uni%rm model. 
Here Uo(O 12-'I~(t + 3~1 ~) and /~'(0 12 -~I~ ~'or t ~ (-:~I  L 3'! D and 
we trivially obtain the following result. 

T h e o r e m  3.4. (Uniform model). / f  ~- is fh.e jhmily of uniform distribu- 
tio~s on intervals: then 

(z / w B2 .,n,,.~.12 ( t )d~-  B(t)dt - 144 

(a.lS) 

A principal components decomposition (see, e.g., Shorack and \Vellner 
1986) allows us to express this limiting distribution as a weighted sum of 
independent  X~ random variables. The expression in square brackets has 
been studied in relation to the \u statistic and admits an easy expan- 
sion (see, e.g., Shorack and \u 1986). Oil the other hand, Lockhart 
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and Stephens (1998) have obtained in the expansion of (3.18) through the 
analysis of the covariance function of the Gaussian process 

B(t) Jo] B(u)ch,. 1 2 ( t  21-.)Jl]('u. 2)  B(u.)du,, 

resulting in the following expression for the  limiting distribution in (3.18): 

o o  

,~, ,  ~;12 Z airy, 
j 1 

where ~ are i.i.d, s tandard  normal random variables and A.i are the solu- 
tions of the  following equation 

1 cos -- [ v ~ s i n  . (3.19) 

We note tha t  A (Trj) 2 with j a positive even integer is a solution of 
(3.19), but  we do not have an explicit expression for all solutions of this 
equation. 

3.3.2 N o r m a l  pat tern  

Tile normal model needs a more careful t reatment .  The main problem 
arises fi'om the fact tha t  the integTal in (3.14) diverges. In fact we have 
(see Bickel and v~n Zwet 1978) 

f ~ - ~  dt loglog., + log 2 + ~, + o(1), (3.20) 
t(1 t) 

, ,  6(~-~ (~)) ~ 

where 7 lim~.~oo {V "~" j 1 _  logk/  is Euler's constant. Since it is ,,'ell 
/ \ 

. j = l  / 
known (see, e.g., Lemma 5.3.2 in CsSrg5 arid Horv•th 1993, or Corollary 
2.2 in Cs6rg5, Horvs and  Shao 1993) tha t  

P .f(-FX-~(t)) d t< oo 0, if f(; 

(tO t)) d t < o o  
f(F 1 (/,))2 

~(~-0 dt = oo, f(F 1 (t)) 2 

the limiting expression u] Theorem 3.3 becomes --oo with probability 1 and  
a more precise argument  is needed. 
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The asymptot ic  theory of extremes and the well know,hi eqtffvalence 
0(:,:) ~ I~1 ~(~) for x ~ oe enables u.s to prove (3.16) for the  normal taw. 
We state this result in the following proposition, which was proved in del 
Barrio, Cuesta-Albertos,  Matrgn and Rodrfgalez-R,odrfguez (1999). 

P r o p o s i t i o n  3.2. f f  { X~,, i 1 , . . . ,  n} i,s the ordered sample obtained f lum 
an (i.i.d.) ~ n d o m  sample with. standard normal law, then: 

./)1 ./'1 P 
'~ P (Xnn.  (I) l ( t ) ) 2  d,t ~ O. '(t.)) dt o 

The next result reduces the problem of deriving the asymptot ic  distri- 
but ion of 74~ to the s tudy of a certain functional of a Brownian bridge. 

P r o p o s i t i o n  3.3. On an adequate probability ,space th, e ~  exists a sequence 

L ~ \O(d# l(t)) \ ~ : �9 

P w @  From Proposi t ion 3.2 and (3.17) it foll.ows t h ~  

k ~ @((I> ](t))/J dt \ ~ .ff)(~ l(t)  ) 

O. 

Therefore, the resttIt follows from the fact that,  oil an adequate  space, 
we can subst i tute  the quantile process, p~, with a sequence of B r o ~ l i a n  
bridges. Tiffs can be obtained by a carehfl use of Theorem 3.2 and the 
equivalence O(x) ~ Ixl ~(:~) for :r ~ ec (see details in del Barrio, Cuesta- 
Albertos, Matrgn and Roch'fguez-Rodrfguez 1999). [] 

The convergence of ~, ,  and the characterization of its linfft law are 
easier problems. In the following theorem we establish the convergence 
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in law of T~,, t h ' ough  the analysis of an equivalent version based on the 
Browtfian bridge. Note tha t  the main difficulty is giving sense to  

/ ~ BZ(t) EB2(t) d t (3.21) 

because it follows from Lemma 
that  the function de~ led  by t 
integral01e. Therefore, we camlot 

2.2 in CsSrg6, Horvdth and Shao (1993) 

(B~(t) ~ E B 2 ( 0 ) / ( 6 ( r  ~(0)) ~ is a.s. ,~ot 
assume the a.s. existence of 

/ ": n-EBb! Odt. 

However, this limit does exist in the L2-sense, and we can define (3.21) as 
this L2-1imit. 

T h e o r e m  3.5. (Normal case) Let {X,}, ,  be a seqt,e,zce o/ i . i .d ,  normal 
random va.riables, Then 

.,~(~,,._~,,,,.):~ B~(O_ ( ] B(~.)r 
(,(r 1(~.)))- ,( (,)) ~2 , r  ~(t) d~ , 

lb']t,C?'C 
1 /'~ t(x t) 
~,~ j _ ~  [e,(c,-'(t))] ~d~ 

Proof. As already observed, we can assume without  loss of generality tha t  
the variables have the s tandard  normal law, and that,  by the asymptot ic  
normality of the sample variance S~ and (3.20), we have 

~ 0  

provided .n(T~ a~) = O~,(1). Hence, the resuR x~dll be proved if we 
show tha t  r~,(~ - a , )  converges in distribution to the functional of the 
Brownian bridge involved in the s ta tement  of the theorem. By Proposi t ion 
3.3, it suffices to give a limit sense to 
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I fwe  set 

�9 ( 0 ( ~ -  (0)) '  

then  straightforward calculations show that 

�9 r~  , n 

j &  (~(~-~ (.~)))~(~(~-~ (0)) ~ 

----+ 
~1 ~1 2(,s A t - -  ,st) 2 

(*( '~- '  (.~)))~ ( ~ ( ~ - '  (~)))~ 

d s d t  

dsd t  < co. (3.22) 

h e  n c  e 

Proo[. It suffices to show that  the functional of the Bromfiarl bridge in 
Theorem 3.5 has the same distribution as 

3 
- g  + 3 

i ']i~,~- t(1 t) ]2dr' ( i ~ ; q .  ~ - -  

This fact can be used to show that  E(A~, - A~,,)2 ~ 0 as r~,, ru ~ co, 
tha t  A~ converges in L2 to a random variable 

A := f l  B 2 ( t )  EB~( t ) .d t "  

[] 

The next theorem provides a series expansion of the  linfit law in Theo- 
rem 3.5. Note that ,  to some degTee, the proof of Theorem 3.6 contains that  
of Theorem 3.5 because the key step in tiffs theorem is s tatement (3.22) 
and the proof of Theorem 3.6 relies solely on a more careful analysis of the 
limit in (3.22). 

T h e o r e m  3.6. Let  {X~,}~, be a seq~ence uf i.i.d. ~or'mal raw,dora va~'iables. 
Thr 

Y j :~ 
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The operator  L :  L2(0, i) ~ L2(0, i) defined by 

L 
1 ,~Af - ,~t 

Lf(O :=  6 ( + _ ,  ( .~))6(+_,  (~)) .f (.~)d,~ 

h~s eigenvalues A) = 1/ j ,  j = 1, 2 , . . . ,  with associated eigenftmctions 
[~i(~ " (t)), Hj being tile j - t h  Hermii, e polynomial.  Since { / ] i (d~ ] ( t ) )}y_] 
is a complete orth.onormM system, in L2(0, 1), we have that  

' j = l \  

The first two Hermite polynomiMs are H I  (m) ---- 1 and H2(x)  ----x. Hence, 

w .... := ,, \ e ( e - ' ( O )  m, E \6(.e_~(0) j ~s~ 

6(+- (0) " )  6 ( e -  (0) "] 

( U ) - -  .... /~(t)Hl((i) l ( t ) ) d t  - -E  . . . .  )~(t)I-~2((~ l ( t ) ) ( ]~ 
- E  ~(+-~  (~)) +(+-~ (0) 

: - Z ( z . j ( , . ) "  Ez.jO0-') Ez , ( - )  ~ Ez~(?O-% 
j :S 

where the random variables {Zq.(n)}~) I, have, for every fixed rid, a joint  
iII-dizneusional Caussian la,v, and  their variances, ~r.y(l/r~.), satisfy 

<',7 ( i / . , )  = J~ .:~ | ~ (~)) H j (~ -~ ( ,~ ) )H . : (e - '  (~))d,~dt ~ a~ - 7. 
rt+l ri.+l 

Moreover, 

as n ~ co. Therefore for every fixed M:  

M k 2 E (Zj(n)s  EZjCn)2) EZ] (n) s E Z 2 ( n ) 2 ~  3 Zj 1 [+ 
3 .J 'J .i '..~ 
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where Z~, Zs, .  �9 ZA; are independent  N(0, 1) r andom variables. 

Let us observe t h a t  

V a r (  " 2  B'x-(O---EB~(O d~'~ 
(6(r j 

=~ \ o ( r  ' (@0( r  '(0) d,~J,~, 

2 

j = l  

s 
j=l .i=~ 

while 

d~. 

w r  (z~(.,) ~ -  z z j ( . ) D  -~ w r  ~ 2 ~ ,  ~ .  
\ . j = ~  \ j = ~  '~ . j = l  

y- 

On tile other hand,  taking into account tha t ,  if X and Y are s tandard- 
ized random variables ~dth a joint normal  law and  covariance p, then  
Cov(X 2, yS) 2p 3, we obtain tha t  

?7(~7_ ~-F7.) ) . z~(,e) 
OO OO 

= ~ C o v  (z~(,.,.), z~(..)) = s ~ [z(z . jO. , , )z~:( ,O)]  ~ 
j=t j=t 

(zZ " " " ~ ,sAt-- .st H <)-1 = 2 s  +~ +~ do(r165 j( (.s))H~,(~-1(t))dtds 
, y = l  " 

' / ' / ' r  " ~  s A t sk H ~ - 1  
= 2 , _ ~  .,(r ), ~:( (O)a d,s 

~i 1 s s ~ 1 
= 2 A~:H~,(r ( 8 ) ~ t t = 2  F ,  
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and, consequently, 

Coy d~,, z / ( . )  -+ 2 ~j_. 

It is obvious that 

Var ) 2 2 2 E 1 (Z~ ('0 - EZ~ ('0) -~ y 
j=3i+J j=M+1 

and, as a c, onsequ.ence, 

.,,, 3 zj1 
W , , ~  -4 + 

y j=3 

[] 

The asymptot ic  eqtfivalence of 7~, wittl the Shapiro-Wilk, Stlapiro- 
Francia or de \Vet-Venter statistics, which can be obtained from the re- 
sults of Leslie, Stephens and Fotopoulos (1986), or of Verrill and  Johnson 
(1987), can be combined ~dth Theorem 3.6 to obtain a new derivation of 
the asymptot ic  distr ibution of these statistics. 

Our approach can give some light on tile role played by tile est imation of 
parameters  in a mininmm \Vasserstein distance test. Let us consider once 
more decomposit ion (3.12). We have seen that  1 and �9 J(t) are eigetffunc- 

tioiLs of the integral operator  L in the proof of Theorem 3.6. Hence, in 

the normal case, in the limit r~,T~!,2 ) and r~,7~) ~) simply cancel out  the first 

two terms in tile principal components expansion of the limit law of r~,T~!J ) 
(hence, in a certain sense, we can say that  the estimation of parameters  t~ 
and a resuRs in a loss of two degrees of freedom). The normal law is the 
only distribution for which this cancellation holds. 

More precisely, let F be an arbi trary distribution function with ~f i te  
variance and density function f .  Under the hypothesis of the cancellation 
of the first term in the orthogonal series expansion of 

.1 B 2 ( t )  E B 2 ( t )  "1 2 1 2 

f (F  (0)  / f(F ( 0 )  / ' 
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h0(t) ~ 1 should be an eigetffunction of the operator 

j l  ~ ,~ A t ,~t (.~)).t~,(.~Od,~. 
Lh(~) := I ( F  " . ( 0 ) f ( F  ". 

Let h(f) 9 ( F  l(t,)) be an eigeidunction. By differentiating the equation 
above twice we obtain that  9 nmst satisfy 

gSS(m) + I(:c)g'(x ) + I'(:c)9(x ) = ~9(x), (3.23) 

where  ~ (:~:) <~ ~ ( l o g j ' ( x ) ) .  If 9(x) i is a solution of (3.23), then Y(x) 
~ and  I(x) = a ~:~ + b, f rom which l o ~ f ( ~ )  = A "x~ + b~ + c, and  

necessarily lunder the additional hypothesis of standardization) f ( x )  = 
(27r)-1I%-:;-'12. 

3.3.3 Heavy-tai led patterns 

For distributions whose tails arc heavier than. tile Cau.ssian the situation is 
more complex. An interesting fact already observed by several authors 
(CsSrg6 1983; Stephens 1986b; McLaren and Lockhart 1987; Lockhart 
1991) is the bad behaviour of correlation tests for heavy-tailed distribu- 
tions. In fact, let us assume tha t  a normalizing sequence, b,  o(n) ,  is 
necessary to achieve a nondegerate limit law for T4~%; i.e., let us assume 
that b~,7~,*~.- c, 2~V, for some c~ E R. Then, by Theorem 3.2, for every 
fixed 6 > 0 we have the approximation 

f (F ~(0) f (F  "(0)) 

and thus 

.,, f (P=~{ t ) )  dt ~ o. 

Therefore (recall inequalities (3.17) and also tha t  ntis, (2)~XT), the statistic: 
b~.T4*~,- c.~ has the same asymptotic behaviour as 

b,, ~ : 1  (t) r -1 (t))" d r -  ( ~ 1  (t) r -1 (t)) F -1 (t)d~ -~, , ,  
~. ,1 ~] >1 ~]<: 



42 E. del Barr~o, J.A. C'aesta-Albe~r and C. Matrdn 

Hence, the asymptotic distribution of Tr depends only on the tails of 
the distribution~ so that  a sample with underlying distribution function 
different from F but with the same tails would be indistinguishable th ' ough  
this statistic. This simple observation offers a useful hint for the explanation 
of the poor performance of correlation tests when testing fit of heavy-tai led 
families of distributions. Correlation tests might still be of some use for 
these heax~y-tailed families if one is interested in assessing departures from 
the null hypothesis concerning the shape of the tails. 

The asymptotic  distribution in the heavy-tailed case has been consid- 
ered in several papers. For instance, Lockhart (1985) and McLaren and 
Lockhart (1987) have obtained the asymptotic normality of correlation tests 
for testing fit to the exponential, extreme value and logistic distributions 
at rate v/1-~gn. We note tha t  the exponential case could be ahnost triv- 
ially handled in our setup, using Theorem 5.4.3 ii) in CsSrg5 and Horvs 
(1993). 

To conclude, we will provide an example showing tha t  for heavy-tailed 
distributions we can obtain non-normal limit laws for 7~,*~. This fact, as far 
as we know, was previously unknown. 

Example 3.1. Let 

{ +, 
e(+) (vC-Tlog(1 

0 < z ' < e  3 

i e-:+ < a  < 1. 

\u can assmne that  Q is also defined in Ie :~, 1 - e  "~], in such a way tha t  
it is a nondecreasing function ofC 2 in (0, 1) and satisfying O(1 x) = Q(x) 
and > 0 for every (0,1) and J;] 1. 

If we define/7 Q 1, t hen /7  is a distribution function (and Q its quan- 
tile function) with variance 1, which (as it can be easily checked) satisfies 
our Assmnptions 1, 2 and 3. We will denote its density function by f .  

\~% will analyze the behaviour of Tr for this example in the follo~ing 
propositions. 

P r o p o s i t i o n  3.4. Let {X~,}, be a seque,7.ce of i.i.d, randonz variables with 
,&,,,J. ,, ,~ distribution funct ion F.  defined above. I f  { ,,,,}~, and two inde- 

pendent  sequences of i.i.d, random variables witA exponential distribution 
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(log,,,)~ ( f  ' 

2~.p. 

(v,C: ' ( t )  - E ' ( t ) ) ~ d t  

1 4 

,'" ] 

1 

2) 
log(n--  1) 

tc 
P r o @  L e t  { B , .  (t)}, be the sequence of Brow~fian bridges of Theorem 3.2. 
Then  

�9 n '2 __ ( l o g  ~,,,)~ ,] h>gn ~ ' 1  ( ~ ' ) d t ~  

\ .~ ,:~., (/(Q(t)) ~ ] \ ..~ ,~, (/(Q(t)) ~ ] 

/ )( s Ip,(O B,, .(Ot (log,,)~ .1_1~,, t(1 t) dt L 0 .  < sup -- 

This convergence follows fl'om tile fact tha t  the  first term in tile bounding 
expression is 0~,(1), while 

.n ~,~,, 4t:.. ( l o g t )  2 d r  - - -  ,,~,,. 4t2(logt) e 
i1 .r~ 

dt  ~ O, 

which, in turn, implies that  

(log_- _n) 2 ' ;r B2(t)  (log.n)~ f,] l~,gn 
E \ r,. ( f ( - - ~ . ) ) 2 d t  - -  - -  ~ O, t~" " ~" (:(o(t)))  ~ 

and, consequently, tha t  

"1 l~g n 
~. p 

Oog,,.) ~ (r ,71(t)  F -~ ( t ) )  ~ dt  ~ o. 
o g  n 

.R 

Using symmetry,  in. tile remainder of the proof we will consider only tile 
left tail integral, which we have split into two pieces. 
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Since Q varies regaflarly at 0 with exponent 1/2, the asymptotic  theory 
of extremes (see, e.g., Calambos 1987, pp. 56) asserts th.at 

l og  "0, "w 

(here, L~,2 is the extreme value distribution defined, ~ i th  the same notation, 
in Calambos 1987). 

Using L'H6pil.al's rule and (3.25) we can easily obtain 

(log~,) ~ ""-~(F,.,~(t)-F ~(~))~dt log(~+l)  

(X ~ /'~-4-~1 2X~,,.tI~-+,1 .... (log ~ )2 ~.,,. - - d r  - 

.... (logn)2 \ , t  + 1 2X~,. v ~ l o g t d t  2~L~,2+4L~, .  

- - d r  log(~t + 1) 

On the other hand, the following equality 

l i r a  I t l f ( t )  - l i r a  ] Q ( t ) I ' / ( Q ( e ) )  = l i r a  I Q ( t ) ]  - 
t--~0 , ~  F(t) t ~-~o tQ'(t) 2, 

all.ows us to apply Theorem 6.4.5 ii) in CsSrg5 and Horv~th (1993) (take 
p = ?' = 2, r = 0, L z 1) to obtain 

n.+l 

1 2 

du, 

where ~'(~z) : ~j.<j<., ' ( , j ,  ~ > 1, for a sequence {~',jIj, of i.i.d, exponen- 
tially distr ibuted random variables with E'd,j = 1. 

Finally, taking into account the simultaneous character of the approx- 
imations used to prove the convergences above (based on Lemma 3.0.1 in 
Csgrg5 and HorvAth 1993), with s tandard  arguments about the asymptotic 
independence of functions of order statislAcs like Rossberg's lemma (see e.g. 
Lemma 5.1.4 in CsSrg5 and  Horv&h 1993), and some elementary ca lcuhs  
on distributions, we obtain (3.24). 



Em.pir~ic.al U~cesses a~.d goo&~.ess-of-fit fesf.s 45 

Z "~ ~~ 2 As already observed, ~,,re,, ~2)--+X~ ,so that (log n)2re,, (2) & 0. On the 
other hand~ the computations in the last proof~ Schwarz's inequality and 
inequalities (3.17) easily show that 

2 ) (logn)zre,,.(3) = (logr,,) 2 (F,,'(~) F l( t , ) )F l(t,)dt, 

(3.26) 

(log..t ~ ~]/~ (z,"(~.t F '(~t) F ~(0~- 
LJ~ 12 

+ j/_~ (F,Z'(t)- ,v-'(t)),v-'(t)~,J --+ 4. 

This completes the proof of the following consequence of Proposition 3,4. 

P r o p o s i t i o n  3.5. Wit, h, ff~e ~o~at, ion and h, gpoff~.eses of Pr'oposi~ior~ Y.~ we 
]7,(tl~C 

( (lo~..) 2 s~re,, log(.. + 1) 

Obtaining the asymptotic behaviour of re,, from S2re,, is not as easy 
now as in cases considered prexdously. \~'~aat is obvious from (3.27) is that 

2 ) %P ( log. )  ~ re,, s~,log(.. + 1) 4, (3.2s) 

but the analysis of the asymptotic behe~vior of S~, log(n + 1) is not completely 
trivial. The conclusion, given in the following proposition, is anmsing: the 
inclusion of S,~ contributes to the asymptotic law of Tr just cwlceling the 
- 4  summand contributed by re!{~), and retrieving the original asymptotic 
law of re~,!). 

P r o p o s i t i o n  3.6. With, th.e ~t, otat ion a~.d hypotheses of PT"oposition 3. 4 we 
]7,(tl~C 

2 
(l~ r~)2 (re'" log(n + 1)) ~ P  (3,29) 
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Proof. First Ilote that ,  for t sin.all enough, the quantile function, Qx~, 
associated x~-ith 2 2  satisfies 

Qx_ (1-t) inf{z t>P(X~/>z)} inf Ia:"  F(~Tv)> 1 - 2 }  

- t O o g t -  log 

Therefore, Qx~ (1 ~) is regularly varying at 0 with exponent 1 and the 
Central Limit Theory allows us 1.o claim that  

?t 
i=1. 

for some distribution q', where bn (log 2 z r~,) EXi.  I{xl_<n/(log.)2 }. From this 
it is obvious tha t  

- -  l o g  r~,, 

Observe now that  
1 

b,. - l o g , , - - l o g ~ t ( E X ~ Z { x ~ > ~ }  ) ...... (log~,)2 1 
log ~ :~: (log a;) 2 

- -  d z  ~ - 2 ,  

Hence, log,(s:  1) p 2 and 

2 2 ) 2(l~ (1 S,.2,) ~ 4, 
(log r,,) 2 ~S'~. log(,, -F i) log(rz -- 1) - S~ log(rt -F 1) 

which, comlAned with (3.28), shows (3.29). 

[] 
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D I S C U S S I O N  

Sfindor CsSrg5  

Univer.si@ of Szeged:, H.ungavy 

C o m m e n t :  T e s t i n g  for  W e i b u l l  s c a l e  f a m i l i e s  a s  a t e s t  c a s e  for  

W a s s e r s t e i n  c o r r e l a t i o n  t e s t s  

It is a real pleasure to have the privilege to congratulate tile authors in the 
fit'st round on a brilliant and stimulating contribution. The contr ibution 
is to two reahns. One of these is the repertoire of basic statistical ideas, 
to wtfich an appealing procedure is added for the t ime-honored problem of 
testing goodness of fit to a location-scale family of distributions, which is 
new in its generality and at the same time unifies and explains scattered 
results for testing normality, and which is based on the sample version of a 

normed minimal L2-Wasserstein distance that  is scale and shift invariant. 
The other is the probabilistic methodology of that  considerable part  of 
large-sample statistical theory which is based on the asymptot ic  behavior 
of empirical and quantile processes. Here, to determine the asymptot ic  
distr ibution of their basic Wasserstein correlation test statistic, the  authors '  
ikle technique enables the method of weighted approximations to do most of 
the work; the powerful method is due to M. CsSrg(;, S. CsgrgS, Horv~th and 
Mason (1986), here the version for general quantile processes by M. CsSrg5 

and Horvgth  (1993) is used. 

Most fittingly, the twofold advance in the paper is nicely embedded into 
an historical sketch of the development of empiriced and quantile process 
theory and that  of the asymptot ic  theory of tests of fit, with particular 
emphasis on the interaction between the two, for which the present paper 
is an outs tanding example indeed. History itself is well told  in the  first two 
sections of the paper and in Section 3.1. I only have one historical correc- 
tion~ noticed in the last minute: treating it as par t  of the  physical sciences~ 
Hilbert  actually did refer to probabil i ty ~ h r o u g h  an article on insurance 
mathematics  , calling for an axiomatic foundation of "the theory of proba- 
bilities" as part  of his Problem 6; the English t ranslat ion of Hilbert 's  Paris 
lecture in 1900 is Hilbert (1902) as an additional reference below. The rest 
of the tfistorical review in the paper is scholarly and insightful. 

In the present note, praise is intended by emulation in the  last four 
sections, following some lighter remarks in the first. 
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1 Testing for normality and uniformity 

The masterly review in Section 3.2 of the tradit ional  correlation and  re- 
gression tests, in particular for normality, is a good introduction to the 
\Vasserstein-distance procedures. On tile other hand, given its asymptotic 
equivalence to the celebrated Shapiro-Wilk, Shapiro-Francia and de \Vet- 
Venter tests, the resulting new test for normality described by del Barrio, 
Cuesta-Albertos, Matrgn and Rodrfgx~.ez-Rodrfguez (1999) and in Section 
3.3.2 here, will likely not only share the well-known. "unreasonable effec- 
tiveness" of the former tests, but  in fact tile source it comes fi'om, i.e. the 
underlying \u motivation also explains tha t  the powerful nature  
of the earlier tests may very well be reasonable. Hence the stereotyped call 
for a simulation study (by the authors'  eager students) in such discussions, 
both  for the precision of the asymptotic  distribution under normali ty and 
for the power under alternatives, is probably in order here. It would indeed 
be of interest to compare the test  not only with those already beaten by its 
successful early versions of the Shapiro-Wilk type, but x~dth later consistent 
tests such as those of Epps and. Pttlley (1983) and CsSrg5 (1986@ for exam- 
pie, and the recent adaptive versions of Neyman's  smooth tests, as applied 
to normality, by Kallenberg and Ledwina (1997) and their references. The 
proof of Theorem 3.6 is a piece of beauty  along with tile added discussion 
concerning the structure and relatioiLship between the two representations 
of the distributional limit, shedding extra  new light on the probably high 
power for normality and the possible lack of it against alternatives for other 
location, scale fmnilies. To see how "robust" the  power of the test  for testing 
normality, it wotdd also be of interest to extend simulations to the tests for 
\Veibull scale families, entertained in Section 4 below, for shape parameters 
ct not too far from 2. 

One should also emphasize the attractiveness of the test %r uni%rmity 
in the present paper on ,some interval, neither the center nor the leng-~h of 
which is fixed in advance. It is interesting tha t  the structure of tile, limiting 
random variable nicely represents the "evolutio~f' of the  problem: the te rm 
12(f(~ B(t~)d~) 2 subtracted in the limiting random variable 74, say, in (3.18) 
is \,~Gtson's 'price' to make the original Cram6r-von Mises statistic circu- 
larly invariant, i.e. for estimating the location of the interval of uniformity 
with a fixed length, while the te rm 144(j~ j { t -  2 1}B(t)dt)2 subtracted is 

the present 'price' paid. for estimating also the length.. An important  prob- 
lem arises here, under the condition of Theorem 3.4: For some coefficient 
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functions 't.;;'l ('), !;)2( '), . . . ,  is there a complete asymptotic  expansion of the 
form Pin74~. _< z}  = P{74 _< z} + E"/=I t-"2j' (:c)n-J + O(n-" -J ) ,  ~ c I~, for 
any fixed r ~ N? While it appears a safe bet tha t  GStze's (1979) Hilbert- 
space techniques with later improvements will produce an asymptotic ex- 
pansion of the usual form P{nN,~. < :c} = P{T~ < a} + 2 "  ~#,j(.r.)n )/; + 

- -  - -  j = l  

O(~ 0"+J.)/2), :t: C R, the real question is whether "c'.,j (.) V':~(') "'" 0, 
as in the asymptotic expansions both for the original Cram~r-von Mises 
statistic and for \'Vatson's modification, recently discussed by CsSrg5 and 
Faraway (1996). In particular: Is the rate of convergence O(1/n)  rather 
t han  the more customary O(1/V~,)? This problem is not for a~ easy re- 
joinder. 

2 T h r e e  ques t ions  

Clearly, in relation ~ t h  del Barrio, Cuesta-Albertos, MatrOn and Rodrfguez- 
Rodrfguez (1999), the main aim of the paper under discussion, besides the 
historical overv~ew~ is to unders tand the behavior of their normality test 

in a broader picture and thus to see how far their correlation tests for 
testing for a location-scale family, suggested by minimized L2-\'Vasserstein 
distances, or simply the Wasserstein eorreIt~tior~ tests, may  go beyond test- 
ing for normality. It is made plain by the paper tha t  statistically reasonable 
versions of the resulting test  procedures are rather demanding on tim tails. 
Indeed, underlying distributions with slightly more titan, finite second mo- 
ment must  be te rmed in Section 3.3.3 "heavy tailed" from the  point of 
view of the asymptotic distribution of the main test  statistic T4~. Theorern 
3.3, the umbrella result for the statistically reasonable best versions where 
no centering sequ.ence is needed for nT4,,., is of course readily applicable to 
testing for mliformity, where the support  is finite a~ld hettce the tails are 
the lightest possible, but already the normal tail requires some adjustment  
in the form of a centering sequence which goes to in~l i ty  (though at the 
very slow rate of loglog n). Hence the first question: is there a statistically 
meaningful domain between the uniform and the  normal distributions to 
which Theorem 3.3 (or its variant, Theorem 1 below for pure scale fam- 
ilies) still applies directly? Next, the normal distribution appears on the 
boundary of reasonable asymptotic  behavior in terms of that  of r~Y~.. Is 
the normal tail the oNy one for which the type of behavior in Theorem 3.5 
obtains, or is there a whole range of tail orders resulting in such a behav- 
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ior? Finally, the jump from good behavior under normality to the truly 
amazing asymptotic extreme-value theoretic limiting distributions~ with a 

very slow stochastic order of convergence, under "heavy tails" appears too 
harsh. Is there something in between, possibly another range of tail  grades, 
coimecting the two? 

We figured tha t  the best way to appreciate this very fine paper and 
to help disseminate its beautiful ideas is to t ry  and contribute within its 
framework by typifying answers to these three questions. This is done in 
Section. 4 below on a single class of Weibull. scale families, indexed by a 
shape parameter,  which class, at least from the point of view of reasonable 
asymptot ic  behavior under the null hypothesis, is entertained here as a 
test case or testing gTound for the \u correlation tests themselves. 
First we nmst reformulate Theorem 3.3 in order to adjust the general frame- 
work to scale families. 

3 G o o d n e s s  o f  f i t  t o  a s c a l e  f a m i l y  

In a distinctive class of fitting problems location as mfisance is not signif- 
icant: it is not tha t  we necessarily know the mean, but tha t  we know one 

endpoint of the support. This is the case with life distributions where tile 
begiiming of t ime is either known or directly set by the experimenter, wtfich 
is then usually convenient to regard as time zero, as for the \Veibull families 

in the next section. Scale families are in fact simpler than  location-scale 
families t reated in the paper, so the reader may fh~d their present discussion 

instructive in u.tlderst~tlding the main Wasserstein ideas of the authors. 

Let G(x), z E R, be any fixed distribution function with a finite second 
moment  ~.2(G) = f]~ z2dG(:c), and con.sider the scale family G = {G,(x) = 
G ( x / s ) , x  ~ N : s > 0} generated by G, which is supposed to have a 
density function 9 = G~ on R. Assuming throughout  tha t  p2(G) > 0 and 
cotlsiderirlg atly distribution function F for which 0 < t~.(_F) < oc is also 
satisfied, since G.~ ](-) ,sG 1(.) the argument  in (3.11) reduces to 

_ 1 inf [F-1 (t) ,sG-l(t)]2dt 
,2(F)  ,>0 
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1 inf  ff~(F) + .s2/,.s(G) - 2,s F '(~)G '(t.)d~ 

~(~)#~(~)  , 

so t h a t  d2 (~ , ,G)  = d 2 ( F , ~ )  for any c 2> 0 whe the r  F is a de te rmin i s t i c  

or r a n d o m  d i s t r ibu t ion  funct ion,  in par t i cu la r  also when  F is rep laced  by 

the  sample  d i s t r ibu t ion  funct ion  F,,(x)�9 = ~"k=l I{X~: _< x } / n ,  x C I2, 

pe r t a in ing  to  a sample  X 1 , . . . ,  X~,. f rom F .  
n a t u r a l  t e s t  s ta t i s t ic  

T,, : d2(/b~,,,~) 1--  [Ji~ F,71(~)~-l(lQd~l 2 

Thus  the  distribu.t ion of the  

1 Z~,, X ~ #2(O),,. k=J ~: 

raider the  nul l -hypothesis  F E .G is the  same wtfichever way this  hypo th -  

esis is satisfied, a n d  hence one may  assume t h a t  F O when  der iv ing 

this  d is t r ibut ion .  Siuc% in this  cas% w h e n  ./ = F ~ = G ~ = g, we h~ve 

#~(S,)#~(c) ~ #~(c) almost ~u~dy, all a~ymptotic ~d~tions b~in~ undo> 
s t o o d  as n --+ oo unless o therwise  specified, one now begins wi th  

2 
- -  

= v ~ ( a ~ { F - ' ( t ) - < 7 ' ( 0 } ~ d ~ -  ' { F - l ( 0 - < 7 ' ( , ) } F - l ( t ) d ,  , 

ob t a ine d  as an analogue of (3.12), and  hence (3.13) p resen t ly  reduces  to  

2 
,T,,* = pT,(t) d~ p~,.(t) d~. 

~p(c ' (0)  .q(c ' (0)  

,vith the general quantile process p~,(.) ~/-n,f(F J( . ) ) {F  J(-)-F~,. ] ( . ) }  on 
(0, 1). Hence the variant of Theorem 3.3 for a scale family is the following 

T h e o r e m  1. Under Assumptions 1., 2, .Y~ (J. i4) and (&i5) ,  i f  F @ g, 

' /,.~(a) L.g(a '(0)J d~ B(t) (t) dt .~(C ' (0)  ' 
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As is clear from the paper, the direct applicability of this result is just 
as limited as tha t  of Theorem. 3.3: condition (3.14) is often violated, or, 

equivalently, the first term of the limiting distribution here blows up al- 
most surely; even underlying normal tails are not light enough to suffice! 
The follo:~ng section is thought  to exhibit a kind of a gentle, "smooth" 

transit ion first between Sections 3.3.~ (mJb rmi ty )  and 3.3.2 (normality) 
and then from Section 3.3.2 towards Section 3.3.3 (heavy tails) in the pa- 
per, demonstra ted on a single class of examples tha t  is of some traditional 
importance in modelling life distributions. 

4 W - e i b u l l  s c a l e  f a m i l i e s  

For every ~ > 0, let the  scale f~n, i ly ~,,  {Q.~(;~')  G,,(;~'/.~),~; ~ R : 
s > 0} be generated by G~,(z) 1 - e ~"~, z > 0, the distribution function 
of the power of order 1/ct of an exponentially distr ibuted random variable 
with mean one, with density function 9~,(z) = a:c~'-]e -~'~, z > 0. With  
the usual gatnma function F('~t) J o  z~ ]e 'Cdz, 'u > 0, the moment of 

order .3 > 0 of Go,.~ ~ go. is 

#3(c~ ~.~'~Co,~,(~.)=Jr + , 
O O  

w h i l e  
: 1 

co , ] , ( t )  = .~ l o g :  Y-27- t ' 0 _< t < 1. 

for its quantile ftmction, and tile reciprocal quantile-density ftmctions are 
given by 

go(G ~(t)) = g~ ) 
: 1 

for all s > 0, where log~'z = ( logz)",  z > 0, for any ~ c IR; analogous 
notat ion ~ill be used for powers of other functions. 

Note first tha t  Assumptions i and 2 are satisfied on tile coi-~linon support 
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(0, oo) and  

/ "~--1 

s l i p  = S l i p  C 2 
0< ,< ,  ( , ) )  0< ,< ,  j .... 

a i * ~ < 
= s l i p  - O O ,  

0 < t < l  ct~ log 

so tha t  A s s u m p t i o n  3 is also satisfied for any c~, s > 0, Thus  the  weighted  
approx ima t ion  m e t h o d  based  on Th eo rem 3,2 is appl icable  in principle for 
all c~ > O. Next ,  considering the  order s ta t is t ics  XI~, < - < X~,~, of a 
sample  X 1 , . . . ,  X~. from Ca ('), we have 

/5!2) := XI~,, log dt 
4 0 - -  " 

X~,~ 2X1~, :r---5-- dz  + z----g~ dz,  
n, + 1 1 J J. 

indicat ing tile way we like to  work, so, since P{r~, l /axa,  _< x} G~,(m) for 
all m c IR, 

.nL!t 0 = Op ~ for all (,~ > 0. (1) 

Hence,  as expec t ed  in v iew of the  finite s ta r t ing  poin t  0 of the  suppor t ,  
no problem, arises for any  a > 0 for t ha t  half of condi t ion  (a.16) which 
concerns l, he left l, ail. 

However ,  il~ is well known a n d  an amusing exercise to derive direct ly  
t ha t  

P c~ ( log r0  7 X  .... - c t l o g n , < z  --+e for all zEI t{ ,  

a im hence we have IX~,.,,. log} n, t = O R ( l / l o g  1 5 n). This  is %r the  t e r m  

R~( 0 :=  X .... log dt 

T/, 
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responsible for the right tail, where Ir = f F [ l o g ~  :r log~ r,.]e:r -2 dz, 
( 1, 9. Integrat ing by parts  and  using Karamata ' s  theorem to obtain the 
asymptot ic  equality, 

1 [ c a ,  1 1 loga  x 
1 1 1 logr: n 

dm 
dl~ i% 

and if we now integrate by parts four t imes and  then. use Karamata ' s  the- 
orem, we obtain 

2 [ 2  t ~ l o g ~ - 2  z 

_2 _ 1 ( l o g r 0 ~  "~176 - z  2 log~-2n,  
<.~ .. ~ d:r c~ 2 r~, 

Therefore, 

for all a > 0, (2) 

w h e r e  

2 2 ~' > 0, 
7 

c~ t < 0, 

if ct > 1, 
ifc~ = 1, 
if a , <  1. 

Since the only inequality in the derivation is j;] j~l < k for the 
n . + l  r~. 

original integral, this stochastic order is precise, and  hence we see in par- 
ticular tha t  the other half of condit ion (3.16), regarding the  right tail, is 
satisfied if and only if c~ > 1. Fur thermore,  

d~ - -  o 

c~2 ( 1 -  t)21og 2 ffP_!__ 
] - -  

1 j o o  z 1 1 d:c, 

c G j z z log  2-~:r 

whk:h is finite, and hence condit ion (3.14) is satisfied, if and  only if a > 2. 
This is the  case, therefore, to wtficil Theorem i is applicable, implying part  
(i) of Theorem 2 below. 
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For ct < 2 one ca~mot avoid going ttn'ough first the whole procedure of 
the weighted Gaussian approximation of p~,.(.) by B~,(.) from Theorem 3.2 
in the middle te rm 

(1 - t )  -~ ] o g - ~ - §  s (~ - t ) ] o g ~ -  § 

of the present \u version of .nT~ = .niF~ (c~) = . n L t  ) -- r,.3i~ cO --r,.R},a ), 
to see whether tiffs can be replaced by 

l/ �9 ~ (1 - O~ l o ~ - ~ •  ~ ( 1 -  O l o f - ~ � 9  

for the deternfination of the asymptotic  distribution of the basic; \~%ibull 
test statistic 

[ j "  F ylOt) log ~ 1  J- T,,--... T,,~(~..) --. 1 -  ~' " c,-i-- ~ dt 
1 E ~. o r ( l + ~ )  r, }=~Xr 

[E ' ]: 
y~ 
k=l X~:.,, j ' ~  t'P"'~ d:r: 

~ 1 - -  
1 E 7 '  X 2 r ( l+%)  ~ ~=~ ~. 

Adjusting to our \~%ibull situation the whole proof in del Barrio, Cuesta- 
Albertos, Matr3n and Rodffg~lez-Rodrfguez (1999) step by step~ on the 
probability space of Theorem 3.2 we obtain tha t  

(') I m~I(~') YJ~)I = O p  ~ for all <~@ (0,2], (3) 

2 [ > 0, i f ~ >  1, 
%,=2 - - t  =0,  if~---- 1, 

<0,  itch< 1, 

remarkably tile same as (2). h the derivation we separate the three cases 
c~ E (1,2], c~ 1 and a E (0,1), and use details similar to those for 
(2), such as the K.aramata theorem. (The winning rate is that  of the term 

corresponding to L}, j) in tha t  proof, being tile eoznmon order of our versions 

of A!,! ) and A!,~ ). For the term corresponding to L!~ ) there the proof must 
be modified, avoiding the analogue of (2.9) there, and it tm'ns out tha t  this 

t<m is O(.Y-~) for a~y ,J ~ (0, i/2), ~ d  hence domi~ated by the other 
term.) 
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Recalling 7 = 7(<t) = 2 2/<t, everything depends now on. the f-hliteness 
of the integral 

f f  ./j 2[min('..,~,) -.,.d 2 I(cO:= , ~#. ( c , :  ~ (.u~))~;F. (.c;, ~ (~0) ,-,:..,, ,-t.,, 

2 ~ i ~ [  1 .~ ] .... v 2 u 2 ' ./i: 1 t 
- _ ~ l o g ~  1 ~ _ - - - - - - - - 7  d'~' ,~ ~og~ ~ (1 ~,)~T~,~ ~ J'' + (1 ~,.)~ lo~ 

J. - -  v 

2 ~  ~ 
(): 4 

1 1F 1_!__ dy 
x 2log ~xJ1 [ Y J l~ ~y 

+ 

i l l .  

{ x - 1 ; 2  1_.2__f cc 1 dytd x 
x J l o g  ~x ~ y21og~ 

because, i n the  present situation, this is what  ensures tha t  the  centering idea 
of Theorem 3.5 works. Since it is trivial t h a t / ( 1 )  oo for the  exponential  

dis tr ibut ion when 7 0 (in which case n/~J  ) OF( l )  and so we already 
know that ,  wi th  the  magnifying factor n in front of T;~ (1), the rigt.t tail 
cannot  disappear anyway), we must  restrict cr to the  interval (1, 2], so tha t  
0 < 7 -< 1. Some detail  is necessary here since the result ing turn ing  point 
in Theorem 2 below is not  oNy unexpected,  bu t  in fact is hardly believable 
at first sight. This is part icularly so in. view of the fact t ha t  the  bounds in 
(1) (3) all go to  zero rot" any 7 E (0, 11 and hence, were I ( a )  finite rot" all of 
this range, would allow every c~: E (1, 2] in par t  (ii) of the theorem.  Cut t ing  
bo th  of the outer integrals into two pieces at x = e, and then  also the inner 
integral at y = e in one of the integTals obtained from the first, it is easy 
to see tha t  I(<~-) < oo if and  only if bo th  

x2 log~x ~ dy dz 

and  
joo 1 ~oo 1 ] 

are finite. Clearly, Jj (c~) ~ if 27 < 1. On the other hand,  if 2 7 >  1, it 
is equally obvious tha t  ,J2((~) < oo and  a somewhat  more involved anal- 
y-sis shows tha t  Y~(c~) < oc as well. Thus  I(c~) < oc if and  only if 
1/2 < ?' _< 1, which happens  if and only if 4 /3  < c~ _< 2. In this case 
the  ingredients (1) (3) above and the main line of the  proof of Theorem 
3.5 (Theorem 2 in del Barrio, Cuesta-Albertos,  MatrOn and Rodrfguez- 
Rodrfguez 1999) give par t  (ii) of Theorem 2 below, once we ascertain tha t  
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c.~(~)l#~(F.)-  #~(C~.OI ~ 0, which is required to tra,~sfer the limit the- 
orem for r;,:(~) to ~ha~ fo,- r,,(~). Sinoe 1#2(f , , ) -  #2(a , ) l  O~(1/V~;) 
by the central limit theorem, this follows in view of the asymptotic order 
of the centering sequenc:e c,.(a,). The exact asymptotic  behavior of c~(a) 
comes by elementary analysis, partictflarly emjoyable for ct = 2. With par t  
(ii) we see tha t  it is riot just the case c~ = 2, giving a right taft closest to a 
normal tail (already slightly longer than that) ,  which exhibits the  behavior 
in Theorem 3.5, but  a whole weird range of shape parameters.  

So, the first random iutegral in the limit of part  (ii) makes sense now in 
L2(f2, A, P) ,  if (f~, A, P)  denotes the underlying probability space for &(.), 
while, since 

.1 --(- t) ' 1 d~--- 1 log ~-1 ~: 
7 log5:1_--~, zi~ - -  d : c  < o o  for all (.t > 0, 

(4) 

the  subtracted squared integral still makes sense almost surely by an ap- 
plication of Lemma 5.3.2 in CsSrg3 and Horvs (1993). 

The first integral in (ii) blowing up for ~: 4/3 even in L2(~2, A, P),  
adjus tment  by mere centering is exhausted. Thus the next idea, for cr _< 
4/3~ is to consider at] extra  normalization as well~ tha t  is, to look at, on 
the probability space of Theorem 3.2, 

~'T'~(c~)- mr~(c~) Z~(@- m~(c~) ( 1 d~.(c~) -d~[c~ 1 ) 

for m,,.(~) := E(Zr,(ct)) and d~,(c~) := Var(Z,,.(ct)), where q' = 7(or) = 
2 -  2,/c~ as before and 

Z ' ( c 0  : (1 t)~log2-~ ] 
] t 

- log~, ~'-_~ d r =  (1 + u)~log~,(1 + , 0  d'u.. 

Here we used all of the fin.dings in (1)-(4), and an extra little consideration 
when chauging the original lower limit 1/(n + 1) of tile integral to 0 in 
the expression for Z~,.(~), while the distributional equality is by Doob's 
transformation, which states tha t  for a s tandard  \Yiener process IV(u), 
"a > 0, the process ( 1 -  t )W( t / (1 -  t)), 0 < t < 1, is a B ro~f i an  bridge. Of 
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course, r,t, (~) = ct.21~2( 1 + 2/c~)c, (it) + o(1), ~nd t he a sympto t i c  expression 
for c~,(~) in case (it) remains t rue  for all c~ in. the whole interval  (0, 4/3]. 

F i rs t  we need to have a close look at  G,.(c 0" S t ra ight forward  calculat ion 
yields 

,sl m21~ ~;t: dl L Y ~"~ <.s d~<l 

( . , : •  , ] 
+ :,,. j l og~ : , :  L )~1o#,.~ dy d~,:, 

an approximate  form of the integTal [(<~) above. Hence d~.(cr) --+ oe for all 
c~ ~ (0, 4/3], which at  once implies t h a t  the error t e r m  in (5) goes to zero for 

e tl, 4/3], when v(~) -> 0. But to see whether  or no t  d,,(c~)log ~(~) .n ~ oo 
for cx < 1, when  q, q'(ct) 2 - 2/re < 0, we need to know the speed at  

which d~,(a') ~ oe. This  is what  decides whether  the Browxfian-bridge 
approx imat ion  in (5) fully determines  the  a sympto t i c  behavior for all ct 
(0, 1), or the extremes assessed in (2) ~11 also s ta r t  to  cont r ibute  below 
some other  crit ical value of ~t, which a t  this point  might  even be 1. I t  takes 

2 I  (a) 2~(a) Q.~ "~ where t i m e  b u t  is r o u t i n e  to  s h o w t h a t  d ,2 , (c t )~  < , , , , (ct)  -[- ' 2, , , . t  , ,  

and  

provided any  of the two integrals goes to oe a t  the s~me rate  for each fixed 

6 > 1. Of course tile case ~/ 0, ob ta ined  for ct 1, can be ca lcula ted  
(a) 

directly. The tr ick in general  is to see via in tegra t ing  by parts  t h a t  ,I2,,, (~,) = 

g,(~),,, (<~.) + c~(~) + o(1) for some constant C~(<~) ~ ~. B o u ~ a ~  J~,I(<~) 
from above and  J(~){c~] from below the  na tu ra l  way when  O' < O, and  in the  

' 2 , ~ \  I 

opposi te  directions for 7 >  0, we see t h a t  J ~ ( 4 / 3 ) ~  loglog~,. ~ J~J(413) ,  

and  hence d~,.(4/3) ~ 4 loglogr,,, for ~' 1/2, whileJ}~j.(cO~logl-2~'n/(1- 

2O') ~ J(a) 2(<~) 41og , -2? r , , l (1  2~y), for al l  q ' <  1 /2 ,  '2,,I ((~)~ a l ld  }lence d,~. ~ 
i.e. for all c~ E (0, 4/3). All these  a sympto t i c  equalities hold invariably for 
every fixed $ > 1. In part icular ,  the first error t e rm in (5) is O p ( 1 / . ~  

' ' + '  .] 
477<<<)- �9 , ,, ,~<~ j~ y2 log~y d dec, 
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for all ~ r (0, 4/3), forcing the whole error term to go to zero in probability 
for all a C (0~ 4/3]. Thus the extremes are still negligible in the whole range 
of part (iii) of Theorem 2 below. 

To switch back to T~, (c~), using simple algebra and again that  1/~.2 (F,,,) 
r (1  + 2/a)l  = Op(1/x/~.) we see that the incoming error term is of a smaller 
order than the one in (5), and hence, starting out now fi'om any probability 
space for the observations~ we find that  

F 2 (1 + 2 / a )  r,,T~,(~) - a,, (c~) 2 1 ./o '~' IV2(t) -- t 
d~, (a') d~, (<~) ( l + t ) 2 1 o g " ( l + t )  d t + z ' ( ~ ) '  

where a..((. 0 rn..(<~)/FZ(1 + 2/<~:) c~2<:~,.((~) +o(1)  and  

{ O p ( 1 / x / l o g l o g n ) ,  

r  = Op ( 1 / l o g ~  ~ n ) ,  

O v ( 1 / ~ )  , 

if c~ = 4/3, 

if i < a< 4/3, 

if 0 < (~ _< i, 

giving the precise order of the error term in the main statement of case (iii) 
in the following 

Theorem 2. Suppose that  F ~ go for  som, e a > O. 

(i) f f  ~ > 2, then 

w i { ]j". B~(t) dt 
nT,,(<~) > a ~ F2( 1 + ~) ( 1 -  t)~log 2-,r 1 

] - - t  

(1 - t) l o g ] -  ~ 1!l 

( i ~ ) / f  4 /3  < ~ _< 2. th~.~ 

[z t '". mr)log5 ~ s  
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"tb'h e 7"e 

cn(ct) 

r~ 

�9 .+1-- ( l - t ) -  o g -  ~, 1 2 t  
] , . + l  x - ]  l 

]+1 7- ., 
x l o g  2 -  ~ z" 

+ 

dx 

l o g  l o g  r~ f ( ~ ~  
4 + 4 + o(1), 

] o g ~  - 1  __ f~ ~c l o g  "~" ;e,d;e, +o(0, 

i f  c~ 2,  

ifc~ < 2. 

(iii) I f  0 < a_< 4/3, ffT, en 

F : ( l + 2 / a . )  ,,.T,,(c~) a.(c~) "z~ l___~ f "  W~(f) 
<,(,~) ~t,.,.,(~) (1 +t)~log-' § +t) 

'~, t dt 

'5 ~CX~ 

a l o g ~ - l n  c~J] x 21og~-~;cdx 

dt+op(1),  

+o(1) 

, (l + f)' log'- [ ( l + t) ! ova7 , .g :* 4 [ ~ , o g -  : . .  i f ( ~ : < 5 .  

In particular, ]b r o: 1, 

4n Z,. (1) log; .n 
~r w H(o, n, (6) 

where A.'r(O, 1) is a standard normal random variable. 

For <~ E (1, 4/3] and  ct E (0, 1), the  problem of the  asympto t i c  distr ibu- 

t ion of the  s t andard ized  r a n d o m  variable f;'~[t.VS(t) t][(1 + t)21og s ~(1 + 
t)] ldt/d~(c~) in par t  ( i i i ) is  left open here. Wtfile it is in the  "bad" statis- 
t ical  domain ,  it is still well mot iva ted ,  and  in itself it seems challenging as 
a pure  probabi l i ty  problem for Brownian  motion.  
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For ~ -- i, when testing for all exponential distribution is at hand, 

the remark ill Section 3.3.3 of the paper appears somewhat hasty: even 

the closer reference to Lemma 5.3.4, rather than to Theorem 5.4.3 (ii) in 

CsSrg8 and Horvs (1993), would call for a little extra work. (Incidentally, 
we must  point  out  tha t  the factor 1/2 in (5.3.17) in Cs6rg6 and  Horv&th 
(1993) should be 2, but  they probably compute  with the correct value 
since the staternent of their  Lemma  5.8.4 is lu.ckily correct.) Given the 
main  s ta tement  in case (iii) of Theorern 2 for the special case a: = 1, a 
more direct reference is to  L e m m a  5.3.3 in CsSrg5 and Horvdth (1993). As 
t ransla ted from an Ornstein-Uhlenbeck process to a \u process, for 
p 2 tha t  says tha t  

2 ~  ] t.~G~dt log,,, ~ ;~r (0 ,1) ,  

This implies (6) since, by the Bunyakovski-Schwarz inequality 

~ " 1 E (  / ' "+ ] "V2( t )  ~V2(~ 1) ) __~ / '~  ~ ~~ 1 

and so the integral under  the expectat ion divided by . ~  goes to zero 
in probability. 

The  s ta tement  in (6) for the exponential  case is probably eqtfivalent to 
Lockhart ' s  (1985) theorem; having tr ipled the originally allotted space and 
wTiting three days past the deadline for the  submission of this discussion, I 
did not check this. It is also likely tha t  the resuR of McLaren and Lockhar t  
(198Y) for {~ = 1, concerning zero asymptot ic  relative efficiency, generalizes 
for nT,  (c 0 for all (~ ~ (0, 4/3], regardless of the nature of the  missing limit- 
ing distributioiL% already following fi'om the present s ta tement  of Theorem 
2 (iii). 

Even though  the  exponent  of the logar i thm in d,~(c~) may be arbitrary 
large if the shape exponent  (~' > 0 is sufficiently small, case (iii) here is not  
yet the  whole way down to the heavy tails in Section 3.3.3 of the  paper. The  
scale family generated by the  Pare to  distr ibut ion function G~,(z) 1 - z  ~, 
z ___ 1, for some tail  parameter  ~ > 2, replacing the V~.%ibull above, will 
very likely connect  the two. Asstunptions 1, 2 and 3 still hold, so Brownian- 
bridge approximat ion  is still possible, bu t  the  respective terms .r~,r~t and  

Y~!~) tu rn  out to be of the  same stochastic order. So, while the Brownian- 
bridge approximat ion will likely be helpful still to delineate what  parts 
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of the integrals in the corresponding .ni~i,, matter ,  we conjecture that  
in tiffs Pareto case [nT,(c~)-  a*,(~)]/n 2/~', for some centering sequence 
a,~.(c~), has a non-degenerate limiting distr ibution related to extremes as in 
Proposit ion 3.6. It would be interesting to see the details of such a result. 
If it is true, the size of the norming constants n 2/~' would go up ahnost to 
tha t  of n / l o g  2 n in Proposi t ion 3.6, thereby, modulo logarithmic factors, 
practically completing the picture. 

5 C o n c l u s i o n  and  further  q u e s t i o n s  

Taking the expected kind of performance for testing normality as a yard- 
stick of good behavior, we expect similar good behavior of the Wasserstein 
correlation test  statistic nT,, for testing goo&xess of fit to a scale or location- 
scale family generated by a distr ibution flmction whose tails are dominated 
by e -I~1~, for txl large enough, as long as c~ > 4/3. We expect poor per- 
formance otherwise, when domination by such a function may be acNeved 
only for some c~ _< 4/3, or not at all. 

For testing for the \Veibull family g~ for a given ~ > 4/3, it would be of 
definite interest to determine the limiting distributions in cases (i) and (ii) 
of Theorem 2 in the respective forms ~ j = l  AjY:[ and ~j=~ tl.j(~ ~ 1) of 
Sections 3.3.1 and 3.3.2, for some eigenwalues Aj and it.i, j E N. Even if one 
doubts  the practical import  of the test ing problem F r g~ for a given c~ > 

4/3, the probabilistic sports value of seeing whether the elegant Hilbert- 
space m.ethods in these sections work for these cases is not negligible. 

The Wasserstein correlation test procedures appear to be tailored for 
location-scale and pure scale families. Wtffle on the \u scale fami- 
lies, it is inevitable for the question to  pop up: how about  not specifying 
the shape parameter  c~? It did not escape our at tention that  minimizing 
W2(F,., g(.~.) may  yield estimators for <t- > 0 with at tractive properties. But  
can the procedure be somehow modified to produce reasonable statistics 
for testing the composite hypothesis tha t  F ~ U{~,>4/:~}g(.~? Or at least that  
F E U{~>2}g,, ? 
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I really appreciate the opportuni ty to discuss this paper and congratu- 
late the authors for their very interesting contribution. 

The goodness of fit assessment is a major subject in statistics as it fo- 
cuses on the central issue of model choice. On the other hand, the study of 
goodness of fit tests is a st imulating opportm,i ty to use a ~xdde range of sta- 
tistical and  mathematical  tools, including empirical processes, multivariate 

analysis, special hmctions, asymptotic expansions and distance analysis. 

As this paper is weU written and presented, I ~ish  to comment and 
relate this contribution to other areas. 

1 O r t h o g o n a l  e x p a n s i o n s  a n d  g o o d n e s s - o f - f i t  t e s t s  

The expansions of the limit distribution of Anderson-Darling A 2 and Cra- 

m6r-von Mises W 2 statistics, have some points in common with the orthog- 
onal expansion of a random variable X with cdf F 

x :,:o + E ~ h.j(~)(xj - h.j(~.o)), j=l 

x = :~o + E < ~ ( x j  ~ t,~.j(xo)h.j(b)), 

where the convergen~e is in the mean-square sense, I~ (~') E ~"'~ (.~)d~, 
x ;  h i ( x )  and (%~, ~,;:,~) is the countable orthonorn~al set of eigenvah~es 
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and eigelffunctions of the  integral opera tor /C with kernel K(s ,  t) = F(s)  A 

/ b 

(lcv)(t) = K ( s ,~ )v(s )&,  

i.e., (A.i,'&j) satisfies K~z.[,j Aj'6',j. T h e n  each Xj  h,j(X) is a principal 
d imension for X, which can be obtained via the Karhunen-Lo~ve expansion 
or continuous scaling. See Cuadras and Fort iana (1995~ 2000)~ Cuadxas and 
Lahlou (2000). Let Ine give two examples. 

1) If X is [0, i] uniform, set t ing a:0 - 0, X can be expanded  as X - 
E OO Q ,j=, a~u;,  where <j r  cos j~X) ,  j > 1, is a countable set of 
tmcorrelated equally d is t r ibuted random variables and A.j = (jrr) -2. 
Thus  the analogy adth IV 2 = ~ j=~  A.iY 9 is dear ,  bu t  also there is 
some analogy with the limit dis t r ibut ion of rd~,. under  the uniform 
model. 

2) If X is s t andard  logistic, F ( z ) =  1/(1 + e x p ( : r ) ) ,  then  the expansion 
of X Call be expressed in te rms of P j ( 2 F ( z ) -  1)~ ~dth P) being 
the  Legendre polynomials  of degTee j ,  and  A.j ( j( j  4- 1)) 1 also 
obtaining a %rmal analogy with the  expansion of A 2. See Shorack 
and Wellner (198.5, pp. 22.5). 

Such an analogy may be due to the function �9 ill defining the statistics 

// w ~ ( r  = . ,  ~(ro(:~))(~,,(~) Vo(~))~d~,(x), 
O 0  

which is ~ -1  1 , the uniform density, for the  Cram6r-von Mises 
statistic, and  ~-~ = t(1 t), giving the  logistic density f = F(1  
F) ,  for the  Anderson-Darl ing statistic. This suggests tha t  by set t ing 
~-1  a probability density fimction, we obtain a general form for 

The  eigenvalues kj satisfy (Cuadras and  Forti~na 1995) 

OO 

2< I x -  x' I] tr(V) E 
j 1 

where X, X '  are lid and k d =Var (Xj). Thus,  each eigenvalue accounts 
> r  the so-called geometric variability e = E[I X X '  I]/2 of X with 
respect to distance ~5(;G:r' ) (t a' - a" ]):t/2. 
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2 B o u n d s  for t h e  W a s s e r s t e i n  d i s t a n c e  

Tile authors propose and study a test based oil tile \Vasserstein distance 
between two distributions FI, Fe. If the means #~, t*; and  variances v~, ~ 
are finite, this distarlce can be expressed as 

where p+(F1, F2) is the maximum Hoeffding correlation between F~, F2, 
i.e., by considering the Fr6chet upper bound/vj  X Fe. Let me present some 
results derived froin this distance and test. 

A. Suppose FI, Fe are absolutely contirmous with deusities f l ,  f2. Assum- 
ing o-j < a2, fi'om 0 < p+(F~,Fe) < 1 and the following inequality 
(Cuadras 1996) 

inf{./"l (:c)/f2(:c)} < ~_--]-J p+(F~, F2), (1) p0 
0 9  

we can easily prove that  

Note that  under normal distribution p0 cq/o-,2 and the equality 
hohts (see also Cuesta-Albertos et al. 1996). 

B. From now on we suppose /q2 uniform on [0, 1]. \u F 0 for /q2, it 
can be proved tha t  

p+ (el ,s , )  = '/3v, (2) 
o- 1 

wtlere V is the geometric variability of X ~ F~ defined above. Thus 
we obtain the  identity 

1 
v + ~(F, . ,Fo)  ~ + i - /+  (#' - ~/2)~ 

C. As ,[2 = 1, from (1) and (2), we have the inequality 

1 
g ffJf{fl (z)} < V < ~1 /~3 .  

As e~ consequence of this we obtain the following bounds 

1 
~, / , /5  <_ W~(v~,vo) <_ o, - 6 i{~f{ f, (~)}, 

where (.~= o-.~ + (1/12) + (**] 1/2) 2. There is equality iff Fj is also 
uniform on [0, 1]. 
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3 T e s t s  b a s e d  o n  t h e  m a x i m u m  c o r r e l a t i o n  

One of the tests proposed by the  authors is based on 

re,, = w 3 ( v , , ,  f ) / s ;  2, = 1 
~9 

u;, p+ 
- 1 ( F , , , H 0 7 ,  f, 

where H0 is assumed to be standardized. This test is therefore dependent ou 
p+ (F,,, F), the maximum Hoeffding correlation between the sample and  the 
theoretical disl, ribution F.  The use of p+ (F,., F )  was suggested by Cuadras 
and Fortiana (1993, 1994), who emphasised the need to explore the  data  
from a multivariate analysis point of view, rather t han  investigating the 
sampling distribution of this correlation. This is in fact undertaken by For- 
t iana and Cran~ (2000), who propose suitable modifications of/9 + (F),., F),  

- -  , -}- 
e . g . ,  the statistics Q12S, p (~ , ,F0)  and S,p+(F,,.,F)/-X~,, for the uuiform 
and exponen~ied model, respectively, where X~, is the  sample mean.  The 
authors made a similar modification when they  studied the asymptotic  dis- 
t r ibution of S~re.  S*~ ,2 + �9 = . S , , e  (F,,,HO) '2. 

Returrfing to the orthogonal expansion of a random variable X, if 
Pl, P2,.- .  and q ,  r2 , . . ,  are the theoretical and  sampling correlations be- 
tween X and the principal dimensions, and between the  sample A',~. and the 
principal dimensions, the following expansion can be proved 

p+(F,,, F) 
j=~ 

where F is any distribution function. This suggests that  the representation 
and comparison of the principal dimensions h.f (X), h.i (X,~) may be a graph- 
ical test  for indicating how well the semiple 2(,, fits to F.  This approach is 
useful for disting~fishing similar distributions, such as logistic and normal 
(Cuadras and bahlou 2000). 

Finally, the eigem,Mues Aj of/C are of inl, erest in studying the asymp- 
totic distribution of some statistics related to Rao's quadratic entropy (Liu 
1991, Rao 1982), which is also a weighted sum of independent  ctfi-squme 
random variables. As the geometric variability V is a particular case of 
quadr~l, ic entropy, and V is related 1,o re~, we gain an additional insight 
into the distribution of re , .  
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Tert ius  de  W e t  

University of Stellenbo.sch, b'oltth A]:rica 

It  was a pleasure  1,o r e ad  this ve ry  l, imely  pape r  and  I would like 1,o t h a n k  

the  Edil, or for l, he oppor tuni l ,y  to  commen t  on it,. It  is in the  na tu re  of an 
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expository paper that it concentrates on the authors '  particular preferences. 

This gives commentators the oppor tuni ty  to add  their own preferences, not 
covered by the authors. The fields of quantile and empirical processes and 
goodness-of-fit are so rich tha t  any expository paper leaves ample room for 
additions. I will discuss a number of additions and extensions. 

. The authors discuss fairly extensively the new approach to construct- 

ing goodness-of-fit tests, based on the \u distance measure. 
This is a very natural  measm'e to use and it produces asymptotic 
results similar to earlier quadratic type statistics. The authors find 
tha t  it seems to work out "correctly" in. testing for normality, in the 
sense of '~loosing degrees of freedom". Using the test for other distri- 
butions, does not have this "nice" property (see the discussion at the 
end of paragraph 8.8.2). However, one can have this property, at least 
b r  a single parameter (location or scale), by considering a weighted 

\u distance. Taking the weight function identically equal to 
one, turns out to  be the "right" choice in the Caussian case. In addi- 
tion, the Gaussian case leads to the same weight function for location 
and scale parameters. 

Let us consider a scale parameter family of distributions. We want 
to test the null hypothesis: 

- :  F0(.) F(. /0),  

~i th  F specified and 0 an unknown scale parameter. Due to scale 

invariance in what  follows, we take the true 0 = 1 without loss of 
generality. 

For W a weight function on (0, 1), define the weighted Wasserstein 
distance as: 

f ,1 1 
= / (<7 (t) OF-'(O)2W(t)dt. 

J0 

A minimum distance estimator for 0 is given by 

0 ~= arg min ar 

= (_C71(t)F-l(t))W(t)dt/ F-~(t)2W(t)dt. 
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Let H = F J. Following Chernoff, Cast~4rth and Johns (1967) and 
& \Vet and Venter (1973), define 

w ( O  J ( t ) /H( t ) ,  

where, with f = F ~, 

J(t) I '  L'(H( t ) )  

L@) 1 - y f ( y ) / f ' ( y )  

F Jl 0 o  

where we make the necessary assumptions in order for the derivatives 
and integrals to exist (see Chernoff, Gastwirth and Johns 1967 in this 
regard). 

Note that 

and thus 

j :' J(,,,.)H(~,)d~, 1 

F,; -~ (t,)J(t)dt. 

As test statistic for H, we use 

w 2 ( O )  (E , , l ( t ) -OH( t ) ) z (J ( t ) /H( t ) )d t  

H(t))2(J( t ) /H(t))dt  (r 1) 2. 
Jo 

This is similar to tile authors'  (3.12) (corresponding to the first and 
third  terms there). Furthermore,  proceeding as in Theorems 3.3 and 
3.5 (we potentially have the heavy tailed case, as in Theorem 3.5), 
we obtain 

.~(~(0)  .~,) ~", (e( t )  2 EB(t)2)H'(t)2(J(t)/H(t))dt 

_ _  ! 
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for appropriate constants {a,, } and B(.) the Bro,~lian Bridge process. 

Let K(s ,  t) be the covariance of the limiting stochastic process for the 
fixed distribution case (i.e. 0 known). This process is clearly 

and has c, ovariance function 

K ( s ,  t) (.s A t - , f t ) H ' ( s ) H ' ( t ) [ J ( , s ) J ( t ) / H ( . s ) H ( t ) ]  ~. 

Let {h.i } be a complete or thonormal  system of eigenfunctions for K.  
Then, as in Theorem 3.6, we have, with c~. (n + 1) l, 

B(t,)H (O(J(O/.(O)- 
o :  r~. 

= ~ B(t)H'(Q(Y(t)/H(O)Th.i(t)dt 
j = 1 " a : . .  

The second term in the limiting value of cv2(0), is 

= ( f  

It can be shown (see de Wet 1999 for this, as well as details of the 
above) tha t  (,](t,)H(t)) ~/2 is an eigenfunction of K, with correspond- 
ing eigenvalue I 1. From this it follows that  in the above sum, we 
loose one term (due to estimation of 60, leading to a "loss of one 
degree of freedom". 

R e m a r k  1. 

(a) Choosing the "correct" weight function we have shown in previ- 
ous work leads to optimality in terms of approximate Bahadur 
slopes, at least in a limited nuntber of cases (Gaussian, exponen- 
tial). See e.g. de \,Vet (1980) for this. We conjecture that  under 
certain contiguous alternatives, the  above weight function will 
have optimal approximate Bahadur slope. 
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. 

. 

(b) The above argument also goes through in the case of a location 
parameter, but with a different choice of the weight function 

(see, for details, de \Vet 1999). 

Some work has been done in recent years on applying Cram6r-von 
Mises type statistics in time series situations, and finding the asymp- 
totic distribution theory. (See, e.g., Anderson and  Stephens 1993). 

This is an ~rea in which much more work needs to be done. The 
\u distance seems an ideal candidate for application in this 
setting. 

What  can be said of goodiless-of-fit tests in a nmltivarie~te setting, 
and in particular testing for multivariate normality? \~.glat results do 

we get fi'om the interaction with developments in empirical/quantile 
processes in a multivariate setting? Oue such proposal was made 
and studied in de We b Venter and van Wyk (1979). In this use 
was made of the fact tha t  X has a A.5~(tt , E)  distribution if and only 
if a r X  is A.q (altt, a lEa )  b r  all non-zero p-dimensional real vectors 
a .  If T ( V I , . . . , ~ )  is a correlation type test statistic for the one 
dimensional case with observations Vj, ., E~, then the proposed test  
statistic is 

T~, = sup T ( a ' X j , . . , a ' X ~ ) .  
ar 

Its limiting distribution was obtained, but  was (at that  t ime) unfor- 
tune, rely not amenable to computation. However, with the gTowth 

in results on multivariate empirical and quantile processes, as well as 
computing power during the last few years, it mary be worth revisiting 
this problem. 

I would like to thank the authors for reviewing two fields which have 
interactively had major growth during the last few decades and in which 
many exciting problems still remain. 
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Evarist Gin~ 
Univer,~i@ of Co~.~.ecticl~,, USA 

Tiffs nice survey paper consists basically of three p~r~s. Tile first p~rt 
is historical and covers the asymptot ic  theory of the classical Kohnogorov- 
Smirnov and Cram6r-von Mises tests, regallar as well as weighted, and ~i th  
or x~ithout es t imated parameters.  The asymptot ics  for these statistics mo- 
t ivated several important  developments in Probabi l i ty  Theory, including 
invariance principles, probabil i ty in Banach spaces, the  modern theory of 
empirical processes and the theory of strong approximations.  It is not sin'- 
prising that,  but  it is important  to point out  that ,  the asymptot ic  theory 
of the Cram6r-von Mises type tests (as defined, in the above article) follows 
from the central limit theorem in Hilbert  space. On the other hand, limit 
theorems such as Kolmogorov-Snairnov or Chibisov-O'Reilly, involving sup 
norms, reqlfire weak convergence results in (2[0, 1] or D[0, 1], or, more gen- 
erally and perhaps more simply, the modern theory of empirical processes 
indexed, by general classes of functions. In this connection, I would like to 
mention that  the Chibisov-O'R, eilly theorem is a very simple consequence 
of the bracketing central limit theorem, in Andersen, Gin6, Ossiander and 
Zinn (1988, example 4.9, pp. 296 297). This proof  does not use almost sure 
representations or embeddings. Strong approximations consti tute an excel- 
lent tool for proving a.s. convergence result, but  in general they should not 
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be needed for proving weak convergence theorems, which are usually easier. 
However~ I must admit  tha t  they are very useful and~ sometime G their use 
seems unavoidable: see, e.g., del Barrio, Gin6 and Matrgn (1999), where the 
central limit theorem for the  L~-\Vasserstein distance between the empirical 
and the true distributions in the case of iiNnite v~riance random variables 
in the domain of a t t ract ion of a normal law seemed to require a useful r e s i t  
on weighted approximation of the empirical process by Brow~lian bridges 
due to Mason (1991) and to CsSrg~ and Horv~th (1986), an easier version 
of Theorem 3.2 above. The weighted approximation by Brownian bridges 
was used in order to infer weak convergence of a ftmction of the empirical 
discrepancy from weak convergence of the corresponding statistic for the 
Brownian bridge or, equivalently, the Orstein-Uhlenbeck process. (It was 

not needed, however, to prove uniform tightness). 

The second part  covers the more recent theory of the Shapiro-Wilk and 
other correlation tests,  and constitutes a very useful guide to the literatttre 
on the subject.  

The third par t  develops the approach to correlation tests fi'om del Bar- 
rio, Cuesta-Albertos,  Matrs  and lq.odrfguez-lq,odrfgalez (1999), based on 
the L2-Wasserstein distance between fixed distributions and location-scale 
families. Ttzis is a very interesting article, partictttarly relevant because it 
provides a s t ructured proof of the Shapiro-Wilk test .  Weighted approxima- 
tion by Brownian bridges is used in tiffs proof in a way sinfilar to the above 
mentioned article of del Barrio, Cin6 and Matrs The present paper ends 
w~ith a very nice example showing that  the L~-\u test statistic 
may have non-normal limit laws for heavy-tailed distributions. 

Since L2 distances are easier to  handle than Lp distances for p r 2, it is 
only natural  to ask whether the asymptot ics  of Shapiro-\u type  statistics 
can be handled by the more elementary centrM limit theorem for Hilbert  
space valued random variables, which goes back at least to Varadhan (1962) 
(as opposed to the more recent and much less elementary weighted approx- 
imations). Such a derivation has been announced at the BS-IMS CongTess, 
May 2000, Guanajuato ,  by del Barrio and Matrgn (Abstract  No. 77). 

Another abstract  in the same Congress tha t  is relevant to the present 
stu'vey is that  of A. Cabafia and E.M. Cabafia, "Consistent and focused 
goodness of fit for families of distr ibution functions", which, in particular, 
announces a test  of normality tha t  compares favorably to Shapiro-Wilk. 
The tests in this atmouncement are based on "traiLsformed empirical pro- 
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cesses" and thei r  proofs use m o d e r n  empir ica l  process  t h e o r y  (see e.g., A. 

Cabaf ia  and E. Cabaf ia  1997, and  references the re in  for precursors  of these  

tes ts  in the  case of simple hypotheses ) .  
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l~ ichard Lockhar t  

Simo?~ Fraser U.niver,~ity, (Ta.~~ada 

Professors  d d  Barr io ,  Cues ta -Albe r tos  a n d  M a t r & ,  are to  be congrat -  
u l a t ed  on  a fine survey  of empir ica l  process t h eo ry  appl ied  to  goodness-  

of-fit a nd  pa r t i cu la r ly  on the i r  uni fying discussion of tes ts  based  on  the  
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\u metric. I want to raise some points about the importance of 
computable asymptotics and about power calculations under contiguous 
alternatives. 

Statisticians often want to compute, exactly or approximately, the law 
Z;(TtF ) of a statistic computed from da ta  ~ i th  distribution F .  The stan- 
dard asymptotic paradigm is to embed the problem in a sequence (T~,, F,,~) 

indexed by" some parameter  n so tha t  s  ) is s o tE,,o). We then com- 
pu te /Z~  lira .... oo Z;(T,,]F,,) and use Z2oo as an approximation to Z2(Ttr ). 
The approach ~411 be useN1%r da ta  analysis when Z;~ is computable. 

When T is a Nnctional  of an empirical process ct,,, say- T~, = 9(~t,,), the 
process t~  converges weakly in some space to a process cr~ and g is contin- 

uous (ahnost surely on the support of c~)1,he limil, lawis ,Coo s For 
Gaussian processes c~ this limit will be computable for linear and quadratic 
Nnctionals 9 and for some of the Nnctionals of the weighted suprenmm 
~ype. Linear funcl, ionals 9 give normal limit laws wtfich are cerl, aiuly com- 
putable. Quadratic Nnctionals give limit hws  which are those of a linear 
combination of chi-squares; Stephens (1974, 1976) shows how Co compute 
P-values effectively for many common covariance kernels. Statistics of the 
Kolmogorov-Smiruov kind are more problematic; the computat ion of the 
law of the weighted supremum of a Gaussian process is not easy. 

Monte Carlo is a powerfifl competitor for asymptotic  calculation of P- 
vanes.  Consider, for instance, the si tuation in section 2 of the current 
paper. In this case the distribul, ion of any statistic can be computed on 
the null hypothesis by repeated sampling from the null hypothesis, E). 
The calculation is simple and exact except for sampling error. Asymptot ic  
calculations ~411 be used if they are easier t h a n  Monte Carlo and achieve 
the same accuracy as Monte Carlo in roughly the same computing time. 
This will generaffy happen if the asymptotic calculations are particularly 
simple or the statistic is hard to evaluate or the sample size is very large. 

Del Barrio e~ al note tha~ ~he si tuation changes ~4th composite hy- 
potheses. If the distributional family to be tested is {Fo;O C 6)} then 
the mcknown parameter (~ enters the problem in two ways. First, the pro- 

cess ~ ,  has a defimtion depending on 0 and must be replaced by an esti- 
mated  empirical process &~,. Second, the law of C~, generally depends on 
0 and r~.. The s tandard asymptotic  paradigm is to compute Z;~(&lF0) = 
lira . . . . .  s At first glance the dependence of this limit on 0 is a 
problem. In pracl, ice the limit law is estimated: we use s 
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It is, perhaps, not obxdous that  we are entitled to compute P-values as 
usual from this est imated linfit; the problem often lea<ks workers to focus~ 
as del Barrio el. al do here, on problems where T is distribution free its 
law does not depend on 0. Two points arise. First, if T has a law free of 0 
then  we can compute its law by Monte Carlo using Z;(TI0* ) for any 0* we 
find convenient. In regression problems for instance we can simulate under 
the model with the slope set to 0. Again asymptotics will be useful only if 
calculations based on the asymptotic law are more convenient than Monte 

Carlo. The second point to make is t ha t  if s (dl0) depends continuously 
on O then tLse of a consistent estimate ~) will give asymptotical ly valid P- 
values. In the empirical process setting moreover it is not really necessary to 
prove that s contimlous; instead if T~, 9(c~~,) is the (presumably 

real valued) statistic to be used to test fit it suffices to prove continuity of 
f.oo(9(~)[O). Consider, for instance, the common case where the limit ~' is 
a mean 0 Caussian process on the unit  interval with a covariance function 
of the form po (s, t.) 9o(S, t) with go non-negative definite. In this case 
pointwise continuity of 0 ~+ 9o(s, t) implies continuity in 0 of the law of 
T f c~2(t)dt. 

There are other uses to be made of asymptotic theory. An alternative 
to use of s is Monte Carlo calculation for fimte r~. When statistics are 
not distribution free this amounts to use of s Now continuity of 
the limit law is not enough to justify asymptotically the use of P-values 
obtained by this bootstrap method. Instead it is necessary to prove tha t  the 
weak convergence results hold uniformly in 0. That  is, you need to prove 
something like 0~, ~ 0 implies s  ~ s This can be significantly 

harder. Baringhaus and Henze (1992) for instance, have observed the need 
for this sort of result and given examples. 

Asymptot ic  methods can also be used to make approximate power cal- 
ctflations and help choose good tests. Here I would like to strengthen the 
remarks made by del Barrio et al concerning correlation tests for "heavy 
tailed" distributions. (The exponential distribution does not  have really 
"hea~/- tails" in the sense usually understood but they  are heavy enough 
to cause problems for correlation tests of fit.) del Barrio et al prove tha t  

the \Vasserstein test is asymptotically equivalent to a test based on a de- 
creasing fraction of the tails of the sample. Lockhart (1991) actually proves 
that for any sequence (not just  some sequence as suggested in the text) of 
alternative densities of the form f(x)(1  + h~,(x)/n ~/z) ~Jth h.,~ converging 
(in the appropriate L2 sense) to some h the power of such a test  must 
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converge to the level of the test. Since most EDF tests ~ill have limiting 

power strictly greater than  the level for e.ver':{l such alternative sequence 
this must be regarded as a sig~fificant criticism of correlation tests for such 
distributions. 
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A x e l  M u n k  
t~uhr' Univer.~itiit Boch*~.m. and U.~~i~Ter',~titiit Siege~.. Ger'm.a.~.!j 

First of all, I would like to congratulate the authors for this interest- 
ing paper which contributes to the theory of testing the goodness of fit 

of distributionM assumptions based on quantile and empirical processes in 
two different ways. On the one hand  in its first part this paper provides a 
very helpful survey on this area~ particularly by relating many papers front 
the statistical li terature to recent developments addressing probabilistic as- 

pects of quantile and empirical processes. On the other hand the tectmique 
developed by the authors in their '99 paper is extended in the second par t  
to heavy tailed distributions, exploring the limits of tests based on the 
\Vasserstein distance. 

I would like to focus in my discussion on some practical issues related 
to this paper should one use any of these goodness of fit tests, and if so, 
which one? Before I address the first part  of tiffs question (which is the 
much more subtle problem), I would like to comment briefly on the second 
part. 

There is certainly common agreement, at least among frequentists, tha t  
the proper choice of a goodness of fit test (besides of computat ional  aspects, 
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etc.) should be mainly driven by power considerations. Unforttmately, 
there is such a vast amount of literature providing theoretical power in- 
vestigations (mainly computing various asymptot ic  efficiencies) as well as 
Monte Carlo studies, tha t  it is diffictflt to get a homogeneous picture. How- 
ever, one notable conclusion (cf. Neuh~us 1976, Milbrodt and Strasser 1990, 
Eubank and LaR,iccia 1992, or Kallenberg and Ledwina 1997, among many 
others) is tha t  essentially any g.o.f, test  based on the empirical c.d.f and 
transforms of it (including the quantile process) are in a certain sense inwalid 
to detect most alternatives for realistic sample sizes. For the particular case 
of quadratic statistics Q,~ and testing the null H0 : F = A"(0, 1) say-, s.t. 
under H0 

~'=1 

as n --* oc (here U1 ,U2 , - "  denotes a sequence of i . i .d, normal random 
variables), Gregory (1980) provides explicit expressions of P i tman resp. 
Bahadur  efficieimy as the level of significance ct --* 0. This includes e.g. 
Cramer-von Mises or Shapiro-Wilks-type tests. One finds that  the infe- 
rior power property of the Cramer yon Mises test relies essentially on two 
facts. Firstly, the test  performs only optimal for the  L2-direction cos 7rz 
(an alternative which occurs in practice rarely) and secondly the decay of 
eigenvalues Ak is O(k ~). This means that  almost all of the subsequent 
directions can hardly be detected. In contrast,  the Shapiro-Wilks test  (and 
related s~atistics) has the property CtiaC the dec~y of eigenvalues is much 
slower, O ( k  -~) .  Moreover, the first two principal components  correspond 
to departures in location and scale, which are in many cases most impor- 
tant  deviations to detect.  The situation, however, may change drastically, 
when other distributions F0 ore more complex models are to be tested. 
For F0 = (1 + e x p ( . z ) )  -1 logistic: and for Fu uniform on [0, 1], the decay 
is O@-2) ,  respectively. For the logistic case the two largest components 
come close to location and scale deviations, whereas for the uniform case 

fa.(~:) ~ cos(;rkx:). Tiffs is highlighted by the fact tha t  none of these tests 
is "adaptive" in that  sense tha t  the direction of alternative is chosen data  
driven, which leads in general to bet ter  omnibus properties (cf. Eubank 
and LaRiccia 1992). 

Now I turn to the first part  of the initial question, i.e. what can we ch'aw 
from the result of a~.~y goochiess of fit test designed for the hypothesis Hu : 
" F  E S "  (say normal)? Besides of many fundamental  arguments against 
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the naive use of tests (%r a discussion from a Bayesian perspective, see 
Berger 1985), in the case of testing the 9oodness of fit  a specific problem 
occurs according to  the paradig~n: Choose the null such, that  you coi~sider 
rejection (albeit wTong) as the triore serious error (type I). In many testing 
problems this yields a rather  cleat" defimtion of the null (no t rea tment  effect, 
no trend, . . .  ). In goodness of fit problems, however, I claim that  often 
the more serious error occurs if we do ~.ot reject the model al though it 
is wrong because this will lead to a subsequent data  analysis based on 
the wrong model assumption. However, when testing H0, this is the type  
II error~ which at least to my experience is never controlled when 
checking the goodness of fit in applications (e.g. by sample size adjus tment  
or sequential procedures).  Consequently, if test ing H0 no conclusion should 
be drawn in case of acceptance. Of cottrse, practically nobody  will act like 
this because hence one cotfld never decide in favour of the model (recall the 
two options: rejecting ~- or making ~,o decision). Therefore, in practice, 
large p-vMues associated ~ i th  these tests are often taken as a measure 
for the "exddence" of the model. However, it is well know, that  such an 
interpretat ion fails in general and has been criticised from various authors 
during the past, e.g. again from a Bayesian point of view (Berger and Selke 
1987), albeit  not directly in the context of goo&less of fit testing. However, 

even without  being a Bayesian there are simple reasons for methodological 
difficulties encountered with testing H0: a large p-value colfld be caused 
by various other reasons besides of "the model  Y is (approximately) true".  
This might be: the  number of observations is too small for rejection or the 
alternative lies in a different direction than those the test  can eff'ectively 
detect (recall the first paragraph).  Particularly, for multivariate models 
this causes significant problems. Another problem in practice is, that  if the 
sample size is large (in a clinical or econometrical s tudy a few thousand 
observations quite often happens) ,  a#~/goodness of fit test  for He rejects 
due to the fact tha t  arbi t rary small deviations (although not relevant) from 
F will be detected. Therefore, in practice, often a significance level between 

0.2 and 0.5 is chosen. 

A radical proposal could be to  reformulate the problem decision theo- 

retically which leads, however, to serious mathemat ical  and practical prob- 
lems in infinite dimensional spaces (what is a proper loss function, how to 
choose the prior, etc.) Therefore, a compromise was suggested by Munk 

and Czado (19.98), Dette and Munk (1998) and l~ltmk (1999), which can 
be transferred to the present setting as follows. Choose a "suitable" metric 
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D and hypol, heses H~ : D(~-, F )  > ~, where D(be, i v) denotes the mi~fimal 

distance between l, he model be and the "true" distribution F .  Now, reject- 
ing H.,~ and deciding in favour of a (neighborhood) of b e can be performed 
at a controlled error r~te. In fact, Munk and Czado (1998) suggested also 
a 1,est based on the W~sserstein metric, sorriel, imes denoted as Mallows dis- 
tance. A variation of their result yields a central limit theorem if the true 
distribution F is not in be (Munk, Vog~ and Freitag 2000), which is required 
for tesl, ing/-/~. The addit ional  difficulty how to choose the distance ~r 

can be circumvented by the siinultaneous consideration of all p-values as a 
ftmction of ~r, denoted as a p-x~lue curve (Munk and Czado 1998, Czado 
an(5[ Munk 2000). The defimtion and interpretation of p-values becomes 
now simpler, because for smooth metrics (such as the \Vasserstein metric) 

under H,~ 1,he ~sympl, ol,ic law is normal, instead of ~n infinil, e convolul, ion 
of weighl, ed and  centered X2's. This leads to a simple gTaphical method 
which allows to visualize whether there is really evidence .for' the presence 
of be, rather than  simply the absence of evidence against ~-. Currently, this 
method is investigated and extencled to various other settings, including 
regression and survival analysis. 
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Wiiffried Stute 
UT~.iver.sib~7 <~ Gie.sae.~, Ger~r~a..~y 

Frankly speaking, I very much enjoyed reading this paper. The authors 
did a nice job in reviewing some of the most important  issues in goodness- 
of-fit testing. The material concentrates on i.i.d, real-valued data. In such 
a situation the empirical distribution function allows %r a simple transfor- 

mat ion to the uniform case and, as an alternative, also the quantile fmlction 
may serve as a basic process. 

Prior to Doob, Donsker, Kohnogorov and Smirnov, goodness-of-fit tests 
were mainly based on a comparison of frequencies and theoretical probabil- 
ities of finitely many ceils. Mathematically, distributional approximations 
of finite-din-tensional vectors were sufficient. \,Vith the 1940's, stochastic 

processes in the modern sense came ingo play. A priori aIV meaningful 
distance between the empirical distribution (or quantile) function and a 
hypothetical  function may be considered. One possibility is to  incorpo- 
rate a weight function which, e.g., may serve to detect deviations in the 
tails. The quantile function is affine w.r.t, changes in location, and scale. 

Therefore testing based on quanCiles has always been popular for location- 
scale families. For composite models it is also worthwhile recalling tha t  the 
need to estimate unknown parameters may have some serious impact on 
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the distributional character of the underlying test  process. Another impor- 
tant  issue addressed in the paper is the possibility of the Karhunen-Lo6ve 
decomposition. This may be of some interest, when one wants to create di- 
rectional and not just omifibus tests, by upweighting certain eigenfunctions 
and downweighting others. 

A general s t rategy for deriving asymptot ic  properties of these tests is to 
s t u@ the underlying empirical or quantile process in an appropriate metric 
under the null and the alternative hypothesis, and then use the continuous 
mapping theorem. If, e.g., the weighting is overdone, some non-standard 
limit restffts come up, as was mcely pointed out in the last part  of the 
paper. 

Coming back to the tmderlying test  (i.e., empirical or quantile) pro- 
cesses, the authors correctly point out  the various approaches one can find 
in the literature: 

2. The Vapnik-Chervonenkis Approach 

3. The Hungarian Approach 

Number  1 should be reserved for what  could be called 

1. The tradit ional Approach 

(I prefer). This approach may be caracterized through issues like these: %r 
computat ional  feasibility, don' t  choose index families which are too  com- 

plex, but  restrict to intervals, rectangles of ellipsoids; don' t  go to asymp- 
totics as soon as possible, but  spend some time to check how good distribu- 
tional approximations work for small to moderate  sample size; sometimes 
it's useful not to prove everything in two steps (tmderlying process plus 
continuous mapping theorem),  but  to remember other techniques, like the 
elegant Hgjek project ion method, or to look for hidden martingale struc- 
tures. ARernate  tectmiques are becoming increasingly important  if the data  
are no longer i.i.d, and 2. and 3. are unavailable. 

I would also like to add a fourth approach, which is particularly powerful 
in goodness-of-fit testing: 

4. The iHlovation process approach 
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This method  is very successful when parameters  need to be estimated. ~I'he 
idea is to transform the underlying process to the martingale par t  in its 
Doob-Meyer decomposition, which in the limit is a Brownian Motion in 
proper time. See Khmaladze (1981) for his key contr ibution to the  subject.  

It seems to be common use that cliscussants take the opportunity to 

also make some conunents on their own contributions. Sections 1 and 2 
and some parts of 3 are writ ten in the spirit of Gaenssler and Stute (1979). 
In our monograph, Gaenssler and Stute (1987), we also discussed some 
goodness-of-fit problems in the multivariate setting. We also acknowledged 
the lftany coiltributions to  a field which may be called 

5. Combinatorial  approach to goodness-of-fit testing 

I would also like to  add some comments on future directions in goodness-of- 
fit testing. The i.i.d, case for real-valued data  is of course only the simplest 
case. In the multivariate setting the parametric boots t rap  (see Stute et al. 
1993) may at least be used to approximate the distributions, if the weight- 
functions are not too fancy. Wha t  is more interesting is goodness-of-fit 
testing in other situations: 

a) When  the da ta  are incomplete (e.g., censored) 

b) In t ime series, when it is required to fit the dynamics of the t ime 
series 

c) 

d) 

In regression, when the target  could be a parametric model for the 
regression function 

The same as in b) and c), but  the parametric model being replaced 
with a semiparametric model  (like the Generalized Linear Model). 

Some of my contributions to tiffs area are reviewed in Stute (1997). 
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Rejoinder by E. del Barrio, J.A. Cuesta and C. Matrgm 

When we began to write this paper, accepting the kind imdtation of 
the editors of TEST, our goal was to contribute to this year of mathemat-  

ical celebrations through a work relying on the mathematical  evolution of 
empirical processes, one of the major developments in the recent theory 
of Statistics. Now, at the end, after the comments of the discussants our 

impression is tha t  our goal has been clearly exceeded through this set of 
excellent comments. 

Some of the discussants of the paper can. be considered as major con- 
tributors to the theory of goodness-of-fit tests or to the theory of empirical 
processes. Therefore we would like to express our satisfaction for having 

the opportuni ty to share this work with such a distinguished group. In fact, 
in our opinion, the consequence of the discussants' comments is not or~ly a 
wider scope th~n that  of our initial paper. The ilew perspectives opened in 
the theory by this set of st imulating contributions are a major prize which 

was never expected by us. 

Csgrg6 

Professor CsSrg6 poses several interesting questions concerning the limits 
of performaave of W~sserstein correlation tests, the comparison of them to 
alternative procedures for testing fit to Gaussian or \u scale families 
or the rate of convergence to the asymptotic  distribution in the uniform 
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case. The different behaxdor of \Vasserstein correlation tests depending 
on the tails of the family of distributions considered in the goodness-of-fit 
problem (powerful tests for families with "light tails" such as the uuiform 
or the gaussian: inefficient tests for families with "heavy tails" such as the 
exponentiM or the  one considered in Subsubsectiou 3.3.3) motivates the 
exploration of how heavy can we allow tails to be if we want to maintain  
the good properties of the Gaussian case. 

Professor CsSrg6 gives a brilliant answer to this question with his fine 
analysis of \u tests for the \Veibull scale family. His Theorem 
2 establishes dear ly  the border betweeu tails for which Wasserstein tests 
have statistical interest and tails for which they do not (for those families 
considered in pm't (iii) of the theorem the  weighted-\Vasserstein-distance 
approach suggested by Professor de Wet could be a good alteruative). 

We would like to make some comments on the interesting problem posed 
by Professor Csgrg6 in part  (iii) of Theorem 2, namely, f inditg the asymp- 
totic distribution of 

Wa(t)[(1 + t)2 log 2 f (1  + t )]- ldt ,  (1) 

for a Brownian motion {W(t)}t. The equality in distribution between 
{HT(t)/tl/2}, and {W(2 ] log(t(1 - t) 1)}t, where W denotes an Ornstein- 
Uhlenbeck process, allows us to reformulate the problem as the derivation 
of the asymptotic  distributiou of 

V(~)2 1 + e2~J 
, l - - o o  l o g (  ='~ ei + 

d~, 

which can. be obtained through the  s tudy of 

1 

2 ~  ~ f z l~  " " ' viv) ve (2) 
4 O  

(in fact the asymptotic behavior of both  random integrals depends only 
on their right tails). An asymptotic result for iutegTals of the Omstein- 
Uhlenbeck process with respect to measures other t h a n  Lebesg~le (which 
corresponds to M~ndFs result - Lemma 5.3.3 in Cs6rg6 and t torv~th 1993) 
is given by Theorem 6.8 in del Barrio, Gin6 and Matrgn (1999). We quote 
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here that  result. Let Z denote a s tandard normal random variable. Then, 
i f 6 >  i 

8/~7.~ ~.<a+~),,~ j_,/2 (tv(~)l EIV(t)l)l~la/2dt '''> 21og2 l:J z 
W 37r ' 

V 7-4T- s 

while 

1 /..~/2 ~/ 21og2 13Z" 
2(log4.~., ~ ~.~/ ( I V ( 0 1 - E t V ( 0 1 ) I r  ~"= 3 + - -  ?r 37r 

An adaptat ion of the proof of this result (based on expressing the integrMs 
as sums of independent  random variables from an infinitesimM array) might 
allow us to conclude tha% for 6 > 1 

and 

1 /~/~(v(t) ~ Ev(t)bt~/~dt m z 
. / T  ~ s(~+J)/2 J0 
g d- - l "  

1 " I " l ~ ( v ( O  ~ EV(t)~)~ "12d~ '"> Z. 
2 (log-4 '/~ ~0 

This could give the asymptotic  normMity of the integral functionM in (2) 
thence of tile one in (1)) as long as 2/c~- 2 > - 1 / 2 ,  that  is, as long as 
ct < 4/3, which would complete part (iii) of Theorem 2 in Professor Csgrgg's 
comment.  However, filling the gaps in the above mentioned adapta t ion does 
not seem to be straightforward. 

C u a d r a s  

Professor Cuadras discusses on some subjects related to the content of the 
paper. First, he introduces an orthogonal expansion of a random variable oil 
principM directions which can be obtained xda Karhunen-Lo~ve expansions. 
Then, he presents several botmds for the Wasserstein distance. FinMly, he 
shows the relation between the statistic ~ ,  and the so-cMled maximal Ho- 
effding correlation between the empirical and the theoreticM distributions, 
which, in tin'n, is related to the  pre~dously introduced orthogonal expan- 
sion. 
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d e  W e t  

It is a gTeal, pleasure for us to have Professor de Wet as a discussant since he 
was one of the authors who obtained the first asymptot ic  result in the field 

of regTession tests. Professor de \ ~ t  points out three important  possibilities 
to extend the Wasserstein tests of goodness of fit. 

The first one consists of handl i lg  a weighted Wasserstein disl, a~me. Pro- 
fessor de \Vet analyzes this possibility in the fi'amework of a scale family 
and he nicely shows that  if the weight is properly chosen (depeuding on the 
family under consideration), then some optimal cancellation properties are 

obtained. Moreover, this fact explains some particular properties obtained 
in the paper, because it turns out tha t  ~,he constant weight is the optimal 

one for the Gaussian family. 

On the other hand, he suggests the possibility of using \Vasserstein 
tests in the time series framework and, finally, he recalls a procedure which 
can be employed to construct a \Vasserstein distance t e s t  to  cheek fit to a 
multidimensional Gaussian distribution. 

G i n 6  

\Ve agree with Professor Gin6's point of view regarding the use of strong ap- 
proximations or Banach spaces techIfiques for proving weak limit theorems. 
The latter are often tile right choice for derixdng an asymptotic  distribu- 
t ion using more elementary methods but sometimes strong approximations 

seem to be the only way to handle the problem. In the particular case 
of the Chibisov-O'R.eilly theorem we wonder if Empirical Processes The- 
ory can also give Theorem 2.5, tha t  is, necessary and su.fficient conditions 
for the weak convergence of the supremum norm of the weighted empirical 
process (not for the weak convergence of the weighted empirical process 
itself), wi~,hout using strong approxima~,ions. Ttle answer to this question 
could give a new chance for assessing the strengths and weakmesses of both  
approaches to weak limit theorems. 

Professor Cirl~ corrects one important  omission in our paper and we 

thank him for doing so. We are talking about A. Cabafia and E. Cabafia's 
approach ~,o the goodness-of-fit problem based on the transformed empirical 
process. The main goal of this method  is the derivation of tests of ill, 
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with maxinmm power for detecting a particular sequence of contiguous 

alternatives. 

L o c k h a r t  

The first part of Professor Lockhart 's  discussion %cuses on the interest, 

from the point of view of the practical applications, of asymptotic results. 
First, he fixes the framework by making some general considerations on the 
way in which statisticians use to work and the way in which asymptotic 
distributions apply in this field. After this, he gives some argaunengs sup- 

porting the Monte Carlo method  as an alternative to the use of the asymp- 
totic distributions in approximating the distr ibution of a given statistic. 
We must admit,  without any doubt,  tha t  this is an irnportant point we had 

missed in our work. 

Professor Lockhart  ends his discussion by specifying some details on 
his contributions on the subject of the asymptotic power of the correlation 
tests which were not clear enough in our paper. 

M u n k  

Professor Munk's discussion focuses on two important  aspects of good- 
ness-of-fit tests. One of them is basic: What  does a goochtess-of- fit test 
really do? Professor Munk rightly exposes some doubts on the adequacy of 
choosing as null hypothesis the validity of the model under testing, based 

on the fact that ,  even if the da ta  do not  allow us to reject the hypothesized 
model, we have no guarantee tha t  it is right. Then, he proposes a solution 
consisting of taking as null hypothesis tha t  the model of interest does not  

hold approximately. Now, rejecting the null hypothesis means the data  
contain aspects supporting tha t  the model is (approximately) correct. 

The second aspect analyzed is which test should be chosen. Professor 
Munk assumes we are interested in checking fit to some fixed distribution 

and we have to choose between a Cramer-von Mises or a Shapiro-Wilk-type 
test. He makes a Nce analysis of the circumstances under which each of 
them should be preferred. This analysis is based, mostly, on Karhunen- 
LoSve expansions of the limit distributions. 
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St  u t  e 

Professor Stute makes a very accurate commenib on our work. He begins by 
listing the different techniques usually employed when handling empirical 
or quantile processes as well as pointing out the advantages of his (~nd 
ours) preferred approach: the tradit ional  one. 

On the other hand  he also recalls three aspects missed in the work. 
The first one is methodological and consists of the possibility to employ 
the relatively new "innovation process approach". Then he suggests the 
possibility to employ the bootstrap to approximate the distributions of 

goodness-of-fit tests in the mNtivariate setting. Finally, he includes a short 
list of very important  goodness-of-fit problems which are not mentioned in 
the paper. 

We were not aware of the existence of the innovation process approach 
when writing the paper and, at this moment,  we agree with Professor Stute 
on its usefulness to handle problems in which parameters have to be esti- 
mated. 

Concerning other goodness-of-fit problems, we have fixed the scope of 
our work on the location-scale problem and the i.i.d, case because, other- 
wise, a work along the lines we have chosen had been, instead a paper, a 

quite bulky book. The same can be said about the bootstrap.  However, 
we admit that~ at least~ we should have mentioned the existence of those 
possibilities. This fault has been corrected in his comment. 
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