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Abstract

This paper analyzes the evolution of the asymptotic theory of goodness-of-fit tests.
We emphasize the parallel development of this theory and the theory of empirical
and quantile processes. Our study includes the analysis of the main tests of fit
based on the empirical distribution function, that is, tests of the Cramér-von Mises
or Kolmogorov-Sinirnov type. We pay special attention to the problem of testing
fit to a location scale family. We provide a new approach, based on the Wasserstein
distance, to correlation and regression tests, cutlining some of their properties and
explaining their limitations.
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1 Introduction

This year has been declared by UNESCO ag World Year of Mathematics.
Thig year of mathematical celebrations also commemorates the centenary
of some landmarks in the history of Mathematics. In the 2nd International
Congress of Mathematics, held in Paris in 1900, David Hilbert postulated
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hig celebrated 23 problems as the main challenges to which the mathemat-
ical community should pay attention, without any reference to Probability
or Statistics. The development of statistical methods became, though, a
major source of motivation for the mathematical research in this century.

It was also in 1900 that Karl Pearson proposed the first test of goodness-
of-fit: the y? test. The subsequent research devoted to enhancements of this
elementary goodness-of-fit procedure became a major source of motivation
for the development of key areas in Probability and Statistics, such as the
theory of weak convergence in general spaces and the asymptotic theory of
empirical processes. Commemorating this centennial we wish to analyze,
with abgolute subjectivity, some aspects which arise from the development
of the asymptotic theory of goodness-of-fit tests through this century.

We will pay special attention to stressing the parallel evolution of the
theory of empirical processes and the asymptotic theory of goodness-of-fit
tests. Doubtless, this evolution is a good indicator of the vast transforma-
tion that Probability and Statistics experienced during this century. Cer-
tainly, the names that contributed to the theory are the main guarantee for
thig assertion: Pearson, Fisher, Cramér, von Mises, Kolmogorov, Smirnov,
Feller, et al. laid the foundations of the theory. In some cases, the math-
ematical derivation of the asyvmptotic distribution of goodness-of-fit tests
in that period had the added merit that, in a certain sense, the limit law
was blindly pursued. In Mathematics the main difficulty in showing con-
vergence consists of obtaining a convincing candidate for the limit. Thus,
proofs in that period could be considered as major pieces of precision and
inventiveness.

A systematic method of handling adequate candidates for the limit law
beging in 1950 with the heuristic work by Doob (1949), revised by Donsker
through the Invariance Principle. The subsequent construction of adequate
metric spaces and the development of the corresponding weak convergence
theory as the right probabilistic setup for the study of asvmptotic dis-
tributions had a wide and rapid diffusion, with notable advances due to
Prohorov and Skorohod among others. The contribution of Billingsley's
book (Billingsley 1968) to this diffusion must also be pointed out.

The study of Probahility in Banach spaces has been another source of
useful results for the goodness-of-fit theory, The names of Varadhan, Dud-
ley, Araunjo, Giné, Zinn, Ledoux, Talagrand, et al. are necessary references
to anyone interested in asymptotics in Statistics. For example, the Cen-
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tral Limit Theorem (C.L.T.} in Hilbert spaces played a main role in the
obtaining of the asymptotic behaviour of Cramér-von Mises-type statistics.

Lastly, we must indicate the significance of the “Hungarian school”,
developing the strong approximation techniques initiated by Skorohod with
his “embedding”. Breiman’s book (Breiman 1968) had the merit of initially
spreacding Skorohod’s embedding. Today, the strong approximations due to
Komlds, Major, Tusnady, M. and S. Csorgd, Révész, Deheuvels, Horvath,
Masgon, et al. are an invaluable tocl in the study of asyvimptotic in Statistics,
as we will point out in the last section of this paper.

This paper is organized in two sections concerning, respectively, tests
of fit to a fixed distribution, Section 2, and tests of fit to a parametric
family of distributions, Section 3. A major goal in cur approach consists of
providing an adequate setup for the analysis of regression and correlation
tests of fit, associated with the well-known probability plots. Subsection
3.2 is devoted to these tests. The analysis of correlation tests in the setup
provided by the Wasserstein distance, Subsection 3.3, will give additional
justification to the good behaviour of the most popular representatives of
this class of tests, and will also explain their poor performance in testing
fit to a family of heavy-tailed digtributions. The agymptotic for tests of fit
based on Wasserstein distance will be obtained through the use of strong
approximations. Of course, we do not pretend to cover the wide range of
existing tests of fit.

The notation to be employed in this paper is as follows. All the ran-
dom variables will be defined on the same, rich enough, probability space
(Q,0,P). Given Xy,..., X, independent and identically distributed (i.i.d.)
real valued random variables, X, and S2 will, respectively, denote their
sample mean and variance and F,, will denote the associated empirical dis-
tribution function, ie., Fi(x) = n 1Y o fx,<ep® € R {U,} will
represent a sequence of 1.i.d. random variables uniformly distributed on
the interval (0,1) and G, will denote its associated empirical distribution
function. As usual, the uniform empirical process is defined by

an(t) = (G, (t)— 1), t€(0,1).

The so-called Brownian bridge, {B(¢) : 0 < t < 1}, is a Gaussian process
with continuous trajectories and covariance operator Cov(B(s), B(t)) =
s At — st

Two metric spaces will appear very frequently. The space C[0, 1] which
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consists of all real, continuous functions on the interval [0, 1], endowed with
the supremum norm |jzfe = supg..y [(f)], = € C[0,1]; and the space
D[0,1] (respectively D{—oo,00] ) of all real functions on [0,1] (resp. on
[~ 00, 00]) which are right-continuous and have left limits, cadlag (from the
French “continue & droit avec limits & gauche” ), endowed with the Skorohod

distance (see Skorohod 1956).

Convergence in distribution and in probability will be respectively de-
noted by — and £, Given a random variable X its probability distribution
will be represented by £(X). Finally, ® and ¢ will, respectively, denote the
distribution function and density function of a standard normal random
variable.

2 Testing fit to a fixed distribution

The simplest goodness-of-fit problem consists of testing fit to a single
fixed distribution, namely, given a random sample of real random variables
Xy, Xq, ..., X, with common distribution function F, testing the null hy-
pothesis ' = Fy for a fixed distribution function Fj;. While this procedure
is usually of limited interest in applications, the solutions proposed for this
problem provided the main idea in subsequent generalizations designed for
testing fit to composite null hypotheses.

Pearson’s chi-squared test can be considered as the first approach to
the problem of testing fit to a fixed distribution. The solution proposed
by Pearson consisted of dividing the real line into & disjoint categories or
“cells” 4, ..., into which data would fall, under the null hypothesis,
with probabilities py, ..., pe. That is, if F7 = Fy were true, then P(X; €
Ciy=mp;, ¢ =1,...,k. If O; is the number of observations in cell ¢, then
(J; has a binomial distribution with parameters n and p;; hence, the de
Moivre-Laplace C.L.T. states that (np(1 — p;))~"2(0; — nps) > N(0,1).

The multivariate C.L.T. shows that, if I < k, then B, = n_]/z(O]_ —
npy, .-, Oy —np)? has a limit distribution which is centered Gaussian and
has covariance matrix X; whose (¢,7) clement, o, ;, satisfies o, ; = —pipy,
for ¢ # 7, and &;; = pi(1 — p;). On the other hand, if p; > 0, = 1,... |k,
Yi—1 is nondegenerate and E;l has element (4, 7), v ;, satisfying v ; =
p;l, for ¢ # j, and v;; = p:l + p;l Simple matrix algebra shows that
Bg_]E;_;J]Bk,] converges in law to a X;%_] distribution. Further, straight-
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forward computations show that

k
— 1tp _
—> i) prosom,
— np g
i=1
providing, therefore, a well-known result in the asymptotic theory of tests
of fit:

Theorem 2.1. Under Hy, x* has asymptotic distribution x;_,.

Theorem 2.1 reduces the problem of testing fit to a fixed distribution
to analysing a multinomial distribution, thus providing a widely applicable
and easy-to-use method for testing fit which immediately carries over to
the multivariate setup. Moreover, this test also allows some freedom in
choosing the number, the location or the size of the cells 'y, ..., . This
point will be discussed in the next section.

However, as pointed out by many authors (see, e.g., Moore 1986), con-
sidering only the cell frequencies when 7 is continuous produces a loss of
information that results in lack of power (the x? statistic will not distinguish
two different distributions sharing the same cell probabilities). Therefore,
in order to improve our method for testing fit, we should try to make use of
the cornplete information provided by the data. However, the multivariate
C.L.T. and elementary matrix algebra were the only toocls needed in the
derivation of the asymptotic distribution in Theorem 2.1. This will not be
the case when handling more complicated statistics.

One way to improve Pearson’s statistic consists of employing a func-
tional distance to measure the discrepancy between the hypothesized dis-
tribution function Fy and the empirical distribution function F,. The first
representatives of this method were proposed in the late 20°s and in the 307s.
Cramér (1928) and, in a more general form, von Mises (1931) proposed

= [ (Ble) - Bl ple) da,

for some suitable weight function p as an adequate measure of discrepancy.
Kolmogorov (1933) studied

Du=vi s [Fu(e) Fo)

— o< o
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and Smirnov (1939, 1941) the closely related statistics
D;f = n sup (F, () — Fo(x)),

— OOl <00

D, = Vi sw (Fi(e)— Fu(2),

— o lE 00

which are more adequate for tests against one-sided alternatives. The
statistics I, D} or D, are known as Kolmogorov-Smirnov statistics and
present the advantage of being distribution-free: for any continuous distri-
bution function Fy, [, has, under the null hypothesis, the same distribu-
tion as supg., . |an ()], Similar staterments hold for DY and D, Thus,
the same p-values can be used to obtain the significance level when testing
fit to any continuous distribution. This desirable property is not satisfied
by w?, but it also holds for the following modification:

T

o
Wi =n [ UR@)E @) R dBife)
— o

which was proposed by Smirnov (1936, 1937). All the statistics which can
be obtained by varying ¥ are usually referred to as statistics of Cramér-von
Mises type. Consideration of different weight functions ¥ allows the statis-
tician to put special emphasis on the detection of particular sets of alter-
natives. For this reason, some weighted versions of Kolmogorov's statistics
have also been proposed, namely,

K.(¥)=vn ) wsg.{& N £ \(D‘"()F;(f;))(f) |

The convenience of employing W72 () instead of D? as a test statistic
can be understood when taking into account that D? accounts only for
the largest deviation between F, () and F(¢), while W2(T} is a weighted
average of all the deviations between F), (t) and F(¢). Thus, as observed
by Stephens (1986a), W2(T) should have more chance of detecting alter-
natives that are not very far from F at any point £, but are moderately
far from F for a large range of points ¢ (think of location alternatives).
These heuristic considerations are confirmed by simulation studies (see, for
reference, Stephens 1986a).

Two particular statistics have received special attention in the litera-

ture. When ¥ =1,

W2 =n /‘“’ (Fo(a) — Fo(x))? dFy(z)

— 0o
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is called the Cramér-von Mises statistic; when () = (#{1 — #))~! then

s [* B - R@F
4=n | S Ry

is called the Anderson-Darling statistic. A2 has the additional appeal of
weighting the deviations according to their expected wvalue, and this re-
sults in a more powerful statistic for testing fit to a fixed distribution, see
Stephens (1986a).

To be able to use any of these appealing statistics in practice we should
be able to obtain the corresponding significance levels, Smirnov (1941),
using combinatorial techniques, obtained an explicit expression for the ex-
act distribution of D} . Kolmogorov (1933) also gave an expression that
enabled the tabulation of the distribution of I7,,. Further difficulties were
found when dealing with the exact distributions of statistics of Cramér-von
Miges type. But even in those cases where a formula allowed the com-
putation of the exact p-values, the interest in obtaining the asymptotic
distribution of the test statistics was clear, for it would greatly decrease
the computational effort needed to obtain the (approximate) p-values (and
this was of crucial importance by the time these tests were proposed). The
celebrated first asymptotic results regarding D, and D are summarized
in the following theorem:

Theorem 2.2. For every x > 0:
i) (Kolmogorov 1933)

limP (D, < x) = Z (*1)%*2_;“ 2

@) (Smirnov 1941)

im P (D} > z) =e 7,

Kolmogorov’s proof of i) was based on the consideration of a limiting
diffusion equation. Smirnov used the exact expression of P (D] > z) to
show @2). Also, Smirnov (1936) derived the asymptotic distribution of the
Cramér-von Mises statistic, W2,
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Feller (1948) claimed that Kolmogorov's and Smirnov’s proofs were
“very intricate” and were “based on completely different methods” and
presented his paper as an attempt to give “unified proof” of those theo-
rems (which could provide a systematic method of deriving the asymptotic
distribution of other test statistics expressible as a functional of the empir-
ical distribution function) It seemed unnatural that, since D,,, D and W2
are measures of the discrepancy between F,, and F hased on the same ob-
ject, namely, the empirical process, a particular technique had to be used
in the derivation of the asymptotic distribution of each statistic. Thus,
Feller’s paper is a remarkable step in the development of a unified asymp-
totic theory for tests of fit based on the empirical process. Nevertheless,
a study of the empirical process itself and of its asymptotic distribution
(a concept which would have to be made precise} was not considered and,
as claimed in Doob (1949), all these proofs (including Feller’s) “conceal to
some extent ... the naturalness of the results (qualitatively at least) and
their mutual relations”.

It was Doob (1949) who, considering the finite dimensional distribu-
tions, conjectured the convergence of the uniform empirical process to the
Brownian bridge. A useful consequence of this fact would be that, under
some (non explicit) hypotheses, the derivation of the asymptotic distribu-
tion of a functional of the uniform empirical process could be reduced to
the derivation of the distribution of the sarne functional of the Brownian
bridge. Doob proved that

P((z, 1m0) <2) = 3 (e @.1)

0<t<1 <
J=—0C

P (( sup B(t)) > r) =%
0<t<1

Thus, justification of Doob’s conjecture would provide a new, simpler

and

proof of the results of Kolmogorov and Smirnov.

This justification was given by Donsker through his invariance princi-
ple in Donsker (1951, 1952). His results showed that the distribution of a
continuous functional of the partial sum process (obtained from a sequence

of i.i.d. random variables with finite second moment) converges to the dis-
tribution of the corresponding functional of a Brownian motion, and that
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the distribution of a continuous functional of the uniform empirical process
converges to the distribution of the corresponding functional of a Brownian
bridge.

The development of the theory of weak convergence in metric spaces
by, among others, Kolmogorov, Prohorov and Skorohod in the fifties (see
Prohorov 1953; Kolmogorov and Prohorov 1949; Prohorov 1956; and Sko-
rohod 1956) allowed a better understanding of this invariance principle,
as presented in Billingsley (1968). The space C[0,1] was one of the first
metric spaces for which this theory was developad, through the work of
Prohorov (1956). The scheme consisting of proving the convergence of
the finite dimensional distributions plus a tightness condition allowed the
obtaining of distributional limit theorems for slight modifications of the
partial sum and the uniform empirical processes, because both processes
could be approximated by “equivalent” processes obtained from them by
linear interpolation, so that all the random objects considered in the limit
theorems remained in C[0, 1].

This last approximation is somewhat artificial. In order to avoid it, a
wider space had to be considered. A proper study of the weak convergence
of the uniform empirical process could be attempted in the space D0, 1].
The fact that the empirical process is not measurable when the uniform
norm is consgidered led to the introduction of a more involved topology,
narnely the Skorohod topology that turned D[0,1] into a separable and
complete metric space in which the empirical process was measurable. In
this setup the weak convergence of the empirical process could be properly
stated (see, e.g., Billingsley 1968, pp. 141)

Theorem 2.3. If we consider e, and B as random elements taking values
in D0, 1], then

ur
a, — B.

Theorern 2.3 enables us to rederive Theorem 2.2 in a very natural way.
Note that D, = |ja,||ee and that the map « — ||z|ly 18 continuous for the
skorohod topology outside a set of B-measure zero. Thus, we can conclude
that D, > ||B|le and this, combined with (2.1}, gives a proof of the first
statement in Theorem 2.2. The same method works for D}

The use of the Skorohod space is not the cnly means of circumventing
the difficulty posed by the nonmeasurability of the empirical process. A dif-
ferent approach to the problem could be based on the following scheme. If
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we could define, on a rich enough probability space, a sequence of i.i.d. ran-
dom variables uniformly distributed on (0, 1) with an associated empirical
process af () and a Brownian bridge B(#) such that

sup |t (t) — B(t)| -0, (2.2)

0<i<]

then we would easily obtain that, for any functional i defined on D0, 1]
and continuous on C[0,1], H (k) i H(B), obtaining a new proof of The-
orem 2.2, The study of results of type (2.2), generically known as strong
approximations, began with the Skorohod embedding, consisting of imi-
tating the partial sum process by using a Brownian motion evaluated at
random times (see Breiman 1968). Successive refinements of this idea be-
came one of the most important methodologies in the research related to
empirical processes.

Returning to the applications of Theorem 2.3 in the asymptotic theory
of tests of fit, we should note that the functional z j[]] z(t)dt is also
continucus for the Skorohod topology outside a set of B-measure zero. We
can use this fact to obtain the asymptotic distribution of the Cramér-von
Mises statistic. Namely,

1
w2 f B(t)%dt.
0

Then, a Karhunen-Loéve expansion of B(#) allows us to easily compute
the characteristic function of jUJ B(#)?dt and the inversion of this character-
istic function allows us to tabulate the asymptotic distribution of W32 (see,
e.g., Shorack and Wellner 1986, pp. 215 for details). This methodology
makes the arguments used by Smirnov to derive the asymptotic distribu-
tion of W2 unnecessary. A recent full account of all the presently available
information concerning the exact and limiting distributions of W32, as linked
by an asymptotic expansion, is given by Csorgd and Faraway (1996), with
a comparable theory for Watson’s circularly invariant version referred to
at Theorem 3.4 below, where many errors that have accumulated on this
topic are also corrected.

A little extra effort allows us to extend this method for deriving the
asymptotic distribution of other statistics of Cramér-von Mises type. As a
consequence of the Law of the [terated Logarithm for the Brownian motion,
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Anderson and Darling (1952) showed that, provided

& 1
1 1
f U(t)tloglog ?dt and / V()1 - ¢)loglog ]
. [

dt
0 t

are finite for some § € (0, 1), the functional © — j[]] T (H)a(t)*dt is contin-
uous with respect to the Skorohod distance, outside a set of B-measure
zero and, consequently, W2(T) % jUJ U(t)B(#)*dt. This result covers the
Anderson-Darling statistic 42.

Although all the limit theorems for goodness-of-fit tests that we have
described so far are based on the weak convergence of the empirical pro-
cess congidered ag a random element taking values in the space of cadlag
functions, with the Skorohod topology plus the continuity of a suitable
functional, there is a more natural way to study the asymptotic proper-
ties of statistics of Cramér-von Mises type and, more generally, of integral
functionals of the empirical process.

The uniform empirical process can be viewed as a random element tak-
ing values in the separable Hilbert space Ly((0,1), ¥) of all real, Borel
measurable functions f on (0, 1), such that jnl T(t)f(t)dt is finite, where
we consider the norm given by

-1
112q = / ()0t

In this setup W2(¥) = ||a|2 y. The theory of probability in Banach
spaces, developed in the 60’s and ,7075*, turned the problem of studying the
asymptotic distribution of W2(¥) into an easier task, because the C.L.T. for
random elements taking values in Lo((0,1), ¥) (see, e.g., Aranjo and Giné
1980, pp. 205, ex. 14) asserts that a sequence {Y,({)}n of iid. Lz(0,1}-
valued random elements satisfies

o= YoM SV,
i=1

if and only if jUJ E(Y1(1))*¥(t)dt < co and, in that case, ¥ is a Gaussian
random element with the same covariance function as Y.

Therefore, if we set Yi{t) = ly,<py — 8 @ = 1,...,n, then a,(t) =
n 12 Yoo, Yi(#) and Y7 (f) has the same covariance function as the Brow-
nian bridge B(¢). Hence, a,, = B in Ly((0,1),¥) if and only if le t(1 —
DU (¢)dt < co.



12 E. del Barrio, J A, Cuesta-Albertos and C. Matrdn

A further application of Hoffmann-Jorgensen’s inequality (see del Barrio
2000) allows us to conclude that Han,(j% ¢ has a limiting distribution if and
only if f()] tH1— t)U(t)dt < oo, proving the following result.

Theorem 2.4. (Asymptotic distribution of statistics of the Cramér-von
Mises type). W2Z(U) has o limiting distribution if and only if j()] 1l —
H (t)dt < co. In that case
b P! -1 -
W2 S [ () B()dt.

n
0

While the development of probability in Banach spaces provides this
final result for statistics of the Cramér-von Mises type, the use of strong
approximations produces a similar result for supremum norm statistics.
Chibisov (1964) and O'Reilly (1974) used the Skorohod embedding and
a special representation of the uniform empirical process in terms of a
Poisson process (see, e.g. Shorack and Wellner 1986, pp. 339) to obtain
necessary and sufficient conditions for the weak convergence of the em-
pirical process to the Brownian bridge in weighted uniform metrics. If ¥
is a positive function on (0, 1) nondecreasing in a neighborhood of 0 and
nonincreasing in a neighborhood of 1 and we consider the norm given by
x|l = supgeeeq (J2(£)]/T(£)) on D[, 1], then o, > B in ||- ||y norm (with
the necessary modifications in the definition of weak convergence to avoid
measurability problems)

, if and only if

/U‘J ﬁexp <_€f(@1(—f)j‘)> dt < oo, (2.3)

for every € > 0. An immediate corollary of the Chibisov-O'Reilly theorem
i1s that (2.3) is a sufficient condition for ensuring the convergence

K, (V) — su }
%) 0otry U(t)

A modification of the so-called Hungarian construction due to Komlés,
Major and Tusnddy (1975, 1976) and to Csdrgd and Révész (1978) was
used in Csorgd et al. (1986) to give the following final result for statistics
of the Kolmogorov-Smirnov type.

Theorem 2.5. (Asymptotic distribution of statistics of the Kolmogorov-
Smnirnov type). If V is a positive function on (0,1), nondecreasing in a
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neighborhood of 0 and nonincreasing in a neighborhood of 1, then K, (W)
converges in distribution o o nondegenerale limil law if and only if

for some e > 0. In that case,

e B
K. (U) = sup ——=.
(7) 0<1‘£] W(t)

3 Testing fit to a family of distributions

We consider in thig section the problem of testing whether the underly-
ing distribution function of the sample, F, helongs to a given family of
distribution functions, 7. We will agsume F is a parametric family, i.e.,

7 ={F(-,0): 6 c O},

where @ is some open set in RY. F~! (-, 8) is the quantile function associated
with F'(-, 8).

Perhaps the most interesting case occurs when F is the Gaussian fam-
ily. It seems that the first statistics for detecting possible departures from
normality were introduced in Fisher (1930), Pearson (1930) and Williams
(1935), and were based on the study of the standardized third and fourth
moments, usually denoted by v/b; and by, respectively.

To strengthen these procedures, some composite tests, intended to take
into account both features simultaneously, were proposed. For instance, in
Pearson, D’ Agostino and Bowrnan (1977) the K* and the R tests, consisting
of handling two suitable functions of the vb; and bo statistics, namely,
K? = K(vby,by) and R = R(vby, by), were introduced. In that paper a
Monte Carlo study comparing those tests to the most popular normality
tests was accomplished. The authors select many alternative distributions
and the power of both tests seerns to be similar to that of the competing
ones.

However, tests based on kurtosis and skewness are not too reliable be-
cause they are bhased on properties which do not characterize Gaussian
distributions. For instance, Ali (1974) exhibits a sequence of distributions
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{ P} which converges to the standard Gaussian distribution while the kur-
tosis of Py, goes to infinity. Thus, if we consider a random sample obtained
from P, the bigger the index k, the greater chance to reject the normality
of the sample. On the other hand, some examples of symmetric distribu-
tions, with shapes very far from normality (some of them even multimodal),
and 32 = 3 are known (see, for instance, Balanda and McGillivray 1988;
Kale and Sebastian 1996). As a consequence, none of the Vb, by, K? or R
tests detects the non-normality of the parent distribution in all cages.

Other tests of normality are the u-test (see David, Hartley and Pearson
1954), based on the ratio between the range and the standard deviation in
the sample, and the a-test (see Geary 1947), which studies the ratio of the
gsample mean to the standard deviation. These tests are broadly considered
as not being too powerful against a wide range of alternatives (although it is
known that the wtest has good power against alternatives with light tails;
see Shapiro, Wilk and Chen 1968; in fact, according to Uthoff 1970, 1973,
the w-test is the most powerful against the uniform distribution while the
a-test is the most powerful against the double exponential distribution).

For these reasons, other tests, focusing on features that characterize
completely (or, at least, more completely) the family under consideration,
have been proposed. These tests can be divided, broadly speaking, into
three categories. The first, more general category consists of tests that
adapt other tests devigsed in the fixed-distribution setup. When we special-
ize on location scale families, new types of tests that try to take advantage of
the particular structure of F, can be employed. Tests based on the analysis
of probability plots, usually referred to as correlation and regression tests,
lie in this class. A third category, whose representatives combine some of
the most interesting features exhibited by goodness-of-fit tests lying in the
first two categories, is composed of tests based on a suitable Lo-distance
between the empirical quantile function and the quantile functions of the
distributions in F, the so-called Wasserstein distance.

Tests based on Wasserstein distance are related to tests in the first
category in the sense that all of them depend on functional distances. On
the other hand, it happens that the study of Wasserstein-tests gives some
hints about several properties of the probability plot-tests. These two facts
have led us to present them separately. Our approach will try to show that
tests based on Wasserstein distance provide the right setup to apply the
empirical and quantile process theory to study probability plot-based tests.
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3.1 Adaptation of tests coming from the fixed-distribution setup

All the procedures considered in Section 2 were based on measuring the
digtance between a distribution ohtained from the sample and a fixed dis-
tribution. One way to adapt this idea for the new setup consists of choosing
some adequate estimator 6 of 6 (asswming the null hypothesis is true) and
replacing the fixed distribution by F(-, é) This simple idea was suggested
by Pearson for his y?-test. That is, Pearson suggested using the statistic

where p;(6) denotes the probability, under F'(-, ), that X, falls into cell 7.

Pearson, however, did not realize the change in the asymptotic distri-
bution of %% due to the estimation of parameters. It was Fisher, in the
20%s, who pointed out that the limiting distribution of ¥* depends on the
method of estimation and showed that, under regularity conditions, if g is
the maximum likelihood estimator of & from the grouped data (Oy, ..., Oy),
then ¥ has asymptotic Xftfdf]_ distribution (see, e.g., Cochran 1952, for a
detailed review of Pearson’s and Fisher’s contributions).

Fisher also observed that egtimating & from the grouped data instead
of using the complete sample (e.g., by estimating # from the complete like-
lihood) could produce a loss of information resulting in a lack of power.
Further, estimating & from the original data is often computationally sim-
pler. Fisher studied the asymptotic distribution of ¥* when @ is unidimen-
sional and @ is its maximum likelihood estimator from the ungrouped data.
His result was extended by Chernoff and Lehmann (1954) for a general
d-dimensional parameter showing that, under regularity conditions (essen-
tially conditions to ensure the consistency and asymptotic normality of the
maximumn likelihood estimator ),

k=1

k—d-1
D DI SR DI (3.1)
i=1 j=k—d

where Z; are i.1.d. standard normal randem variables and A; € [0, 1] may
depend on the parameter ¢. This dependence shows a serious drawback to
the use of ¥? for testing fit to some families of distributions, the normal
family being one of them (see Chernoff and Lehmann 1954).
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The practical use of ¥? for testing fit presented another difficulty: the
choice of cells. The asymptotic Xﬁ—l distribution of Pearson’s statistic was
a consequence of the asymptotic normality of the cell frequencies. A cell
with a very low expected frequency would cause a very slow convergence to
normality and this could regult in a poor approximation of the distribution
of x*. This (somewhat oversimplifying) observation led to the diffusion
of rules of thumb such as “use cells with at least 10 observations”. Hence,
combining neighboring cells with few observations became common practice
(see, e.g., Cochran 1952).

From a more theoretical point of view, in the setup of testing fit to a
fixed distribution, Mann and Wald (1942) and Gurmbel (1943) suggested
using equally likely intervals under the null hypothesis as a reasonable way
to reduce the arbitrariness in the choice of cells (this choice offers some good
properties; for instance, it makes the y? test unbiased, see, e.g., Cohen
and Sackrowitz 1975). Trying to adapt this idea to the case of testing
fit to parametric families poses the problem that different distributions in
the null hypothesis lead to different partitions into equiprobable cells. A
natural selution involves choosing, for cells, equally likely intervals under
F(-,é), where 6 is some suitable estimator of 6. A congsequence of this
procedure is that, again, the cells are chosen at random.

Allowing the cells to be chosen at random introduces a deep modifica-
tion to the statistical structure of yv* because the distribution of the random
vector (Oy,...,0) is no longer multinomial; remarkably, however, it can,
in some important cases, eliminate the dependence on the parameter & of
the asymptotic distribution in (3.1). Watson (1957, 1958) noted that if
is the maximum likelihood estimator of @ (from the ungrouped data) and
cell 7 has boundaries F-1((j — 1)/k,8) and F~1(j/k,8), then (3.1) remains
true. Further, if 7 is a location scale family, then the A;’s do not depend
on @, but only on the family 7. As a consequence, an improved x? method
could be used for testing normality or exponentiality.

The development of the theory of weak convergence in metric spaces
provided valuable tools for further insights in y*-testing. Using the weak
convergence of the empirical process in P[0, 1], Moore (1971) obtained a
short rigorous proof of Watson’s result which was also valid for multivariate
observations and random rectangular cells. Later, Pollard (1979), using a
general C.L.T. for empirical measures due to Dudley (1978), extended the
result to very general random cells under the mild assumption that these
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random cells were chosen from a Donsker class.

Despite the fact that all these theoretical contributions have widely
spread the applicability and reliability of y*-tests, the limitations of this
procedure, noted when testing fit to a fixed distribution, carry over to the
case of testing fit to a family (see, e.g., Stephens 1974, or 1986a).

The use of supremum or quadratic statistics based on the empirical dis-
tribution function with parameters estimated from the data could provide
more powerful tests, just as in the fixed distribution setup. The adaptation
of W’E or K, to this situation can be easily carried out. Let HAH be some
estimator of 6. We can define the statistics

W2(W) = n /m U(F (e, 6,)) (Fo(x) = Fla,6,))2 dF (e, 6,),

— 0

and

. . F(x) — Flz,6,
K.(U)y=vn sup [ Fa () (f"a n)l
— oo a o lD(F(Ta an-))

?

and uge them ag statistical tests, rejecting the null hypothesis when large
values of W2(T) or K,(¥) are observed. However, it tock a long time
for these statistics to be considered as serious competitors to the y*-test;
little wag known about these versions of Crameér-von Mises or Kolmogorov-
Smirnov tests until the 50°s (see, e.g., Cochran 1952).

The property exhibited by W2 and K, of being distribution-free does
not carry over to W2(¥) or K, (). If we set Z; = F(X;,6,) and let G, (¢)
denote the empirical digtribution function agsociated with Z4, ..., Z, then,
obviously,

W2 (w) = -n/lkll(t)(@n(t) — 1)%dt, (3.2)

K, (&) = n sup ——— 1
(%) v [)<t}<)]. U(t)

but, unlike in the fixed distribution case, 2y, ..., Z, are not i.i.d. uniform
random variables,

(3.3)

However, in some lmportant cases the distribution of Z1,..., 4, does
not depend on #, but only on F. In these cases, the distribution of W2(¥) or
K, (V) is parameter-free. This happens if F is a location scale family and
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~

8, is an equivariant estimator, a fact noted by David and Johnson (1948).
Therefore W, 2(T) or K, () can be used in a straightforward manner as test
statistics in this situation. Lilliefors (1967) tock advantage of this property
and, from a simulation study, constructed his popular table for using the
Kolmogorov-Smirnov statistic when testing normality.

The first attempt to derive the asymptotic distribution of any statistic
of W2(T) or K,(T) type was due to Darling (1955). His study concerned
the Cramér-von Mises statistic

1

an/ (ﬂ@ﬂ—F@ﬁﬂfﬂWm&)n/(@&ﬂ—ﬂ%a

0

—

agsuming that 6 was one-dimensional. Let us define

H, := n/m (F (x) — F(z,0) — (é,,,9)%5’@,3))2@'(3«.,9)

— X

:/%ﬁ@mnﬁwﬁ@

0

~

where T, = /n(0, — @), and

90) = 9(t,0) = —F(x,0)

= (3.4)

z=F~1(t,8)

Darling’s approach was based on showing that, when the underlying
distribution of the sample is F(-,6) and 7 and g gatisfy some adequate
regularity conditions, then
W2 — H, = op(1). (3.5)

Thus, the asymptotic distribution of ﬁ/f can be studied through that of
H,,. Darling showed that the finite dimensional distributions of /n(G,, (¢)—
t) — Tg(t) converge weakly to those of a Gaussian process Y () with co-
variance function K (s, ) = s Af— st —¥(s)d(t), where ¢:(f) = og(t) and o
is the asymptotic variance of T,,. He showed, further, that under some ad-
ditional assumptions on é‘n, Donsker’s invariance principle could be applied
to conclude that

1
w2 [y

0
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and, as in the fixed distribution case, a Karhunen-Loéve expansion for
.[[) )2dt can provide a good way to tabulate the limiting distribution

of IV 2 Sukhatme (1972) extended Darling’s result to multidimensional
parameters and gave very valuable information for the Karhunen-Logve
expansion of the limiting Gaussian process.

Instead of considering the process {n(G, () — ) — T, g(t)}+, a direct
study of the estimated empirical process, {y/ n( 1o (1) — 1)}y, could yield the
asymptotic distribution of general W'n (T) and K, (1) statistics (recall (3.2)
and (3.3)) without having to rely on a different asymptotic equivalence as in
(3.5) for every different statistic. Kac, Kiefer and Wolfowitz (1955) were the
first to study this estimated empirical process in a particular case: if we are
testing fit to the family of normal distributions N (g, 0?) and we estimate
8 = (u,0%) by g, — (XT,, 52), then the finite dimensional distributions of
{VA(Ga(t) — )} converge weakly to those of a centered Gaussian process
Z(t) with covariance function

K(s,t) = snt—st—o(@ ' (s))o(d7' (1)
,%qu(,5.)@(@4(3))@4(t)é(@fl(t)), (3.6)

where @1 is the quantile inverse of ® (note that the difference between
Darling’s result and (3.6) is the introduction of an extra term corresponding
to the second parameter to be estimated). Although they did not prove
weak convergence of the estimated empirical process itself, they used this
result (comhined With a particular invariance result due to Kac) to conclude
that ﬁ/ = fﬂ £))2dt, providing, therefore, the asymptotic distribution
of the Cl"dﬂl(—‘l" von l\hseb test of normality.

A general study of the weak convergence of the estimated empirical
process was carried out by Durbin (1973) using the theory of weak conver-
gence in p{O, 1]. Durbin’s result can be essentially summarized as follows.
Assume 8, satislies

. 1 <
Vr(l, — 6) = 7= ZE(X.,-, 0) + €,

Ci=1
where €, £ 0 and 1(X1,8) is centered and has covariance matrix . = L(8).
Assume further that F(z,8) is continuous in x for all 8. Set h(t,8) =

1
jfm (£.6) (i, @)dF (x,0) and assume that the vector (with the same dimen-
sion as 0) g(t,0), as defined in (3.4), is continuous in (£, &). Then we have
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Theorem 3.1. Under the null hypothesis and provided the ebove assump-
tions hold, the estimated empirical process, (G, (t)—t), converges weakly
in P[0, 1] to a centered Gaussian process Z(t) with covariance function

K(s,t) =snt—st— h(s)’g(t) — h(t)’g(s) + g(s)’Lg(t). (3.7)

When F satisfies some regularity conditions and 6, is an efficient es-
timator (in the sense given in Durbin 1973), then L in (3.7) is the inverse
of the information matrix, { = I{0), and h(¢) = I 1g(¢). In this case (3.7)
simplifies to

K(s,t)=sAt—st—g(s)T Lg(t).

Note that this covariance function can be expressed as s A ¢ — st —
Zf:] @;(s)d;(t) for some real functions ¢;. A very complete study of the
Karhunen-Loéve expansion of Gaussian processes with this type of covari-
ance function was carried out in Sukhatime (1972). Note also that a variant
of Durbin’s theorem in the form of weak approximation, given by Theorem
3.1(a) in Burke et al. (1979), proved useful later from the technical point
of view.

Theorem 3.1 provides, as an easy corollary, the asymptotic distribution
of a variety of ﬁff(@) and f(n(\ll) statistics under the null hypothesis. In
fact, Durbin’s results also give a valuable tool for studying its asymptotic
power because they include too the asymptotic distribution of the esti-
mated empirical process under contignous alternatives. A survey of results
connected to Theorem 3.1 as well ag a simple derivation of it based on Sko-
rohod embedding can be found in Shorack and Wellner (1986). Among the
statistics whose asymptotic distribution can be derived from Theorem 3.1,
three representatives have deserved special attention in the literature: the
Cramer-von Mises statistic, and

f(n - \/F sup ‘Fn(m) - F(:E7011)|7

— o0 < B OO

and

i o (F(x) — F(z,0,)) .

Ai _ n/ ( n(ﬂ) ( ? n.)A) dF(:E,(Z’,,{),
—oa F(:E,Q'T,)(l - F(:E,E)n))

which are known, as in the fixed distribution setup, as Kelmogorov-Smirnov

and Anderson-Darling statistics respectively. Also, as in the fixed distribu-

tion cage, quadratic statistics offer in general better power properties than
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K, with flﬁ outperforming ﬁ/—f Any of these statistics offers considerable
gain in power with respect to the x? test (see, e.g., Stephens 1974 or 1986a).

Let us conclude this subsection by commenting, briefly, that the achieve-
ments of subsequent advances in the theory of empirical processes have
allowed the development of other goodness-of-fit procedures.

For instance, in Feuerverger and Mureika (1977) the asymptotic distri-
bution of the empirical characteristic lunction is obtained; see also Csorgd
(1981a). Analogous versions of Durbin’s theorem for empirical characteris-
tic and quantile functions were developed by Csorgd (1981h) and LaRiccia
and Mason (1986). This was applied in Murota and Takeuchi (1981), Hall
and Welsh (1983), Epps and Pulley (1983) and Csdrgd (1986a, 1989) to
propose new normality tests. Simulations in Hall and Welsh (1983) sug-
gest that these tests have good behaviour against symmetric alternatives.
Related ideas for testing for the broader model of all stable distributions
are in Csorgd (1986b) and references therein, and these tests were recently
simulated by Koutrouvelis and Meintanis (1999).

A different way to adapt the fixed-distribution tests is the minimum
distance method. Assume that §(F,G) is a distance between distribution
functions. Set A(F,,F) = infy 6(F,, F(-,8)). A(F,, F) is a reasonable
measure of the discrepancy between the sample distribution and the family
F that can also be used for testing fit to F. Dudley’s theory of weak
convergence of empirical processes can be used for deriving the limiting
distribution of A(F,, F) when §(F,G) = ||F — G|| with || - || being some
norm on D0, 1] or D[—o0,00] (see, e.g., Pollard 1980). An alternative
derivation can be based on Skorohod embedding (see Shorack and Wellner
1986, pp. 254-257).

3.2 Correlation and regression tests

In this and in the next subsection we will assume that F is a location
gcale family, i.e., given a distribution function Hy, we will assurmne that F is
the family of distribution functions obtained from Hy by location or scale
changes. We will assume Hy to be standardized.

Goodness-of-fit tests in this subsection focus on the analysis of the pop-
ular probability plot. Some reviews on this subject have appeared recently
(see, for instance, Lockhart and Stephens 1998, or Stephens 1986b). The
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idea behind the probability plot is as follows.

Let Xy,..., X, be arandom sample whose common distribution func-
tion belongs to F and has mean j and variance 62, Let Xy = (X(]), e ,X(n))
be the corresponding ordered statistic. Let Zy = (Z(yy,..., Zg)) be an
orderad sample with underlying distribution function Hpy and let m =
(my,...,m,) and V = (2;;) be, respectively, the mean vector and the co-
variance matrix of Zo, that is, rm; = EZyy and vy = E(Zgy—ma) (Z—my).
Then,

X =p+0Zg, indistribution, i =1,...,n. (3.8)

Thus, the plot of the ordered values X(y,. .., X,y against the points
iy, ..., m, should be approximately linear; lack of linearity in this plot
suggests that the distribution function of Xy does not belong to F. Check-
ing this linearity is often done “by eye”, but, some analytical procedures
have been devised. They were proposed according to two different crite-
ria, which essentially lead to equivalent tests, the main difference heing the
point of view employed by the proposer to justify his/her proposal.

The first criterium relies on the idea of selecting an estimator % of 2,
assuming the linear model (3.8) is correct, and comparing it with 52 which,
in any case, is a consistent estimator of a%. Under the null hypothesis 6% /52
should take values close to 1. Hence, values of 8%/52 far from 1 would lead
to rejection of the null hypothesis. These procedures are called regression
tests.

A second class consists of tests assessing the linearity in (3.8) through
the correlation coefficient between vectors Xy and m, p(m, Xo) (notice that
here we have no real correlation coeflicient because m is not random).
When model (3.8) is true, we expect p®(m, Xo) to take values close to 1
and, consequently, small values of p*(m, Xo) would indicate that the null
hypothesis is not true. Tests of this kind are called correlotion fests. The
vector m can be replaced by other vectors 3 = (51, ... , 3,) satisfying, under
the null hypothesis, some approximate linear relation with Xy, Coordinates
of the vector 8 are usually known as pletting positions.

The first example of these tests was the Shapiro-Wilk W-test of nor-
mality, proposed in Shapiro and Wilk (1965). There, the authors state
that they are trying to provide an analytical procedure “to summarize for-
mally indications of probability plots” (pp. 591). The best linear unbiased
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estitnators, BLUE, of p and ¢ in model (3.8) are

P
N = N k) V JX()

p=X, and 6 = —/——
1.

mV-lm

(this holds for any symmetric Hp). Hence, under the null hypothesis, 42 /5%
should take values close to 1. The Shapiro-Wilk statistic, W, is a normal-
ized version of 47 /5%, namely,

9
(mIV*] Xg)
W = —.
m'VAV-Im Y (X, — X)?

(3.9)

The normalization ensures that W always takes values between 0 and 1
(since W equals p?(V~'m, Xj)). Small values of W would lead to rejection
of the null hypothesis. This is a regression test, since it is based on the

=, but, obviously, it can also be seen as a correlation
test with plotting positions V'~ 'm. According to simulations (provided, for
instance, in Shapiro, Wilk and Chen 1968) it seems that the W-test is one
of the most powerful normality tests against a wide range of alternatives.
This fact has made the test very popular, and it can be considered the gold
standard for comparisons. However, employing W for testing normality
presents several difficulties of different kinds.

comparison of & and S*

One problern concerns computational aspects. Computation of W re-
quires previous computation of m and V=!'. This task is difficult and,
in fact, when W wag introduced, elements in V' were tabulated only for
n < 20, For this reason some numerical approximations that allowed the
computation of W quite accurately for sample sizes up to 50 were proposed

in Shapiro and Wilk (1965).

An equally important concern regarding W wag the tabulation of its
null digtribution. Except in case n = 3, when the W-test iz equivalent
to the u-test (see Shapiro and Wilk 1965) the exact distribution of W is
unknown. Percentiles of W were computed by simulation in Shapiro and
Wilk (1965) for sample sizes up to 50. However, the asymptotic distribution
of W remained unknown for a long time. In fact, it was not obtained until
20 years later, in Leslie, Stephens and Fotopoulos (1986) who showed the
asymptotic equivalence, under normality, of W and ancther correlation test
whose distribution was already known at this time (see the considerations
concerning the de Wet-Venter test below).
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Some transformations of W that made its distribution approximately
Gaussian were proposed (see Shapiro and Wilk 1968, or Royston 1982). It
is curious to notice that, in Shapiro and Wilk (1968), the authors employ
normal probability plots, whose fit is addressed “by eve”, to analyze the
goodness of the proposed approximation. However, these results must be
used with some caution because, as shown in Leslie (1984), they rely on
approximations which do not hold with the necessary accuracy.

An additional weakness of the Shapiro-Wilk test is that the procedure
may be not consistent for testing fit to non-normal families of distributions.
For instance, if 7 is the exponential location scale family then the Shapire-
Wilk statistic becomes

(X, — Xpy)*

SN eV

which is a function of the coefficient of variation. There are some families of
distributions with the same coefficient of variation as the exponential family
(see Sarkaci 1975; Spinelli and Stephens 1987). Thus, the Wg-test is not
congistent when testing for exponentiality. In particular, simulations in
Spinelli and Stephens (1987) suggest that the power of the We-test against
the beta (1/4,5/12) distribution decreases with the sampling size.

The limitationsg of the Shapiro-Wilk test led to the introduction of mod-
ifications of W, which aimed to ease them. The first examples were the
D*Agostino test (see D’Agostino 1971) and the Shapiro-Francia test (see
Shapiro and Francia 1972). They were intended to replace the W-test for
sample sizes greater than 50, Both tests are easier to compute than the W-
test. The D’Agostino test employs an estimator of ¢ proposed in Downton
(1966) to get the statistic

Yo —(n+ 1)2_])X(;).

D f
nts,

The Shapiro-Francia test is based on an idea suggested (without proof)
in Gupta (1952) (see also Stephens 1975} according to which the matrix
V=1 in (3.9) can be replaced with the identity 7, obtaining the statistic

RS-
) (m XU)
W = — <.
m'm Y (X; — X)?
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Both tests are correlation tests. The plotting positions are (1,2,...,n)
for the D-test and m for the W -test. Simulation studies in D’Agostino
(1971) and Shapiro and Francia (1972), respectively, suggest that the pro-
posed tests are approximately equivalent to the W-test. The D-test has
the advantage of being asymptotically normal and its distribution can be
approximated by a Cornish-Fisher expansion for moderate sample sizes.

Apart from the ease of computation, an interesting feature of the W'-
Shapiro-Francia test is its consistency for testing fit to any location scale
family with finite second order moment, a fact shown in Sarkadi (1975).
However, it is curious to notice that this consistency disappears if one you
employ the asymptotic distribution. This happens, as shown in sub-gection
3.3.3, because if the family under testing has tails a bit heavier than those
of the Gaussian distribution (this includes, for instance, the exponential
family), then the asymptotic distribution only depends on the tails of the
distribution. Therefore, if we have a distribution in the alternative with
the same tails than a distribution in the family, then the asymptotic dis-
tributions of W' -Shapiro-Francia test under the null hypothesis and under
the distribution in the alternative coincide (see also the comments about
the power of the Shapiro-Francia test below).

A further sirnplification of the W -test was proposed in Weisherg and
Bingham (1975) by replacing m by the vector m = (v, ... , 7, ), where

1 [ 2—3/8
ﬁ'a,-:(I)l(& / )-, i=1,...,n.

n+4 1/4

This statistic is easier to compute than I-‘Vf, and a Monte Carle study in
Weisherg and Bingham (1975) suggests that the two tests are equivalent.

Another modification of W was proposed by de Wet and Venter (1972),
It seems that the concept of the correlation test was introduced for the first
time in that paper. The de Wet and Venter test is the correlation test with
plotting positions

o _1 1 _ 7t
J-(‘I’ {m s, @ — ,

or, equivalently, the test which rejects normality when large values of

_ 2
we=30 (% — @ i/ (n+ 1)])

i



26 E. del Barrio, J A, Cuesta-Albertos and C. Matrdn

are observed,

Subsequent tests contimmed this approach. For instance, Filliben (1975)
proposed a correlation test with the medians of the ordered statistic Zy as
plotting positions. Some simulations comparing this and the W and W
tests were given. The distribution of this statistic was also computed via
the Monte Carlo method.

An interesting feature of the W*-test is that it was the first correla-
tion normality test with known asymptotic distribution. To be precise,
it was shown in de Wet and Venter (1972) that, if {Z;} is a sequence of
independent standard Gaussian random variables, then
ur = Z;Z - 1

2

i=3

for a certain sequence of constants {a,}. The key to the proof relied on
showing, through rather involved calculations, the asymptotic equivalence,
under normality, of W* and a certain quadratic form and using the asyrmp-
totic theory for quadratic forms given in de Wet and Venter (1973).

Since the publication of de Wet and Venter (1972), the possibility of
obtaining the asymptotic distribution of other correlation tests of normal-
ity by showing their asymptotic equivalence with the W'-test has been
congidered. An important paper in this program wag that of Verrill and
Johnson (1987), where the asymptotic equivalence of correlation tests un-
der some general conditions (satisfied by most of the correlation tests in the
literature) is shown. In particular, it is shown that the Shapiro-Francia,
the Weisherg-Bingham and the Filliben tests are asymptotically equiva-
lent to the de Wet-Venter test, having consequently the same agymptotic
distribution.

The asymptotic distribution of the Shapiro-Wilk test could, then, be
obtained using its asymptotic equivalence with the Shapiro-Francia, shown
in Leslie, Stephens and Fotopoulos (1986). This solved an important prob-
lem that had existed for around twenty vears. It would be unfair not to
mention Leslie (1984), which proved the validity of the key step in previous
heuristic reasonings hased on assuming that the vector m is an “agymptotic
eigenvector” of V! More precisely, the main result of that paper is that
there exists a constant C' which does not depend on n, such that

|V~ tm — 2ml < C(log‘n)q’/z

1
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where, given the matrix B = (b;;), then | B||* = Zij b?j.

The possibility of extending the use of correlation tests to cover goodness-
of-fit to other families of distributions has also been explored, for instance,
in Smith and Bain (1976), for the exponential distribution, or in Gerlach
(1979) for the extreme value distributions. In this setup, correlation tests
do not present the same nice properties exhibited when testing normality.
In Lockhart (1985) the asymptotic normality of the Shapiro-Francia test
when applied to the exponential family is obtained. The rate of conver-
gence is extremely slow: (log n)]ﬂ. This result was generalized in McLaren
and Lockhart (1987) to cover extreme-value and logistic distributions with
the same rate and the same asgymptotic distribution as in the exponen-
tial case. However, the asymptotic efficiency of the Shapiro-Francia test in
these gituations was found to be 0 when compared with tests based on the
empirical digtribution function, since it was possible to find a sequence of
contiguous alternatives such that the asymptotic power coincides with the
nominal level of significance of the test (on this question, see also Lockhart

1991).

3.3 Tests based on Wasserstein distance

A different approach to correlation tests was suggested in del Barrio, Cuesta-
Albertos, Matrdan and Rodriguez-Rodriguez (1999) and will be widely de-
veloped in the remainder of this work., The methodology consists of analyz-
ing the Lo-Wagserstein distance between a fixed distribution and a location
scale family of probability distributions in R. Our study will cover different
kinds of distribution tails, including as key examples the uniform, normal,
exponential and a more heavily tailed law.

Let Po(R) be the set of probabilities on R with a finite second moment.
For probabilities Py and P, in P(R) the Lo-Wasserstein distance between
Py and B is defined as

1/2

W(P,, Py) = inf{[E (X1 — Xo)2| T £(Xy) = P, £(Xs) = Pg}.

For simplification of notation we will identify probability laws with their
distribution functions. In particular, if I, ¢ = 1,2, are the distribution
functions associated with the probability laws P € Po(R), we will say that
Iy e Pa(R), i = 1,2 and write W(F), Iy) instead of W(P, Ps).
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An important fact, which makes W useful for univariate statistics (the
multivariate setting is very different), is that it can be explicitly obtained
in terms of quantile functions. If F; ¢ T(R), ¢ = 1,2, then (see, e.g.,
Vallender 1973; Bickel and Freedman 1981)

172

W(F), Fy) = UJ (Fri ) — By @) ae| (3.10)

0
Some relevant well-known properties of the Wagserstein distance are
included in the following proposition for future reference. The reader in-
terested in properties and uses of the general L,-Wasserstein distance can
refer to Bickel and Freedman (1981), Cuesta- Albertos, Matran, Rachev and
Rischendorf (1996) or Rachev and Riischendorf (1998).

Proposition 3.1.

(a) Let F; € P2(Rj, ¢ = 1,2, Call m; the mean value of F; and I} the
distribution function defined by F; (x) = Fy(z — my). Then

Wz(F]?F?) - WQ(FT]*JF;) + (‘TH.] - WT'Z)g'

(b) Let {Fo}n be a sequence in Po(R). The following stotements are
equivalent:

i. By — F e Py(R) in W-distance (i.e. W(F,, F)— 0).
it. F,>F and [ |¢|*dF, — [ |t]*dF < co.
iii. F7V— F71 a5 and in L2(0,1).

As in Subsection 3.2 we assume F to he a location scale family of
distribution functions, that is, 7 = {H : H(z) = Ho((x — p)/o),p &
R, o > 0} for some Hy € Py(R) which we choose, for simplicity, with zero
mean and unit variance (thus, given H(x) = Ho((x — p) /o) in F, pand &
are its mean and its standard deviation, respectively).

Note that the quantile function associated with H(x) = Ho((x — p)/0)
satisfies H™1(8) = p + o Hy ' (#). Therefore, if F' is a distribution function
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in Py(R) with mean py and standard deviation oy, (3.10) and Proposition
3.1 (a) imply that

WAF,F)y = inf{W*(F,H), H € F}

.1
ot { [0 ooty )

1
= il;fn{a[z]—l—azQGf () — o) Hy ()dt}

0

= g ([ e - 0

2

= ag—(/(;J HH, (f)(i:‘) : (3.11)

Thus, the law in 7 closest to I is given by ,u =pgpand o = fﬂl F)

2

H;'(t)dt, which is the covariance between F~! and H,' when seen as
random variables defined on (0,1). The ratio W2({F, F)/o? is not affected
by location or scale changes of F'. Hence, it can be considered as a measure
of dissimilarity between F' and F. For example, the best W-approximation
to F'in the set 7y of normal laws will be the normal law with mean gy
and standard deviation ﬁ]l F=1{#)®1 (t) dt, and the ratio

W) W 2 (1)
oy 03

meagures the non-normality of F.

The invariance of W2(F, F) /a3 against location or scale changes of F
suggests that it is convenient to use a sample version of it for testing fit to
the location scale family F'. More precigely, if X, Xs, ..., X, is a random
sample with underlying distribution function F,

Rn = —WZ(FT” ];) — - 6_317
Sa 53

where &, = j() —U)H, H(t)dt, can be used as a test statistic for the null
hypothesis /' € F. Large values of R,, would lead to the rejection of the
null hypothesis.
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This testing procedure belongs to the class of minimum distance tests
described in Subsection 3.1. A nice feature of Wasserstein tests is that
we have an explicit expression for the minimum distance estimators and,
consequently, for the minimum distance statistic, unlike what happens for
other metrics (e.g., those leading to Kolmogorov-Smirnov or Crarnér-von
Mises statistics).

The connection between R, and correlation and regression tests can be
clearly seen by noting that large values of R, correspond to small values
of &%/S5% which, with the notation employed in Subsection 3.2, can be
expressed ag

(0 viXy)

2
X =
P Xo) n'vS?

where v = (1,... 1) and v = f(i._/:']_)/n Hy)dt, i = 1,...,n {observe
that 1 is centered and lim,, v = 1 since Hy is assumed to be standard-
ized). Hence, the R,-test is equivalent to a correlation test with plotting
positions ¥ = (vy,..., )" In fact, the plotting positions in the Shapiro-
Wilk, Shapiro-Francia or de Wet-Venter tests are approximations to the
Wagserstein plotting positions. This was noticed, in the context of normal
probability plots, by Brown and Hettmansperger in (1996), which consid-
ered the problem of finding the optimum plotting positions. That paper
presented a heuristic explanation, based on an orthogonal expansion of R,,,
of the power properties of the R, normality test against general alterna-
tives, observed by Stephens (1975). Our results (Theorems 3.5 and 3.6)
will justify those heuristic considerations.

We now consider the problem of obtaining the asymptotic distribution
of R, under the null hypothesis. The invariance of R, with respect to
location or scale changes of F' allows us to asswme that FF = Hy. By
the convergence of S2 — o?(Hy) = 1 a.s., we will be able to study the
asymptotic behaviour of R, through that of SR, which in turn (recalling
that Hy is standardized and /' = Hy) permits the following decomposition

. 2
0<R;, = SiR.=5; - ( / F;r’(t)HJ](ﬁ)dt)
0
«] 2

= [Ewra- @) - ([ Boor )
- /UJ (B () — Pt~ (/{;l(F,,_" (t)— F! (t))dt>2
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2

- (/Q'J(F“_l(t) - F_l(t))F_J(t)dt>

= Ry -RE - RY. (3.12)

Let us remark that nRY) = (n'/2X,)? which, since F € Po(R), has a
X} asymptotic law. On the other hand,

o) = (w2 ([ E 0P e - 1)) = (0! - 1Y,

which, under not-too-restrictive conditions, has a scaled i asymptotic

law (but see (3.26)). Finally note that, in the normal case, R s

similar to the statistic LY of de Wet and Venter. However, the deriva-

tion of the asymptotic distribution of R! requires a joint treatment of
1 2 3

(R R R,

A look at (3.12) suggests that this joint treatment can be based on the
asymptotic theory of quantile processes. This will be our approach. If F'
has derivative f, the general quantile process, p,,, is defined by

pa(t) =P FHETT ) (FH O - F7N ), 0t < 1

T

This general quantile process can be approximated, under certain regu-
larity conditions, by Brownian bridges in a way that we will study in more
detail below. This approximation can be used in the study of R, since

For the approximation of the general quantile process, we will assume
the following regularity conditions on F'.
Assumptions. Leta =sup{z : F(z) =0},b =inf{z : F(z) =1}, —0 <
a < b< oo We will assume that

L Fis twice differenticble on (a,b).

2. F'(x) = f{x) >0, z € (a,b).
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3. For some ~v > 0 we have

sup ¢(L— )| f (F DI/ F(FH () < 7.

021

The following strong approximation result for p, (Theorem 6.2.1 in
Csérgd and Horvdth 1993) will enable us to use expression (3.13):

Theorem 3.2. Under Assumptions I, 2 and 8, we can define, on o vich
enough probability space, a sequence of Brownian bridges {B,(1),0 < ¢ <
1} such that

ey - Bue) [ Orflogm). =0,
S (t((L—1)) Op(1), o< < f;
Under the additional assumption
11— 1)
—dt < oo, (3.14)

o fEFL(E))

we can use Theorem 3.2 and the same techniques employed in the proof of
Theorem 6.4.2 in Csorgd and Horvath (1993) to show that

B ) N ([P ) N ([ 0w\
() « (/ .f(F"-(f))dt) (/ FETH) dt)

(3.15)

where B(t) is a Brownian bridge. Therefore, if the following conditions on

the behaviour of the extremes hold
L L 7 )
n / TFETN) - FTU@)Rdt =n / (X1, — FHe)%at ¥ 0and
P’ f ‘ (3.16)
-n/ (P76 — P (e)dt = -n/ (X — F7H @) at 5 0,
1-L _L

Tt i
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taking into account that for every Borel set, A C [0, 1],
. 7 7 . )
/ (F7HE) = P )Pde > ( / (F () — F (t))dt)- and
A A
2

[@o-rrora > ([ero-For o) @
A A

we can conclude from (3.13) that the asymptotic distribution of nR? is
given by the limiting expression in (3.15). The following theorem summa-
rizes this fact.

Theorem 3.3. Under Assumptions 1, 2 and 3, if F' € F and (3.14) and
(5.16) hold, then

where h denotes the derivative of Hy.

We will now consider the application of Theorem 3.3 to several location
scale families F.

3.3.1 Uniform pattern

The hypotheses in Theorem 3.3 are eagily checked for the uniformm model.
Here Hy(t) = 12712(t + 32y and h(t) = 1272 for ¢ € (—3'/2,3"/2) and
we trivially obtain the following result.

Theorem 3.4. (Uniform model). If F is the family of uniform distribu-
tions on intervals, then

2

/: B (t)dt — (/01 B(t)dt) T 144 (/DJ (t - %) B(t)dt)-.

(3.18)

nR,, 512

A principal components decomposition (see, e.g., Shorack and Wellner
1986) allows us to express this limiting distribution as a weighted sum of
independent x7 random variables. The expression in square brackets has
bheen studied in relation to the Watson statistic and admits an easy expan-
sion (see, e.g., Shorack and Wellner 1986). On the other hand, Lockhart
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and Stephens (1998) have obtained in the expansion of (3.18) through the
analysis of the covariance function of the Gaussian process

B(t) - /D ' Bludu 12 (t - %) /U ] ('u- %) Blw)du,

resulting in the following expression for the limiting distribution in (3.18):

(&)
w 2
nik,—12 E A YT
i=1
where Y; are i.i.d. standard normal random variables and A; are the solu-
tions of the following equation

|~ cos (%) _ %%sm(%) (3.19)

We note that A = (77)~? with j a positive even integer is a solution of
(3.19), but we do not have an explicit expression for all solutions of this
equation.

3.3.2 Normal pattern

The normal model needs a more careful treatmment. The main problem
arises from the fact that the integral in (3.14) diverges. In fact we have
(see Bickel and van Zwet 1978)

1—L
v t(l—¢)
——dt =loglogn +log 2+ v+ (1), 3.20
]1_ PEEITR glog g2+ y+o(l) (3.20)

i

where v = limy,_, o, (Zi':] it —log k) is Euler’s constant. Since it is well
known (see, e.g., Lemma 5.3.2 in Csorgd and Horvath 1993, or Corollary
2.2 in Ceorgd, Horvath and Shao 1993) that

o] : 1 #1-)
o \S( t))

| . A #{1—¢) _
Tt 0, if j() Wdt-oo,

P

the limiting expression in Theorem 3.3 becomes 400 with probability 1 and
a more precise argument is needed.
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The asymptotic theory of extremes and the well known equivalence
o(x) =2 |z| () for ¥ — —oo enables us to prove (3.16) for the normal law.
We state this result in the following proposition, which was proved in del
Barrio, Cuesta- Albertos, Matran and Rodriguez-Rodriguez (1999).

Proposition 3.2. If{X;,,i=1,..., n} is the ordered sample obiained from
an (i.i.d.) random sample with standard normal low, then:

W1 .1

n/ (X @) de 5 0 and n’j (Kam — @71 (1)) At B0,
0 p

1-L
I

The next result reduces the problem of deriving the asymptotic distri-
bution of R}, to the study of a certain functional of a Brownian bridge.

Proposition 3.3. On an adequate probobility space there exists a sequence

1B () }n of Brownian bridges that fulfills

it it

2
=T B, (£)® (¢ o,
- ] TEOY ) | g,
L o{®71(t))
c==y

Proof. From Proposition 3.2 and (3.17) it follows that

n+1}) (re+1)

( T )2 () dt)g

_ ,
= =0,
6@ )

Therefore, the result follows from the fact that, on an adequate space,
we can substitute the quantile process, p,., with a sequence of Brownian
bridges. This can be obtained by a careful use of Theorem 3.2 and the
equivalence ¢(z) = |z| ®(z) for # — —oo (see details in del Barrio, Cuesta-
Albertos, Matran and Rodriguez-Rodriguez 1999). O

The convergence of R, and the characterization of its limit law are
eagier problems. In the following theorem we establish the convergence
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in law of R, through the analysis of an equivalent version based on the
Brownian bridge. Note that the main difficulty is giving sense to

/J B2(t) — EBQ((t)Jt (3.21)
o (a(@ ()’

because it follows from Lemma 2.2 in Csérgd, Horvath and Shao (1993)
that the function defined by ¢ — (B*() — EB*(£))/(6¢(®1(#)))? is a.s. not

integrable. Therefore, we cannot assume the a.g. existence of

o _-!—TBZ EBz(f)
! ] SITE

However, this limit does exist in the Lo-sense, and we can define (3.21) as
this Ls-limit.

Theorem 3.5. (Normal case) Let {X,}, be o sequence of i.i.d. normal
random variables. Then

where

Proof. As already observed, we can agsume without loss of generality that
the variables have the standard normal law, and that, by the asymptotic
normality of the sample variance S2 and (3.20), we have

n(Rn —an) —n(RE —an) = 52 R* (1 8%
= Op(IVR(R; —an +an) 50

provided n(R} — a,) = O,(1). Hence, the result will be proved if we
show that n(R! — a,) converges in distribution to the functional of the
Brownian bridge involved in the statement of the theorem. By Proposition
3.3, it suffices to give a limit sense to

1 BQ(t)—EBQ(t){
ﬁ (p(O-1(1)))? dt.
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If we set

_ [FT B BB,
A"‘/; (3" (f)))z &

)
then straightforward calculations show that

: T [T 2(s At — st)
Fo) CA B G AL ) N O
I (@(‘1"‘('5‘)))2(@5(‘1"‘(1")))3

5 /\ t— 51‘) . - !
A / NECCRIGDE dsdt < 0o, (3.22)

This fact can be used to show that F(A, — AT,,)Q — 0 as n, e — oo, hence
that A,, converges in L, to a random variable

_ "B BB,
A= [ T

O

The next theorem provides a series expansion of the limit law in Theo-
rem 3.5, Note that, to sorme degree, the proof of Theorem 3.6 contains that
of Theorem 3.5 because the key step in this theorem is statement (3.22)
and the proof of Theorermn 3.6 relies solely on a more careful analysis of the
limit in (3.22).

Theorem 3.6. Let { X, }, be a sequence of i.i.d. normal random variables.

Then

o 3 = i
'n(Rn - a‘n.)" - 5 + Z 4 ; y

where { Z,}, is o sequence of independent N (0, 1) random variebles and

Ll
o3y, mETET

n—41

Proof. 1t suffices to show that the functional of the Brownian bridge in
Theorem 3.5 has the same distribution as
R

2 =3 Y
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The operator L : Ly(0,1) — Ly(0, 1) defined by

1 st — st
R A e O

has eigenvalues A; = 1/4, j = 1,2,..., with assoclated eigenfunctions
H;(®1(#)), H; being the j-th Hermite polynomial. Since {H;(®1(¢)) 22
is a complete orthonormal system in Lo (0, 1), we have that

=T j=1 \” =T

The first two Hermite polynomials are Hy(z) =1 and Ha(z) = z. Hence,

(2 stpe) (1 S

& °%B(:&_)Hj('@*1(t))( 2_ T B(#)H; (@1 ;
o (T SR T Ty

B H @ (1) Hr B H @ (1) )
_E( Ln Bl @) df) _E( /ﬁr Bl () (ﬁ)

= Y (Zi(nf — EZ;(n)") — EZi(n)* — EZz(n),

where the random variables {Z;(n) ?ij have, for every fixed M, a joint
M-dimensional Gaussian law, and their variances, a?(l /n), satisfy

+1 S/\'f*‘)f) ) _19 ) —1 ds . 7_1
o2 (1 /n) = ] [ Ty T D (B () dsdt - Ay = =

Moreover,

(sAt— st) . . S
Cov(Z;(n), Zi(n) / / o(‘I’ O l(t))Hj((I) (s Hp (27 (#))dsdt —0

as n — 0o, Therefore for every fixed M:

M szl

M 5
Z (Zj(n)g - EZj(”)Q) — EZ\(ny — EZy(n)*"S — = + Z
j=3
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where Zy,Zy, ..., Z are independent N(0,1) random variables.

Let us observe that

" T B2 (1) — EB(1)
Ve (/_ ECRION: ‘“’)

41
T [T s At — st 2
:2/ / ( — ——— ) dsdt

[ [ (e o

70 P J
while
M M om M
) . Zs—1 1
Z (Zj(n)z — EZj(n)z) — Var Z < | =2 .
— — J — 7
J=1 J=1 i=1

On the other hand, taking into account that, if X and Y are standard-
ized random variables with a joint normal law and covariance p, then

COV(XZ, YQ) = 2p2, we obtain that

T B - BB
Cm( 1 W(H Zk(n))

+

o0
= ZCU\ (n), Zi(n) ‘ZZ () Z(n))]

9/\f—bf —1/. -1
- gz(/r / SR O e (t))dtdﬁ.s)

2]

AT s/\ff st 1 i .
= /T (]1 PTG T) Hk(@ (t))(lt) ds

-2 (/ f(/;fSf1(t))H"“("I’_1“))””>Jd‘s
_ / A )df72;11
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and, consequently,

=T BX(t)— EB%(t) . -, o1
Cov / . ey 27w | =2
T i=1 J=1
It is obvious that
(s . . (s 1
Var Z (Zf(n) — EZ;) (n)) ]| — 2 Z -
j=M+1 J=M+1 J

and, as a consequence,

3 LZi-1

W, -5+~

O

The asymptotic equivalence of R, with the Shapiro-Wilk, Shapiro-
Francia or de Wet-Venter statistics, which can he obtained from the re-
sults of Leslie, Stephens and Fotopoulos (1986), or of Verrill and Johnson
(1987), can be combined with Theorem 3.6 to obtain a new derivation of
the asvmptotic distribution of these statistics.

Our approach can give some light on the role played by the estimation of
parameters in a minimum Wasserstein distance test. Let us consider once
more decomposition (3.12). We have seen that 1 and ®*(¢) are eigenfunc-
tions of the integral operator L in the proof of Theorem 3.6. Hence, in
the normal case, in the limit n'Ry(?) and T?.Rgf) gimply cancel out the first
two terms in the principal components expansion of the limit law of nRg)
(hence, in a certain sense, we can say that the estimation of parameters p
and o results in a loss of two degrees of freedom). The normal law is the
only distribution for which this cancellation holds.

More precigely, let /' be an arbitrary distribution function with finite
variance and density function f. Under the hypothesis of the cancellation
of the first term in the orthogonal series expansion of

'Bt) - EBXt), (' B() L PBOF( N
A (f(F{"(l‘f)))2 “ (0 .f(F]'(f))dt) (0 FEHE) dt) ’
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ho(t) = 1 should be an eigenfunction of the operator

1 sht— st
o SUETHENE ()

Let h{t) = g(F~*(#)) be an eigenfunction. By differentiating the equation
above twice we obtain that g must satisfy

Lh(t) =

h(s)ds.

J(@) 1) () + U (edo(e) = —1o(x), (3.23)

where () = %(log f(x). I g(z) = 1 is a solution of (3.23), then !'(x) =
—AVand l{z) = —A"1z + b, from which log f(z) = —A'2% + bz + ¢, and
necessarily (under the additional hypothesis of standardization) f(x) =
(2m) "1/ 2em=72,

3.3.3 Heavy-tailed patterns

For distributions whose tails are heavier than the Gaussian the situation is
more complex. An interesting fact already observed by several authors
(Csorgd 1983; Stephens 1986b; McLaren and Lockhart 1987; Lockhart
1991) is the bad behaviour of correlation tests for heavy-tailed distribu-
tions. In fact, let us assume that a normalizing sequence, b, = o(n), is
necessary to achieve a nondegerate limit law for R}; ie., let us assume
that b, R}, — cngv, for some ¢, € R. Then, by Theorem 3.2, for every
fixed & > 0 we have the approximation

L (gey) @ e

Therefore (recall inequalities (3.17) and also that nR.,, (2)5x?), the statistic
b, R! — ¢, has the same asymptotic behaviour as

bol [ 1 2 ' 1 | ’ X
?(/[a,la]EF" (t) — F7H(t)) " dt— ( /[5,15]{: (@ -F ) F (t)dt) )—cu-

— 0

and thus
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Hence, the asymptotic distribution of RY depends only on the tails of
the distribution, so that a sample with underlying distribution function
different from /' but with the same tails would be indistinguishable through
this statistic. This simple observation offers a useful hint for the explanation
of the poor performance of correlation tests when testing fit of heavy-tailed
families of distributions. Correlation tests might still be of some use for
these heavy-tailed families if one is interested in assessing departures from
the null hypothesis concerning the shape of the tails.

The asyrmptotic distribution in the heavy-tailed case has been consid-
ered in several papers. For instance, Lockhart (1985) and McLaren and
Lockhart (1987) have obtained the asymptotic normality of correlation tests
for testing fit to the exponential, extreme value and logistic distributions
at rate v/logn. We note that the exponential case could be almost triv-
ially handled in our setup, using Theorem 5.4.3 ii) in Csorgd and Horvath
(1993).

To conclude, we will provide an example showing that for heavy-tailed
distributions we can obtain non-normal limit laws for R. This fact, as far
as we know, wasg previously unknown.

Example 3.1. Let

Q(z) = (\/Elog(a:))f]7 0<i<e
| o WTorleg(l-2)!, 1-eFoa <l

We can assume that @ is also defined in [e™*, 1—e~?], in such a way that
it is a nondecreasing function of C% in (0, 1) and satisfying Q(1—xz) = —Q(x)
and €' (x) > 0 for every « € (0,1) and j(]] Q2 (t)dt = 1.

If we define F = Q1 then F is a distribution function (and @ its quan-
tile function) with variance 1, which (as it can be easily checked) satisfies
our Assumptions 1, 2 and 3. We will denote its density function by f.

We will analyze the behaviour of R? for this example in the following
propositions.

Proposition 3.4. Let { X}, be o sequence of i.i.d. random variables with
distribution function F, defined above, If {1}, and {42}, are two inde-
pendent sequences of i.i.d. random wvariables with erponential distribution
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with Etj =1, and S;(x) = D lcjcatl 't;ﬁj.; i= 1,2, @ > 1 then
o ([ 50 @) - )
ogn ) — ) dt — ————
& a o log(n + 1)
, 2
1 4 © 1 (S M*
B — - +/ - (ﬂ> — 1) du
(R LT N SR w

T 2
1 4 w1 [ Sa{u)\ M -

FProof. Let {B,(t)}n be the sequence of Brownian bridges of Theorem 3.2.
Then

. Ly losn . 1/2 . § logn . 1/2
(logm)® (1= @m(@ _“%W'“ﬂ mmdq
( n A% (F@w)” n Lu (f@e)”

5 ] oz 1/2
(e OB (G 0 )
sz (1 =1)77 no Jeee o (AQ)

TSt
This convergence follows from the fact that the first term in the bounding
expression is O,(1), while

ERCEY B U
(logn) / t(1—t) gt < (logn) / 1 a0,

n o 43 (logt)? A ) logn 42 (log t)?

which, in turn, implies that

log n

£ ((l@gn)Q fj_ oy HON Zdt) - (log n)” /J_l% M(jt — 0,
no S (F(Q() no Jee o (SQE)

and, consequently, that

i

) legn )
(1ogn)2/ CETN) - P ) e Do,

log n

Tt

Using symimetry, in the remainder of the proof we will consider only the
left tail integral, which we have split into two pieces.
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Since ) varies regularly at 0 with exponent — 1/2, the asymptotic theory
of extremes (see, e.g., Galambos 1987, pp. 56) asserts that

logn
Ne)

(here, Ly 5 is the extreme value distribution defined, with the same notation,
in Calambos 1987).

Xin—Lyg (3.25)

Using L'Hépital’s rule and (3.25) we can easily obtain

) - T 1¢ —10y° !
(logn)® (/U (F ) —FH(1)) dt - m)

= Uogn) T\ 22+ m )i Vgt leg(nt 1)

¢
- logn)® — 22X u
(logn) (n+ 1

dt | BL7, +4L0, .
0 \/_lugf ) 1= b

On the other hand, the following equality

lim M = lim w — lim |Q( )l _
] F(f) i—0 t t—>D 2LQ;( ) )

allows us to apply Theorem 6.4.5 ii) in Csérgd and Horvath (1993) (take
p=v=2,7=0,L=1) to obtain

9
Lo s o St B
(logn)? / ' (Fn_l(f) - F_l(t))z dt= / 1 (M) —1] du,

U
1 0

where g(u) = Z]_<j<u_ vy, w > 1, for a sequence {u;};, of i.i.d. exponen-
tially distributed random variables with E+y = 1.

Finally, taking into account the simultaneous character of the approx-
imations used to prove the convergences above (based on Lemma 3.0.1 in
Csérgd and Horvath 1993), with standard arguments about the asymptotic
independence of functions of order statistics like Rossberg’s lernma, (see e.g.
Lemma 5.1.4 in Csorgé and Horvath 1993), and some elementary calculus
on distributions, we obtain (3.24).



Empirical processes and goodness-of-fit tests 45

As already observed, nR, (2)5x7, so that (logn)*R,(2) 2 0. On the
other hand, the computations in the last proof, Schwarz’s inequality and
inequalities (3.17) easily show that

(logn)*R.(3) = (logn)? (/0 (B (8)— F () F]'(t)dt)

=~ (logn)?

- /Ur (E:'J.(f,) fF*'J(t)) Fﬁ]‘(;)dt
+/‘ 1 (F7 () — F () F—J(t)dtjl o

k!

This completes the proof of the following congequence of Proposition 3.4.
Proposition 3.5. With the notation and hypotheses of Proposition 3.4 we
hawve

(logn)? (Sf;RH - 2 1)) ST — 4. (3.27)

log(n +

Obtaining the asymptotic behaviour of R, from SR, is not as easy
now as in cases considered previously. What is obvious from (3.27) is that

(logn)? (Rn — W) 5T -4, (3.28)
but the analysis of the asymptotic behavior of S2 log(n+1) is not completely
trivial. The conclusion, given in the following proposition, is amusing: the
inclusion of 52 contributes to the asymptotic law of R, just canceling the
—4 summand contributed by 7?,7(,3), and retrieving the original asymptotic
law of R,(,,]).

Proposition 3.6. With the notation and hypotheses of Proposition 3.4 we
hawve

(log )2 (R - ;)) = (3.29)

log(n +1
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Proof. First note that, for ¢ small enough, the quantile function, ¢7yz,
associated with X7 satisfies

Q{1 —18) = inf{w:t> P(X? > x)} = inf {;r cP(VE) > 11— i}

2
t 2 2
_ (Q(l— §)> T Hlogt—log2)?

Therefore, Qxz(1 — ¢) is regularly varying at 0 with exponent —1 and the
Central Limit Theory allows us to claim that

]_ ) 2 i . . w
@fo e

i=1

for some distribution «, where b, = (log ”)QEX,:ZI{X‘f’gn/(log )2}~ From this
it is obvious that

.. L (logn)® <= . by by,
log n(S2—1) ~ LoBME N~ x2 oy, Clogn 2, — logn,
og (S, —1) logn ( no e , +10gn Og N Ay Tognn Og

Observe now that

WL
:

bﬂ.
log n

5 1
—logn=—logn (EX;I{XT> n }) = —(log n)?]@ ﬁd:l’; — =2,

w1 x(logx)*
Hence, logn(S? — 1) % —2 and

tognp (e - =) = 2L gy n
gn S2log(n+ 1)  log(n+1)/  S2log(n + 1) )

which, combined with (3.28), shows (3.29).
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DISCUSSION

Sandor Csdérgd

University of Szeged, Hungary

Comment: Testing for Weibull scale families as a test case for
Wasserstein correlation tests

It is a real pleasure to have the privilege to congratulate the authors in the
first round on a brilliant and stimulating contribution. The contribution
is to two realms. One of these is the repertoire of basic statistical ideas,
to which an appealing procedure is added for the time-honored problem of
testing goodness of fit to a location-scale family of distributions, which is
new in its generality and at the same time unifies and explains scattered
results for testing normality, and which is based on the sample version of a
normed minimal L¢-Wasserstein distance that is scale and shift invariant.
The other i the probabilistic methodology of that considerable part of
large-sample statistical theory which is based on the asymptotic behavior
of empirical and quantile processes. Here, to determine the agymptotic
distribution of their bagic Wagserstein correlation test statistic, the authors’
fine technique enables the method of weighted approximations to do most of
the work; the powerful method is due to M. Csorgd, 5. Csorgd, Horvath and
Mason (1986), here the version for general quantile processes by M. Csorgd
and Horvdth (1993) is used.

Most fittingly, the twofold advance in the paper is nicely embedded into
an historical sketch of the developruent of empirical and quantile process
theory and that of the asymptotic theory of tests of fit, with particular
emphasis on the interaction between the two, for which the present paper
is an outstanding example indeed. History itself is well told in the first two
sections of the paper and in Section 3.1. I only have one historical correc-
tion, noticed in the last minute: treating it as part of the physical sciences,
Hilbert actually did refer to probability —through an article on ingurance
mathematics—, calling for an axiomatic foundation of “the theory of proha-
bilities” as part of his Problem 6; the English translation of Hilbert’s Paris
lecture in 1900 is Hilbert (1902) as an additional reference below. The rest
of the historical review in the paper is scholarly and insightful.

In the present note, praise is intended by emulation in the last four
sections, following some lighter remarks in the first.



Empirical processes and goodness-of-fit tests 55

1 Testing for normality and uniformity

The masterly review in Section 3.2 of the traditional correlation and re-
gression tests, in particular for normality, is a good introduction to the
Wagserstein-distance procedures. On the other hand, given its asymptotic
equivalence to the celebrated Shapiro-Wilk, Shapiro-Francia and de Wet-
Venter tests, the resulting new test for normality described by del Barrio,
Cuesta-Albertos, Matran and Rodriguez-Rodriguez (1999) and in Section
3.3.2 here, will likely not only share the well-known “unreasonable effec-
tiveness” of the former tests, but in fact the source it comes from, i.e. the
underlying Wasserstein motivation also explaing that the powerful nature
of the earlier tests may very well he reasonable. Hence the stereotyped call
for a simulation study (by the authors’ eager students) in such discussions,
both for the precision of the asymptotic distribution under normality and
for the power under alternatives, is probably in order here. It would indeed
be of interest to compare the test not only with those already beaten by its
successful early versions of the Shapiro-Wilk type, but with later consistent
tests such as those of Epps and Pulley (1983) and Csorgd (1986a) for exarm-
ple, and the recent adaptive versions of Neyman's smooth tests, ag applied
to normality, by Kallenberg and Ledwina (1997) and their references. The
proof of Theorem 3.6 is a piece of beauty along with the added discussion
concerning the structure and relationship between the two representations
of the distributional limit, shedding extra new light on the probably high
power for normality and the possible lack of it against alternatives for other
location-scale families. To see how “robust” the power of the test for testing
normality, it would also be of interest to extend simulations to the tests for
Weibull scale families, entertained in Section 4 below, for shape parameters
a not too far from 2.

One should also emphasize the attractiveness of the test for uniformity
in the present paper on some intervel, neither the center nor the length of
which is fixed in advance. It is interesting that the structure of the limiting
random variable nicely represents the “evolution” of the problem: the term
12( j[)] B(t)dt)? subtracted in the limiting random variable R, say, in (3.18)
is Watson’s ‘price’ to make the original Cramér-von Mises statistic circu-
larly invariant, i.e. for estimating the location of the interval of uniformity
with a fixed length, while the term 144(]3 {t — 2711 B(#)dt)* subtracted is
the present ‘price’ pald for estimating also the length. An important prob-
lem arises here, under the condition of Theorem 3.4: For some coefficient
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functions 4+ (-), ('), ..., is there a complete asymptotic expansion of the
form P{nR, <z} =P{R <z} + Z;zl Poj(z)n™ + O(n™"), z € R, for
any fixed r ¢ N? While it appears a safe bet that Gdtze’s (1979) Hilbert-
space techniques with later improvements will produce an asymptotic ex-
pansion of the usual form P{nR, <z} =P{R <z} +> 5 4 (z)n=3/2 +
O(n~0T1/2) & € R, the real question is whether #n () = ¢3(-) = --- =0,
ag in the asymptotic expansions both for the original Cramér-von Mises
gtatistic and for Watson’s modification, recently discussed by Csorgd and
Faraway (1096). In particular: ls the rate of convergence O{1/n) rather
than the more customary O(1/y/n)? This problem is not for an easy re-
joinder.

2 Three questions

Clearly, in relation with del Barrio, Cuesta- Albertos, Matran and Rodrigues-
Rodriguez (1999), the main aim of the paper under discussion, besides the
historical overview, is to understand the behavior of their normality test
in a broader picture and thus to see how far their correlation tests for
testing for a location-scale family, suggested by minimized Lo-Wasserstein
distances, or sitmply the Wasserstein correlation tests, may go beyond test-
ing for normality. It is made plain by the paper that statistically reasonable
versions of the resulting test procedures are rather demanding on the tails.
Indeed, underlying distributions with slightly more than finite second mo-
ment must be termed in Section 3.3.3 “heavy tailed” from the point of
view of the asymptotic distribution of the main test statistic R,,. Theorem
3.3, the umbrella result for the statistically reasonable best versions where
no centering sequence is needed for nR.,,, is of course readily applicable to
testing for uniformity, where the support is finite and hence the tails are
the lightest possible, but already the normal taill requires some adjustment
in the form of a centering sequence which goes to infinity (though at the
very slow rate of loglogn). Hence the first question: is there a statistically
meaningful domain between the uniform and the normal digtributions to
which Theorem 3.3 (or its variant, Theorem 1 below for pure scale fam-
ilies) still applies directly? Next, the normal distribution appears on the
boundary of reasonable asymptotic behavior in terms of that of n'R,,. Is
the normal tail the only one for which the type of behavior in Theorem 3.5
obtaing, or is there a whole range of tail orders resulting in such a behav-
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ior? Finally, the jump from good behavior under normality to the truly
amazing asymptotic extreme-value theoretic limiting distributions, with a
very slow stochastic order of convergence, under “heavy tails” appears too
harsh. Is there something in between, possibly another range of tail grades,

connecting the two?

We figured that the best way to appreciate this very fine paper and
to help disserninate its beautiful ideas is to try and contribute within its
framework by typifying answers to these three questions. This is done in
Section 4 below on a single class of Weibull scale families, indexed by a
shape parameter, which class, at least from the point of view of reasonable
agsymptotic behavior under the null hypothesis, is entertained here ag a
test case or testing ground for the Wasserstein correlation tests themselves.
First we must reformulate Theorem 3.3 in order to adjust the general frame-
work to scale families.

3 Goodness of fit to a scale family

In a distinctive class of fitting problems location as nuisance is not signif-
icant: it 1s not that we necessarily know the mean, but that we know one
endpoint of the support. This is the case with life distributions where the
beginning of time ig either known or directly set by the experimenter, which
is then usually convenient to regard as time zero, as for the Weibull families
in the next section. Scale families are in fact simpler than location-scale
families treated in the paper, so the reader may find their present discussion
instructive in understanding the main Wasserstein ideas of the authors.

Let G(x), x € R, be any fixed distribution function with a finite second
moment po(G) = fIR z%dG (), and consider the scale family G = {G,(z) =
G(z/s),z ¢ R : s » 0} generated by &, which is supposed to have a
density function ¢ = G’ on R. Assuming throughout that po(G) > 0 and
comsidering any distribution function F for which 0 < pa(F) < oo is also
satisfied, since G_1(-) = sG1(.) the argument in (3.11) reduces to

W3(F,G)  infe.o W, G.)
pa(F) p2(F)

_ ;in ! —1'7!5, —1’2”
o pe(F) 5>£v/0 [£73(t) — sGTH(0)]"dt

d*(F,G) =
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S : ;2 . T ~1
G ;g%{}tz(F) + s o (G) — 26,/9 FAOGH(#)dt

P o ]

G C

so that d*(F,,G) = d*(F,G) for any ¢ > 0 whether F is a deterministic
or random distribution function, in particular also when F' is replaced by
the sample distribution function F,(z) = >, {Xe < z}/n, 2 ¢ R,
pertaining to a sample Xi,..., X, from 7. Thus the distribution of the
natural test statistic

2 S B 2
g hETWe 0w EG (04
n — O na ) — 1 — = 1 — - = -
g2 (E )2 (G) p2(G) 7 22k X3
under the null-hypothesis /' € G is the same whichever way this hypoth-

esis is satisfied, and hence one may assume that F = (¢ when deriving
this distribution. Since, in this case, when f = F' = G' = g, we have
o (Fpe(G) — p3(G) almost surely, all asymptotic relations being under-
stood as n — oo unless otherwise specified, one now begins with

Tr = pa(Fa)pe(G) T,

ﬂ U{ }dtH }th} [/JFT,l(t)Fl(t)dtr
= @ 0 B0 - | [0 - m o) o]

obtained as an analogue of (3.12), and hence (3.13) presently reduces to

with the general quantile process p,(-) = vn f(F O FH)—-F; ()} on
(0,1). Hence the variant of Theorem 3.3 for a scale family is the following

Theorem 1. Under Assumptions 1, 2, % (3.14) and (3.16), if F & G,

then

nT, — ﬁ{/ﬂl L(C;B%rdt M]B@%dtr}'
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As is clear from the paper, the direct applicability of this result is just
as limited as that of Theorem 3.3: condition (3.14) is often violated, or,
equivalently, the first term of the limiting distribution here blows up al-
most surely; even underlying normal tails are not light enough to suffice!
The following section ig thought to exhibit a kind of a gentle, “smooth”
transition first between Sections 3.3.1 (uniformity) and 3.3.2 (normality)
and then from Section 3.3.2 towards Section 3.3.3 (heavy tails) in the pa-
per, demonstrated on a single class of examples that is of some traditional
importance in modelling life distributions.

4  Weibull scale families

For every a > 0, let the scale family G, = {G,(x) = Ga(z/s),z € R :
s > 0} be generated by Gq(z) =1 — e~ *" 1 > 0, the distribution function
of the power of order 1/a of an exponentially distributed random variable
with mean one, with density function g,(z) = az®"le™" z > 0. With
the usual gamma function ['(w) = jow e e *dr, w > 0, the moment of
order 3> 0of Go, & Gq is
= s 3 3

H;?(G(l,s) = & dGn,s(I) =511+ 5 3
while !
G L) = slogfﬁ, 0<t<1,

L8

for its quantile function, and the reciprocal quantile-density functions are
given by

9. (G118 = gaa(GL(1)

, | 1
= sga’S(G_J(t)) :a(l—t)logj_%m, 0<t <1,

[ 3]

for all s > 0, where log*z = (logz)*, © > 0, for any = ¢ R; analogous
notation will be used for powers of other functions.

Note first that Assumptions 1 and 2 are satisfied on the common support
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(0, 00) and
<t ga(Ga'(1) i<t ga+(Gaa(?))
a—1 ¢
= sup — — < o0,
octt | @ log =

so that Assumption 3 is also satisfied for any «, s > 0. Thus the weighted
approximation method based on Theorem 3.2 is applicable in principle for
all &« > 0. Next, considering the order statistics Xy, < - < Xyp of a
sample Xy, ..., X, from G,(-), we have

1 1 2
ntl
L = / {Xl,,, ~ log= } dt
0 1-t
: 1 1 1 1 3
Xf 45 logzx A+ % logsx
. Zln a9y dz =% da,
41 ! /; 2z " + /J 2z

indicating the way we like to work, so, since P{nUQX],, < x} = Gulx) for
all z € R,

nLl®) = OP( ) for all « > 0. (1)

n2/a

Hence, as expected in view of the finite starting point 0 of the support,
no problem arises for any e > 0 for that half of condition (3.16) which
concerns the left tail.

However, it is well known and an amusing exercise to derive directly
that

P{a(log ‘n)]'*me, —alogn < J‘} —e " forall ze R,

and hence we have | X, — log;:'T n|=0p(1/log!” x n). This is for the term

w] 1 2
R .= / {Xmlogx Jdt
1

_ 1
41

1—+¢

[sz - 108;% ﬂf

7

— 2 ,(«) [Xm — log& -n] + Iy ()

IA
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responsible for the right tail, where I, (o) = j:o [logi T — logﬂlT nltz =% dx,
¢ =1,2. Integrating by parts and using Karamata’s theorem to obtain the
asymptotic equality,

7

1 | 1 i

L [logt e 1logt'n

)= 2 [TRE 2y, Ll 0
& Sn x e n

and if we now integrate by parts four times and then use Karamata’s the-
orem, we obtain

oo Ee2
L (a) = 3{31}/ 10%—2"?0{3;

ala -
B é{é B IJ (logn) : /noo IO%‘;Q Lo (;2_2 log;i_2 i
Therefore,
nRy):OP( ﬁ,) for all o > 0, 2
log™ n
where

>0, ifax>l,
y=va)i=2- —¢ =0, ifa=1,
“1V <o, ifa<l.

Since the only inequality in the derivation is f]t 1 < flli 1 for the
eSS T
original integral, this stochastic order is precise, and hence we see in par-
ticular that the other half of condition (3.16), regarding the right tail, is
satisfied if and only if o > 1. Furthermore,

1 s 1 B
/ Mdt _ L t1 t), dt
)

PIENT) o Jo (1-1)210g 5 1L
1 ‘OO,‘il ]_
= = * ——dux,
a? T plog?wa

which is finite, and hence condition (3.14) is satisfied, if and only it o > 2.
This is the case, therefore, to which Theorem 1 ig applicable, implying part

(i) of Theorem 2 below.
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For v < 2 one cannot avoid going through first the whole procedure of
the weighted Gaussian approximation of p,(-) by B,(-) from Theorem 3.2
in the middle term

?“Z«ﬂi[},(;'):} — iﬁ ]m fJ:: (f) i g /m f)n(t) i at
o |2 (1-0)2log’ 5 L (1-t)log~5

1— ntl 1—¢

of the present Weibull version of nZF = n1(«) = nL™ + naf™ + R} (Q)

to see whether this can be replaced by

£l o 2 2
yl . L / - 5.0 dt — / o B
o |/ (1—)2log? & 1 (1-HlegF L

T—¢ ATl

for the determination of the asymptotic distribution of the basic Weibull
test statistic

2

T - Tofe) =1 “U " 1(#)]03,(1_—(1@ . {Z? 1 Akn j”%r h"% B dr}
n = Iplte) = 1— R 7y - — 1= 7
r<1+ %) 71_e k=1 XRM r(l—l— (w = k=1 X}:

Adjusting to our Weibull situation the whole proof in del Barrio, Cuesta-
Albertos, Matran and Rodriguez-Rodriguez (1999) step by step, on the
probability space of Theorem 3.2 we obtain that

1
log™ 1t

RMie) — Y| = Op( ) for all e € (0, 2], (3)

with
>0, ifax>»l1,

vy=2——¢ =0, ifa=1,

“1 <o fa<l,
remarkably the same as (2). In the derivation we separate the three cases
a € (1,2, « = 1 and a € (0,1), and use details similar to those for
(2), such as the Karamata theorem. (The winning rate is that of the term
corresponding to L(- ! in that proof, being the common order of vur versions

of A,(,i) and A,(IZ) For the term corresponding to L( ) there the proof must
be modified, avoiding the analogue of (2.9) there, and it turns out that this

term is O(n”_%) for any v € (0,1/2), and hence dominated by the other
term.)
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Recalling v = y(a) = 2— 2 /v, everything depends now on the finiteness

of the integral
(@) / / 2[min (e, ‘i) ml} _ dude
8] ] q()( ﬁ q() (G“ (T!))

TR N
_ dv - '

at f, 10;;,'_ (1 — i ]0‘% (1 - “’)z log” ﬁ w log” 1i1‘

o o 2 ge'e]
at Ji jxilogte Jfy Y log™y x logha S, y-log'y

because, in the present situation, this is what ensures that the centering idea
of Theoremn 3.5 works. Since it is trivial that I(1) = co for the exponential

d 1} dut

distribution when ~ = 0 (in which case nRg) = Op(1) and so we already
know that, with the magnifying factor n in front of 7,(1), the right tail
cannot disappear anyway ), we must restrict o to the interval (1, 2], so that
0 <~ < 1. Some detail is necessary here since the resulting turning point
in Theorem 2 below is not only unexpected, but in fact is hardly believable
at first sight. This is particularly so in view of the fact that the bounds in
(1)-(3) all go to zero for any v & (0, 1] and hence, were [{«) finite for all of
this range, would allow every v € (1, 2] in part (ii) of the theorem. Cutting
both of the outer integrals into two pieces at © = e, and then also the inner
integral at y = e in one of the integrals obtained from the first, it is easy
to see that I{er) < co if and only if both

o 1 1
hila) = /e LQ log"e /,, log™y a’y} de

w[ 1 .
il = ————dy| dx
2 (Of) /(J 1Og”f$ ]x yz log”" y gil T

are finite. Clearly, .Ji{«) = oo if 2y < 1. On the other hand, if 2 > 1, it
is equally obvious that Jy(«) < co and a somewhat more involved anal-
ysis shows that Jy(a) < oo as well. Thus I(e) < oo if and only if
1/2 < ~ < 1, which happens if and only if 4/3 < o < 2. In this case
the ingredients (1)—(3) above and the main line of the proof of Theorem

5 (Theorem 2 in del Barrio, Cuesta-Albertos, Matran and Rodriguez-

and

Rodriguez 1999) give part (ii) of Theorem 2 below, once we ascertain that
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en ()| e (F) — pa(Gy)l £, 0, which is required to transfer the limit the-
orem for Ty (o) to that for T, («). Since |puz(fh,) — p2(Ga)l = Op(1/yn)
by the central limit theorem, this follows in view of the asymptotic order
of the centering sequence ¢,(«). The exact asymptotic behavior of ¢, (ex)
comes by elementary analysis, particularly enjoyable for o = 2, With part
(ii) we see that it is not just the case o = 2, giving a right tail closest to a
normal tail (already slightly longer than that), which exhibits the behavior
in Theorem 3.5, hut a whole weird range of shape parameters.

So, the first random integral in the limit of part (ii) makes sense now in
Ly (2, A, P), it (€2, A, P) denotes the underlying probability space for B(-),

while, since

w1 Ty Ne'e] ]
Vil —1 1 fe—1logs ™ x
M logﬁf1 —dt = / Y M de << oo for all o> 0,
o 1—¢ 114 n € rT
(4)
the subtracted squared integral still makes sense almost surely by an ap-
plication of Lemma 5.3.2 in Csorgd and Horvath (1993).

The first integral in (ii) blowing up for & = 4/3 even in Ly(£2, A, P),
adjustment by mere centering is exhausted. Thus the next idea, for a <
4/3, is to consider an extra normalization as well, that is, to lock at, on
the probability space of Theorem 3.2,

nl(a) —m, (o) Z,(a) — m, (o) 1 1
n = + O + 7
dn.(a’-) dn ((}) ? G],n_ ((1{) ]_Og;ﬂf(o:) T dn (O{) ( )

for my(a) == E(Z,(a)) and d2(a) := Var(Z,(a)), where v = y{a) =
2 — 2/a as before and

Zola) = f# Bg(f) — ¢
0 (1—1)

2 log ™

|e

1
1t

L2 /T —Wi(ﬁ) dt = /n W)
0 0

- _ dae.
log? JJTf (14 u)?log™ (1 4+ w) “

Here we used all of the findings in (1)—(4), and an extra little consideration
when changing the original lower limit 1/(n + 1) of the integral to 0 in
the expression for Z,(«), while the distributional equality is by Doob’s
transformation, which states that for a standard Wiener process Ww),
w > 0, the process (1 —OW (t/(1—1)), 0 < ¢ < 1, is a Brownian bridge. Of
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course, m, (o) = ?I* (14 2/a)e, (o) + o(1), and the asymptotic expression
for ¢, () in case (ii) remains true for all & in the whole interval (0,4/3].

First we need to have a close look at da(er). Straightforward calculation

vields
) n+1 1 T a1 2 1
df, () = 2/ — / Y — dy
1 z?logie Jy Y log™y

r—11P 1 o
—I—{r } — / T dy} dx,
& log7e f,  y*logTy

an approximate form of the integral I(a) above. Hence d2(a) — oo for all
e € (0,4/3], which at once implies that the error term in (5) goes to zero for
v & [1,4/3], when v(a) > 0. But to see whether or not d,, (@) log"®' n — oo
for a < 1, when v = ~(a) = 2 — 2/ < 0, we need to know the speed at

which d,(a) — oo. This is what decides whether the Brownian-bridge
approximation in (5) fully determines the asymptotic behavior for all a &
(0,1), or the extremes assessed in (2) will also start to contribute below
some other critical value of ¢, which at this point might even be 1. It takes
time but is routine to show that d;i () ~ QJ((?)(Q) + 27

1,n 2.n

-1 1 r 1
T :/ / __ dy|dz
(@) o |22 log¥x [ logTy Y

i+ 1 1 vt 1 1
JS)(O:) —/ = / ————dy dx,
n s ogie J,  yilogly

provided any of the two integrals goes to oo at the same rate for each fixed

(«r), where

and

& > 1. Of course the case v = 0, obtained for & = 1, can be calculated
directly. The trick in general is to see via integrating by parts that ]2(63 (o) =
J](iz (e) + Cs(a) + o(1) for some constant Cy(a) € K. Bounding J'](?(cx)
from above and ]2((2(0{) from below the natural way when v < 0, and in the
opposite directions for v > 0, we see that Jl((? (4/3) ~ loglogn ~ Jéi:(il/.‘i),
and hence d2(4/3) ~ 4loglogn, for v = 1/2, while ]1(53(@) ~log ™ n /(1-
2v) ~ Jz(iz(oa), and hence d2 (o) ~ 4log' ™" n/(1 — 27v), for all v < 1/2,
ie. for all a € (0,4/3). All these asymptotic equalities hold invariably for
every fixed § > 1. In particular, the first error term in (5) is Op(1/v/Togn)
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for all e € (0,4/3), forcing the whole error term to go to zero in probability
for all & € (0,4/3]. Thus the extremes are still negligible in the whole range
of part (iii) of Theorem 2 below.

To switch back to T(e), using simple algebra and again that |po(F,) —
T(1+42/a)] = Op(1/yn) we see that the incoming error term is of a smaller
order than the one in (5), and hence, starting out now from any probability
space for the observations, we find that

nl, () — a, (@) P2 1 /" W2(t) — ¢
d, () do () Jy (L+¢)2log"(1+1¢)

where a, (o) = m, (@) /T%(1 + 2/a) = a®c,(a) + o(1) and

Op(1/vIoglogn ), if a=4/3,
enla) = Op(]./ logéf%n) , il < < 4/3,
Op(]./\/ og-n), ifl<a<l,

giving the precise order of the error term in the main statement of case (iii}

T2 (14 2/a) dt+ &, (),

in the following

Theorem 2. Suppose that F' & G, for some a > 0.

(i) If o > 2, then
1 2
nT () — — L > / B(t) ——dt
o I (1 + ;) 0 (1—1)2log* &=

- fj 2 di )
0 (1—t)l()g]_§ ]‘

(i) If 4/3 < v < 2, then

AT () — e () 1 L B%(t) - E(B*(t))
el ele o 12(1+32) {/o (1—:%)21(:@;2*%__1_@f

2

ke ]
0 1—1 1l
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where
Tt =3 2
T £ t)-) di [ e ! dx
p - O = . S 2 (L
e ((1’) — AT (1m0 o™ & IITﬁ ts = zlog™
U\ CE = — 5 — _ .
cyzfz(l+5) (t2T3(1+ ‘)
loglogn f[]m e Y logx du X
E —I_ E] + 0(1), ifoo = 27
= 2 o, 4l
- log& n . S 2" log® Lod

(.1(27(1)1"3(]+%) al2—a) FE(H»% + 0(1)7 ifa<2

(iti) If 0 < o < 4/3, then

[ (14+2/a) nla{a) — ax(a) L /ﬂ W) — i dt+op(l)
dn () dolc) Jo (14 8)21og? (14 8) ’

where {W(t): t = 0} is a standard Wiener process,

;]n (J ),)l :_ ~ (J ) df
1+¢)=log” & {1+t
an (o) = -
) 07D
o logs—1n a [ e ? log%_lgn d
2 - j] s . 4 0(1)
Q- (1+2) @2-a)T?01+3)
and
2/ loglogn ifa=21
R VviogTog 3
d (@) =  Var ———r dt |~ _ o
B e O A [ENCIR N S TN S
In particular, for a =1,
4‘.'Tn 1Y —logn w
() ©)

2/ Togn

where N'(0,1) is a standard normal random variable.

For v € (1,4/3] and « € (0, 1), the problem of the asymptotic distribu-
tion of the standardized random variable ['[W?(2) — ¢]{(1 +¢)* log®~ o (14
8)] 'dt/d,(«) in part (iii) is left open here. While it is in the “bad” statis-
tical domain, it i still well motivated, and in itself it seemns challenging as
a pure probability problem for Brownian motion.
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For e« = 1, when testing for an exponential distribution is at hand,
the remark in Section 3.3.3 of the paper appears somewhat hasty: even
the cloger reference to Lemuna 5.3.4, rather than to Theorem 5.4.3 (ii) in
Csorgd and Horvath (1993), would call for a little extra work. (Incidentally,
we must point out that the factor 1/2 in (5.3.17) in Csorgd and Horvath
(1993) should be 2, but they probably compute with the correct value
since the statement of their Lemma 5.3.4 is luckily correct.) Given the
main statement in case (iii) of Theorem 2 for the special case o = 1, a
more direct reference is to Lemuina 5.3.3 in Csorgé and Horvath (1993). As
translated from an Ornstein-Uhlenbeck process to a Wiener process, for
p = 2 that says that

1 373 1”’/‘2(#) w
—_— —df — logn \ .
N {/} = dt log,n} — N(0,1)

This implies (6) since, by the Bunyakovski-Schwarz inequality

/.,,+] IV‘Z(IL) _ W2 (t — 1)

3 [ 1
< v di

112
1

1
K Y2 g
Viogn ( ) ~ Vegn f; #2007

and so the integral under the expectation divided by /logn goes to zero
in probability.

dt

The statement in (6) for the exponential case is probably equivalent to
Lockhart’s (1985) theorem; having tripled the originally allotted space and
writing three days past the deadline for the submission of this discussion, [
did not check this. It ig also likely that the result of McLaren and Lockhart
(1987) for e = 1, concerning zero asymptotic relative efficiency, generalizes
for nT, () for all e & (0,4/3], regardless of the nature of the missing limit-
ing distributions, already following from the present statement of Theorem
2 (iii).

Even though the exponent of the logarithm in d, (o) may be arbitrary
large if the shape exponent « > 0 is sufficiently small, case (iii) here is not
yet the whole way down to the heavy tails in Section 3.3.3 of the paper. The
scale family generated by the Pareto distribution function G, (z) = 1—x ™7,
z > 1, for some tail parameter a > 2, replacing the Weibull above, will
very likely connect the two. Assumptions 1, 2 and 3 still hold, so Brownian-
bridge approximation is still possible, but the respective terms -nRgo) and
Y?,(ﬂ turn out to be of the same stochastic order. So, while the Brownian-
bridge approximation will likely be helpful still to delineate what parts
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of the integrals in the corresponding -nME“) matter, we conjecture that
in this Pareto case [nT,(a) — af(x:)]/n*®, for some centering sequence
a¥ (@), has a non-degenerate limiting distribution related to extremes as in
Proposition 3.6. It would be interesting to see the details of such a result.
If it is true, the size of the norming constants n*'® would go up almost to
that of n/log” n in Proposition 3.6, thereby, modulo logarithmic factors,
practically completing the picture.

5 Conclusion and further questions

Taking the expected kind of performance for testing normality as a yard-
stick of good behavior, we expect similar good behavior of the Wasserstein
correlation test statistic nT;, for testing goodness of fit to a scale or location-
scale family generated by a distribution function whose tails are dominated
by e~ #I*) for |z| large enough, as long as o > 4/3. We expect poor per-
formance otherwise, when domination by such a function may be achieved
only for some o < 4/3, or not at all.

For testing for the Weibull family G, for a given o > 4/3, it would be of
definite interest to determine the limiting distributions in cases () and (ii)
of Theorem 2 in the respective forms 272, A;jY7 and 3777 ) u; (Y7 — 1) of
Sections 3.3.1 and 3.3.2, for some eigenvalues /\_ aJnd ti,J €N, E\fen if one
doubts the practical import of the testing problem F' € G, for a given « >
4/3, the probabilistic sports value of seeing whether the elegant Hilbert-
space methods in these sections work for these cases is not negligible.

The Wagserstein correlation test procedures appear to be tailored for
location-scale and pure scale families. While on the Weibull scale fami-
lies, it is inevitable for the question to pop up: how about not specifying
the shape parameter o? It did not escape our attention that minimizing
WQ(F,,_, G ) may yield estimators for o > 0 with attractive properties. But
can the procedure be somehow modified to produce reasonable statistics
for testing the composite hypothesis that F'eUr, . 4/51G.7 Or at least that
FEU{”>2}QO?
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I really appreciate the opportunity to discuss this paper and congratu-
late the authors for their very interesting contribution.

The goodness of fit assessment is a major subject in statistics ag it fo-
cuses on the central issue of model choice. On the other hand, the study of
goodness of fit tests 1s a stimulating opportunity to use a wide range of sta-
tistical and mathematical tools, including empirical processes, multivariate
analysis, special functions, asymptotic expansions and distance analysis.

Ag this paper is well written and presented, I wish to comment and
relate this contribution to other areas.

1 Orthogonal expansions and goodness-of-fit tests

The expansions of the limit distribution of Anderson-Darling A? and Cra-
mér-von Mises W? statistics, have some points in common with the orthog-
onal expansion of a random variable X with cdf F'

X = o+ 25700 ()X — hylo)),

X =m0+ 352(X;% = hylwo)h; (b)),

where the convergence is in the mean-square sense, f; (x) = j"r ¥ (s)ds
1 1 o F bl
X; = hi(X) and (A, ¢;) is the countable orthonormal set of eigenvalues
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and eigenfunctions of the integral operator K with kernel K(s,¢) = F(s) A
F(ty — F(s)F(t)
b

)0 = [ K (s,8) plo)ds

¢
iLe., (A;, ) satisfies K2o; = Ajep;. Then each X; = h;(X) is a principal
dimension for X, which can be obtained via the Karhunen-Loéve expansion
or continuous scaling. See Cuadras and Fortiana (1995, 2000), Cuadras and
Lahlou (2000). Let me give two examples.

1) It X is [0,1] uniform, setting o = 0, X can be expanded as X =
ZDO Aj U , where U; = v/2(1 — cos jnX), j > 1, is a countable set of
uncorrela,ted equally distributed random variables and A; = (j7)~%.

Thus the analogy with W? = Zj’;] ,\ijz is clear, but also there is

gsome analogy with the limit distribution of n’R,, under the uniform

model.

2) If X is standard logistic, F(x) = 1/(1+ exp(—x)), then the expansion
of X can be expressed in terms of P;(2F(x) — 1), with P; being
the Legendre polynomials of degree j, and A; = (§(j + 1)) !, also

obtaining a formal analogy with the expansion of A%. See Shorack

and Wellner (1985, pp. 225).

Such an analogy may be due to the function ¥ in defining the statistics

Wi(T) = ”/ U(Fo(w))(Fulx) — Fole)) dFo(x),
which is ¥~! = 1 | the uniform density, for the Cramér-von Mises

statistic, and U~! = #(1 — ), giving the logistic density f = F(1 —
), for the Anderson-Darling statistic. This suggests that by setting
U~ — a probability density function, we obtain a general form for

W2 (W),
The eigenvalues A; satisty (Cuadras and Fortiana 1995)

[jX X'l =tr(K Z,\,,

where X, X are iid and A; =Var(X;). Thus, each eigenvalue accounts
for the so-called geometric variability V = E[| X — X' |]/2 of X with
respect to distance §(z,z") = (| z — 2’ )4
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2 Bounds for the Wasserstein distance

The authors propose and study a test based on the Wasserstein distance
between two distributions Fy, Fy. If the means pq, o and variances a%, O'%

are [inite, this distance can be expressed as
WAy, Fa)=07 + 0} — 201a2p" (F1, Fo) + (i — p2)’,

where pt(Fy, F3) is the maximum Hoeffding correlation between F, Fy,
i.e., by considering the Fréchet upper bound Fy A Fi. Let me present some
results derived from this distance and test.

A, Suppose F, I are absolutely continuous with densities f1, f2. Assum-
ing oy < o9, from 0 < p" (£, Fy) < 1 and the following inequality
(Cuadras 1996)

po = t{fi(x)/ f2(x)} < —P (R F), (1)
we can easily prove that
o7 + 05— 2oy0 + (e —pz)” SWIELE) < o] +oi(1— 2p0) + (g —pz)

Note that under normal distribution py = /02 and the equality
holds (see also Cuesta-Albertos et al. 1996).

B. From now on we suppose Fy uniform on [0, 1]. Writing Fj, for F, it
can be proved that

7P Ry = 2, @)

where V' is the geometric variability of X ~ Fy defined above. Thus
we obtain the identity

V+WHEFLFy) = of + % + (= 1/2)%.
C. As fz =1, from (1) and (2), we have the inequality
Fnf{fi(e)} < V < o1 /VE
As a consequence of this we obtain the following bounds

f 1
a— o /VB<WHE, Fy) < a— cinf{fi(2)},

where o = o} + (1/12) + (¢1 — 1/2)?. There is equality iff F} is also
uniform on [0, 1].
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3 Tests based on the maximum correlation

One of the tests proposed by the authors is based on

~9
R, =WHE,7)/Si=1- T =1- p*(F, Hof', Fe7,

Pt
where Hy is assummed to be standardized. Thig test is therefore dependent on
pt(F,, F), the maximum Hoeffding correlation between the sample and the
theoretical distribution F. The use of pt (F,, F') was suggested by Cuadras
and Fortiana (1993, 1994}, who emphasised the need to explore the data
from a multivariate analysis point of view, rather than investigating the
sarnpling distribution of this correlation. This is in fact undertaken by For-
tiana and Grané (2000), who propose suitable modifications of pt (F,, F),
e.g., the statistics V128,01 (F,, Fo) and S, p* (Fy., F)/X,,, for the uniform
and exponential model, respectively, where X, is the sample mean. The
authors made a similar modification when they studied the asymptotic dis-

tribution of S2R,, = S5% — S2pT(F,, Hy)?.

Returning to the orthogonal expansion of a random wvariable X, if
1,02, .. and ry,re, ... are the theoretical and sampling correlations he-
tween X and the principal dimensions, and between the sample A}, and the
principal dimensions, the following expansion can be proved

E,,F ZerJJ

where F'ig any distribution function. This suggests that the representation
and comparison of the principal dimensions h;(X), h; (X, ) may be a graph-
ical test for indicating how well the sample A, fits to F. This appreach is
useful for distinguishing similar distributions, such as logistic and normal

(Cuadras and Lahlou 2000).

Finally, the eigenvalues A; of KT are of interest in studying the asymp-
totic distribution of some statistics related to Rao’s quadratic entropy (Liu
1991, Rao 1982), which is also a weighted sum of independent chi-square
random variables. As the geometric variability V' is a particular case of
quadratic entropy, and V is related to R,,, we gain an additional insight
into the distribution of R.,.
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Tertius de Wet
University of Stellenbosch, South Africa

It was a pleasure to read this very timely paper and I would like to thank
the Editor for the opportunity to comment on it. It is in the nature of an
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expository paper that it concentrates on the authors’ particular preferences,
This gives commentators the opportunity to add their own preferences, not
covered by the authors. The fields of quantile and empirical processes and
goodness-of-fit are so rich that any expository paper leaves ample room for
additions. I will discuss a nurmber of additions and extensions.

1. The authors discuss fairly extensively the new approach to construct-
ing goodness-of-fit tests, based on the Wasserstein distance measure.
This is a very natural measure to use and it produces asymptotic
results similar to earlier quadratic type statistics. The authors find
that it seems to work out “correctly” in testing for normality, in the
gense of “loosing degrees of freedom”. Using the test for other distri-
butions, does not have this “nice” property (see the discussion at the
end of paragraph 3.3.2). However, one can have this property, at least
for a single parameter (location or scale), by considering a weighted
Wagserstein distance. Taking the weight function identically equal to
one, turns out to be the “right”
tion, the Gaussian case leads to the same weight function for location
and scale parameters.

choice in the Qaussian case. In addi-

Let us consider a scale parameter family of distributions. We want
to test the null hypothesis:

H: Fy() = F(-/9),

with F specified and € an unknown scale parameter. Due to scale
invariance in what follows, we take the true & = 1 without loss of
generality.

For W a weight function on (0, 1), define the weighted Wasserstein
distance ag:

o
)= [ (F ) P P W e
0
A minimum distance estimator for € is given by
f = argminw?(6)

_ f](F;l(t)F‘l(t))I-V(t)dt/ eI
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Let H = F~!. Following Chernoff, Gastwirth and Johns (1967) and
de Wet and Venter (1973), define
W) — SO/ (W),
where, with f = F,

Jt) = I'L'(H(@)

Liy) = —1—yf(u)/f'(y) |
I = [ rues= | DE@EE®

where we make the necessary agsumptions in order for the derivatives
and integrals to exist (see Chernoff, Gastwirth and Johns 1967 in this
regard).

Note that

g
/ J(w)H (u)du =1
0

and thus

.1
9/ FoH o) ()di.
0

As test statistic for H, we use
WHB) = /: (B, (6) = GH(8)(J(t)/H(D))dt
= [0 B U@ 1)

This is similar to the authors’ (3.12) (corresponding to the first and
third terms there). Furthermore, proceeding as in Theorems 3.3 and
3.5 (we potentially have the heavy tailed case, as in Theorem 3.5),
we obtain

-1

n@?(0) —a,) [ (BOF - BBME I/ H ()

_ ( f ] B(t)H'(t)J(t)dt)?,

0
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for appropriate constants {a, } and B(-) the Brownian Bridge process.

Let K (s,t) be the covariance of the limiting stochastic process for the
fixed digtribution case (i.e. 8 known). This process is clearly

Ko

BOH (O (0)/H ()7,

and has covarlance function

L=

K(s,t) = (s At — sOH'(s)H' (1) [T (s)J(8)/H(s)H (£)]5.

Let {h;} be a complete orthonormal system of eigenfunctions for K.
Then, as in Theorem 3.6, we have, with a, = (n+ 1)7},

[ o aowm:]
N i ( / 1Q B(t)H'(t)(J (1) /H(t))%hj(t)dt)z

The second term in the limiting value of wg(é), is

2

(/01 BUH "(t)J(t)dt)

N (/ BOH'(1)(T(8)/H(t))

2

it)

It can be shown (see de Wet 1999 for this, as well as details of the
above) that (J(¢)H(#))"/? is an eigenfunction of K, with correspond-
ing eigenvalue /. From this it follows that in the above sum, we

Lo
Lo

(J()H(#))’

loose one term (due to estimation of ), leading to a “loss of one
degree of freedom?”.

Remark 1.

(a) Choosing the “correct” weight function we have shown in previ-
ous work leads to optimality in terms of approximate Bahadur
slopes, at least in a limited nurnber of cases (Gaussian, exponen-
tial). See e.g. de Wet (1980) for this. We conjecture that uncler
certain contiguous alternatives, the above weight function will
have optimal approximate Bahadur slope.
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(b) The above argument also goes through in the case of a location
parameter, but with a different choice of the weight function
(see, for details, de Wet 1999).

2. Some work has been done in recent years on applying Cramér-von
Mises type statistics in time series situations, and finding the asymp-
totic distribution theory. (See, e.g., Anderson and Stephens 1993).
This is an area in which much more work needs to be done. The
Wagsgerstein distance seems an ideal candidate for application in this
setting.

3. What can be said of goodness-of-fit tests in a multivariate setting,
and in particular testing for multivariate normality? What results do
we get from the interaction with developments in empirical/quantile
processes in a multivariate setting? One such proposal was made
and studied in de Wet, Venter and van Wyk (1979). In this use
was made of the fact that X has a A,(p, B) distribution if and only
if @’ X is NMi(a'p, a’Ea) for all non-zero p-dimensional real vectors
a. If T(Vi,...,V,) is a correlation type test statistic for the one
dimensional case with obgervations Vi, ..., V., then the proposed test
statistic is

T.=sup T(a'X1,...,a'X,).
a0

Its limiting distribution was obtained, but was (at that time) unfor-
tunately not amenable to computation. However, with the growth
in results on multivariate empirical and quantile processes, as well as
computing power during the last few years, it may be worth revisiting
this problem.

I would like to thank the authors for reviewing two fields which have
interactively had major growth during the last few decades and in which
many exciting problems still remain.
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Evarist Giné

University of Connecticut, USA

This nice survey paper consists basically of three parts. The first part
ig historical and covers the asymptotic theory of the classical Kolmogorov-
Smirnov and Cramér-von Mises tests, regular as well as weighted, and with
or without estimated parameters. The asymptotics for these statistics mo-
tivated several important developments in Probability Theory, including
invariance principles, probability in Banach spaces, the modern theory of
empirical processes and the theory of strong approximations. It is not sur-
prising that, but it is important to point out that, the asymptotic theory
of the Cramér-von Mises type tests (as defined in the above article) follows
from the central limit theorem in Hilbert space. On the other hand, limit
theorems such as Kolmogorov-Smirnov or Chibisov-0'Reilly, involving sup
norms, require weak convergence results in C[0, 1] or D[0, 1], or, more gen-
erally and perhaps more simply, the modern theory of empirical processes
indexed by general classes of functions. In this connection, I would like to
mention that the Chibisov-O’Reilly theorem is a very simple consequence
of the bracketing central limit theorem in Andersen, Giné, Ossiander ancd
Zinn (1988, example 4.9, pp. 296-297). This proof does not use almost sure
representations or embeddings. Strong approximations constitute an excel-
lent tool for proving a.s. convergence result, but in general they should not
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be needed for proving weak convergence theorems, which are usually sasier.
However, T must admit that they are very useful and, sometimes, their use
seems unavoidable: see, e.g., del Barrio, Giné and Matran (1999), where the
central limit theorem for the L-Wasserstein distance between the empirical
and the true distributions in the case of infinite variance random variables
in the domain of attraction of a normal law seemed to require a useful result
on weighted approximation of the empirical process by Brownian bridges
due to Mason (1991) and to Csérgh and Horvath (1986), an easier version
of Theorem 3.2 above. The weighted approximation by Brownian bridges
was used in order to infer weak convergence of a function of the empirical
discrepancy from weak convergence of the corresponding statistic for the
Brownian bridge or, equivalently, the Orstein-Uhlenbeck process. (It was
not needed, however, to prove uniform tightness).

The second part covers the more recent theory of the Shapiro-Wilk and
other correlation tests, and constitutes a very useful guide to the literature
on the subject.

The third part develops the approach to correlation tests from del Bar-
rio, Cuesta-Albertos, Matran and Rodriguez-Rodriguez (1999), based on
the Lo-Wasserstein distance between fixed distributions and location-scale
families. This is a very interesting article, particularly relevant because it
provides a structured proof of the Shapiro-Wilk test. Weighted approxima-
tion by Brownian bridges is used in this proof in a way similar to the above
mentioned article of del Barrio, Giné and Matran. The present paper ends
with a very mice example showing that the Lo-Wasserstein test statistic
may have non-normal limit laws for heavy-tailed distributions.

Since Ly distances are easier to handle than L, distances for p # 2, it is
only natural to ask whether the asymptotics of Shapiro-Wilk type statistics
can be handled by the more elementary central limit theorem for Hilbert
space valued random variables, which goes back at least to Varadhan (1962)
(as opposed to the more recent and much less elementary weighted approx-
imations). Such a derivation has been announced at the BS-IMS Congress,
May 2000, Guanajuato, by del Barrio and Matran (Abstract No. 77).

Another abstract in the same Congress that is relevant to the present
survey 1s that of A. Cabafia and E.M. Cabana, “Consistent and focused
goodness of fit for families of distribution functions”, which, in particular,
announces a test of normality that compares favorably to Shapiro-Wilk,
The tests in this announcement are hased on “transformed empirical pro-
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cesses” and their proofs use modern empirical process theory (see e.g., A.
Cabafia and E. Cabaha 1997, and references therein for precursors of these
tests in the case of simple hypotheses).
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Professors del Barrio, Cuesta-Albertos and Matran are to be congrat-
ulated on a fine survey of empirical process theory applied to goodness-
of-fit and particularly on their unifying discussion of tests based on the
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Wasserstein metric. [ want to raise some points about the importance of
computable asymptotics and about power calculations under contiguous
alternatives.

Statisticians often want to compute, exactly or approximately, the law
L(T|F) of a statistic computed from data with distribution F'. The stan-
dard asymptotic paradigm is to embed the problem in a sequence (T, )
indexed by some parameter n so that L{T1F) is L(T,,1F,). We then com-
pute Loo = lim, oo L(T5 [15) and use L, as an approximation to £(T}F').
The approach will be useful for data analysis when £, is computable.

When T is a functional of an empirical process v, say T = g(ev,), the
process «, converges weakly in some space to a process a., and g is contin-
uous (almost surely on the support of a) the limit law is Lo = £{g(«w)). For
Gaussian processes « thig limit will be computable for linear and quadratic
functionals ¢ and for some of the functionals of the weighted supremumnm
type. Linear functionals g give normal limit laws which are certainly com-
putable. Quadratic functionals give limit laws which are those of a linear
combination of chi-squares; Stephens (1974, 1976) shows how to compute
P-values effectively for many common covariance kernels. Statistics of the
Kolmogorov-Smirnov kind are more problematic; the computation of the
law of the weighted supremum of a Gaussian process is not easy.

Monte Carlo is a powerful competitor for asymptotic calculation of P-
values. Consider, for instance, the situation in section 2 of the current
paper. In this case the distribution of any statistic can be computed on
the null hypothesis by repeated sampling from the null hypothesis, Fp.
The calculation is simple and exact except for sampling error. Asymptotic
calculations will be used if they are eagier than Monte Carlo and achieve
the same accuracy as Monte Carlo in roughly the same computing time.
This will generally happen if the asymptotic calculations are particularly
simple or the statistic is hard to evaluate or the sample size is very large.

Del Barrio et al note that the situation changes with composite hy-
potheses. If the distributional family to be tested is {F;6 ¢ ©} then
the unknown parameter @ enters the problem in two ways. First, the pro-
cess ay, has a definition depending on @ and must be replaced by an esti-
mated empirical process &,. Second, the law of &, generally depends on
8 and n. The standard asymptotic paradigm is to compute Lo (é|Fy) =
lim,, oo £(¢,|Fg). At first glance the dependence of this limit on € is a
problem. In practice the limit law is estimated; we use £ ((}lFé).
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It is, perhaps, not obvious that we are entitled to compute P-values as
usual from this estimated limit; the problem often leads workers to focus,
as del Barrio et al do here, on problems where T is distribution free — its
law does not depend on 4. Two points arise. First, if T has a law free of 8
then we can compute its law by Monte Carlo using £(7'16*) for any 6* we
find convenient. In regression problems for instance we can simulate under
the model with the slope set to 0. Again asymptotics will be useful only if
calculations based on the asymptotic law are more convenient than Monte
Carlo. The second point to make is that if £.(&|@) depends continuously
on 4 then use of a consistent estimate 4 will give asymptotically valid P-
values. In the empirical process setting moreover it is not really necessary to
prove that £ {«l@) is continuous; instead if T, = g(a,,) is the (presumably
real valued) statistic to be used to test fit it suffices to prove continuity of
Loo(g()|0). Consider, for instance, the common case where the limit o is
a mean (0 Gaussian process on the unit interval with a covariance function
of the form py(s,t) — geo(s,t) with gp non-negative definite. In this case
pointwise continuity of 6 + ge(s,¢) implies continuity in @ of the law of

T = [ (t)dt.

There are other uses to be made of asymptotic theory. An alternative
to use of £ is Monte Carlo calculation for finite n. When statistics are
not distribution free this amounts to use of E(T7,|é7,). Now continuity of
the limit law is not enough to justify asymptotically the use of P-values
obtained by this bootstrap method. Instead it is necessary to prove that the
weak convergence results hold uniformly in #. That is, you need to prove
something like 8, — #implies £(ev,|6,,) — L(«|#). This can be significantly
harder. Baringhaus and Henze (1992) for instance, have observed the need
for this sort of result and given examples.

Asgymptotic methods can also be used to make approximate power cal-
culations and help choose good tests. Here I would like to strengthen the
remarks made by del Barrio et al concerning correlation tests for “heavy
tailed” distributions. (The exponential distribution does not have really
“heavy tails” in the sense usually understood but they are heavy enough
to cause problems for correlation tests of fit.) del Barrio et al prove that
the Wasgserstein test is asymptotically equivalent to a test based on a de-
creasing fraction of the tails of the sample. Lockhart (1991) actually proves
that for any sequence (not just some sequence as suggested in the text) of
alternative densities of the form f(z)(1 + h,(z)/n/?) with h, converging
(in the appropriate Lo sense) to some h the power of such a test must
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converge to the level of the test. Since most EDF tests will have limiting
power strictly greater than the level for ewvery such alternative sequence
this must be regarded as a significant criticism of correlation tests for such
distributions.

References

Baringhaus, L. and N. Henze {1992). A goodness of fit test for the Poisson distri-
bution based on the empirical generating function. Statistics and Probability

Letters, 13, 2609-274.

Stephens, M.A. {1974). EDF statistics for gooduess of fit and some comparisons.
Journal of the American Statistical Association, 69, T30-T37.

Stephens, M.A. (1976). Asymptotic results for goodness-of-fit statistics with
unknown parameters. Annals of Statistics, 4, 357-369,

Axel Munk

Ruhr-Universitdd Bochum and Universtitidl Siegen. Germany

First of all, I would like to congratulate the authors for this interest-
ing paper which contributes to the theory of testing the goodness of fit
of distributional assumptions based on quantile and empirical processes in
two different ways. On the one hand in its first part this paper provides a
very helpful survey on this area, particularly by relating many papers from
the statistical literature to recent developments addressing probabilistic as-
pects of quantile and empirical processes. On the other hand the technique
developed by the authors in their '99 paper is extended in the second part
to heavy tailed distributions, exploring the limits of tests based on the
Wasserstein distance.

I would like to focus in my discussion on some practical issues related
to this paper — should one use any of these goodness of fit tests, and if so,
which one? Before I address the first part of this question (which is the
much more subtle problem), I would like to comment briefly on the second
part.

There is certainly common agreement, at least among frequentists, that
the proper choice of a goodness of fit test (besides of computational aspects,
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etc.) should be mainly driven by power considerations. Unfortunately,
there is such a vast amount of literature providing theoretical power in-
vestigations (mainly computing various asymptotic efficiencies) as well as
Monte Carlo studies, that it is difficult to get a homogeneous picture. How-
ever, one notable conclusion (cf. Neuhaus 1976, Milbrodt and Strasser 1990,
Eubank and LaRiccia 1992, or Kallenberg and Ledwina 1997, among many
others) is that essentially any g.o.f. test based on the empirical c¢.d.f and
transforms of it (including the quantile process) are in a certain sense invalid
to detect most alternatives for realistic sample sizes. For the particular case
of quadratic statistics @, and testing the null Hy : F = A(0,1) say, s.t.
under Hy

Qn.jv} Z )\R(UE - 1)
k=1

as n — oo (here Uy, Uy, -+ denotes a sequence of i.i.d. normal random
variables), Gregory (1980) provides explicit expressions of Pitman resp.
Bahadur efficiency as the level of significance o« — 0. Thig includes e.g.
Cramer-von Miges or Shapiro-Wilks-type tegts. One finds that the infe-
rior power property of the Cramer von Mises test relies essentially on two
facts. Firstly, the test performs only optimal for the L2-direction cos 7
(an alternative which occurs in practice rarely) and secondly the decay of
eigenvalues A, is O(k™?). This means that almost all of the subsequent
directions can hardly be detected. In contrast, the Shapiro-Wilks test (and
related statistics) has the property that the decay of eigenvalues is much
slower, O(k™1). Moreover, the first two principal components correspond
to departures in location and scale, which are in many cases most impor-
tant deviations to detect. The situation, however, may change drastically,
when other distributions Fy ore more complex models are to be tested.
For Fy = (1 + exp(—x))~" logistic and for Fjy uniform on [0, 1], the decay
is O(k™?), respectively. For the logistic case the two largest components
come cloge to location and scale deviations, whereas for the uniform case
Jr(x) ~ cos(wkx). This is highlighted by the fact that none of these tests
is “adaptive”
driven, which leads in general to better omnibus properties (cf. Eubank
and LaRiccia 1992).

in that sense that the direction of alternative is chosen data

Now [ turn to the first part of the initial question, i.e. what can we draw
from the result of any goodness of fit test designed for the hypothesis Hy :
“I'" e F7 (say normal)? Besides of many fundamental arguments against
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the naive use of tests (for a discussion from a Bayesian perspective, see
Berger 1985), in the case of testing the goodness of fit a specific problem
occurs according to the paradigm: Choose the null such, that you consider
rejection (albeit wrong) as the more serious error (type 1). In many testing
problems this yields a rather clear definition of the null (no treatment effect,
no trend, ... ). In goodness of fit problems, however, | claim that often
the more serious error occurs if we do not reject the model although it
is wrong because this will lead to a subsequent data analysis based on
the wrong model assumption. However, when testing Hy, this is the type
IT error, which — at least to my experience — is never controlled when
checking the goodness of fit in applications (e.g. by sample size adjustment
or sequential procedures). Consequently, if testing Hy no conclusion should
be drawn in case of acceptance. Of course, practically nobody will act like
this because hence one could never decide in favour of the model (recall the
two options: rejecting F or making no decision). Therefore, in practice,
large p-values associated with these tests are often taken as a measure
for the “evidence” of the model. However, it is well know, that such an
interpretation fails in general and has been criticised from various authors
during the past, e.g. again from a Bayesian point of view (Berger and Selke
1987), albeit not directly in the context of goodness of fit testing. However,
even without being a Bayesian there are simple reasons for methodological
difficulties encountered with testing Hy: a large p-value could he caused
by various other reasons besides of “the model 7 is (approximately) true”.
This might be: the number of observations is too small for rejection or the
alternative lies in a different direction than those the test can effectively
detect (recall the first paragraph). Particularly, for multivariate models
this causes significant problems. Another problem in practice is, that if the
sample size is large (in a clinical or econometrical study a few thousand
observations quite often happens), any goodness of fit test for Hy rejects
due to the fact that arbitrary small deviations (although not relevant) from
F will be detected. Therefore, in practice, often a significance level between
0.2 and 0.5 is chosen.

A radical proposal could be to reformulate the problem decision theo-
retically which leads, however, to serious mathematical and practical prob-
lems in infinite dimensional spaces (what is a proper loss function, how to
choose the prior, etc.) Therefore, a compromise was suggested by Munk
and Czado (1998), Dette and Munk {1998) and Munk (1999), which can

be transferred to the present setting as follows. Choose a “suitable” metric
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D and hypotheses H, : D(F, I') > =, where D(F, ) denotes the minimal
distance between the model F and the “true” distribution I7. Now, reject-
ing H; and deciding in favour of a (neighborhood) of F can be performed
at a controlled error rate. In fact, Munk and Czado (1998) suggested also
a test based on the Wasserstein metric, sometimes denoted as Mallows dis-
tance. A variation of their result vields a central limit theorem if the true
distribution £ is not in F (Munk, Vogt and Freitag 2000), which is required
for testing H.. The additional difficulty — how to choose the distance 7= —
can be circumvented by the simultansous consideration of all p-values as a
function of 7, denoted as a p-value curve (Munk and Czado 1998, Czado
and Munk 2000). The definition and interpretation of p-values becomes
now simpler, because for smooth metrics (such as the Wasserstein metric)
under H, the asymptotic law is normal, instead of an infinite convolution
of weighted and centered x?’s. This leads to a simple graphical method
which allows to visualize whether there is really evidence for the presence
of F, rather than simply the absence of evidence against 7. Currently, this
method is investigated and extended to various other settings, including
regression and survival analysis.
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Winfried Stute

University of Giessen, Germany

Frankly speaking, I very much enjoved reading this paper. The authors
did a nice job in reviewing some of the most important issues in goodness-
of-fit testing. The material concentrates on i.i.d. real-valued data. In such
a situation the empirical distribution function allows for a simple transfor-
mation to the uniform cage and, as an alternative, also the quantile function
may serve as a basic process.

Prior to Doob, Dongker, Kolmogorov and Smirnov, goodness-of-fit tests
were mainly baged on a comparison of frequencies and theoretical probabil-
ities of finitely many cells. Mathematically, distributional approximations
of finite-dimensional vectors were sufficient. With the 1940%s, stochastic
processes in the modern sense came into play. A priori any meaningful
distance between the empirical distribution (or quantile) function and a
hypothetical function may be considered. One possibility is to incorpo-
rate a weight function which, e.g., may serve to detect deviations in the
tails. The quantile function is affine w.r.t. changes in location and scale.
Therefore testing based on quantiles has always been popular for location-
scale families. For composite models it is also worthwhile recalling that the
need to estimate unknown parameters may have some serious impact on
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the distributional character of the underlying test process. Another impor-
tant issue addressed in the paper is the possibility of the Karhunen-Loéve
decomposition. This may be of some interest, when one wants to create di-
rectional and not just omnibus tests, by upweighting certain eigenfunctions
and downweighting others.

A general strategy for deriving asymptotic properties of these tests is to
study the underlying empirical or quantile process in an appropriate metric
under the null and the alternative hypothesis, and then use the continuous
mapping theorem. If, e.g., the weighting is overdone, some non-standard
limit results come up, as was nicely pointed out in the last part of the
paper.

Coming back to the underlying test (i.e., empirical or quantile) pro-
cesses, the authors correctly point out the various approaches one can find
in the literature:

2. The Vapnik-Chervonenkis Approach

3. The Hungarian Approach
Number 1 should be reserved for what could be called
1. The traditional Approach

(I prefer). This approach may be caracterized through issues like these: for
computational feasibility, don’t choose index families which are too com-
plex, but restrict to intervals, rectangles of ellipsoids; don’ go to asymp-
totics as soon as possible, but spend some time to check how good distribu-
tional approximations work for small to moderate sample size; sometimes
it’s useful not to prove everything in two steps (underlying process plus
continuous mapping theorem), but to remember other techniques, like the
elegant Héjek projection method, or to lock for hidden martingale struc-
tures. Alternate techniques are becoming increasingly important if the data
are no longer i.d.d. and 2. and 3. are unavailable.

I would also like to add a fourth approach, which is particularly powerful
in goodness-of-fit testing:

4. The innovation process approach
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This method ig very successful when parameters need to be estimated. The
idea is to transform the underlying process to the martingale part in its
Doohb-Meyer decomposition, which in the limit is a Brownian Motion in
proper time. See Khmaladze (1981) for his key contribution to the subject.

It seems to be common use that discussants take the opportunity to
also make some comments on their own contributions. Sections 1 and 2
and some parts of 3 are written in the spirit of Gaenssler and Stute (1979).
In our monograph, Gaenssler and Stute (1987), we also discussed some
goodness-of-fit problems in the multivariate setting. We also acknowledged
the many contributions to a feld which may be called

5. Combinatorial approach to goodness-of-fit testing

I would also like to add some comments on future directions in goodness-of-
fit testing. The i.i.d. case for real-valued data is of course only the situplest
case. In the multivariate setting the parametric bootstrap (see Stute et al.
1993) may at least be used to approximate the distributions, if the weight-
functions are not too fancy. What is more interesting is goodness-of-fit
testing in other situations:

a) When the data are incomplete (e.g., censored)

b} In time series, when it is required to fit the dynamics of the time
series

¢} In regression, when the target could be a parametric model for the
regression function

d) The same as in b) and c), but the parametric model being replaced
with a semiparametric model (like the Generalized Linear Model).

Some of my contributions to this area are reviewed in Stute (1997).

References

Gaenssler, P. and W. Stute (1979). Empirical processes: a survey of results for in-
dependent and identically distributed random variables. Annals of Probability,
7, 193-243.



Empirical processes and goodness-of-fit lests 91

Gaeunssler, P. and W. Stute (1987). Seminar on Empirical Processes. Birkliaeuser,
Basel.

Khmaladze, E. (1981). Martingale approach in the theory of goodness-of-fit tests.
Theory of Probability and its Applications, 26, 240-257.

Stute, W. (1287). Model checks in statistics: an innovation process approach.
IMS Lecture Notes, 31, 373-383. Hayward.

Stute, W., W. Gonzdlez Manteiga and M.P. Quindimil (1993). Bootstrap based
goodness-of-fit tests. AMetrika, 40, 243-256,

Rejoinder by E. del Barrio, J.A. Cuesta and C. Matran

When we began to write this paper, accepting the kind invitation of
the editors of TEST, our goal was to contribute to this year of mathemat-
ical celebrations through a work relying on the mathematical evolution of
empirical processes, one of the major developments in the recent theory
of Statistics. Now, at the end, after the comments of the discussants our
impression ig that our goal has heen clearly exceeded through this set of
excellent comments.

Some of the discussants of the paper can be considered as major con-
tributors to the theory of goodness-of-fit tests or to the theory of empirical
processes. Therefore we would like to express our satisfaction for having
the opportunity to share this work with such a distinguished group. In fact,
in our opinion, the consequence of the discussants’ comments is not only a
wider scope than that of vur initial paper. The new perspectives opened in
the theory by this set of stimulating contributions are a major prize which
was never expected by us.

Csorgd

Professor Csérgd poses several interesting questions concerning the limits
of performance of Wasserstein correlation tests, the comparison of them to
alternative procedures for testing fit to Gaussian or Weibull scale families
or the rate of convergence to the asymptotic digtribution in the uniform
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case. The different behavior of Wasserstein correlation tests depending
on the tails of the family of distributions considered in the goodness-of-fit
problem (powerful tests for families with “light tails” such as the uniform
or the Gaussian; inefficient tests for families with “heavy tails” such as the
exponential or the one considered in Subsubsection 3.3.3) motivates the
exploration of how heavy can we allow tails to be if we want to maintain
the good properties of the Gaussian case.

Professor Csorgd gives a brilliant answer to this question with his fine
analysis of Wagserstein tests for the Weibull scale family. His Theorem
2 establishes clearly the border between tails for which Wasserstein tests
have statistical interest and tails for which they do not (for those families
considered in part (iii) of the theorem the weighted-Wasserstein-distance
approach suggested by Professor de Wet could be a good alternative).

We would like to make some cormments on the interesting problem posed
by Professor Csorgd in part (iii) of Theorem 2, namely, finding the asymp-
totic distribution of

/ WE)[(1+ )2 log? 3(1 1 )] at, (1)
0

for a Brownian motion {W({)};. The equality in distribution between
(W (1) /£2/2}; and {V (27 log(t(1 — )" 1)}, where V denotes an Ornstein-
Uhlenbeck process, allows us to reformulate the problem as the derivation
of the asymptotic distribution of
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which can be obtained through the study of
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(in fact the asymptotic behavior of both random integrals depends only
on their right tails). An asymptotic result for imtegrals of the Ornstein-
Uhlenbeck process with respect to measures other than Lebesgue (which
corresponds to Mandl's result - Lemma 5.3.3 in Csorgd and Horvath 1993)
is given by Theorem 6.8 in del Barrio, Giné and Matran (1999). We quote
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here that result. Let Z denote a standard normal random variable. Then,
ifd> -1
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An adaptation of the proof of this result (based on expressing the integrals
as suns of independent random variables from an infinitesimal array) might
allow us to conclude that, for 6 > —1
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This could give the asymptotic normality of the integral functional in (2)
(hence of the one in (1)) as long as 2/a — 2 > —1/2, that is, as long as
a < 4/3, which would complete part (iii) of Theorem 2 in Professor Csérgd’s
comment, However, filling the gaps in the above mentioned adaptation does
not seem to be straightforward.

Cuadras

Professor Cuadras discusses on some subjects related to the content of the
paper. First, he introduces an orthogonal expansion of a random variable on
principal directions which can be obtained via Karhunen-Loéve expansions.
Then, he presents several bounds for the Wasserstein distance. Finally, he
shows the relation between the statistic R, and the so-called maximal Ho-
effding correlation between the empirical and the theoretical distributions,
which, in turn, is related to the previously introduced orthogonal expan-
sion.
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de Wet

It is a great pleasure for us to have Professor de Wet as a discussant since he
wag one of the authors who obtained the first asymptotic result in the field
of regression tests. Professor de Wet points out three important possibilities
to extend the Wasserstein tests of goodness of fit.

The first one congsists of handling a weighted Wasserstein distance. Pro-
fessor de Wet analyzes this possibility in the framework of a scale family
and he nicely shows that if the weight is properly chosen (depending on the
family under consideration), then some optimal cancellation properties are
obtained. Moreover, this fact explaing some particular properties obtained
in the paper, becausge it turns out that the constant weight is the optimal
one for the Gaussian family.

On the other hand, he suggests the possibility of using Wasserstein
tests in the time geries framework and, finally, he recalls a procedure which
can be employed to construct a Wasserstein distance test to check fit to a
multidimensional Gaussian distribution.

Giné

We agree with Professor Giné’s point of view regarding the use of strong ap-
proximations or Banach spaces techniques for proving weak limit theorems.
The latter are often the right choice for deriving an asymptotic distribu-
tion uging more elementary methods but sometimes strong approximations
geem to be the only way to handle the problem. In the particular case
of the Chibigsov-O’Reilly theorem we wonder if Empirical Processes The-
ory can also give Theorem 2.5, that is, necessary and sufficient conditions
for the weak convergence of the supremum norm of the weighted empirical
process (not for the weak convergence of the weighted empirical process
itself j, without using strong approximations. The answer to this question
could give a new chance for assessing the strengths and weaknesses of both
approaches to weak limit theorems.

Professor Giné corrects one important omission in our paper and we
thank him for doing so. We are talking about A. Cabafia and E. Cabana’s
approach to the goodness-of-fit problem based on the transformed empirical
process.  The main goal of this method is the derivation of tests of fit
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with maximum power for detecting a particular sequence of contiguous
alternatives.

Lockhart

The first part of Professor Lockhart’s discussion focuses on the interest,
from the point of view of the practical applications, of asymptotic results.
First, he fixes the framework by making some general considerations on the
way in which statisticians use to work and the way in which asymptotic
distributions apply in this field. After this, he gives some arguments sup-
porting the Monte Carlo method as an alternative to the use of the agymp-
totic distributions in approximating the distribution of a given statistic.
We must admit, without any doubt, that this is an important point we had
missed in our work.

Professor Lockhart ends his discussion by specifying some details on
hig contributions on the subject of the asymptotic power of the correlation
tests which were not clear encugh in our paper.

Munk

Profegsor Munk's discussion focuses on two important aspects of good-
negs-of-fit tests. One of them is basic: What does a goodness-of- fit test
really do? Professor Munk rightly exposes some doubts on the adequacy of
choosing as null hypothesis the validity of the model under testing, based
on the fact that, even if the data do not allow us to reject the hypothesized
model, we have no guarantee that it is right. Then, he proposes a solution
consisting of taking as null hypothesis that the model of interest does not
hold approximately. Now, rejecting the null hypothesis means the data
contain aspects supporting that the model is (approximately) correct.

The second aspect analyzed is which test should be chosen. Professor
Munk asswnes we are interested in checking fit to some fixed distribution
and we have to choose between a Cramer-von Mises or a Shapiro-Wilk-type
test. He makes a nice analysis of the circumstances under which each of
them should be preferred. This analysis is based, mostly, on Karhunen-
Loéve expansions of the limit distributions.
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Stute

Professor Stute makes a very accurate comment on our work. He beging by
listing the different techniques usually employed when handling empirical
or quantile processes as well as pointing out the advantages of his (and
ours) preferred approach: the traditional one.

On the other hand he also recalls three aspects missed in the work.
The first one is methodological and consists of the possibility to employ
the relatively new “innovation process approach”. Then he suggests the
possibility to employ the bootstrap to approximate the distributions of
goodness-of-fit tests in the multivariate setting, Finally, he includes a short
list of very important goodness-of-fit problems which are not mentioned in
the paper.

We were not aware of the existence of the innovation process approach
when writing the paper and, at this moment, we agree with Professor Stute
on its usefulness to handle problems in which parameters have to be esti-
mated.

Concerning other goodness-of-fit problems, we have fixed the scope of
our work on the location-scale problem and the i.i.<. case because, other-
wise, a work along the lines we have chosen had been, instead a paper, a
quite bulky hook. The same can be said about the hootstrap. However,
we admit that, at least, we should have mentioned the existence of those
possibilities. This fault has heen corrected in his comment.
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