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Abstract 

In practice, the use of functional data is often preferable to that of laa-ge finite- 
dimensional vectors obtained by discrete approximations of functions. In this paper 
a new concept of data depth is introduced for functional data. The aim is to 
measure the centrality of a given curve within a group of curves. This concept is 
used to define ranks and trimmed means for functional data. Some theoretical and 
practical aspects are discussed and a simulation study is given. The results show 
a good performance of our method, in terms of efficiency and robustness, when 
compared with the mean. Finally, a real-data example based on the Nasdaq 100 
index is discussed. 

K e y  W o r d s :  Data depth, functional data, trimmed means estimates. 
A M S  subject classification: 62G07, 62G05. 

1 I n t r o d u c t i o n  

In  one dimension,  order  s ta t is t ics  and  ranks  are widely used for several ap- 

pl icat ions,  such as d i s t r ibn t ion  free tests  and  some simple robus t  e s t imat ion  

procedures .  In  this case, they  are easily defined t h r o u g h  the na tu r a l  order  

on the  real line, and  there  is a vast  l i te ra ture  on their  appl icat ions.  

L-est imates ,  which are defined as linear combina t ions  of  order  statistics,  

are a well known class of  robus t  locat ion est imates.  In  pa r t i cu la r  t r i m m e d  

means ,  which are defined as the average of  the mos t  central  (1 - c~)n ob- 

servations,  (0 _~ ~ _~ 1) cons t i tu te  a class of es t imates  t ha t  range f rom the  

sample  mean  to the  sample  median.  

In  more  t h a n  one dimension,  the  concepts  of  order  s ta t is t ics  and  ranks  

are more  involved and  several definit ions have been  p roposed  in Maha-  

lanobis  (1936), Tukey (1975), Brown (1983), Oja  (1983), Liu (1988,1990), 
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Small (1990), Gordaliza (1991), Singh(1991), Donoho and Gasko (1992),Liu 
and Singh (1993), Cuesta-Albertos,  Gordaliza and Matrgn (1997) and l~'ai- 
nlan and Meloche (1999). 

All of them are based on different notions of depth. A data  depth  is a 
device introduced to measure the "centrality" of a multivariate data  point 
within a given data  cloud. Although these definitions are quite different for 
multivariate data, they are very similar when we look at them for univariate 
data.  We now briefly describe two of them. 

Let Y1, �9 �9 �9 Y~ be independent and identically dis tr ibuted random vec- 
tors on IR ~ with common distr ibution F.  

T u k e y ' s  D e p t h .  Tukey's depth  at x is defined as 

TD(x)  - i n fH{F(H)  : x E H},  

where H is a half space. The sampling version TDn is defined by replacing 
F by the empirical distr ibution F**. In one dimension (k 1) 

TD(x)  min{F(x) ,  1 - F ( x - ) } .  

S i m p l i c i a l  D e p t h .  Let YI,... ,Yk+l be k + 1 i.i.d, random vectors with 
distr ibution F.  The simplicial depth  at x is defined as 

SD(x) PF(x E S[YI , . . .  ,~+1]), 

where we denote by S[Yi , . .  �9 ~+1]  the closed simplex with vertices on the 
vectors Y~, . . . ,  Yk+l; its sample version SDn is defined by replacing F by 
the empirical distr ibution F~. The simplicial depth at x is the proport ion 
of closed simplices with vertices in the sample to which the point x belongs. 
On the real line, 

SD(x) - 2F(x)(1  - F(z - ) ) ,  and SD~(z) - 2F,~(z)(1 - F,~(z-)). 

If there are no ties among the elements of the sample, we get the stan- 

dard "both sides" order statistics, which can also be defined through the 

one dimensional depth 

D(x) 1 -  l _  F(x) . (1.1) 
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Several applications of the notions of depth  have been proposed. A first 
one is to consider the da ta  point that  maximizes a depth  as a multivariate 
median. A second one is to construct multivariate L-est imates using the 
"order statistics" provided by the depth. This problem will be considered 
in this paper for functional data. 

Other applications of da ta  depth  are, for instance, depth-based nmlti- 
variate classification rules, multivariate two sample "nonparametric" tests, 
robust  quality control, among others. 

A different approach has also been followed by Brown and Hettmans-  
perger (1987) who define multivariate quantiles which have bo th  magnitude 
and direction, based on the gradient of Oja's (1983) measure of scatter. 

All the proposed definitions a t t empt  to order the observations according 
to their ~depth" in the data  cloud, the deepest observation defining the 
multivariate median. 

Nowdays the real t ime monitoring of m a w  processes in different fields 
such as stock markets, audience ratings, medicine, chemometrics, is avail- 
able, providing large functional data  sets. It has also been shown (see for 
instance Ramsay and Silverman 1997) that  in practice, the use of func- 
tional data  is often preferable to that  of large finite-dimensional vectors 
obtained by discrete approximations of the flmctions. On the other hand 
the effective calculus of multivariate depth  in high dimensional spaces is 
almost impossible for computat ional  reasons. 

In what  follows we will define a natural  notion of depth for functional 
data, i.e. when data  are curves (realizations of a stochastic process). The 
idea is to measure "how long" remains a curve in the middle of a group of 
them. 

In Section 2 we introduce a definition of depth for functional data, and 
we define c~ tr innned means based on this notion. In Section 3 we provide 
strong consistency results for the proposed estimates. In Section 4, we 
report  on the results of a simulation that compares the performance of a 
few estimates of location. In Section 5 we provide a real data  example. All 
the proofs can be found in the Appendix.  
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2 D e p t h  c o n c e p t s  for f u n c t i o n a l  d a t a  a n d  c ~ - t r i m m e d  m e a n s  

Let X1 ( t ) , . . . ,  X.~(t) be independent and identically dis tr ibuted stochastic 
processes with continuous trajectories defined on an interval [a, hi. Wi thout  
loss of generality we assume [a, b] - [0, 1]. Ft will s tand for the marginal 
univariate distr ibution function of X1 (t). 

For each realization we get a group of curves, and we want to know, for 
instance which of them stays more "in the middle of tile group" for most 
of tile time. This idea corresponds in a functional setup to the intuitive 
notion of median. More generally, the purpose of this article is, to define 
a depth concept for functional data  as well as to propose t r immed-mean 
estimates for functional data. 

Let D~ be a depth defined on R. For each fixed t E [0, 1] we consider 

D,~(Xi(t))  = Zi(t), 

as tile univariate depth  of Xi(t)  at t with respect to X1 (t , ) , . . . ,  X~(t,). In 
this way, at each single point t we have ranked the values X l ( t ) , . . . ,  X~(t) 
according to their depths Zi(t) ,  1 < i < n, which take a finite set of positive 
values. 

We define now 

Ii Zi( t )dt ,  l < i < n, 

we rank tile functions X~ ( t ) , . . . ,  X.r,(t) according to the associated I,i's val- 
ues obtaining order statistics. Thus, the functional median will correspond 
to the Xi  (f) for which h is nmximum. Ranks Ri are defined from the rela- 
tionship Ii = I (m) that  indicates the I j ' s  posit ion in the ordered vector I 's.  
L-est imates and t r immed-means estimates are easily derived from these 
order statistics. 

More formally, tile populat ion functional depth is defined from a nni- 
variate depth D as follows. 

Let Dt be the depth  associated with the univariate distr ibution Ft. by 
D, and x - x( t )  a continuous function on [0, 1]. Set 

Z(t,) - Dt(x( t ) ) .  

In particular, for the simplicial depth, we have 

Z(O F,(x(~,))[1 - F,(x(~,-))]. 
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Then, the corresponding depth measure turns out to be 

~01 ~1 [ (z )  Z( t )d t  Ft(z(t))[1 - Ft (x( t - ) ) ]d t .  

The sampling version L,~(z) is defined by replacing Ft by the empirical 
distribution Fn,l, so we have 

and 

z,~(t) F,~,~(~(t))[~ - G,d~(t-))], 

G ( z )  Z~( t )d t  F,,,t(z(t))[1 - F, , , t (z( t - ) )]dt .  

In what follows we will consider the univariate depth 

D ( ~ ) = I  i F(~)  , z 
so that  

and 

1 
Z ( t ) =  l -  [-rt(~(t)) (2.1) 

f0 
1 1 

I ( x )  1 - ~ - F , ( x ( t ) )  . ( 2 . 2 )  

If the observations Xt  ( t ) , . . . ,  X n (t) are ranked according to decreasing val- 
ues of L~,(Xi(t)) we get order statistics X (1) ( t ) , . . . ,  X (tO (t), where Xb) ( t )  
denotes the deepest one (functional median), while the last ones will be on 
the "outer skin" of the data. 

A functional version of the a t r immed mean is defined as the average 
of the n -  [na] deepest observations. 

More precisely, we will consider for fl > 0 

EiL1 l[.s,+~)(I~ (Xi))Xi 
/;r~ E k n l  I[,&+~)(L~ (Xi)) (2.3) 

as a functional t r immed mean, where 

T~ 
1 

E l[fl, +oo)([n(Xi )  ) "~ 1 os (2.4) It i-1 
and 1A stands for the indicator fimction of the set A. 
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R e m a r k  2.1. A formal definition of robustness for continuous time data  
has not yet been proposed. A first stage would be to define which kind of 
contaminat ion is allowed. For instance, if we allow for contamination on 
all da ta  on a small (but  possibly different) t ime interval, the whole data  
set could be corrupted. In this case, a robust  nonparametric  smoother  
(see for instance H~rdle and Tsybakov 1988, or Boente and Fraiman 1989) 
should be applied at each single curve as a first step, and just  then apply 
the methods defined above. In this paper we are mainly interested in a 
somewhat  more realistic type  of contamination, where a certain fraction of 
the data  are corrupted on some possibly large time interval. 

3 Strong consistency r e s u l t s  

In this section we will show the lmifonn convergence of the empirical func- 
tional depth In to its populat ion version I over an appropriate  set of fnnc- 
tions, and derive the strong consistency of the c~-trimmed mean estimates. 

We will assume the following two assumptions.  

H1. For a positive constant A (large enough) let 

Lip[O, 1] {x:[0, 1] -+ R,x is Lipschitz with constant less or equal to =4} 

be the space of flmctions where the paths of the stochastic process 
Xl( t )  take values. 

H2. There exists a constant c > 0 for which 

E(~({ t  : Xl ( t )  �9 Iu( t ) ,~t( t )+ c~]}) < ~/2, 

where A stands for the Lebesgue's measure on IR and u �9 Lip[O, 1]. 

T h e o r e m  3.1. Under H1 and H2, if 

/o J~(x) = F~,t(x(t))dt, and 

we have that 

fO 
J(x )  = F , (x ( t ) )dt ,  

lira sup I J~,(x) - J(x)  l -  0 
.n--++oc {xcLip[0,1]] 

a,8. (3.1) 
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and 
lira sup I L,~(a) - I (x)  l-- 0 a.s., (3.2) 

~ + ~  {~-~rip[o,1]} 

where [~(x) and I ( x )  are respectively the empirical depth and the population 
depth of .(t). 

Let 
Eir*l 1[.~,+or ( X i ) ) X i  

~r~ y~.i~ l l[.2,+~o)([r,(Xi)) (a.a) 

be our t r immed mean estimate. Define also 

E i ~ l  1 [.&+c~)(I(Xi))Xi (3.4) 
Vn Eir*l l[ .a,+~)(I(Xi)) 

(an artificial unobservable estimate) and 

E (X 11 [9,+oo)(X1)) 
(3.a) 

# = E( I [ s ,+~) ( I (X1))  

tile population t r immed mean. 

T h e o r e m  3.2. I f  the stochastic process X1 (t) takes values on an arbitrary 
space E[0, 1] :-- E where 

lira sup ] Jr,(X) - J(x)  ] -  0 a.s., (3.6) 
n--++~ {a:cE} 

the?~ 

/;T0 --+ # a.s .  

In particular, under HI  and H2, ~ ,  -+ # a.s. 

4 S i m u l a t i o n  r e s u l t s  

In this section, we report  on tile results of a simulation that  compares 
t r immed mean estimates with the regular mean under four different models. 

The basic one, (model M1) consist of p flmctions sat is~ing 

Xi ( t )  = g(t) + ei(t) 1 < i < p, 
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where  el(t) is a Gauss ian  s tochas t ic  process  wi th  zero m e a n  and  covar iance 

func t ion  

E (e i ( t ) e i ( a ) )  ( ~ )  It "~lp 

and  the  func t ion  g(t)  = 4t and  cor responds  to the  n o n - c o n t a m i n a t e d  model .  

T h e n  we have cons idered  two kinds of c o n t a m i n a t i o n  of the  basic model ,  
a to ta l  one and  a pa r t i a l  one (on t ra jec tor ies ) ,  and  we also consider  sym- 

me t r i c  and  a synnne t r i c  con tamina t ion .  

In  the  case of  s y m m e t r i c  t o t a l  con tamina t ion ,  mode l  M2 is given by  

Yi(t) Xi(t)  + c i a i M  1 < i < p, 

where  ~i and  cri are i ndependen t  sequences of r a n d o m  variables,  ~i takes 

valnes 1 wi th  p robab i l i t y  q and  0 wi th  p robab i l i t y  ( l -q)  the  c o n t a m i n a t i o n  

f rac t ion  and  ai takes values 1 and  -1 wi th  p robab i l i t y  1/2. M is the  size 

of  the  c o n t a m i n a t i o n  (a cons tan t ) .  

In  the  case of  a symmet r i c  to ta l  contaminat ion~ mode l  M3 is defined by  

where  ~i and  M are def ined in mode l  M2. 

For pa r t i a l  con t amina t i on  we consider  model  M4 def ined as 

Y i ( t ) = X i ( t ) + c i a i M  f o r t > T /  l < i < p  

and 
xi(t) for t < 

where Ti is randomly chosen according to a uniform distribution on (0, I). 

In  each case we p e r f o r m  N 500 repl ica t ions  for p 50 and  p 80 

curves~ q -- 0.05 and  q -- 0.1~ M -- 5 and  M -- 25 and  a -- 0.2 and  0.3. 

For each mode l  we consider  the  m e a n  and  t r i m m e d  m ean  es t imates ,  

P 

and 

i 1 
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for c~ = 0.2 and 0.3. 

For each of the 500 replications the estimates were evaluated at [ 30 
equally spaced points of [0, 1]~ and we calculate the integrated error for each 
replication 

I 
1 

E I ( j )  -[ ~ [f (k / [ )  - g (k/[)] 2 , 
k--1 

where f denotes p~ or #~,~, respectively. 

In the tables we report for each estimate the mean integrated error 

1 N 
E Z E •  

j----1 

and its s tandard deviation 

= (EI ( j )  - E) 
j = l  

We also report robust measures of the performance of the estimators. 

and 
M A D ( E I )  m c d i a n ( I E I ( j  ) - M I j 1 , . . . , N ) / 0 . 6 7 5 .  

We can see tha t  the fimctional t r immed mean estimates behaves very 
well under all models even under asymmetric contamination. This is 
also reasonable since depth t r imming is not necessarily a symmetric proce- 
dure. As expected the mean breaks down under all the contamination mod- 
els. The worst behaviour for the mean is under asymmetric contamination 
(model M3). The functional t r immed means are calculated for t r imming 
levels ~ equal to 0.2 and 0.3, different contamination fl'actions q (0.05 and 
0.1), sample sizes p (50 and 80) and for two different contamination con- 
stants (5 and 25). For each sample size p the integrated mean square error 
varies very little for the different contamination models, and the values are 
very close to the integrated mean square error of the non-contaminated 
model. 
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Sample 
size 
p - -  50 

p - 8 0  

Models 
M1 M4 M3 M2 

Contain.  C, ont am. Es t imator  non piecewi- asymme-  symme- 
probabi l i ty  constant  cont. se cont.  tric cont. tric cont. 
q -- 0.05 5 Mean 

20% Trim- 
med mean 

Mean 

20% Trim- 
med mean 

0.033 0.049 0&18 0.057 
(0.015) (0.036) (0.101) (0.050) 
0.030 0.039 0.086 0.043 

(0.014) (0.022) (0.069) (0.025) 
0.043 0.043 0.043 0.044 

(0.020) (0.020) (0.019) (0.020) 
0.039 0.039 0.039 0.040 

(0.019) (0.018) (0.016) (0.017) 
0.020 0.034 0.096 0.035 

(0.009) (0.029) (0.078) (0.030) 
0.019 0.027 0.073 0.027 

(0.008) (0.014) (0.058) (0.016) 
o.02r 0.028 0.029 0.027 

(0.013) (0.013) (0.014) (0.013) 
0.024 0.025 0.026 0.024 

(0.012) (0.012) (0.013) (0.011) 

Table 1: N = 500  replications, trimming level = 0.2.  

Sample 
size 
p - 50 

p - -  8 0  

Models 
M1 M4 M3 M2 

Cox:tam. Cox:tam. Es t imator  ::on piecewi asymme symme 
probabil i ty  constant  cont. se cont.  tric cont. tric cont. 
q -- 0.1 5 Mean 

20% Trim- 
med mean 

Mean 

20% Trim 
~led nle&n 

o.oaa 0.081 0.338 0.086 
(0.015) (0.079) (0.253) (0.080) 
0.030 0.055 0.262 0.058 

(0.014) (0.040) (0.224) (0.041) 
0.043 0.042 0.045 0.044 

(0.020) (0.019) (0.023) (0.021) 
0.039 0.038 0.040 0.040 

(0.019) (0.016) (0.019) (0.017) 
0.020 0.076 0.308 0.101 

(0.009) (0.063) (0.197) (O.Or7) 
0.019 0.059 0.266 0.081 

(0.008) (0.046) (0.172) (0.064) 
0.027 0.027 0.029 0.029 

(0.013) (0.014) (0.014) (0.014) 
0.024 0.024 0.026 0.026 

(0.012) (0.011) (0.013) (0.013) 

Table 2: N = 500  replications, trimming level = 0.2.  
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Sample 
size 
p - 50 

p - 8 0  

Models 
M1 M4 M3 M2 

C, ontam.  C, ont am. Es t imator  non piecewi- asymme-  symme- 
probabi l i ty  constant  cont. se cont. tric cont.  tric cont. 
q - 0.05 25 Mean 

20% Trim- 
reed mean 

Mean 

20% T r i m -  

m e d  mean 

0.033 0.410 2.078 0.742 
(0.015) (0.713) (2.182) (1.022) 
0.030 0.200 1.212 0.316 

(0.014) (0.2.50) (1.488) (0.423) 
0.043 0.043 0.041 0.044 

(0.020) (0.020) (0.018) (0.021) 
0.039 0.038 0.039 0.040 

(0.019) (0.017) (0.018) (0.019) 
0.020 0.463 2.079 0.583 

(0.009) (0.583) (1.856) (0.619) 
0.019 0.255 1.590 0.396 

(0.008) (0.287) (1.346) (0.479) 
0.027 0.028 0.029 0.027 

(0.013) (0.014) (0.014) (0.013) 
0.024 0.025 0.025 0.025 

(0.012) (0.012) (0.010) (0.010) 

Table 3: N = 500  replications, trimming level = 0.2.  

Sample 

size 
p - 50 

p - -  8 0  

Models 
M1 M4 M3 M2 

Contain.  Contain.  Es t imator  zion piecewi asymme syninie 
probabi l i ty  constant  cont. se cont. tric cont.  tric cont. 
q - 0.1 25 Mean 

20% T r i m -  

m e d  mean 

Mean 

20% Trim 
Ened i~I e &ll 

o.oaa 1.227 7.387 2.093 
(0.015) (1&72) (5.934) (2.447) 
0.030 0.765 6.057 1.165 

(0.014) (0.808) (5&28) (1.394) 
0.043 0.044 0.070 0.044 

(0.020) (0.021) (0.024) (0.025) 
0.039 0.040 0.039 0.040 

(0.019) (0.020) (0.017) (0.018) 
0.020 1.335 6.970 1.819 

(0.009) (1.2.54) (4.325) (1.565) 
0.019 0.923 6.205 1.507 

(0.008) (0.877) (3.912) (1.363) 
0.027 0.028 0.030 0.029 

(0.013) (0.013) (0.017) (0.013) 
0.024 0.026 0.027 0.025 

(0.012) (0.012) (0.013) (0.011) 

Table 4: N - -  500  replications, trimming level - -  0 .2.  
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Sample 
size 
p - -  50 

p - -  80 

p - -  80 

Models  
M4 M3 M2 

Contain .  Contain .  Es t ima to r  piecewi- asymme-  symme-  
probabi l i ty  cons tan t  se cont.  t r ic  cont. t r ic  cont. 
q -- 0.05 25 Mean 

q - - O . 1  

30% Trim- 
med mean  

Mean 

30% Trim- 
med mean  

Mean 

30% Tr im 
~led n l e & n  

0.437 2,090 0.709 
(0.749) (2.433) (0.981) 
0.212 1.090 0.298 

(0.264) (1.384) (0.396) 
0.048 0.052 0.050 

(0.022) (0.025) (0.024) 
0.043 0.046 0.044 

(0.019) (0.023) (0.023) 
0.368 1.929 0.445 

(0.486) (1.854) (0.720) 
0&54 1.478 0.163 

(0.203) (1.412) (0.218) 
0.032 0.034 0.031 

(0.015) (0.016) (0.014) 
0.029 0.031 0.028 

(0.014) (0.015) (0.014) 
1.323 7.024 1.825 

(1.250) (4.382) (1.556) 
0.896 6.123 1.503 

(0.885) (3.864) (1.344) 
0.033 0.040 0.034 

(0.016) (0.020) (0.017) 
0.029 0.036 0.030 

(0.014) (0.018) (0.015) 

Table 5: N = 500  replications, trimming level = 0.3.  
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5 A r e a l  d a t a  e x a m p l e  

In order to illustrate how the functional depth concept works in practice 
we consider a real da ta  example. 

We analize 100 curves used to build up the Nasdaq 100 Index, taking 
63 daily measurements start ing on April 12, 2000. 

Figure 1 shows the 100 curves all together. Figure 2 is a plot of the 
70 deepest curves. Figure 3 is a plot of the remaining 30 curves. Finally: 
Figure 4 shows the 80 deepest curves, while Figure 5 shows the remaining 
~more external" 20 curves. 

It is apparent that  the deepest curves can be inserted between the plots 
of the outer curves. In this sense the functional depth (3) does its job quite 
well. 

A p p e n d i x  

Pro o f  of Theorem 3.1. 

Let Y(t)  be a stochastic process with distribution P .  Since 

E p ( l (  e~,u l(Y(t))) = Ft(u), 

we have 

I(x) = Ep  1( ~,x(t)](Y(t))dt = P(Y( t )  < x(t))dt. 

Given x E D[0, 11 we define 

gx(Z) = 1( oo#(O](z(t))dt, 

then 

- I ( . )  F, ox - P o x ,  

where P f  f f d P .  Let us define a family b e {9x " x E DI0,1]) of 
functions with envelope F = 1. In order to prove the uniform consistency, 
we will show that  for any fixed e > 0 , l n N I ( c , P ~ , 2 - )  = op(n) where 
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Figure 1: .\~4SDAQ 100 

Figure 2: 70~ tess deepest curves 



Trimmed means for functional data 433 

Figure 3: 30X iess deepest curves 

Figure 4: SO~ less' deepest curves 
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Figure 5: 20~ less deepest curves 

NI(E, Pn, 5) is the family's entropy. (see Pollard 1984, Theorem 24 pp. 
25). We start finding a bound for 

-  lg.(xo 
i 1 

f01 1( ~,x'(t)](Xi(t))dt . 

Set y(t) := min(x( t ) ,  x' (t)) and z(t) := max(x(t), x'( t)) .  Then 

1 
m 

% ~0 
1 

1( ~,~-(t)] (Xi (t))dt - fo 1 l(_oo,x'(o](Xi(t)) di 

- 1 [y(t),z(t)] (Xi (t))dt 
~ i 1 

1 ~ ) ,  [ t  X/(t)E [y(t) ,z( t )]} ,  
i = l  
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where A is tile Lebesgue measure on R. From tile Strong Law of Large 
Numbers,  this expression converges ahnost surely to 

Let us define 

} D~ = D~(~') = ~ :  ~ ~({~,: x~(~,) �9 [y(~,) ,~(0]}) < ~ �9 

By H2 there exists a constant c > 0 for which 

and u(Q �9 Lip[O, 1]. Hence, if II x -  x' 
P(D.C(e)) --+ 0 as n --+ oo. 

Indeed, with probabil i ty 1, we have 

7~ 
i 1 

1 r~ 

< - Z a (~: xi(~,) �9 [y(~,), y(~,) + c~l} 
i = 1  

IIoc< ce we can conclude that  

-<v.~-~> ~o(~) E ( a  {~,: xl(~,)  �9 Ey(~,), y(~) + ~cl}) + ~ < r 

Given M > A , for each 5 > 0 we consider now a family of polygonals 
7 / C  D[0, 1] whose elements y satisfy: 

y(O) takes values oil tile sequence 

( - M , - J b ' / 3 , - ( J  - 1 ) 6 / 3 , . . . , - 6 / 3 ,  O, 6 / 3 , . . . ,  Jb'/3, M) : ( - M ,  M; 6 /3 ) ,  

where J is the integer part  of 3M/d', and for b in the sequence ( - A 5 / 3 ,  A5/3; 
a-/3) 

= y + b  

+b .  
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Given x �9 D[O, 1] with  I~(0) 1 < M,  there exists an element of 7/ for 
which 

IIz(t) yCt)ll~ < 5. 

and 

To see this, observe tha t  there exists y for which 

I.(0) - y(0)l _< a73, 

Iz(5/aM) y(5 /aM) l  < 0/3. 

We have tha t  y(0) 0"/3 < x(0) < y(0) + 0"/3. Besides, since x(t) �9 
Lip[O, 1], 

a 5A 5A 0 F 5 l  
x(O) -- -~ _< x(O) - ~3iVi_ < x(t)  _< x(O) + ~ _< x(O) + ~, for t �9 [ jo ,  
Then,  y ( O ) -  20"/3 < x(O) - d'/3 < x(t)  < x(O) + d'/3 < y(O) + 20"/3. 
We can also choose y such that:  y(0) - 5/3 < y(t) < y(O) + 5/3. Then,  
I , ( t )  - v(t) I < a for t �9 E0, a/aA]. Since I f l (a/3A) - x ( a / 3 A )  I < 5/3 we 
can repeat tile procedure  for the next interval. 

On the other hand  it is easy to see that  ~7/ < [6M/0"] 3A/5, where ~C 
stands for the cardinal of the set C. 

Let us consider now the family of functions 

{gv : Y �9 7/} 

For a given e > 0, we have that  on D,~(e) 

1_ ~ ) , ( { t .  Xi( t )  �9 [y(t) ,z(t)]]) < ~, 
?z 

i=1  

and 

i f n  _> no(Gw) 

II * - *' I I ~ <  o - :  ~c. 

On D~, if [ x(0) [< M there exists r E 7 / s u c h  that  

II g.~r -g~r IILI<p,~>< c. 

If  I*(0)1 > M and X i ( 0 )  < M A, for i = 1 , . . .  , ~  we  can take V �9 7/  (on 
tile boundary)  such that  

II g.~- - g.~., IILl(P,o 0. 
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n .n X n} (with M A n), then If we define C. Ai=I{[ i(O)l < 

~s ~ ~ ~ ,  whenever  E(IX~(O)I) < ~ .  Consider now 

E~ C~ A D,~. 

We have that  

Indeed, for all ~/> 0 

1 In N 1  (c, P~, 5 )  ~ +  O. 
% 

<_ p ( l l n N I ( G P , ~ , 5 )  > ~l,E~) + P(E.~) 

c 
= P ( -~ln(6M/O')  > 71, E.~) + P(E.~;). 

The last term tends to zero, while the first one is zero. Then, N l ( e ,  P~, 5 )  
= ol) (1), and we conclude 

sup ] Pnga: - Pgx ] ~ n ~  0 a.s. 
a-CLip[O,1] 

i.e. 

which entails 

sup I Jn(x) - J(x)  I '~n~oo 0 
xcLip[O,1] 

a . $ ,  

sup ] Zr,(x) - I(x)  ] >.r,~oo 0 a.s. 
x c  Lip[O,1] 

which concludes tile proof. 

P r o o f  o f  T h e o r e m  3.2 .  

Let us define 
snp IZ~(x) • 

{xcE] 
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By assumption (3.6), we have 

sup IJn(x) J(x) I  ~ 0 a.s. 
{.~-cE} 

which implies 
Sn ~ 0 a.s. 

Let h be one of the two flmctions h( t )  = t or h( t )  = 1. Define 

-E  fi~,h n l[a,+~o)(Ir~(Xi))h(Xi) 
i = 1  

and 

1 E l [ ~ , + ~ ) ( I ( X i ) ) h ( X i )  P,~,h = n 
i 1 

When h(t) = t, [)~,h is the numerator  o f / ~  and when h( t )  = 1, then 
f)~,h is the denominator  of/2n defined in (3.3). The s~me holds for P~,h and 
p~ defined in (3.4). Since by the L~w of Large Numbers, 

P~,A ', E ( l [ 2 , + o o ) ( I ( X 1 ) ) h ( X z ) )  a.s. 

as n -+ e~, it suffices to show that  

lira b6~,h - P~,hl 0 a.s. 

Now if 6 is any positive number, 

I~ ,A  - p,,,AI < 

rt 

l__ ~ ih(xi)lll[9,+o~)(i(xi) + a') 
i 1 

112,+oo) (I(Xi)  b') Ii[s,~ <5} 
1 n 

+ -  ~ Ih(x~)lll[,s,§ + S.~) 
i = 1  

1[~,+oo) (I(Xi)  ,g~)]1{s 

Tim second stmnnand can be majorized by 

1 'F~ 

-E 
i 1 
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t h a t  converges a.s. to zero as n -+ oc. As, for tile first s u m m a n d ,  we have 

.n 

1_ ~lh(X~)l l l[e ,+~)(Z(Xd +5) l[~,+~)(I(Xi) 5)11[s,<5} 

i - -1  

- E  (Ih(x)ll l[9,_~)(I(X) + 0) - l [ ~ , + ~ ) ( I ( x )  - 5)1 ) . 

Th i s  difference converges a.s. to  0 by  the  Law of  Large Numbers .  F inal ly  

since 1[~,+~)(.) is b o u n d e d  and  m o n o t o n e  and  E(Ih(X)I  ) < 0% as a conse- 

quence  of  tile d o m i n a t e d  convergence  theorem,  we ob ta in  

lira E (Ih(X)lll[9,_~)(I(X) + 0") - l [ ~ , + ~ ) ( I ( x )  - 5 ) 1  ) = 0 
5-+0  

which  concludes  tile proof.  
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