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Abstract

In practice, the use of functional data is often preferable to that of large finite-
dimensional vectors obtained by discrete approximations of functions. In this paper
a new concept of data depth is introduced for functional data. The aim is to
measure the centrality of a given curve within a group of curves. This concept is
uscd to define ranks and trimmed means for functional data. Some theoretical and
practical aspects are discussed and a simulation study is given. The results show
a good performance of our method, in terms of cfficiency and robustness, when
compared with the mean. Finally, a real-data example based on the Nasdaq 100
index is discussed.
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1 Introduction

In one dimension, order statistics and ranks are widely used for several ap-
plications, such as distribution free tests and some simple robust estimation
procedures. In this case, they are easily defined through the natural order
on the real line, and there is a vast literature on their applications.

L-estimates, which are defined as linear combinations of order statistics,
are a well known class of robust location estimates. In particular trimmed
means, which are defined as the average of the most central (1 — a)n ob-
servations, (0 < @ < 1) constitute a class of estimates that range from the
sample mean to the sample median.

In more than one dimension, the concepts of order statistics and ranks
are more involved and several definitions have been proposed in Maha-
lanobis (1936), Tukey (1975), Brown (1983), Oja (1983), Liu (1988,1990),
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Small (1990), Gordaliza (1991), Singh{1991), Donoho and Gasko (1992),Liu
and Singh (1993), Cuesta-Albertos, Gordaliza and Matran (1997) and Frai-
man and Meloche (1999).

All of them are based on different notions of depth. A data depth is a
device introduced to measure the “centrality” of a multivariate data point
within a given data cloud. Although these definitions are quite different for
multivariate data, they are very similar when we look at them for univariate
data. We now briefly describe two of them.

Let Y1,...,Y, be independent and identically distributed random vec-
tors on R* with common distribution F.

Tukey’s Depth. Tukey’s depth at z is defined as
TD(z) =infg{F(H): z € H},

where H is a half space. The sampling version T 1), is defined by replacing
F by the empirical distribution F,,. In one dimension (k = 1)

TD(z) =min{F(z),1 - F(z7)}.

Simplicial Depth. Let ¥7,...,Y;41 be & 4+ 1 ii.d. random vectors with
distribution /. The simplicial depth at z is defined as

SD(I) = PF(I = S[Yl,. .. 1Yk+1D=

where we denote by S[Y71, ..., Y 1] the closed simplex with vertices on the
vectors Y1,...,Yy41; its sample version S, is defined by replacing F' by
the empirical distribution #,,. The simplicial depth at z is the proportion
of closed simplices with vertices in the sample to which the point x belongs.
On the real line,

SD{x) =2F(x)(1 — F(z™)), and SD,(z)=2F,(x)(1 - F,(z7)).
If there are no ties among the elements of the sample, we get the stan-

dard “both sides” order statistics, which can also be defined through the
one dimensional depth

(1.1)
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Several applications of the notions of depth have been proposed. A first
one is to consider the data point that maximizes a depth as a multivariate
median. A second one is to construct multivariate L-estimates using the
“order statistics” provided by the depth. This problem will be considered
in this paper for functional data.

Other applications of data depth are, for instance, depth-based multi-
variate classification rules, multivariate two sample “nonparametric” tests,
robust quality control, among others.

A different approach has also been followed by Brown and Hettmans-
perger (1987) who define multivariate quantiles which have both magnitude
and direction, based on the gradient of Oja’s (1983) measure of scatter.

All the proposed definitions attempt to order the observations according
to their “depth” in the data cloud, the deepest observation defining the
multivariate median.

Nowdays the real time monitoring of many processes in different fields
such as stock markets, audience ratings, medicine, chemometrics, is avail-
able, providing large functional data sets. It has also been shown (see for
instance Ramsay and Silverman 1997) that in practice, the use of func-
tional data is often preferable to that of large finite-dimensional vectors
obtained by discrete approximations of the functions. On the other hand
the effective calculus of multivariate depth in high dimensional spaces is
almost impossible for computational reasons.

In what follows we will define a natural notion of depth for functional
data, i.e. when data are curves (realizations of a stochastic process). The
idea is to measure “how long”
them,

remains a curve in the middle of a group of

In Section 2 we introduce a definition of depth for functional data, and
we define a—trimimed means based on this notion. In Section 3 we provide
strong comsistency results for the proposed estimates. In Section 4, we
report on the results of a simulation that compares the performance of a
few estimates of location. In Section 5 we provide a real data example. All
the proofs can be found in the Appendix.
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2 Depth concepts for functional data and a—trimmed means

Let X1(f),..., Xn(t) be independent and identically distributed stochastic
processes with continuous trajectories defined on an interval [a, b]. Without
loss of generality we assume [a,b] = [0,1]. F; will stand for the marginal
univariate distribution function of X (t).

For each realization we get a group of curves, and we want to know, for
instance which of them stays more “in the middle of the group” for most
of the time. This idea corresponds in a functional setup to the intuitive
notion of median. More generally, the purpose of this article is, to define
a depth concept for functional data as well as to propose trimmed-mean
estimates for functional data.

Let D,, be a depth defined on R. For each fixed ¢ € [0, 1] we consider
Dy (Xi(#)) = Zi(3),

as the univariate depth of X;(¢) at ¢ with respect to Xy (¢),..., X, (¢). In
this way, at each single point ¢ we have ranked the values X (¢),..., X, (¢)
according to their depths Z;(t), 1 <14 < n, which take a finite set of positive
values,

We define now )
I, = / Zi(t)ydt, 1<i<n,
0

we rank the functions X (¢),..., X, (t) according to the associated [;’s val-
ues obtaining order statistics. Thus, the functional median will correspond
to the X;(t) for which /; is maximum. Ranks R; are defined from the rela-
tionship I; = I8 that indicates the I ;’s position in the ordered vector I's.
L-estimates and trimimed-means estimates are easily derived from these
order statistics.

More formally, the population functional depth is defined from a uni-
variate depth D as follows.

Let D; be the depth associated with the univariate distribution F; by
D, and z = z(t) a continuous function on [0, 1]. Set

Z(t) = Di(z(t)).

In particular, for the simplicial depth, we have

Z(t) = Fy(z(t)[1 — Fy(=(t7))]-



Trimmed means for functional data 423

Then, the corresponding depth measure turns out to be
1 1
H@]HHWH/IMMWU—E@wwMt
0 0

The sampling version [,(z) is defined by replacing #; by the empirical
distribution #}, ;, so we have

Zn(t) = Fn,t(i'(t))[l - Fn,t(f‘g(t—))]:
and

1 1
mmﬁzwwﬂz%uwm—ammth

In what follows we will consider the univariate depth

1

D{z)=1- §—F(l‘) ,
so that )
2= 1= 3 - Fie(0) (2.1)
and
1
n@1—£ %—ﬂ@@). (2.2)

If the observations X1 (t),..., X, (¢) are ranked according to decreasing val-
ues of T, (X;(f)) we get order statistics X (1),..., X (£), where X1 (#)
denotes the deepest one (functional median), while the last ones will be on
the “outer skin” of the data.

A functional version of the o trimmed mean is defined as the average
of the n — [na| deepest observations.

More precisely, we will consider for 7 > 0

Z?:l 1[5,+00)(In(Xi))Xi

o T o a0 2
as a functional trimmed mean, where
>
— > LB ) (X)) =1~ a (24)
i=1

and 1,4 stands for the indicator function of the set A.
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Remark 2.1. A formal definition of robustness for continuous time data
has not vet been proposed. A first stage would be to define which kind of
contamination is allowed. For instance, if we allow for contamination on
all data on a small (but possibly different) time interval, the whole data
set could be corrupted. In this case, a robust nonparametric smoother
(see for instance Hirdle and Tsybakov 1988, or Boente and Fraiman 1989)
should be applied at each single curve as a first step, and just then apply
the methods defined above. In this paper we are mainly interested in a
somewhat more realistic type of contamination, where a certain fraction of
the data are corrupted on some possibly large time interval.

3 Strong consistency results

In this section we will show the uniform convergence of the empirical func-
tional depth [, to its population version { over an appropriate set of func-
tions, and derive the strong consistency of the a—trimmed mean estimates.

We will assume the following two assumptions.

H1. For a positive constant A {large enough) let
Lip[0,1]={x:[0,1] = R,z is Lipschitz with constant less or equal to A}

be the space of functions where the paths of the stochastic process
X1(1) take values.

H2. There exists a constant ¢ > 0 for which
E({t: X1(t) € [ult). ult) + ce]}) < €/2,
where A stands for the Lebesgue’s measure on R and » € Lip[0, 1].

Theorem 3.1. Under Hi and H2, if

1 1
T (z) = /0 Foo(e(®)dt, and J(z) = /O Fi(w(t))dt,
we have that

lim sup | Julz) = J{z) |=0 a.s. (3.1)
HIE e Lipl0,1])
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and

lim sup | Ly{z)—I{z) |=0 a.s., (3.2)
= (e Lip[0,1]}

where 1,(x) and I(z) are respectively the empirical depth and the population

depth of x(1).

Let n N
> i1 Lig ooy (Tn (X)) X5

fin = <=7 (3.3)
> i1 L o) (In(X5))
be our trimmed mean estimate. Define also
i = Z?:l 1[,‘3,+00)(I(Xi))Xi (3.4)
b Y L ey (X))
(an artificial unobservable estimate) and
= DXL o) (X)) (5.5)
E(1[g 400y (1(X1))

the population trimmed mean.

Theorem 3.2. If the stochastic process X1(t) takes values on an arbitrary
space E[0,1] := E where

lim sup | Ju(z)—J(x)|[=0 a.s., (3.6)
=400 {zCE}

then
o — 14 .8,

In particular, under Hi and HZ, [i, = 1 a.5.

4 Simulation results

In this section, we report on the results of a simulation that compares
trimmed mean estimates with the regular mean under four different models.

The basic one, (model M1) consist of p functions satisfying

Xi(t) = g(t) +es(t) 1 <i<p,
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where e;(t) is a Gaussian stochastic process with zero mean and covariance

Tunction -
Ele;(t)e;(s)) = (%) p

and the function g(¢) = 4¢ and corresponds to the non-contaminated model.

Then we have considered two kinds of contamination of the basic model,
a total one and a partial one {on trajectories), and we also consider sym-
metric and asymmetric contamination.

In the case of symmetric total contamination, model M2 is given by
Yi(t) = X(t) + oM 1 <i <p,

where ¢; and a; are independent sequences of random variables, €; takes
values 1 with probability ¢ and 0 with probability (1-q)  the contamination
fraction— and o; takes values 1 and -1 with probability 1/2. M is the size
of the contamination (a constant).

In the case of asymimetric total contamination, model M3 is defined by
Vi) = X+ &M 1<i<p,
where ¢; and M are defined in model M2.
For partial contamination we consider model M4 defined as
Vi) = X;(60) + oM fort>T, 1<i<p

and
Yi(f) = Xy(t) for t < Ty,
where T; is randomly chosen according to a uniform distribution on (0,1).

In each case we perform N = 500 replications for p = 50 and p = 80
curves, ¢ = 0.05 and ¢ = 0.1, M =5 and M = 25 and « = 0.2 and 0.3.

For each model we consider the mean and trimmed mean estimates,

and
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for @ = 0.2 and 0.3.

For each of the 500 replications the estimates were evaluated at 7 = 30
equally spaced points of [0, 1], and we calculate the integrated error for each
replication

I
S U R/T) = g (B/D),

k=1

BI(j) =

]

where f denotes p, or p, . respectively.

In the tables we report for each estimate the mean integrated error

N

1 .

B = ~ z;EI(j)
]:

and its standard deviation

1/2

1 &
s= | w2 (BI) - B)°

=1

We also report robust measures of the performance of the estimators.
M = median(EI(j) §=1,...,N)

and
MAD(EI) = median(|EI{j) — M| 7=1,...,N)/0.675.

We can see that the functional trimined mean estimates behaves very
well under all models —even under asymmetric contamination. This is
also reasonable since depth trimming is not necessarily a symmetric proce-
dure. As expected the mean breaks down under all the contamination mod-
els. The worst behaviour for the mean is under asymimetric contamination
(model M3). The functional trimmed means are calculated for trimming
levels v equal to 0.2 and 0.3, different contamination fractions ¢ (0.05 and
0.1), sample sizes p (50 and 80) and for two different contamination con-
stants (5 and 25). For each sample size p the integrated mean square error
varies very little for the different contamination models, and the values are
very close to the integrated mean square error of the non—contaminated
model.
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Models
M1 JYE] M3 M2

Sample | Contam. Contam. | Estimator non piecewi-  asymme- syImIme-
size probability | constant cont. sc cont.  tric cont.  tric cont.

p=>50 | g=0.05 5 Mean 0.033 0.049 0.118 0.057
(0.015)  (0D.036) {0.101) {0.050)

0.030 0.039 0.086 0.043

(0.014)  (0.022)  (0.069) {0.025)

20% Trim- 0.043 0.043 0.043 0.044

med mean | {0.020)  (0.020) {0.019) {0.020)

0.039 0.039 0.039 0.040

{0.019}  (0.018) {(0.016) (0.017)

p =280 Mean 0.020 0.034 0.096 0.035
{0,009}  (0.029) {0.078) {(0.030)

0.019 0.027 0.073 0.027

{0.008)  (0D.014) {0.058) {0.016)

20% Trim- 0.027 0.028 0.029 0.027

med mean | {0.013)  (0.013)  (0.014) {0.013)

0.024 0.025 0.026 0.024

(0.012)  (0.012)  (0.013) {0.011)

Table 1: N = 300 replications, trimming Ievel = 0.2,
Models
M1 M4 M3 M2

Sample | Contam. Contam. | Estimator non piccewl-  asymme- S¥IMIMe-
size probability | constant cont. se cont.  tric cont.  tric cont.

p="50 | g=01 5 Mean 0.033 0.081 0.338 0.086
{0,015}  (0.079) (0.253) {0.080)

0.030 0.085 0.262 0.058

{0.014)  (0D.040) {0.224) {0.041)

20% Trim- 0.043 0.042 0.045 0.044

med mean | {0,020} (0.019)  (0.023) {0.021)

0.039 0.038 0.040 0.040

(0.019)  (0.016)  {0.019) {0.017)

p =280 Mcan 0.020 0.076 0.308 0.101
(0.009) (0.063)  (0.197) (0.077)

0.019 0.059 0.266 0.081

{0.008)  (0.046) (0.172) {0.064)

20% Trim- 0.027 0.027 0.029 0.029

med mean | {0.013}  (0.014) {0.014) {0.014)

0.024 0.024 0.026 0.026

(0.012)  (0.011)  (0.013) {0.013)

Table 22 N = 500 replications, trimming level = (0.2
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Models
M1 M4 M3 M2

Sample | Contam. Contam. | Estimator non piecewi-  asymme- syImIme-
size probability | constant cont. sc cont.  tric cont.  tric cont.

p=>50 | g=0.05 25 Mean 0.033 0.410 2,078 0.742
{0.015)  (0D.713) (2.182) (1.022)

0.030 0.200 1.212 0.316

(0D.014)  (0.250)  (1.488) {0.423)

20% Trim- 0.043 0.043 0.041 0.044

med mean | {0.020)  (0.020) {0.018) {0.021)

0.039 0.038 0.039 0.040

(0.019)  (0.017) {0.018) {0.019)

p=2_80 Mean 0.020 0.463 2.079 0.583
(0.009)  (0.583) {1.856) {0.619)

0.019 0.255 1.590 0.396

{0.008)  (0D.287) {1.346) (0.479)

20% Trim- 0.027 0.028 0.029 0.027

med mean | (0.013)  (0.014)  (0.014) {0.013)

0.024 0.025 0.025 0.025

(0.012)  (0.012) {0.010) {(0.010)

Table 3: N = 300 replications, trimming level = 0.2,

Models
M1 M4 M3 M2

Sample | Contam. Contam. | Estimator non piccewl-  asymme- S¥IMIMe-
size probability | constant cont. se cont.  tric cont.  tric cont.

p =750 g=01 25 Mean 0.033 1.227 7.387 2.093
(0.015) (1.172) (5.934) (2.447)

0.030 0.765 6.057 1.165

{0.014)} {0.808) {5.128) (1.394)

20% Trim- 0.043 0.044 0.070 0.044

med mean | {0.0200  (0.021)  (0.024) (0.025)

0.039 0.040 0.039 0.040

(0.019) {0.020) {0.017) {(0.018)

p =80 Mean 0.020 1.335 6.970 1.819
(0.009)  (1.254)  (4.325) (1.565)

0.019 0.923 6.205 1.507

{0.008) {0.877) (3.912) {1.363)

20% Trim- 0.027 0.028 0.030 0.029

med mean | {0.013}  (0.013) {0.017) {0.013)

0.024 0.026 0.027 0.025

(0.012)  (0.012)  (0.013) (0.011)

Table 4: N = 500 replications, trimming level = 0.2
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Models
M4 M3 M2

Sample | Contam. Contam. | Estimator | piecewi- asymme- syImIme-
size probability | constant sc cont.  tric cont.  tric cont.

p=2>50 | g=0.05 25 Mean 0.437 2,090 0.709
{0.749) (2.433) {0.981)

0.212 1.090 0.298

(0.264)  {1.384) {0.396)

30% Trim- 0.048 0.052 0.050

med mean | (0.022) (0.025) {0.024)

0.043 0.046 0.044

{0.019) {0.023) {0.023)

p=2_80 Mean 0.368 1.929 0.445
{0.486) {1.854) {0.720)

0.154 1.478 0.163

{0.203) (1.412) {0.218)

30% Trim- 0.032 0.034 0.031

med mean | (0.015)  (0.016) {0.014)

0.029 0.031 0.028

(0.014)  (0.015) {0.014)

p=280 g=0.1 Mcan 1.323 7.024 1.825
(1.250)  (4.382) (1.556)

0.896 6.123 1.503

{0.885) {3.864) {1.344)

30% Tnm- 0.033 0.040 0.034

med mean | (0.016) {0.020) (0.017)

0.029 0.036 0.030

(0.014)  {0.018) {0.015)

Table 51 N = 500 replications, trimming level = 0.3,
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5 A real data example

In order to illustrate how the functional depth concept works in practice
we consider a real data example.

We analize 100 curves used to build up the Nasdaq 100 Index, taking
63 daily measurements starting on April 12, 2000.

Figure 1 shows the 100 curves all together. Figure 2 is a plot of the
70 deepest curves. Figure 3 is a plot of the remaining 30 curves. Finally,
Figure 4 shows the 80 deepest curves, while Figure 5 shows the remaining
“more external® 20 curves.

It is apparent that the deepest curves can be inserted between the plots
of the outer curves. In this sense the functional depth (3) does its job quite
well.

Appendix

Proof of Theorem 3.1.
Let Y (¢) be a stochastic process with distribution P. Since
EP(]-(foo,u](Y(t))) = Ft(u)a

we have

I(z) = Ep ( ]O R (Y(t))dt) _ /D PV () < ()i

Given z € D[0,1] we define

then
In(:‘g) - I(g:) = FPhg: — Pg.,

where Pf = [ fdP. Let us define a family F = {g, : z € D[0,1]} of
functions with envelope F = 1. In order to prove the uniform consistency,
we will show that for any fixed ¢ > 0, InN(¢, P, F) = op(n) where
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3

:

1 4 7 1013 1619 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Figurc I: NASDAQ 100

3

:

1 4 7 1013 1619 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Figure 2. 70% loss deepoest curves
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300
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1 4 710131619 22 256 28 31 34 37 40 43 45 49 52 55 58 61

Figure 3: 30% less decpest curves

3

:

1 4 7 1013 1619 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Figure 4: 80% less decpest curves
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300
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1 4 7 1013 1619 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Figure 5. 20% less decpest curves

N (e, Py, F) is the family’s entropy. (see Pollard 1984, Theorem 24 pp.
25). We start finding a bound for

1 & ) .
lge =0 lmagpy = =X loa(Xe) — g, (X))
=1
= o) (X (8))dt
7 i—

1
/0 L oot oy (XalD))dt )

Set y(t) == 1[1111[1(:[:(2?),3:r (1)) and 2(t) := max(z(f),z (t)). Then

1
1( sone(t)](XilE))dt — /D Lo oy (X (2))edt

1 < [t )
= ;Zf Ly, ey (X () )it
i=1 70

- %ZA {t: X3(t) € w(d), 2(1)]}
=1
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where X is the Lebesgue measure on R, From the Strong Law of Large
Numbers, this expression converges almost surely to

EQ{t: X1(0) € [y(h), 2()]})-

Let us define
D, =D,(8) = {w : %Z}\({t s XG(t) e [y, z(D)]}) < (5} :
i=1

By H2 there exists a constant ¢ > 0 for which
E(A{t: X1(t) € [u(t), u(t) + ce]}) < /2

and u(t) € Lip[0,1]. Hence, if | 2 — 2 ||so< ce we can conclude that
P(DS(€)) = 0 as n — .

Indeed, with probability 1, we have

%Z Mt Xq(t) € [y(t), 2(8)]}
i=1

s %ZA {t: Xi(t) € ly(t),y(t) + cel}
=1
Cvusnowy Bt X1(t) € [y(t),y(8) + cel}) + % <e

Given M > A, for each § > 0 we consider now a family of polygonals
H C D[0,1] whose elements y satisfy:

y(0) takes values on the sequence

(=M, —J5/3,—(J —1)6/3,...,—0/3,0,0/3,. ... J6/3, M)={(—M, M;3/3),

where .J is the integer part of 3A4/4, and for & in the sequence (—Ad/3, Ad/3;

/%)
y(%) () 4
(23) = v(53) +
48) - o(oniyes
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Given z € D|0,1] with |z(0)] < M, there exists an element of H for
which

|2() — y(#)]] < 6.
To see this, observe that there exists y for which
2(0) —y(0)] < d/3,
and
[2(6/3M) — y(3/3M)] < /3.
We have that y(0) — 6/3 < z(0) < »(0) + /3. DBesides, since z(t) €
Lip[0, 1],

il dA dA

2(0)— =< z2(0) — — < z(t) < 2(0) + — < z(0) + i, for t € [0, SLA] .

3 3M = 3M = 3

Then, y(0) —26/3 < z(0) — /3 < z(f) < z(0) +4/3 < y(0) + 24/3.
We can also choose y such that: y(0) — /3 < y(t) < »(0) + /3. Then,
L x(t) —y(t) |< d for £ € [0,0/3A]. Since | y(6/3A4) — z(6/3A) |< §/3 we
can repeat the procedure for the next interval.

On the other hand it is easy to see that {4 < [6M/4]*4/%, where §C
stands for the cardinal of the set C.

Let us consider now the family of functions

{9y vy € H}

For a given e > 0, we have that on D, (¢)

1 T
- STA{E: Xi(0) € [w1),2(0]}) <€, i n > nole,w)
i=1
and
lz—2 |loo<d =2 ce
On D,,, if | (0) |< M there exists & € 7 such that
| g — gy o< e

If |2{0)| > M and X;(0) < M — A, fori=1,...,n we can take y € H {on
the boundary) such that

H e — 4, HLI(PH): 0.
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If we define ¢, = (i {|X:(0)] < n} (with M — A = n), then

P(Cy) < nP(

,X1(0)| >n)— 0

as n — oo, whenever E(|X1(0)|) < oc. Consider now

B, = Cy Dy,

We have that 1
~InNy(c. Py, F) i)

Indeed, for all nn > 0
1
P (Elan(E,Pm}—) > 77)
S P(l]an(E,Pn,}—)>77=En) +P(ET(;)
n
= P(W(6M/5) > 9. E,) + P(E).
n

The last term tends to zero, while the first one is zero. Then, N(e, P, F)
= 0p(1), and we conclude

sup | Pogz — Pz |—non 0 a.s.
x€Lip[0,1]

ie.
sup | Jp(x) —J(z) |[—none 0 a.s.
aCLip[0,1]

which entails

sup | Lp{x) — I{x) [—pone 0 a.s.
xC Lip[0,1]

which concludes the proof.

Proof of Theorem 3.2.

Let us define
Sy = sup |L,(z) — I(z)|
{zCE}
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By assumption (3.6), we have

sup |Jn(z) — J(z)] — 0 a.s.
[zCE}

which implies
S, —0 as.

Let h be one of the two functions A(?) =t or i(f) = 1. Define

Pn h— — Z [ﬁ,+oo) ))h’(X )

and

Pnh — — Z 1 8 +oo Xih(X;).

When A{t) = £, ppp is the numerator of i, and when A(t) = 1, then
iy, 18 the denominator of ji, defined in (3.3). The same holds for p,, ; and
in defined in (3.4). Since by the Law of Large Numbers,

Pup — E(lg o0 (I(X1))A(X1))  a.s.
as 1 — o0, it suffices to show that

=0 a.s.

lm |y g —
n—nd
Now if § is any positive number,
P — Pl < —Z (X)L, 400) L (Xi) 4 6)
*1[3 +00)(I(X' — 0)[1¢s, <4
+— Z (X115 400y (H(X3) + Si)

*1[,3,+oo)(I(Xz‘) — Sn)[Ls, >4

The second summand can be majorized by

—Z [MX) L5, 5y
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that converges a.s. to zero as n —+ ~o. As, for the first summand, we have

1 & i X
- D IR 115 00y (TX) 4 8) — Lz 40y (T(X3) — 8) |13, <)
i1

—E (|15 400y (T{(X) 4 0) = Lz 400y (T(X) = 0] |-

This difference converges a.s. to 0 by the Law of Large Numbers. Finally
since 1[g 4. () is bounded and monotone and E(|A(X)|) < oo, as a conse-
quence of the dominated convergence theorein, we obtain

lin B (|50 [15,100) (F(X) 4+ 6) = 15 oy (F(X) = 9)]) =0

which concludes the proof.
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