Sociedad de FEstadistica e Investigacion Operativa
Test (2001) Vol. 10, No. 2, pp. 333 355

Asymptotic properties in partial linear models
under dependence
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Abstract

Consider the regression model y; = (73 + m(t:) + & for i = 1,...,n. Here
(¢T,t)T € RP x [0,1] arc design points, F is an unknown p x 1 vector of paramcters,
m is an unknown smooth function from [0, 1] to R and &; are the unobserved errors.
We will assume that these errors are not independent. Under suitable assumptions,
we obtain expansions for the bias and the variance of a Generalized Least Squares
{(GLS) type regression estimator, and for an estimator of the nonparametric func-
tion m(-). Furthermore, we prove the asymptotic normality of the first cstimabor.
The obtained results are a generalization of those contained in Speckman (1988),
who studied a similar model with ii.d. crror variables.

Key Words: DBandwidth sclection, kernel smoothing, mixing, partial lincar
models.
AMS subject classification: 62G05, 62G20, 62M10.

1 Introduction

Partial linear models are more than a modest generalization of a multivari-
ate linear model. These models are used when a response variable can be
presumed to be related linearly to one or more variables, and in a non-linear
way to one or more different variables. The specific form of the model that
we will consider in this paper is

Yi = C;JB + m(t;) + & (i=1,...,n), (1.1)
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where the ¢; = (i1, %2, ..., 7ip)T and ¢; € [0, 1] are design points, 8 (px 1)
is a vector of unknown parameters, m is a smooth unknown real-valued
function defined on [0, 1] and the ¢; are a sample of errors identically dis-
tributed. Assumptions relating to ¢; and ¢; will be introduced in Section
2.

Using the notation established in that section and in (1.3) below, if
we assume that assumptions (A.l.a), (A.5.b)-(A.7) and (A.9)-(A.12) hold,
then 8 can be identified via (see Lemma 3.1 and property (3.12) below)

~ T N
B =V {lim n ' X ¥ 'EG).
n—r
The identifiability of m(-) is obtained from the identifiability of 3, together
with assmmption (A.9) and the continuity of m(-).

Model (1.1) is much more flexible than the standard linear model since
it combines both parametric and nonparametric components. It can be
used to examine the effect of price changes on the volume of sales. The
conventional assumption is that the logarithm of the sales volume is lin-
early related to price. However, it is natural to expect that weekly and
seasonal effects would also be at work, therefore Daniel and Wood (1980)
also included duminy variables to indicate the day of the week and the
month in which each observation lay. In this situation, an attractive al-
ternative is to model the dependence on time in a nonparametric fashion,
where the variable ¢ represents the day of the vear.

There are some interesting papers on the estimation of the vector @ and
the function . One possible method to estimate 8 and m would be by
means of a penalized least squares criterion, by minimizing

n

St = ¢FB —mia) + A [ (0P

i=1

In this way, we have a spline type estimation, studied by Engle et al. (1986),
Denby (1986), Heckman (1986) and Rice (1986), among others. Another
method to estimate 8 and m would be by means of estimators based on
least squares estimation and kernel type estimation. Thus, if we consider
model (1.1) without the linear component,

yi = m(ty) + €,
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a kernel type estimator can be written as
n
M (1) = an,h(tati)yis (1.2)
i—=1

with wy, (-, ;) a weight function {derived from a function K (-), the kernel}
that can take different forms, thus providing different estimators: Nadaraya
(1964) and Watson (1964), Priestley-Chao (1972), local polynomial estima-
tors (Stone (1977)) or Gasser-Miiller (1979). See, for example, the mono-
graphs of Hardle (1993), Simonoff (1996) or Fan and Gijbels (1996) for some
theoretical results and practical examples in the nonparaimetric estimation
field. It is well known that in all these estimators the selection of an ade-
quate parameter & —the smoothing parameter or bandwidihi— is essential
for good behavior of the estimator when we fit a curve to a set of given
data. See, for example, Quintela (1996) for a review of smoothing param-
eter selection methods, and a comparison of the same under dependence
assumptions for the errors.

One method developed by Speckman (1988) for the estimation of the
vector 3 in (1.1) is based on least squares estimation and kernel type esti-
mation, by means of a regression over the partial residuals of the model of
the form B

y=U—-Wy. (1.3)
X = (I-W)X,
where ¥ = (Y1, y2,...,%n)", X = {zii}iz1, . j=1,.p and W is a smooth-
ing matrix with elements {w;;} = {wy(¢.¢;)}. In this way, X and
are the matrix X and the vector y after adjustment for dependence on 7.
Assuming that X has full rank, he obtains

8, - (}”CTX)_ISET;;, (1.4)

by minimizing the weighted least squares criterion

I = W)y — XB)]3,

where ||||, denotes the Euclidean norm ||v|3 = S v? for v = (vy,...,v,)7 €
R™, and he uses a kernel type estimator for the function m

Fin(t) =3 won(t £ (g — ¢TB,). (1.5)

i=1



336 G. Aneiros and A. Quintela

Speckman (1988) compared estimator (1.4) with a different estimator of 8
suggested by Green et al. (1985), with the following expression:

Bass = (XTI - wW)X) ' XT(I - W)y.

Depending on the assumptions, the variance of the latter estimator can
be dominated by its bias, something that does not happen with Ep in
(1.4). In his paper, Speckman (1988) supposes that the errors of the model
(1.1) are independent. However, the presence of correlation between the
errors is something that can often happen in practice (for example, when
the observations are recorded through time). In this case, the variance-
covariance matrix of the ervors has the form E[ee’| = ¢2¥, where 02 =

Var(g;) and ¥ is different from the identity matrix. )

In this paper, we will study asymptotic properties of a Generalized
Least Squares (GLS) estimator of the vector 3, assuming a dependence
structure in the model’s errors, i.e. when the sample of {£;} is a time
series. In Section 2 we describe the assumptions for model (1.1), and the
precise form of the estimates of 8 and m. Next, we obtain the asymptotic
results, that prove that the dependence effect between the errors affects,
in a very small way, the convergence rate of the estimators. Section 3 is
devoted to sketches of proofs.

2 The model estimation

Let us consider model {1.1}). We assume that E(g) = 0 , Var(e) =
Elge’] = o2, ¥ # I and positive definite. Since ¥ is positive definite,
there exists a n x n matrix P such that P®PT = I hence PTP = ¥!
and P is not unique. We choose P as in Judge et al. (1985, pp. 26). If we
suppose that the correlation matrix ¥ is known and that PX has full rank
(or equivalently, X has full rank), using the definition of & and X given in
(1.3), we can estimate 3 by the generalized least squares method (see, for
example, Judge et al. 1985). Through this method, we obtain

,8:(X ¥ X) X vy,

by minimizing

|P(I - W)y - XB)|3,
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and we proceed to estimate the function m by means of estimator (1.5),
nusing ﬁ .

In this paper, we focus on the Gasser and Miiller (1979) weights, but
our results can be extended to use other types of kernel estimators (for
example, kernel estimators such that properties (3.1)-(3.5) —see below—
hold with f1, f2 : [0,1] — R bounded functions and S; a constant which
depends on the error structure, or kernel estimators such that properties
(2.2a) and (2.2b) of Speckman 1988 hold i.e., kernel estimators with
“weight function of order v”). Thus, for ¢ € [h, 1 — A, we set

ifn -
) =t [T K (S ) a, 2.1)
’ (i-1)/n h

where h > 0, ¢, = (# — 1/2)/n and K(-) is a function with support on
[—1,1]. Because the function to be estimated has bounded support ([0, 1]),
ift =t(n)=qh €|0,h) ort =t(n) =1—qgh € (1 —h,1] (“boundary inter-
vals”), the support of the bandwidth-scaled kernel function for estimating
in the interval { with bandwidth 4 is not contained in the support of the
function, so that some mass of the scaled kernel is not matched by the
data (for example, whenever ¢ = gh € [0, h) only the interval [—1, ¢] of the
support [—1, 1] of the kernel K is mapped into [0,1]). Therefore, the bias of
the nonparametric estimator m,, 5(¢) (see (1.2} has different orders in # €
[0,1]. This is known as a “boundary problem” or a “boundary effect”. The
solution proposed by Gasser and Miiller (1984) for the boundary problem
is the introduction of modified kernels K,(-) (K (-)} for estimating in the
interval { = t{n) = gh € [0,h) (t =t(n) =1 —qgh € (1 — h,1]), defined as
follows (see Gasser and Miiller 1984).

Definition 2.1. A function K, : R — R (K : R — R) is called a boundary
kernel of order v (for some integer v > 1) for estimating in the interval
t=tn)=qh€[0,h) E=tn)=1—qh € (1 k1)) if:

(a) Ky (K;) has support [—1,¢] ([—¢,1]) and is Hélder continuous on it.

(b) [Ky(u)du =1, [ v Ky(u)du # 0and [ o Ky(u)du =0,2=1,...,0—
1 (IK;(u)c)iu =1, fu'K (u)du # 0 and fu*Kj(u)du = 0, z =
..., v—1).
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(¢} supgeo,] ‘fu”Kq(u)du‘ < oo and  Supgeqpq] ng(u)du <
(supqqoyl] |fu”K§(u)du| < oo and SUPgc[0,1] IK;Q(u)du < 00).

In this paper, if { is in the boundary region, we will use modified weights
(but we maintain the same notation wy, (#,¢;)) obtained by replacing K
in (2.1) with a boundary kernel K, (or K7). We use #; = (i — 1/2)/n for
simplicity, but it would suffice that £; << 5; < #;41, where 0 = 55 < 51 <
o0 <8, = 1 and max; |S; — Si—1| = O(n™1). In this case, wyy, (t8) =
Rt f;ll K((t—u)/h)du.

As in Speckman (1988), we will assume that there exist smooth func-
tions g;(-) : [0,1] — R such that

Ty =gi(t) +ny (G=1...,n, F=1,....p),

where {7;;} is a sequence of real mumbers or random variables (in this case,
g; and n;; are assumed independent, and we must interpret our analysis as
being conditional on {r;;}. Therefore, the O(-) terms should be interpreted
as bounds holding in probability with respect to the distribution of the
{ni; }; see Speckman 1988, pp. 418-419, for more details on this relation-
ship). More assumptions on 7;; will be specified later.

Our results for the asymptotic normality will be valid under the follow-
ing general dependence structure.

Definition 2.2. Let N* denote the set of positive integers, and for any 7 and
Fin N*U{no} (i < j) define F/ to be the o-algebra spanned by the variables
Z;.....Z;. The sequence {Z;} is said to be c-mizing (or strong mizing) if
there exist mixing coefficients «(m) such that limy,, ., @(m) = 0, and for
positive integers & and m and for any sets 4 and B that are, respectively,

k . G .
F{—measurable and F < mneasur able,

|P(AN B) — P(A)P(B)| < a(m).

We refer to the monograph of Doukhan (1994) for properties of this or
more mixing conditions. In this monograph, it can be observed how several
regular processes satisfy the strong mixing condition. For example, the
stationary ARMA processes are strong mixing, provided the innovations
have absolutely continuous distribution with respect to Lebesgue measure
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(Mokkadem 1988). For references on kernel estimation with mixing data
see, for example, Gyorfi et al. (1990).

We will write X = (x1,....2p) = ({1,...,¢,)7 and n = (M55 1),
where z; = (z15,... ,Inj)T and n; = (n1j,...,n.nj)T, for each s =1,...,p.
{&lso, for f:00,1] — R, we denote f(;) = f(t:;) — D25_; wan(ti, ;) f (1),

F = () FE)T and £ = (F(t2)y.os f(t))T. Here, o(j) denotes
the covariance between ¢; and e;4; (for the stationary process {e;}); fur-
thermore, tr(A) denotes the trace of the matrix A, i.e. tr(A4) =37 | Ay,
while || A||, is the L, norm of the matrix A, i.e.,

All, = max ||Av vl for v{vy,...,v,)"
Al = | o], /ol for wivn. )",
where
T
lole =3 "|ulf’, 1<p<oo,
i=1
and
ol = s 01,
It can be shown that
T
All; = > 1A
1Al = max > 1441,
=1
||Allz = \/ maximum eigenvalue of AT A

and that .
| Alloe = max > |4y

1<i<ln —1

J_

In what follows, we always consider that 2 — oo, b — 0 and nh" =
(for an integer v > 1 that will be defined in the assumptions).

We impose the following assumptions:

(A.1) (a) {g;}, are stationary and Eg; = 0, Ee? = 02 < oc;
(b) {e;}* , are strong mixing.

(A2) E|ei|*" < oo for some § > 0.
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5]
(A.3) 3% av{n) ™ < oo, where o(n) are the mixing coefficients of {;};.
2 e R le(B)] < ox.

( ) |[¥]2 = O(1);
1T = O(1).

A.3)
(A.4)
(A.5)
(b)
(A.6) (a) For ¢ € [k, 1 — k] we use the weights w,, ; (¢,1;) (see (2.1)), where
K : R — R is Holder contimous, with support [—1, 1]. Furthermore
JK(uwdu=1, [v*K(u)du #0and [ K (u)du=0,2=1,...,0v—1,
for some integer v > 1;
(b) For ¢t € [0,k) U (1 —h,1] we use modified weights obtained by

replacing K in (2.1) with a boundary kernel of order v (see Definition
2.1).

(A.7) The functions m(-), g1(-), ..., gp(-) have v > 1 continuous derivatives
on [0,1].

A.8) The components of X are uniformly bounded.
A.9) The design points ¢; are &; = (i —0.5)/n, i =1,...,n

A1) n 'p" ¥ n — V where V = {Vi;} is a positive definite matrix.

(
(
(
(A1) Wyl 3 = O(h™") = [[WTnyll3, 1 <5 <p.

(A.13) [|[WIw— n5,||2 = O(ne(n)), 1 < j < p, where e(n) = ch® +

)
)
(A.12) nlnT & 1m = O(n~1/2kY).
)
co(nh)™!

(A.14) nh'™ — 0, nh? = oc.

Remark 2.1. Assumptions (A.l.a), (A.2), (A.6), (A.7), (A.9) and (A.14)
are frequent conditions in the setting of kernel smoothing. Assumption
(A.6Db) is sufficient to avoid boundary effects (see Gasser and Miiller 1979,
1984). The existence of such boundary kernels for arbitrary v € N is
established in Gasser et al. (1985). In the setting of partial linear models,
the assumption (A.8) is used by Speckman (1988).
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Remark 2.2, Suppose that the rows of 7, (mi1,...,7p). ¢ = 1,...,n,
are independent and identically distributed random vectors with mean
zero and finite variance-covariance matrix 3, = (5;;), and that {c;} is
a stationary autoregressive process of order & > 1 (AR(k) process, i.e.,
€5 = ¢1&j-1 + ¢agj_2 + - + ¢pej_p + ¢;, Where {¢;} is a zero mean white
noise process independent of {¢,}, and ¢(z) = 1— ¢12 — -+ — ¢p2® £ 0
for all z € C such that |z| < 1). In this case, the inverse of the correla-
tion matrix can be seen in Wise (1955). Furthermore, let us assume that
the innovations e; have an absolutely continuous distribution with respect
to Lebesgue measure. Then {¢;} is strong mixing with mixing coefficients
a(n) = O(d"), and c(n) = O(s") (0 < d.s < 1) (see Mokkadem 1988, and
exercise 3.11 of Brockwell and Davis 1991); therefore (A.1.b), (A.3) (A.5a)
hold. Utilising the expression for ¥ !, it is easy to see that (A.5b) holds
and, together with the above conditions on 7, we see that (A.10) holds in
probability, where V' = (o2 /a2)(14+ 325 $2)3, (we denote a2 = Var(e;)).
We have that E||[Wn,|[; = EHWTT]J”% = Sutr(WIW), so assump-
tion (A.11) follows from assumption (A.6). Moreover, E(nfw_lﬁ) =
0 and Vm‘(nf‘lﬁl?ﬁ) = 'rﬁﬁT'I'*lEjj'Iflﬁ', so assumption {A.12) fol-
lows from (3.2), (3.3) (see Section 3) and assumption (A.5b). By Whit-
tle’s inequality (Whittle 1960), and using that under (A.6) it verifies that
max; ; |[wy k(t, )] = O((nk) 1), we obtain that

E (W e n,|3) = O(h7%) = O({ne(n)}?),

and (A.13) holds.

Remark 2.3. Justification of the assumptions (A.5b), (A.10), (A.12) and
(A.13) is not possible under a general strong mixing condition, because we
need the structure of ¥ 1. Thus, in the above remark we have focused
on the AR(k) process. This condition is not more restrictive than that
given in the related literature. In a model like (1.1), Schick (1996, 1998)
assumes AR(1) errors, Gao (1995) supposes that {¢;} is a class of linear
processes and Schick (1999) works with ARM A(1,1) errors. Furthermore,
these authors do not nse ¥,

In Section 3 we obtain the following results
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Theorem 2.1.
(o) Under assumptions (A.1a}, (A.5b)-(A.7) and (A.9)-(A.12) we have:
EB) -8 =0 (h¥) + 0 (nh)~V?),

(b) Under assumptions (A.la), (A.5)-(A.7), (A.8)-(A.11), (A.13) and
(A.14) we have:

Va?"(a) = an 'V o(n™h.

In the next theorem, let 7, o(¢) denote the estimator of m(#) that would
be obtained by kernel smoothing if 8 were known precisely, i.e.

n
Auo(t) = wanltti) i — ¢ B).
i=1
Theorem 2.2.
(a} Under the assumptions in part (a) of the Theorem 2.1, we have:
Bias(ing,(t)) = Bias(iiyo(6))(1 +o(1)) = OAY).

(b) Under assumptions in part (b) of the Theorem 2.1, together with
(A.4), we have:

Var(fi(t)) = Var(i,o(0)(1 +o(1)) = O((nh) ).

Theorem 2.3. Under assumptions (A.1)-(A.3), (A.5)-(A.11), (A.13) and
(A.14), we have:

n2(8 — B(B)) 2 N(0,52V ).

Corollary 2.1. Under assumption {A.12) and the conditions of Theorem
2.3, we have:

n' 28 - 8 ) 2 N(0,52V ).
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Remark 2.4. Note that in Theorem 2.3 we need a mixing condition on
the errors. Essentially, this condition is neccesary to apply Lemma 1.1 in
Volkonskii and Rozanov (1959).

Obviously, in a practical case, when we use a set of data, it is difficult
to know the exact form of the matrix ¥ and, consequently, of ¥~ In this
case, we need to obtain an estimate of this matrix. In the most general
case ¥ will have [(n(n+ 1)/2) — 1] different unknown parameters, but it
is customary to make some further assumptions on the structure of this
matrix. A usual condition in the econometric literature entails that the
elements in ¥ are functions of a (k x 1) vector ¢, where & < n and k& remains
constant as n increases. Then the problem of estimating ¥ = ¥(¢) reduces
to one of estimating ¢ (see Judge et al. 1985).

Let "I} be an estimator of ¥. Let

o~

Bf

T ol LT 1
(X ¥ X) X&'y

Evaluation of the finite sample properties of @ is, in general, a difficult
problem, because ¥ and y will be correlated. Consequently, inferences

about B need to be based on the asvmptotic distribution of E For the

asymptotic properties of E we first investigate the asymptotic properties of
B (Theorems 2.1 and 2.3), and then we give sufficient conditions to show

that E and E have the same asymptotic distribution.

We suppose that

T, ~-1

(A.15) n~1X (& — ¥ )X — 0 in probability.

(A16) n~ 12X (87— 1(I — W)(m + &) — 0 in probability.

Theorem 2.4. Under conditions of Corollary 2.1 and assumptions (A.15)
and (A.16), we have:

WA -8 ) 2 M(0,02V ),
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Remark 2.5. Assumptions (A.15) and (A.16) have the form of the condi-
tions used in the estimation of 8 in a classical linear model y — X3 + ¢
(see, for example, Judge et al. 1985). Nevertheless, if we do not assume a
parametric structure for the errors, it is difficult to obtain an estimator T
which satisfies both. A possible procedure to estimate c(k) = Cov(e;, €j41).
and therefore ¥, might be based on second order differences defined as
Sk = i — k(k+ ) Yyey — plk + ) 'y (see Herrmann et al. 1992,
for the expression of ¢(k)). Nevertheless, (A.15) and {A.16) are not neces-
sarily verified.

Now we define the following conditions, which are an extension of reg-
ularity conditions (1) (3) from Fuller and Battese (1973).

(A.17) The elements of ¥ = ¥, are functions of a (k x 1) vector of
parameters ¢, such that the elements of the matrices

d

Ay

are continuous functions of ¢ in an open sphere B of ¢, the true
value of the parameter vector ¢.

Snr(@) = ‘Ilgl(qb) (r=1,2,...,k)

(A.18) The sequences of matrices {X,} and {®,} are such that

lim 7= X S (@) X = Ho(),

N—00

where H.(¢) is a matrix whose elements are continuous functions of
d,r=1..., k, and

N XL S () (71 + En) = Op(nY2).

o~

¢ = ¢+ 0p(1).
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Theorem 2.5. Under the conditions of Corollary 2.1 and assumptions
(A.17), (A.18) and (A.19), we have:

23 - ) 2 N0, 02V ),

Remark 2.6. This theorem is an extension of Theorem 3 in Fuller and
Battese (1973).

Remark 2.7. Assumption (A.18) is probably not the most natural, and
is certainly not the most general. For autoregressive errors of order &, we
can change ¥~ to (¢2/c2)"1¥~! in B (see Wise 1955). In this case,
(A.17) holds (see Wise 1955). In addition, if the rows of n are i.i.d.
random vectors with mean zero and finite variance-covariance matrix X,

then (A.18) follows from (A.6), (A.7) and (A.11), with H.(¢) = 2¢.%,,

r =1,..., k. Furthermore, if we denote 8 = (ET})—lng and 7, (1;) =
Z?ﬂ wy p (i t) (g — §E,F,§) it can be shown using the methods of Sec-
tion 3 that |8 — B2 = Op(n~1%) = 6,(1) and sup; [my(t;) — m{t;)| =
Oy (h? + (nh)~Y/?) = 0,(1). Together with (A.8) (this assumption can be
changed to the less restrictive assumption: sup; , E|7}U|2+5r < C < o0, for
soime (5’ >0 ), we have that sup; [¢7 B+, (t;) — ¢ B —m(t;)| = op(1). Let

C B — mp(t;). From Theorem 1 in Cao et al. (1995) we obtain
that qb (an estimator that uses £;) is consistent for ¢”, where the estimation
is carried out using any mechanism that would be consistent if the estima-
tion were made using the unobserved series {z;}. For details about several
consistent methods for estimating ¢ using {¢:}, see Brockwell and Davis
(1991, Ch. 8).

3 Proofs

It is easy to see that, under assumptions (A.6) and (A.9), we have
Wil =011),  [[W]h=0(1). (3.1)

Furthermore, let us denote f,, n(t) = Y0 wpn(t, ) (F(8) + &), where
f:[0,1] = R has v > 1 continnous derivatives and nh" — oco. Gasser and
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Miiller (1984) show that, under assumptions (A.la), (A.6) and (A.9) we
have that

Bias(fn (1)) = k" f1()m™ (&) + o(h), (3.2)

uniformly in ¢ € [h,1 — k], and
Bias(fan(t)) = O(R) (3-3)
uniformly in ¢ € [0,1]. In addition, if we assume (A.4), then (see Hart 1991)
Var(fou(t) = (nh) ' fo(1)5:(1 + 0(1)) (3.4)

uniformly in ¢ € [h, 1 — k], and
Var(fun(t)) = O((nh) ) (3.5)

uniformly in £ € [0, 1]. We have denoted f1(#) = (—1)¥(v!)™! f_ll u¥ K (u)du,
f2(t) = f1, K*(w)du and S: = ¢(0) + 23277, c(k).

Now, we demonstrate the following lemma, which is required later.

Lemma 3.1. Under assumptions (A.5b) (A.7) and (A.9) (A.11) we have

X IX) = V.

- 5T g 1
Proof. The (i,5)—th element of n~ (X ¥ X)) is

nTE Ty = a7 g W g YT+ g T g Oy
i Wy, gl O W, ] WTET W),
(3.6)

since &, =g, +n; =g, + I - W)n,.
Using (A.10), we only have to prove that all the terms of (3.6), except

nil'r]?lIl_l'r]j, tend to zero. We also have, by assumption (A.10) (remember
that ¥~ = PT P)
|Pn;]l2 = O(n*?), (3.7)
hence
1P7;llz = [P = Winglla <[|Pnyllz + [ Pll2 - [[Wnyll2

= ORYH) + 0k 12 = 0(n'/?), (3.8)



Asymptotic properties in partial linear models 347

using (A.5b), (A.11) and the fact that nk — .

Now, by assumption (A.5.b) and properties (3.2) and (3.3), we have
1Pg |12 = O(n"/2h"). (3.9)

(3.7), (3.8) and (3.9), together with (A.5b), (A.10) and (A.11), complete
the proof of the lemma. |

Proof of Theorem 2.1(a). We have that the bias of B is
3 S e i T
E@) -8 =(X ¢ X)X ¥ tm. (3.10)
In view of Lemma 3.1, it suffices to consider

n @ etm = gl v im4n inf® im
—n I wle im. (3.11)

The first term on the right hand side of (3.11) is O(h?") by (A.5b), (3.2)
and (3.3). The second term is O(n~'/2h?), by (A.12). The third term is
O((nh) 127, by (A.5b), (A.11), (3.2) and (3.3). Then,

nTlE& O = O(h®) 4+ O((nh)~2RY). (3.12)

Finally, using Lemma 3.1 and (3.10), we have the result. O

Proof of Theorem 2.1(b). We have that
Var(8) = U?(ET‘IFl})*l + Jg(?CT'I!71})71M(3“(T'I!71f)71,
where the matrix M is
T ol v vl Ta -l | gl T —1 %
M=-X ¥ WX-XW'7T¥ X+ X ¥ WIFrW- ¥ "X,

Using Lemma 3.1, it suffices to prove that M = o(n).

Using (3.1), we have

Wz = [|[W]l2 < (|W]1]|W]]x)* = O(1). (3.13)
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Using (A.11) and {3.13) we have

IW2ill: < [[Walls +[[W]l2-|lg; — Wail2

— O(h%) + Ol(ne(n))*)=0((ne(n)¥?).  (3.14)

In this last equation we use the fact that (from assumption (A.11) and
properties (3.2) and (3.3))

n g, — Wai; < e(n), (3.15)

uniformly in i, where e(n) = ¢1h%" + cz(nh) 7L, and ne(n) — .

From (3.14) and (A.5b) we obtain
|| PWZ;||z = O((ne(n))?). (3.16)
From Lemma 3.1 we have
|1P#;|]s = O(nt/?). (3.17)

Combining (3.16) and (3.17) it follows that, for the elements of the matrix
M,
T W] = Ofnle(m) ). (3.18)

Also,
& T WEW T | < @ WLl WT el (3.19)
For the last term on right hand side of this inequality we have
W1 < [[WHE o+ [[W o[22l lg; — Waglle. (3.20)
Using (A.5b) and (A.13), together with (3.13), (3.15) and (3.20), we have
W%, = O(ne(n)). (3.21)
Then, it follows, by assumption (A.5a), (3.19) and (3.21), that
Z T WEWT ez, = O(n?e*(n)). (3.22)
Due to (3.18), (3.22) and (A.14), we obtain

M = O(n(e(n))*?) + O(n%e*(n)) = oln). (3.23)
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Proof of Theorem 2.2(a). From the expression for the estimate 77 (1) (1.5)
we obtain

Bias(fn(t) = Bias(fno(t)) +w” ()X Bias(8), (3.24)

with w? (£) = (wnn(t, 1), -, wan(t 1))
In view of (3.2), (3.3) and (A.11) it is easy to see that

wl ()X — (g1();- ., gp(1)) as n — oo, (3.25)

Now, using (3.24), to finish the proof we only have to check that

=o(1). (3.26)

wl(t )XBza.s(B)
BWS(mh 0(t))

Using {3.25), Theorem 2.1 part (a) and the asymptotic expression for the
bias of My, 0(¢) ((3.2) and (3.3)). we get an asymptotic order of O(R") +
O((nh)~1/2) = 0{1) for the quotient of (3.26).

It follows that Bias(my,(t)) = Bias(img o(t))(1 + o(1)) = O(kRY), where
this last order is a result of (3.2) and (3.3). O]

Proof of Theorem 2.2(b). From the expression of the estimate m(f) (1.5)
we have

Var(@y () = Var(fuelt) + w’ (X Var(B)XTw(1)
—2w” (£)(£) X Cov(B, iy o(1)).

Using the convergence of w?’ ()X (3.25) together with Var (a) = O(nil) =
o(Var(no(t))) and [Cov(By Fno(t))| = o(Var(ina(t)), k = L,.

where 8 = (f1,... ,ﬁp) (from Theorem 2.1(b), (3.4) and (3.5)), the 1esult
of the theorem holds. l

Proof of Theorem 2.3. Notice that

B-E@ = (X ¥'X)'X ¥ (I We.
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: =T
Let us define ¢ = (c1n,.--10nn) = @’ X T I — W) (where a Z 0 is a
fixed arbitrary p x 1 vector), o, = (Var(cle))'? = (Var(3 1 emei))V2,

and
1

Sp = (cim/on)es.

i—=1

Because of Lemma 3.1 and (3.23), to prove the theorem, we only have
to check that
Sy -5 N0, 1). (3.27)

To see this, we first check that

2
max -2 = Q(n 1), (3.28)

1<i<n g2

Using (A.5.b), (A.8) and (3.1), we easily obtain that
llenlloo = O1). (3-29)
From Lemma 3.1 and the proof of Theorem 2.1(b) we have
n~lel — c2a’Va. (3.30)
Now, (3.28) follows from (3.29) and (3.30).
If we denote Zip, = (cin/on ey, then, from (A.1a) and (3.28), we obtain

N -1
lléliaé)l(nVar(Zm)fO(n ) (3.31)

and, using Davydov’s inequality (1968) ((A.1) and {A.2)),

o)
|Cov(Zin, Zjn)| < Cn”alli— )" (3.32)

Furthermore, using (A.3) and the fact that the sequence {a(n)} decreases
to zero, it is easy to see that n{l=W2+0/84 () = 0 as n — oo, for all b > 0.
Therefore, if we consider a = (1—by){2+4d)/d—1, where 0 < by < 1—4d/(2+4)
(observe that a > 0), we have that

n*Tea(n) — 0. (3.33)
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Now, if we define p, = [n' =% and ¢, = [n°] with (24 2a)"! < ¢ <
(2 +a)"! ([s] denotes the integer part of 5), it is easy to see that

Pn— 00, Gn— 00, prlgn—0 and n7lpZ =0 (3.34)
and, together with (3.33),

np; talgn) — 0. (3.35)

The asymptotic normality of S, is proved using a classical argument
which consists in decomposing the sum of dependent random variables into
a sum of large and small blocks, where the contribution of the small ones is
negligible and where the large ones are approximately independent. After
this, Lindeberg-Feller’s central limit theorem is used. Because of (3.31),
(3.32), (3.34), (3.35) and (A.3), the proof of the asymptotic normality of
Sy, is similar to the one presented in Roussas et al. (1992). For this reason,
we omit the proof. []

Proof of Corollary 2.1. Follows from Theorem 2.1(a) and Theorem 2.3. O

Proof of Theorem £.4. We have that

P

W2 - B) = (n*lfT‘I' X) 1n’1/2fT\f'_l(I—W)(m+s)

P, ] P,
_ (n_lXT\If_lX) XN T - W (m+e).

Now, Theorem 2.4 follows from {(A.15), (A.16) and Corollary 2.1 (having
taken into account that, by Lemma 3.1, (3.12) and (3.27), we have that

nil_ﬁ?u(T\Il_l:f — V and n*l/gﬁXuT‘I'_l(I —~W)(m +¢) 2, N(0,02V)).
L]

Proof of Theorem £2.5. This proof is a modification of the proof of Theorem
3 in Fuller and Battese (1973). Following their indications, we have

ey — L

B+ (X 3% X v @+ e
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By a Taylor's expansion we obtain

o~

(Ko @X.) v @), +8)
— (X EK) (0 X, i + )
’ i {(m X 60X, (RS0 i + )
. (n—lff‘y;l(cp*)fn)*l (n—l')?;_fsm(cp*)')?n)
(0 X 60X (0 X )+ ) (5 - 62),

where ¢* is between ¢° and . By Lemma (3.1), (3.12), (3.27), (A.18) and
(A.19), it follows that

B-8 =B-B+opn ).

By Corollary 2.1, the result of the theorem holds. O
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