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Abstract 

Consider the regression model ~/,i = ~Tf~ + rn.(t~) + g,i for i = 1 , . . . , n .  Here 
( ~ ,  ti) r C R p x [0, 1] are design points, fl is an unknown p x 1 vector of paa-ameters, 
ua is an unknown smooth function fl'om [0, 1] to R and ai are the unobserved errors. 
Vv"e will assume tt.at tt,ese errors are not independent. Under suitable assumptions, 
we obtain expansions for the bias and the variance of a Generalized Least Squares 
(GLS) type regression estimator,  and for an est imator of the nonparametric func- 
tion m(.). Furthermor% we prove the asymptotic normali ty of the first estimator.  
The obtained results are a generalization of those contained in Speckman (1988), 
who studied a similar model with i.i.d, error variables. 
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1 I n t r o d u c t i o n  

P a r t i a l  l i n e a r  m o d e l s  a r e  m o r e  t h a n  a m o d e s t  g e n e r a l i z a t i o n  o f  a n m l t i v a r i -  

a t e  l i n e a r  m o d e l .  T h e s e  m o d e l s  a r e  u s e d  w h e n  a r e s p o n s e  v a r i a b l e  c a n  b e  

p r e s u m e d  to  b e  r e l a t e d  l i n e a r l y  to  one  or  m o r e  va r i ab les~  a n d  in  a n o n - l i n e a r  

w w  t o  one  o r  m o r e  d i f f e r e n t  v a r i a b l e s .  T h e  spec i f i c  f o r m  o f  t h e  m o d e l  t h a t  

we  wi l l  c o n s i d e r  in  t h i s  p a p e r  is 

(i (1.1) Yi r • + 7n(ti) A- ci 
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where the r (xil, x i2 , . . . ,  x@) T and ti �9 [0, 1] are design points, fl (p x 1) 
is a vector of unknown parameters,  m is a smooth unknown real-valued 
function defined on [0, 1] and the ci are a sample of errors identically dis- 
tributed. Assumptions relating to r and ti will be introduced in Section 
2. 

Using the notat ion established in that  section and in (1.3) below, if 
we assume that  assumptions (A.l.a), (A.5.b)-(A.7) and (A.9)-(A.12)hold,  
then /3  can be identified via (see Lemma 3.1 and property (3.12) below) 

The identifiability of m(-) is obtained from the identifiability of/3, together 
with assumption (A.9) and the continuity of m(.). 

Model (1.1) is much more flexible than  the s tandard linear model since 
it combines both parametr ic  and uouparametr ic  components. It can be 
used to examine the effect of price changes on the volume of sales. The 
conventional assumption is that  the logarithm of the sales volume is lin- 
early related to price. However, it is natural  to expect that  weekly and 
seasonal effects would also be at work, therefore Daniel and Wood (1980) 
also included dummy variables to indicate the day of the week and the 
month  in which each observation lay. In this situation, an at tractive al- 
ternative is to model the dependence on time in a nonparametr ic  fashion, 
where the variable t represents the day of the year. 

There are some interesting papers on the estimation of the vector/3 and 
the function m. One possible method to estimate /3 and m would be by 
means of a penalized least squares criterion, by nfininfizing 

Y~ 

F _ , ( w  - + r  - 

i--1 d 

In this way, we have a spline type estimation, studied by Engle et al. (1986), 
Denby (1986), Heckman (1986) and Rice (1986), among others. Another  
method  to est imate /3 and m would be by means of estimators based on 
least squares estimation and kernel type estimation. Thus, if we consider 
model (1.1) without the linear component,  

yi = m(~,i) + ci ,  
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a kernel type est imator can be wri t ten as 

r5 

i 1 

with Wn,h(', t~) a weight function (derived from a flmction K(.),  the kernel) 
that  can take different forms, thus providing different estimators: Nadaraya 
(1964) and Watson (1964), Piiest ley-Chao (1972), local polynomial estima- 
tors (Stone (1977)) or Gasser-Miiller (1979). See, for example, the mono- 
graphs of H/irdle (1993), Simonoff (1996) or Fan and r (1996) for some 
theoretical results and practical examples in the nonparametr ic  estimation 
field. It is well known that  in all these estimators the selection of an ade- 
quate parameter  It - - t h e  smoothing parameter or bandwidth-- is essential 
for good behavior of the est imator when we fit a curve to a set of given 
data. See, for example, Quintela (1996) for a review of smoothing param- 
eter selection methods,  and a comparison of the same under dependence 
assumptions for the errors. 

One method  developed by Speckman (1988) for the estimation of the 
vector/3 in (1.1) is based on least squares estimation and kernel type esti- 
mation, by means of a regression over the partial residnals of the model of 
the form 

~_ ( i -  w ) v ,  (~.a) 
x ( x -  w ) x ,  

where y (Y,, Y2, . . . ,  Yr,) T, X {xij}i ~,...,r, j *,...,p and W is a smooth- 

ing matr ix  with elements {wi5} {Wn,h(fi,fj)}. In this way, X and *~ 
are the matr ix  X and the vector y after adjustment  for dependence on t. 
Assuming that  X has full rank, he obtains 

= (1.4) 

by minimizing the weighted least squares criterion 

II(I- w ) ( y -  xt) l l~,  

wt,erellll2denote~tt,eEuclidean~,or~,,ll~ll~ ~v~foi~ (~,...,v~)~ 
R r~, and he uses a kernel type est imator for the function m 

- r tip). (1.,5) 
/=1  
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Speckman (1988) compared es t imator  (1.4) with  a different es t imator  of/3 
suggested by Green et al. (1985), with  the following expression: 

~;:~, = (xT( •  W ) X )  ~ x T ( I  W)y .  

Depending  on the  assumptions,  the variance of the latter es t imator  can 
be domina ted  by its bias, something that  does not happen  with ~p in 
(1.4). In his paper,  Speckman (1988) supposes that  the errors of the  model  
(1.1) are independent .  However, the presence of correlation between the 
errors is something tha t  can often happen  in practice (for example, when 
the observations are recorded th rough  time).  In this case, the variance- 
covariance matr ix  of the  errors has the  form E[ee r] = ~r~=2 9,  where ~2~ = 
Var(ei) and @ is different from the identi ty matrix.  

In this paper,  we will s tudy  asymptot ic  propert ies of a Generalized 
Least Squares (GLS) es t imator  of the vector fl, assuming a dependence 
s t ructure  in the model 's  errors, i.e. when the sample of {ci} is a t ime 
series. In Section 2 we describe the assumptions  for model  (1.1), and the 
precise form of the est imates of fl and m. Next, we obtain the asymptot ic  
results, tha t  prove tha t  the dependence effect between the errors affects, 
in a very small way, the convergence rate of the  estimators.  Section 3 is 
devoted to sketches of proofs. 

2 T h e  m o d e l  e s t i m a t i o n  

Let  us cons ide r  m o d e l  (1.1). We assume th a t  E ( e )  = 0 , V a t ( e )  = 

EEee :r] = ~r~9, ~ # I and positive definite. Since 9 is positive definite, 
there exists a n • n matr ix  P such t tmt p g p T  I hence p r p  ~ 1 
and P is not unique. We choose P as in Judge et al. (1985, pp. 26). If we 
suppose t tmt the correlation matr ix  �9 is known and t tmt P X  has full rank 
(or equivalently, X tins full rank),  using the  definition of ~ and X given ill 
(1.3), we can est imate fl by the generalized least squares me thod  (see, for 
example,  .Judge et al. 1985). Th rough  this method ,  we obtain 

~__ (~,~r 1~,~) l~,~r,,i j ly ,  

by minimizing 
I I P ( I -  W ) ( y -  Xfl)ll~, 
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and we proceed to estimate tile function m by means of estimator (1.5), 
using fL 

In this paper, we focus on the Gasser and Miiller (1979) weights, but  
our results can be extended to use other types of kernel estimators (for 
example, kernel estimators such that  properties (3.1)-(3.5) see below 
hold with f l ,  f'~ : [0, 1] --+ R bounded fimctions and ,g~ a constant which 
depends on the error structure, or kernel estimators such that  properties 
(2.2a) and (2.2b) of Speckman 1988 hold i.e., kernel estimators with 
"weight function of order v"). Thus, for t E lit, 1 - It], we set 

~,~,~ (t ,~) h ~ K d~, (2.1) 
J(i 1)/,~ \ h / 

where it > 0, ti - (i - 1 /2 ) /n  and K(.)  is a function with support on 
[ -1 ,  1]. Because the function to be est imated has bounded support ([0, 1]), 
if t t(n) qh E [0, it) or t t(n) 1 -- qit E (1 -- it, 1] ("boundary  inter- 
vals"), the support  of the bandwidth-scaled kernel function for estimating 
in the interval t with bandwidth  h is not contained in the support  of the 
function, so that  some nmss of the scaled kernel is not matched by the 
da ta  (for example, whenever t qh E [0, h) only the interval [-1,  q] of the 
support  [-1,  1] of the kernel K is mapped into [0, 1]). Therefore, the bias of 
the nonparametr ic  est imator m~,,h(t) (see (1.2)) has different orders in t �9 
[0, 1]. This is known as a "boundary problem" or a "boundary effect". The 
solution proposed by Gasser and Miiller (1984) for the boundary  problem 
is the introduction of modified kernels Kq(.) (Kq(.)) for estimating in the 
interval t t(n) qh �9 [0, h) (t t(n) 1 - qh �9 (1 - h, 1]), defined as 
follows (see Gasser and Miiller 1984). 

D e f i n i t i o n  2.1. A flmction Kq " • --+ ]};[ (Kq �9 R --+ R) is called a boundary  
kernel of order v (for some integer v > 1) for estimating in the interval 
t = t ( n )  =qhE[O,  tt) ( t = t ( n ) = l  qh E (1 h, 1]) if: 

(a) Kq (Kq) has support  [ 1, q] ([ q, 1]) and is HSlder continuous on it. 

(b) f K~(~,)d~ 1, f ~'K~(~)d~, r 0 and f ~'~K~(~)d~, 0, ~ 1,. . . ,  v -  
1 ( f K ~ ( u ) d u  = 1, f u " K ~ ( u ) d u  r 0 and fuzKq*(u)du  = O, z = 
1 . . . . .  v 1 ) .  
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(c) supq~io,~llf~,~'K+(~,)d+l < ~ and SUpqc[O,1]fK2(u)d~ < oo 

(SUpqc[0J] I f  ++'Kg(+)d~+l < o+ and snpqc[0,1] f [(q2(u)du < c,~). 

In this paper,  if t is in the boundary  region, we will use modified weights 
(but  we maintain the same notation w,~,h(t,t~)) obtained by replacing K 
in (2.1) with a boundary  kernel Kq (or K~). We use ti = (i 1/2) /n  for 
simplicity, but  it would suffice that  ti < Si < ti+l, where 0 = So < $1 < 
�9 .. < S~, - 1 and maxi IS,i - Si 11 - O ( n - ~ ) .  In this case, w~,h (t, ti) - -  

h_~ f+s,+ K((t ~+)/h)a~+. 
Si 1 

As in Speckman (1988), we will assume that  there exist smooth func- 
tions gj(.) : [0, 1] --+ IR such that  

�9 gj gj( td+~l+j  (,/ 1 , . . . , ~ ,  j 1 , . . . , p ) ,  

where {~ij } is a sequence of real numbers or random variables (in this case, 
ci and ~]ij are assumed independent,  and we nmst interpret our analysis as 
being conditional on {?]~j}. Therefore, the O(.) terms should be interpreted 
as bounds  holding in probabil i ty with respect to the distr ibution of the 
{~/ij}; see Speckman 1988, pp. 418-419, for more details on this relation- 
ship). More assumptions on ~]ij will be specified later. 

Our results for the asymptot ic  normali ty will be valid under the follow- 
ing general dependence structure. 

D e f i n i t i o n  2.2. Let N* denote the set of positive integers, and for any i and 
j in 51" U {oc} (i < j)  define YJ to be the or-algebra spanned by the variables 
Zi , . . . ,  Zj. The sequence {Zi} is said to be a-mixing (or strong mixing) if 
there exist mixing coefficients a (m)  such that  lim,~-+oo a (m)  - 0, and for 
positive integers k and m and for any sets A and B that  are, respectively, 
9r[~-measurable and ~-/:+m-measurable, 

IP(AC~B) P(A)P(B)I  < c~(m). 

We refer to tile monograph of Doukhan (1994) for properties of this or 
more nfixing conditions. In this monograph, it can be observed how several 
regular processes satisfy the strong nfixing condition. For example, the 
s tat ionary ARMA processes are strong mixing, provided the innovations 
have absolutely continuous distr ibution with respect to Lebesgue measure 
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(Mokkadem 1988). For references on kernel estimation with mixing data  
see, for example, Gy6rfl et al. (1990). 

We wil l  write X = ( X l , . . . ,  xp) = ( C , - . . ,  r  and n = (n:,...,  %), 
where a:j = ( x u , . . .  , Xnj)  T a n d  f l j  ---- ( ? ] l j , - . . ,  ?].nj) T, for each j = 1 , . . .  ,p. 

Also, for f " I0,1] --+ IF:, we denote ](~i) = f ( t i )  - Y~2=, w~,,h(~i, t j ) f ( t j ) ,  

- ( ] ( h ) , . . . , f ( ~ n ) )  T and f - ( f ( t l ) , . . . ,Z ( t . n ) )  T. Here, c(j) denotes 
the covariance between c~ and c~+j (for the stat ionary process {e~}); fur- 
thermore,  t r (A)  denotes the trace of the matr ix  A, i.e. t r (A)  ~)'~1 Aii, 
while l lAllp is the Lp norm of the matr ix A, i.e., 

IIAIIv Ilvll~,>0max IIAvllp /Ilvllp for "U(Yl,,,, ,Vs,) T, 

where 

and 

It can be shown that  

Ilvll~ Z I ~ I  ~, 
i 1 

and that  

l ~ p < ~ ,  

I1~11~ = m~x Ivil. 
:<i<n 

T$ 

IlAlll = max ~ l A o l ,  
:_<#_<n 

IIAII2 v /maximnm eigenvalue of A TA 

IlAll~ = max ~ - ' lA i j l .  
j : 

In what follows, we always consider that  n --+ co, h --+ 0 and nh v --+ oc 
(for an integer v _> 1 that  will be defined in the assumptions). 

We impose the following assumptions: 

'iS (n.1) (a) { i } i=  1 a r e  stat ionary and Eel 0, E:~ cr 2 < oc; 
C 'r~ (b) { i } i  i are strong mixing. 

(A.2) E lail 2+5 < oc for some 6 > 0. 



340 G. Aneiros and A. Quintela 

(A.3) E r ,~ l  o((~)2+6 <~ oo, where o~(~) are tile mixing coefficients of {ci}i. 

(A.4) E/c%1 ~ I<(~)1 < ~.  

(A.,~) (a)I1~11= = O(Z); 
(b) I1~ *11oo = 0(1) .  

(A.6) (a) For t �9 [h, 1 - hi we use tile weights w~,,h (t, ti) (see (2.1)), where 
K : 1I~ --+ R is HSlder continuous, with  suppor t  I 1, 1]. Fur thermore  
f K(u )du  = 1, f u*'K(u)du r 0 and f u~K(u)du = O, z = 1 , . . . , v  1, 
for some integer v _> 1; 
(b) For ~ �9 [0, h) U ( 1 -  h, 1] we use modified weights obtained by 
replacing K in (2.1) with  a boundary  kernel of order v (see Definition 
2.i). 

(a.7) Tile functions m(.) ,  g , ( - ) , . . . ,  as(') have v _> 1 continuous derivatives 
on  [0, 1].  

(A.8) The  components  of X are uniformly bounded.  

(A.9) The  design points  ti are t~ (i - 0.5)/n,  i 1 , . . . ,  n. 

( A . 1 0 )  ~ t - l?7T~I  * i n ~ V where V = {V/j} is a positive definite matrix.  

(A.11) I lWnj l lg  = O(h *) = I IW~nj l lg ,  1 < j < p. 

(A.12) 7~--I?~'TILI / 17~ O(n-1/2hv). 

(a .s3)  IIWr~ l~jll2 = o ( ~ ( ~ ) ) ,  1 < j < p, where e(n) = clh2*'+ 
c2 (nh)- l .  

(A.14) nh  4v --+ 0, nh  2 --+ oo. 

R e m a r k  2.1. Assumpt ions  (A.l.a), (A.2), (A.6), (A.7), (A.9) and (A.14) 
are frequent condit ions in the set t ing of kernel smoothing.  Assumpt ion  
(A.6b) is sufficient to avoid boundary  effects (see Gasser and Mtiller 1979, 
1984). The  existence of such boundary  kernels for arbi t rary v E N is 
established in Gasser et al. (1985). In tile sett ing of part ial  linear models,  
tile assumpt ion  (A.8) is used by Speckman (1988). 
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R e m a r k  2.2. Suppose that  the rows of r/, ( rhl , . . . , rhp) ,  i = 1 , . . . , n ,  
are independent  and identically distr ibuted random vectors with mean 
zero and finite variance-covariance matr ix  E~ (Eij), and that  {cj} is 
a stat ionary autoregressive process of order k > 1 (AR(k) process, i.e., 
e j  = r  -4- r  -4- " ' "  -4- Ck,~j-k -4- Cj, where {cj} is a zero mean white 
noise process independent  of {gj}, mad g0(z) = 1 golz -. .  gokz ~ # 0 
for all z E C such that  ]z] _< 1). In this case, the inverse of the correla- 
tion matrix can be seen in Wise (1955). Furthermore,  let us assume that  
the innovations ej have an absolutely continuous distribution with respect 
to Lebesgue measure. Then  {e j} is strong mixing with mixing coefficients 
c~(n) = O(dn) ,  and c(n) = O(s n) (0 < d, s < 1) (see Mokkadem 1988, and 
exercise 3.11 of Brockwell and Davis 1991); therefore (A.l.b), (a.3) (A.5a) 
hold. Utilising the expression for @ *, it is easy to see that  (A.5b) holds 
and, together with the above conditions on rj, we see that  (A.10) holds in 
probabilitv, where V 2 2 2 2 goi )E~ (we denote ~r e = = 

We have that EIIW jlI  -- EIIW%jlI  -- so assump- 
tion (A.11) follows from assumption (A.6). Moreover, E( r / f f f J - ]@)  

0 and Vat(tiT@ 1~) = ~rr l~jjff~ i ~  SO assumption (A.12) fol- 
lows f lom (3.2), (3.3) (see Section 3) and assumption (A.Sb). By Whit- 
tle's inequality (Whittle 1960), and using that  under (A.6) it verifies that  
maxi,j Iw,~,h(t, ti)l O((nh) 1), we obtain that  

E(IIWT -  jlI9 O</* O(b< 0Ib, 

and (A.13) holds. 

R e m a r k  2.3. Justification of the assumptions (A.Sb), (A.10), (A.12) and 
(A.13) is not possible under a general strong mixing condition, because we 
need tile s tructure of ~I, 1. Thus, in tile above remark we have focused 
on tile AR(k) process. This condition is not more restrictive than that  
given in the related literature. In a model like (1.1), Schick (1996, 1998) 
assumes AR(1) errors, Gao (1995) supposes that  {ci} is a class of linear 
processes and Schick (1999) works with ARMA(1, 1) errors. Furthermore,  
these authors do not use @-1. 

In Section 3 we obtain tile following results 
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T h e o r e m  2.1 .  

(a) ~,~der as,~,,~ptio,~ (A.~), m.Sb)-(A.7) ~,~d (A.O)-(A.I2) ~e have: 

E(~) - ~ o (h 2~') + O(h~'(,#~)-V~) 

(b) Under assumptions (A.la), (A.5)-(A.7), (A.9)-(A.II), (A.13) and 
(A.14) we have: 

va,~(~) ~b~-~v -~ + o(,~-1). 

In the  next theorem, let ~Tth,0 (t) denote  the  es t inmtor  of re(t) tha t  would 
be obtained by kernel smoothing  if/3 were known precisely, i.e. 

- r  
i 1 

T h e o r e m  2.2 .  

(a) U',~der the a~,,~ptio,~ i~ p~,'t &) of the Theore,~ 2.< ~e /,ave: 

m~(<~,( t ))  B'i-~(~h,0(t))(1 + o(0) o(h~'). 

(b) Under assumptions in part (b) of the Theorem 2.1, together with 
(A.4), we have: 

v ~ ( < h ( t ) )  = w~(~,,0(t))(1 + o(1)) = O((~h) ~). 

T h e o r e m  2.3. Under assumptions (A.1)-(A.3), (A.5)-(A.11), (A.13) and 
(A.14), we have: 

~1/2(~_ r ~ , ~ ( 0 , ~ v - 1 )  

C o r o l l a r y  2.1. Under assumption (21.12) and the conditions of Theorem 
2.3~ we have: 

~1/2(~ _ ~ ) - ,  H ( o , ~ v - 1 ) .  
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R e m a r k  2.4. Note that  in Theorem 2.3 we need a mixing condition on 
the errors. Essentially, this condition is neccesary to apply Lennna 1.1 in 
Volkonskii and Rozanov (1959). 

Obviously, in a practical case, when we use a set of data, it is difficult 
to know the exact form of the matrix @ a n d ,  consequently, of @-1. In this 
case, we need to obtain an est imate of this matrix. In the most general 
case ~I, will have [(n(n + 1)/2) 1] different unknown parameters,  but  it 
is customary to make some further assumptions on the structure of this 
matrix. A usual condition in the econometric l i terature entails that  the 
elements in @ are functions o f a  (k x 1) vector ~b, where k < n and k remains 
constant as n increases. Then the problem of estimating �9 �9 (r reduces 
to one of estimating r (see Judge et al. 1985). 

Let ~ be an est imator of ~I'. Let 

Evaluation of the finite sample properties of fl is, in general, a difficult 
problem, because ~ and ~ will be correlated. Consequently, inferences 

about  ~ need to be based on tile asymptot ic  distr ibution of ft. For tile 

asymptot ic  properties of fl we first investigate the asymptot ic  properties of 
fl (Theorems 2.1 and 2.3), and then we give sufficient conditions to show 

x 
that  fl and fl have tile same asymptot ic  distribution. 

We suppose that  

( t . l ~ )  ~ t - l . x  ' T ( ~ - I  _ �9 1).X- ~ 0 in  probability. 

(A.16) n - 1 / 2 x r ( ~  -1 - �9 1 ) ( I  - W)(m + e) ~ 0 ill p robab i l i t y ,  

T h e o r e m  2.4. Under conditions of Corollary 2.1 and assumptions (A.15) 
and (A.16), wc have: 

A 

~/~(~ - ~ )  ",~ H ( o , .  ~,v -~). 
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R e m a r k  2.5. Assumptions (A.15) and (A.16) have tile form of tile condi- 
tions used in the estimation of fl in a classical linear model y - X f l  + e 
(see, for example, Judge et al. 1985). Nevertheless, if we do not assume a 
parametr ic  s tructure for the errors, it is difficult to obtain an estimator 
which satisfies both. A possible procedure to est imate c(k) Cov(c j ,  cj+~), 
and therefore @, might be based on second order differences defined as 
~i,k,u -- Yi -- k (k  + #) lyi+ ~ - # ( k  + #) l y  i k. (see Herrmann et al. 1992, 
for the expression of ~(h)). Nevertheless, (A.15) and (A.16) are not neces- 
sarily verified. 

Now we define the following conditions, which are an extension of reg- 
ularity conditions (1) (3) fl'om Fuller and Battese (1973). 

(a.lr) The elements of @ @n are functions of a (k x 1) vector of 
parameters r such that  the elements of tlle matrices 

s, , .(r or (r (" 1 , 2 , . . . , k )  

are continuous functions of q~ in an open sphere B of q~0, the true 
value of the parameter  vector r 

(A.18) The sequences of matrices {X~} and {ff'~} are such that  

lira n -  X ,~S .m . ( r  H r ( r  

where H r ( r  is a matr ix whose elements are continuous fimctions of 
q~, r =  1 . . . .  ,k ,  and 

~_~'T + = 

(A.19) An estimator, ~ = @(r for @ = ~I'(r ~ is available such that  
�9 I, z (a  ) exists for all n, and r satisfies the condition 

$ = r + 
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T h e o r e m  2.5. Under the conditions of Corollary 2.i  and assumptions 

) 2 +  H(o ,  

R e m a r k  2,6, This theorem is an extension of Theorem 3 in Fuller and 
Bat tese (1973). 

R e m a r k  2,7, Assumpt ion  (A.18) is probably not the most  natural ,  and 

is certainly not the most general. For autoregressive errors of order k, we 
2 2 1 - 1  can change ~ - 1  to (cr~/c~c) �9 in fl (see Wise 1955). In this case, 

(a.~7) holds (see Wise 1955). In addit ion,  if the rows of rl are i.i.d. 
r andom vectors with mean zero and finite varianee-covarianee matr ix  E~, 
then  (A.18) follows from (A.6), (A.7) and (A.11), with  H r ( r  = 2CrEw, 

- 
r = 1 , . . . ,  k. Fur thermore,  if we denote  fl = and ~ - ' f h ( t i )  = 

~-~ 1 w.~,h(~i,~j)(yj r  it can be shown using the  methods  of See- 

t ion 3 that  118- flll~ op(~ -1/2) op(1) and sup/lT-~h(~i) - -  m(~i)l 
Op(hV+ (nh) 1/2) op(1). Together with (A.8) (this assumpt ion  can be 
changed to the less restrictive assnmption:  s n p i , j  El~]ij] 2+~' < C < oe, for 

some d" > 0 ), we have that  suPi 1 4 ~ 8 + W h ( ~ / ) -  r rn(~/) I = Op(1). Let 
~i fl 7-ffh(t~). From Theorem 1 in Cao et al. (1995) we obtain ~ / =  ~i r - -  

tha t  r (an es t imator  tha t  uses ~'i) is consistent for r  where the es t imat ion 
is carried out using any mechanism tha t  would be consistent if the estima- 
t ion were made  using the unobserved series {ci}. For details about  several 
consistent methods  for es t imat ing r using {ci}, see Broekwell and Davis 
(1991, Ch. 8). 

3 P r o o f s  

It is easy to see that ,  under  assumpt ions  (A.6) and (A.9), we have 

IIWIl  -- o(1) ,  IIWII1 = 0 ( 1 ) .  (3.1) 

Furthermore,  let us denote  fn,h(t) = }-~i%lW.n,h(t, t i ) ( f ( t i )  + Ci), where 
f : [0, 1] --+ R has v _> 1 continuous derivatives and nh v --+ ec. Gasser and 
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Miiller (1984) show that, under assumptions (A.la), (A.6) and (A.9) we 
have that  

Bias(f,~,h(t)) hVfl(t)m(V)(t) + o(hV), (3.2) 

uniformly in t E Ih, 1 - hl, and 

Bia~'(fi~,h(t)) O(h ~') (3.3) 

uniformly in t E [0, 11. In addition, if we assume (A.4), then (see Hart 1991) 

Var(fn,h(t)) (nit) lf2(t)S~(1 + o(1)) (3.4) 

uniformly in t E [h, 1 - hl, and 

Par(fn,h(~,))  = O((,gh) 1) (3.5) 

uniformly in t �9 [0, 1]. We have denoted f l ( t )=  (1)V(v! )  -1 f l  1 uVK(u)du, 
f~(t) = f l~ K~(~)d~ and S~ = ~(0) + 2 E Z ~  ~(k). 

Now, we demonstrate  the following lemma, which is required later. 

L e m m a  3.1. Under assumptions (A.5b) (A.~/) and (A.9) (A.11) we have 

Proof. The ( i , j )  th dement  of n - l ( X r O  1X) is 

7Z-- 1 ~'~ 1i/-- 1 ~ j  --1 .... T --1 . . . . . . .  T - - 1 -  

(3.6) 

since ~j = 0~ + % = g~ + (I W ) ~ j  

Using (A.10), we only have to prove that all tile terms of (3.6), except 
n i :Pxi~-i ~i ~j,  tend to zero. We also have, by assumption (A.10) (remember 
that  ~ - 1  _ p T p )  

I lPnjll2 - -  o ( 7 9 1 / 2 ) ,  (3.7) 
hence  

I I P ~ j l I 2  = IIP(I w)~Tjll2 < IIP~bll2 + IIPll2 " lIw~ljll2 

0(~  1/2) + o(h ~/2) = 0(~1/2), (3.8) 
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using (A.5b), (A.11) and the fact that nh --+ oc. 

Now, by assumption (A.5.b) and properties (3.2) and (3.3), we have 

IIP~, 112 o(,~/~h*'). (3.9) 

(a.r), (a.s) a-d (3.9), together with (A.Sb), (A.10) and (A.11), complete 
the proof of the lemma. [] 

Proof of Theorem 2.1(a). We have that  the bias of fl is 

�9 ~ T . . . .  T ~ .  

u(~) 5 = ( x  ~ * x ) * x  ~ * m .  (3.s0) 

In view of Lemma 3.1, it suffices to consider 

n ~ m r w r ~  *~. (3.11) 

The first term on the right hand side of (3.11) is O(h 2~') by (A.5b), (3.2) 
and (3.3). The second term is O(n-U2hV), by (A.12). The third term is 
O((r~h)-l/2hV), by (A.Sb), (A.11), (3.2) and (3.3). Then, 

- ~ - 1 ~  = o(h~,,) + O((~h)-~/~h,,). (3.12) 

Finally, using Lenmm 3.1 and (3.10), we have the result. [] 

Proof of Theorem 2.1&). We have that 

V a r ( ~ ) = c , 2 ( ~ Y ~  1_~-) 1 +(r2(_~-T~i , 1~-)*M(_~-T~I , 1 ~ - ) 1 ,  

where the matrix M is 

M__X~V ~Wy._y.~wrv 1~+ ~ iwvwrv  ~ .  

Using Lemma 3.11 it suffices to prove that  M - o(n). 

Using (3.1), we have 

IIWrll2 IIWII2 _< (llwIllllwll~) 1/2 O(1). (3.13) 
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Usi,g (A.~) ~,,d (3.~3) we h~ve 

IIW~l12 _< IlWn~ll2 + IIWlI2 IIg~- W~II2 
O(~ ~Z~) + O((~(~0)V~) O((~(~))~Z~). (3.~4) 

In this last equation we use the fact that  (from assumption (A.11) and 
properties (3.2) and (3.3)) 

l l lg~-  w ~ l l g  < ~(~), (3.~s) 

uniformly in i, where c(n) = c~h~' + c~(nh) i, and no(n) -4 oc. 

From (3.14) and (A.5b) we obtain 

IIPW'~jlI~ = O((nc(n))~/~)- (3.~) 

From Lemma 3.1 we have 

IIP~II~ = O(n~/~). (3.~7) 

Combining (3.16) and (3.17) it follows ttmt, for the elements of the matrix 
M, 

Also, 

I~,~'~-~W~WTC~-~,~jl <_ II,~-lWll211C~ll211wt'~-~,~jll2. (3.19) 

For tile last term on right hand side of this inequality we have 

IIwT'I'-~jlI2 _< I l W t ~ - ~ j l l 2  + IlWtll211~'-lll211gj -- Wxjll2. (3.20) 

Using (A.Sb) and (A.13), together with (3.13), (3.15) and (3.20), we have 

I I W ~ - l ~ j l l ~  - 0 ( ~ ( ~ ) ) .  (3.21) 

Then, it follows, by assumption (A.5a), (3.19) and (3.21), that  

I~,~-~w,~w~,~-~jl = 0 ( ~ ( ~ ) ) .  (3.22) 

Due to (3.18), (3.22) and (A.14), we obtain 

M = O(n(e(n) )  1/2) + O(n2e2(n))  = o(n). (3.23) 
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[] 

Proof of Theorem 2.2(a). From the expression for the estimate ~l~(t) (1.5) 
we obtain 

Biax(~h(t))  = 13ias(~h,O(t)) + w~(t)X13ias(fl) ,  (3.24) 

with wT(t) -- (w~,h(t, t l ) , . . . ,  w~,h(t, try)). 

In view of (3.2), (3.3) and (A.11) it is easy to see that 

~( t )x  ~ ( o ~ ( t ) , . . . , o p ( t ) )  as ~ + ~ .  (3.2~) 

Now, using (3.24), to finish the proof we only have to check that  

~ , ~ ( t ) x B i ~ ( ~ )  o(1). (3.26) 

Using (3.25), Theorem 2.1 part (a) and tile asymptotic expression for tile 
bias of ~h,0(t) ((3.2) and (3.3)), we get an asymptotic order of O(h ~') + 
O((nh) -1/2) - o(1) for the quotient of (3.26). 

It follows that Bia~'(i~h(t)) Bias(i~h,O(t))(1 + o(1)) O(h~'), where 
this last order is a result of (3.2) and (3.3). [] 

Proof of Theo~vm 2.2(b). From the expression of the estimate ~h( t )  (1.5) 
we h a v e  

w r ( ~ h ( t ) )  = V ~ r ( ~ ; ~ , 0 ( t ) ) + ~ r ( t ) X V ~ r ( ~ ) X r ~ ( t )  

- 2 ~ T  ( t ) ( ~ ) X  Co~(~ ,  ;;~;,,o( t ) ) 

Using the convergence of w ~ ( f ) X  (3.25) together with Var(fl) = O(n 1) = 
o(Var(ihh,o(t))) and ICov( /~k,c~,o( t ) ) l  = o(V~r(,~h,0(t))), k -- 1 , . . .  ,p, 
where/~ = ( ~ l , . . . , ~ p )  ~ (fi'om Theorem 2.1(b), (3 .4)and (3.5)), the result 
of tile theorem holds. [] 

Proof of Theorem 2.2. Notice that  

E ( ~ ) = ( ~  1 4 ) ~  ~(I w)~. 
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'T (Cln, ,Cnn) a T ~ T ~  1(1 W )  (where a r 0 is a Let us define % . . . . .  
fixed arbi t rary p x 1 vector), cr~ = (Var(c~ne))U 2 = (Var(Ei~ 1 ci,~ci))l/2, 
and 

i 1 

Because of Lemma 3.1 and (3.23), to prove the theorem, we only have 
to check that 

Sn "> N'(0, 1). (3.27) 

To see this, we first check that  

c? 
max ~*---~ O(~ 1). 

l< i<n  ~.~ 
(3.28) 

Using (A.5.b), (A.8) and (3.1), we easily obtain that  

I1~.~11~ 0(1). (3.29) 

From Lemma 3.1 and the proof of Theorem 2.1(b) we have 

~ - ~  > s  (3.30) 

Now, (3.2S) follows from (3.29) and (3.30). 

If we denote Zin = (cin/crn)ci, then, fi'om (A.la) and (3.28), we obtain 

m ~  v , ~ ( z ~ , )  = 0 (~  ~) (3.31) 
l<i<'n 

and, using Davydov's  inequality (1968) ((A.1) and (A.2)), 

6 
ICov(Z{~, xj~,)[ <_ c n - l a ( l i  - jl) '~-w (3.32) 

Furthermore,  using (A.3) and the fact that  the sequence {a(n)}  decreases 
to zero, it is easy to see that  n(1-b)(2+5)/Sa(n) --+ 0 as n --+ o% %r all b > 0. 
Therefore, if we consider a ( 1 - b o ) ( 2 + 6 ) / 6 - 1 ,  where 0 < b0 < 1-0"/(2+0") 
(observe that  a > 0), we have that  

,~+~(~) >0. (3.33) 
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Now, if we define p~ = [rt 1-c(l+a)] and q~ = In ~] with (2 + 23) -1 <~ c < 
(2 + a) -1 (Is] denotes the integer part  of s'), it is easy to see that  

-1 -1 2 Pn --+ c'uo, q n --+ ~ ,  P~ qr~ --+ 0 and --+ n p~ 0 (3.34) 

and, together  with (3.33), 

~?pnlc~(q.n) ', O. (3.35) 

The asymptot ic  normali ty  of Sn is proved using a classical a rgument  
which consists in decomposing the sum of dependent  r andom variables into 
a sum of large and small blocks, where the contr ibut ion of the small ones is 
negligible and where the large ones are approximately  independent .  After 
this, Lindeberg-Feller 's central limit theorem is used. Because of (3.31), 
(3.32), (3.34), (3.35) and (A.3), the  proof  of the asymptot ic  normal i ty  of 
S,~ is similar to the one presented in Roussas et al. (1992). For this reason, 
we omit  the  proof. [] 

Proof of Corollary 2.1. Follows from Theorem 2.1(a) and Theorem 2.3. [] 

Proof of Theorem 2.4. We have tha t  

(gt 1~:T~-1~ :) In  1/2~,~Y~-1(I W ) ( m + e )  

- - w l I m  + e l  

Now, Theorem 2.4 follows from (A.15), (A.16) and Corollary 2.1 (having 
taken into account that ,  by Lemma 3.1, (3.12) and (3.27), we have tha t  

n 1 - X r q - l - x - - +  V and n 1 / 2 x T q - l ( I - -  W ) ( m  +s)  D Af(0, cr~V)). 

[] 

Proof of Theorem 2.5. This proof  is a modification of tile proof  of Theorem 
3 in Fuller and Battese (1973). Following their  indications, we have 

' T  3_ - 1 .~ T 
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By a Taylor's expansion we obtain 

~T l((~)X.n ) ~T 1 

= ( ) (~ x.,~% (~)(m~+~)) 
/~ / --1 + ~ 1~:c (~-- i . n  lilr71(q~*)X.n) (It-lX"~.r,.~'(~J*)(~t.r, -Jr- ~r,)) 

.P=l 
( . . . .  ) 

X (% 1.Xi~lilr, l((/~*).X.n)-l(Tt 1XinT~I*.nl(o~*)(<r, -~- ~n)) }(~r-  qS~), 

where ~b* is between r and r  By Lemma  (3.1), (3.12), (3.27), (A.18) and 
(A.19), it follows tha t  

A 

15 -- fl 15 -- 15 q- Op(I?,-1/2). 

By Corollary 2.1, the result of the theorem holds. [] 
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