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Abstract  

W e  de r ive  La .guer re  e x p a n s i o n s  fi>r t h e  d e n s i t y  a n d  d is t r ibuta ion  f imctaions of a~ sum 
of p o s i t i v e  w e i g h t e d  n o n c e n t r a l  chi -squa . re  varia.bies.  T h e  p r o c e d u r e  t h a t  we u s e  is 

ba sed  on  t h e  i n v e r s i o n  of L a p l a c e  t r a n s f o r m s .  T h e  f o r m u l a s  so o b t a i n e d  d e p e n d  

on c e r t a i n  pa . ra .meters ,  ~ h ich  adequa . t e ly  c h o s e n  will g ive s o m e  e x p a l t s i o n s  a l r e a d y  

know~l in t h e  l i t e r a t u r e  and  s o m e  new  ones .  W e  a l so  de r ive  p rec i se  b o u n d s  for t h e  

t r u n c a , t i o n  er ror .  

Key Words: L a g u e r r e  e x p a n s i o n ,  chi -sq .uare  d i s t r i b u t i o n ,  t r u n c a t i o n  error~ in- 

ve rse  Lapla:ce t : r ans fo rm.  

AMS subject  classification: 62E15, 62E17. 

1 I n t r o d u c t i o n  

Positive quadratic forms in nonnal variables arise naturally in many pro- 
btems of estimation and testing related to nomml distributions aad Gm.~s- 
sia.n processes. Akso in non-normal cases, these quadratic fornLs appear as 

limits of certain statistics ~sed in the inference. Under suitable tral~sforma- 
tions, positive qua~tratic forms in normal va.riates can be expressed as linear 
combinatiolkq of independent non-central chi-square variable,s. NumerotLs 
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applications of these distributions can be found, for instance, in ,]el~sen and 
Solomon (1972) and Mathai  and Provost  (1992). 

The problem of obtaining the distribution of a quadratic form in normal 
variables has been addressed by many authors. Hence, several represent.a- 
lions for the cumulative distribution function and the densib~ can be  found 
out  in the literature. These include, antong o t h e r ,  power series expa~tsions, 
see Shah and Khatri  (19(31); X 2 series, see l~uben (19'62) and Laguerre se- 
ries, see. Shah (1963) and Kotz et al. (1967). Some of these representations 
arise in an a t t empt  to generalize the already known formulas for the distri- 
bution of linear combinations of central chi-square variables. For instance, 
Kotz et aL (1967) generalized the expaxtsion that  they obtained for the 
central case, u_~ing in essence the same method of Gurlmid (1955), giving 
single series expansiol~s in the power series and Lagalerre series cases. These 
formulas are more useful for computat ional  purposes than the double series 
given by Shah. and Khatri  (1961) and by Shah (1963), respectively. 

One of the mc~t successful approaches for obtaining the distribution and 
density functions of linear combinations of non-central chi-square variables 
is the representation in terms of LaNlerre series as in Kotz et al. (19(57), see 
also Davis (1977) and Mathai and Provost  (1992). In fact, Laguerre series 
expansiol~s play a very i m p o r t s i t  role in the: subject  of approximation of 
distributions, see Tan and Tiku (1999). These expansions have been ago 
used to solve numerous problems in information theory: Borget  and Faure 
(1973>; regression analysis: \,%mises(:u (1999) and (~#urmu et al. (1999) and 
experimental design: Genizi and Soller (1979), Tan (1982) and Tiku (1964). 

In this work we derive Laguerre expal~sions for the densi W and distri- 
bution functions d a non-central X 2 variable and of positive linear com- 
binations of non-central chi-s(tuare variables. The procedure that  we use 
is based on the invel~ion of their Laplace traI~s%rms in terms of Laguerre 
polynomiaN. 

The paper is s t ructured as follows. In the %llowing section we propose 
Laguerre expansions for the densi~, and distribution functions of a non- 
central chi-squared variable. Moreover. we derive bounds on the truncation 
error in the given expansions. In Section 3 we provide ml analogous s tudy 
for pesitive linear combinations of non-central chi-squared variables and 
compare our resutN with those given in the literature. Sortie comments and 
conchLsions are included in Section 4. In Section 5, we give an Appendix 
in which we describe a procedure to invert Laplace transforms mid also the 
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proof; of some nece~ssary results in order to s tudy  the truncation error of 
the proposed expansions. 

2 E x p a n s i o n s  for  a n o n - c e n t r a l  c h i - s q u a r e  v a r i a b l e  

The non-central chi-square distr ibution was obtained by Fisher (1928) as a 
limiting case of tile distribution of the nmltiple correlation coefficient. After 
him, this distribution has been derived in several different ways. The  first 
direct derivation was given by ~Famg (1938). A geometric derivation w~s 
obtained by Patnaik (1949) who emphasized the relevance of this distribu- 
tion to approximate the  power of the  ;k( 2 test  and also suggested approxi- 

mations to the non-central X 2 distribution itself. Patnaik represented the 
non-central chi-square distribution as a mixture of central X 2 variables with 
weights equal to the probabilities of a Poisson distribution. Tiku (1965) 
obtained an expression for the densiV function in terms of the generalized 
Laguerre polynomials, which we will obtain as a particular case of our pro- 
cedure. Gideon and Gurland (1977) provided mlother La.galerre expansion 
with coefficients which are rather complicated. Other representations and 
approximations for this distribution can be found in Johnson et al. (1995). 

In the next  subsection, we p r o p ~ e  a Laguerre expansion for the den- 
sity and distribution functions of a. non-central X 2 variable, respectively. 
Basically, the method consists in the inversion of the Laplace tra~lsform of 
the density (or distribution function). The procedure to obtain the inverse 
Laplace transform is described in the Appendix. 

2.1 C o m p u t a t i o n  o f  t h e  d i s t r i b u t i o n  o f  X2~(~) variable  

Let f(v) be dCnsi   function of X~(6) variable, where 5 is the  non- 
centrality parameter.  Its Laplace transform is: 

( 
C ( f  (.~)) (A) exp 

Consider the function: 

/ / ( A )  = e x p  

} (1 + 2A) -''/2 
1 + 2 A  
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Using standa.rd properties of the inverse Laplace transform we have: 

f(.~)=Z; I(C(A))(.~)=Z2 l(H(1+2A))(.5,) 
d--Y/2 

- - - ~  ~(H(~))(.~/2). 
2 

(2.1) 

Now, we invert the function H using the expmLsion (5.3) given in the 
appendix. Fox" that, let g(t*) (p/tOPH(p/ff). In particular, fox" p rt,/2, 
we obtain 

9 ( f f )=exp  { d(r~/2r, tl')} ' 

with derivatives 

So, 

y,,/2-1 { d (r~/2 - l-b) } 
z ; - ~ ( H ( A ) ) ( Y )  r ( r , . / 2 )  ~xp  .~ �9 

with L~ '~:) the k-th generalized Laguerre polynomial (see Appendix). Their, 
from (2.t) we have 

~.>o (~/2)~ ~' \4#o  J '  v~,,,, > o. 

(2.3) 

If we consider H0 = r~/2 in (2,:~), we obtain the expansion given by Tiku 
(1965) llsiitg another procedure: 

f(Y) = 2~'./~ F (~/2) , (rt./2)a. ' 
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is: 

Let F(zj) be  the distr ibution function of X~(6). Its Laplace transform 

1 { c(F(y))(A) ~exp 1+2A 

Using similar arguments as before, we obtain: 

F(~) = 2.,/.+, r (.,/2 + 1), (.,/2 + 1),, \ 4#o / '  

with 

g(#) P-#exp 'P 7 +1' (Z6) 

and c~. = ( #o)~'g(~')(#o)/td. These coefficients satisfy the recurrent rela. 
lions: 

]~-1 

j=0 

d j ( - ' ~  j = , j > _ 2 ,  
\p ~to 

co - -  exp , ( )2 .7a  
P #0 

dl = #0 - - +  . (2.7b) 
P #o 

Ashour and Al>del-Samad (1990) derived a different expression a~ a double 
series; Gideon and Gurland (1977) proposed another Lag~.lerre expansion 
with coefficients which are difficult to calculate. Tiku (1965) obtained an- 
other expression in terms of Laguerre polynomials by direct integration of 
the densi~; function. With  our method, we provide a Laguerre expaixsion 
without, the explicit knowledge of the density function or the distribution 
function. Moreover. the expaxtsion given in (253) depends on a parameter,  
#0, tha t  can be  chosen arbitrarily. Some adequate choices may give compu- 
rationally efficient formulas for the caicula.tion of the distribution function. 
Even, mfiform convergence can be achieved by an adequate  choice, as we 
witl see in Subsection 2.2. 

In Table 1. we compare the expression obtained in (2.5) for #0 = p / 4  with 
that  given by Tiku (196,5), and the exact vMues given in Patnaik (1949), 
being j the number of terms considered in the expansions. 

\ .~  can observe in these examples that  the  expansion that  we propose 
converge faster than the expression given by Tiku. 
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Table 1: Distribution thnction of X~; (d) 

~ ~ y j #o p /4 (2s )  
4 10 10 10 0.3148368 

7 16 10.257 10 0.04999622 

24 24 36 15 0.15671754 

Tiku (~965) 

0.3141404 

-0.45<0 

0.1276852 

F(~) (Sxa(;t) 

0.3148 

0.05 

0.1567 

2 . 2  B o u n d  f o r  t h e  t r u n c a t i o n  e r r o r  

As we are interested in the implementation of these forumla~ in a computer, 
we s tudy the errors produced when the infinite series are truncated. To get 
bounds on the truncation error in the expa.nsio~Ls above, we need to bound 
the Laguerre polynomials and also the coeflicien% % given in (2.7a): 

L e m m a  2.1. A classical 9tobal v, niforw~ (w.r'.t. n, y and c~) est imate given 

b~/s~eg6' (1975) is 

L~) (y) 

k! exp , - 1  < ~ < 0. 

To bound the coefficients c~, the following lemma will be t~efuh 

L e m m a  2.2. Consider  ct, as given in (2,7a) and p = n / 2 + i ~  then 

r 

with, ~ P.o 
I P t,o I 

Pr'o@ See Appendix. [] 

Consider the truncation error for the densi~; function as: 
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for/zo > O. 

From Lemma 2.1 and v > 2 we get 

e ~ / 2 y  ~'/2 1 { 6 ( n / 2 - y o ) }  (w~/ '~ 
s (f,y, yo,6) < 2,~/2 F ( n / 2 )  e• -- exp 

" - r~. \ 8#o ) 

k! 
s N + I  

The above serie, s is absolutely convergent for t*0 > 0. and as a consequence 
we have that. the expansion (2.3) converges uniformly in any finite interval 
of (0, ~.).  However it is possible to get uniform convergence when n > 2, 
for all ~ > 0, by choosing #0 > n/4.  

In order to get bounds on the truncation error in the expansion given 
for the distribution function (2~ we use again Lem.m~ 2.1 and 2.2, to 
obtain 

e g/2~ ''/2 2p ( ( p - ( l + l / { ) y 0 ) )  
e,~ (n,.>,., a, #0) _< 2,~/~+~ I ; -  #0I exp a 2p 

- e x p  ((rt_---+-2)~/~ E b~. (2.10) 
\ s#0 ) 

k=A;q-1 

with 

= - -  (1 + k). 

The bound (2.>)  is we~l de~ned for #0 < ; /2 ,  sin~'e the ,~eri~s E ~  ~ is 
absolutely convergent if 0 < ~ < 1. 



404 A. Casta~,o-Marffnez and F. L@ez-Bldzquez 

3 T h e  d i s t r i b u t i o n  o f  a l inear  c o m b i n a t i o n  o f  i n d e p e n d e n t  
n o n - c e n t r a l  c h i - s q u a r e  var iab les  

In this section we propose Laguerre expansions for the densib~ and dis- 
r~ 2 tr ibution functions of Q~ }~=~ c~sXt, with (~s. > 0 and X~ ~ X,~ (~), 

independent  ra.ndom variables. We proceed in a similar way as we (lid in 
the previous section for a non-central chi-square variable. 

Let f (y )  be the densits~ function of @~. Its Laplace transform is: 

i=1 ;= 

rphen ,  
y 

f ( y ) _  e 2:'~L: I(H(/~)) y (3.1) 
2 ~ 

with H(A) C ( ( A -  ] ) / (2 ,3) )  aad /3 > 0. 

Therefore, it is enough to invert H(~) .  Using (5.3) given in Appendix 
and (3.1), for p =  ,J/2, we obtain 

C 2.~:~ ~/2-1 E ~:!C/,, .L~/2 1} ~ /,'~l 
Z(Y) - (2~)~/~ r ( , , /2)~>o (,,/2)~. ~ \ 4 @ o / , V ~ , o  > O, (3.2) 

with 

~j(~,) = ~ ~xp 7 Z ~ ; g ~ ( 7 - } ,  ) H (9~ + ~(p #))-"~/~, 
i=1 i=1 

(3.a) 
where /~ E i= l / J i  and ctk (--[l,o)kg(k)(llx))/]f:]. These coe~c, ienf~8 s&t is fy  

the recurrent relations: 

1 ~ 1 

j =o 

exp - !  E 
2 ~= 1 i ? t t~  + c~i(p - I t ( ) )  

�9 1 + ? ( P / f r o  1) , 
i,=1 

(a4a) 
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dj 
2t'~ ~=1 /~Vo + c ~ ( p -  t*o) 

+N-" ~-'.i i - c~.~//~ ,:i 

~--'Y ~ + (~/,,,'~)(~/t,o - 1) 'J > ~ 
i=1 

j + l  

(3.4b) 

Obviously if we consider 6~ = O. i = 1 . . .  n, in the expression (3.2), we 
obtain the corresponding expansion for the central case. 

If we consider in (3..2), tm u /2  p we obtain the  expansion given by 
Kotz el, aL (1967). However we can consider other choices of the pa.rameter 
in order to improve the speed of convergence of this series. 

Similarly, since the  Laplace trm~sform of the distr ibution flmction, F(y),  
of (2~ is given by 

1 ~,, 6ia, iA } n 

we obtain the following expansion for the distr ibut ion hmct ion:  

v(~)  : (2/~)-n+~ r ( . / 2  + 1), ( , . /57])~:  k \ ~7~E / '  

for #0 > 0 and p = lJ/2 + 1. The  coefficients me satisf)~ the following 
recurrent  relation: 

1 k 1 

m~:---- ~.Emjd~._) , .  h > 1, 
j =o 

"',o 2 7 + 1 exp 
2 i=1 /3ttO + ch(p #0) 

/y,/~+l ., 

p ,o I I  (f~#o + . , , (p-  ,o)) "`/~ 
i=1 

~ - J / ~ P ~ d ~  (9 ( W  -~ t,,o 
2t~o ~=1 i5'#o + c ~ ( p -  t~o) 

j+] 

+ k / r ; o /  + E - 2 -  \/~Po + ch(p Po))  'J >- 1. 
i=1 

(3.6~) 

(3.~b) 
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In this case, we offer an a l ternat ive  expression for the  d is t r ibu t ion  funct ion 
wi thou t  knowing the  densiD; funct ion.  Mos t  of the  au thors  in the  l i tera ture  
ob ta in  an expression for the  d i s t r ibu t ion  f lmct ion by  direct  in tegrat ion of 
the  densi ty  function,  such as Kotz  et aL (1967). If 5.~ = O,Vi, in (3~:.%), we 
ob ta in  a.n expre.ssion for the  d i s t r ibu t ion  funct ion of a linear combina t ion  
of independen t  central  chi-square variables.  

3 . 1  B o u n d s  f o r  t h e  t r u n c a t i o n  e r r o r  

In a similar w~y t,o the ca~e of one wri~ble, our obje, ctive, is to implement 

these formulas in a computer so we study the errors produced when the 

infinite series given in (3.2) and  (3,.5) are t runca ted .  

Firef ly we need to b o u n d  the  coeffieien%: 

L e m m a  3.1.  Consider" c~, as given in (3Aa,)~ then 

I ~ I < \ ~ )  .~= +,,7 ~ - 1  exp 2pr 

4 ~ 1  + (~di:7)(;t~o-1) 2x- ,., ' 

1 ((~i/,~} and p v,/2. with ~ max~ l+(~U~)(;/t,~ 1) 

P'mo]~ See Appendix �9  [ ]  

R e m a r k  3.1.  / f  it0 < 7//4~ fher~, 0 < ~ < 1, for  all fl > 0 and "if if0 >_ 7//4, 
~hen 0 < C < 1, for /3  > (2 , / /(2if0)) ~( ,4 /2  and e~(,~) = m a w  <~, . 

L e m m a  3.2.  Let rna: as given in (3.(;a): then 

i~,,,,<i < is,_ #ol exp __~a~(<~ /~ ,D(p /#o f7  ~)-~7--1)7) exp tT' W'a ] ~ j  (a.s) 
7=1 

( ) { )( �9 ~ . , /  ,~=~ 1 + 7  7 -~ 2z~- ' 7Tg 
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p fro �9 1 + ((7~Z,'.3"~ ~ ,  1) 

Note that 0 < a- < 1 {f H,o < p/2. 

_Proof. See Appendix.  [] 

From the bounds  of the Laguerre polynomials  given in Lamina 2.1. and 
of the coefficients given in Lemmaus 3.1 asld 3.2 we will s tudy  the  t runcat ion 
error in the proposed expar~sions. 

With  the  usual nota t ion we have: 

e >:~ ~u/2 i ~" 1 (~i (/@1 ) 
&,r (f,  .V, #0, ;?) < (2/3)~/2 r 0 / /2  ) ,:=n +. /~ - 1 (3.9) 

27,{} / exp exp . ~  5i(cq//3)(p/H.o 1) 

�9 exp \89t o/ 2 2  \ -27 \ ; " 
/~:=N+I 

This bound  is well defined since the above serie, is absolutely convergent if 
0 < r < 1, see Remark 3.1. As a consequence the expansion given for the  
density function converges uniformly in amy finite interval, for all # and/~  
chosen in an adequate  way. 

In the  part icular  case of t*0 = u/2 = p in (:3.9), we have: 
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t<otz et al. (1967) p r o p p e d  another different bound given by 

~ 11"/~ ~ {~ }(1-pr (3.11) 
~,X3 

( 1 - ~ )  -"/~ Z (eR) -~, 
h"=N+l 

with p s 2/3 and R s 

In Table 2, we show how the bound that  we propose is better thaa the 
one given by Kotz et. ak (1967) for Q~ = 0.7X~ (6) + 0.3X~ (2) (see Irate.of, 
1961) with/~ (0.3 + 0.7)/2 and N 20. 

Table 2: Bounds for the trnnca, tion error of the densky  of  Q,~ 

9=1 9 = 6  y = 1 5  

(;3,t 1) K o t z  et: aL 1200 .579848  98 ,54959519  1.094787111 

(:3.10) 0 ,005900164346  0 ,0004843149820  0 ,5380253460  �9 10 - s  

(3.9)  ( t a ~ =  p/3) 1 ,349683601  . 1 0  m 0 ,1644251231  -10  9 0 ,1480107789  . 1 0  r 

Similarly we obtain the following bound for the truncation error of the 
distribution function. Using L.emm~s 2.t and ;k2: 

s txo,/~) < 2 -"'Y"/[ . [ [  1 + 1 (3.12) - r (,,/~, + 1)}~ 7 

IP #o1 2pCJ [ 4 =11+(c~ . i / f~ ) (p /#o  1) 

k = A ~ + l  

where 

b~.:r 2 k + , J + 2  ~ ( 2 k + , r  (3.13) 

The, ~bove ,~eri~ is ~b~omteb, co~vergen~ for #0 < ; / :  (p ,.'/2 + 1) ,~m~;e 
0 < r < 1, then in  a simitax" way to the densi ty  funct ion we have the un i fo rm 
convergence of the expansion given for the distribution function. 
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Kotz et al. (1967) p r o p p e d  the following bound: 

g.-,~ < 2 (1 - O )  - ' / ~  (1 - R) -~ -"/~ ~ .~ /~e ' /~  (3.14) 

+ 2, ylg) [(.R) I (1 - 1/ .R) l , 

with [ = max, tl ~ ' / f l l ,  A = ~ ; t l  6~. and g (r~+ 2, y / f l )  is the central X 2 
densi W hmction with n + 2 degrees of freedom, p ~ 9./a a n d / ~  ~i/3. 

\ ~  can observe tha t  the expression (3. t 4) is different than (3.;12) tha t  we 
propase.. In Table 3 we compare these bounds for Qz = 0.7X~ (6)+ 0.3X~ (2) 
with /3 = (au + c~2)/2 and N = 20. Again, we observe the intprovement 

produced by our bound. 

T~.ble 3: Bounds fbr the truncation error of' the distribution of Q'2 

y - 1  y - 6  y - 1 0  

(:~. :t4) 45s 1.5 s274s  224~ .s 2509 4 5 0s .746 o s g s  

(3.12) (#0 = p/4) 0.2211225252.10 s 0.001969049548 0.1791774378 

4 C o m m e n t s  a n d  c o n c l u s i o n s  

We propose Lag, aerre series expansions for the density and distribution 
functions of non-central X 2 variables and of positive linear combinations of 
non-central chi-square variables. 

Our expansions depend on some parametel~ tha t  can be chosen arbi- 
trarily. Parameter  p has been chosen in such a way tha t  the derivatives of 

an a~txiliar function (g) are easily calculated. The other parameter, /~0, is 
chosen to obtain uniform convergence in the expa.i~sion, see Subsectioizs 2.2 
and 3.1. 

The terms of our expansions are easily calculated using recurrent fornm- 
ins, so tha t  with no ntuch computat ional  effort we can obtain many terms 
for these expansions. Also we provide precise bounds for the truncation 
errors. 

An IMSL subroutine is available for calculating the probabilib7 integral 
of a chi-square distribution with both integer as well as fractional degrees 
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of freedom. It is, therefore, easy to evaluate the Patnaik mid Pearson ap- 
proximations. The latter gives remarkably accurate approximations except 
perhaps for small vahes  of y (Table 4). However. small values of y are 
not of nmch interest since non-central chi-square distribution arises in the 
context of determining the power of a chi-square test. The test uses the 
tail on the right hand side of a chi-square distribution. Consequently, the 
value of p is greater than 1 in which case the Pearson approximation ix 
remarkably accurate. 

In Table 4 we compare the probabilities of a. noncentral chi-squared 
variable, ~ - X~,(d), obtained from the first j terms of our series and compare 
them with the values based on two and three moments  approximations 
given in Patnaik (1949) and Pearson (1959), respectively. We note that 
our approximations seem to be better than other approximations to the 
non-centra,1 ;u distribution. 

Table 4: Approxima.tions to the distribution function of .k~,.(b)2 - 

n ~ y j 

2 1 0.17 3 

2 4 0.65 3 

2 4 14.72 8 

4 4 1.77 3 

4 l0 10 5 

4 16 7.88 5 

7 4 3.66 5 

7 16 10.257 5 

(2.5) [*0 = p / 4  P a t n a i k ' s  a ppro x .  P e a r s o n ' s  ap p ro x .  

0. 050928 0.061760 0.069248 

0.050440 0.02777 0.0581 

9. 949881 9.9~8975 0.959862 

0. 050274 0.040042 0.053059 

9.314904 0.3178 0.3118 

0. 05135 0.039995 0.05027 

0. (149848 0.0~542 0.950788 

0. 0509 0.0r  0 . 9 5 0 3  

Exa.ct  

0.05 

0.05 

0.95 

0.05 

0.3148 

0.05 

0.05 

0.05 

An alternative method is the one given by Kotz et al. (1967). They 
provide a Laguerre expansion mid as Mathai and Provost (1.992) state "it 

is computationally the mc~t convenient and effective through the range 
of interesting value y", for this reason we mainly compare our results on 
truncation errors with those given ~;  Kotz et al. (1967), see Tables 2 and 3. 

5 A p p e n d i x  

In the next we d e s c r i b e  a method to invert Laplace transforms that is b ~ e d  

on properties of unbiased estimation in the Gmmna distribution. 
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Consider a random variable X distributed as a gamma with convolution 
parameter,  p > 0, known, and shape parameter,  A > 0: unknown. As it is 
known this distribution belongs to the natural  exponential family (NEF) 
with quadratic variance function. \~'~ parametrize t.he family in terms of 
the mean, y. = p/k, as in Morris (1982). 

In this situation, we will say tha t  a flmction h(y)  is MVU-estimable 
if there exisks a function T such that,  E,,.(T2(X)) < oo, Vtt > 0, and 
EI.,.(T(X)) h(y.), V# > 0. So, T(X)  is the  mininmm vm'iance unbiased 
estimator (MVUE) of h(y). 

Front the r~ul t s  in Morris (1983), it can be showed tha t  T admits the 
following expansion: 

( 
r ( y ) - - ~  ~ ..j \#/ . 

j=O 

dJ 
Em=O Q-n~ m! with g(,.) t,.(p/,.), ~/J)(,.) ~.~JO'.) a ,d L..I"~ (:~0 J # + - / (  ,,0" 

~ > 0 is the j - t h  generalized Laguerre polynomial. 

On the other h~d ,  from the .nbiasednes~ ~:ondition G ( T ( X ) )  t~(,) 
for all [z > O, we obtain an alternative expression for the unbiased estimator 
based on the inverse Laplace tra,x~sfonn (denoted by s  

y~'-* \ \ # /  7 (.v), v > 0. (a.2) 

And from the uniqueness (a.s) or the MVU estimators, equating (5.1) and 
(5.2), we obtain the following expression for the inverse Laplace transform 
of a function G(A), such tha t  for certain p > 0, h(A) M'G(A) is MVU- 
estimable function: 

yt,-1 '~ ( #o)J g(j) (yO)L! p , ) ( p y ~  
s ~ ( e ( ~ ) ) ( y ) - r ( p )  ~ (~)j ' \ / 7  ' (a.e.) (5.a) 

j=0 

for any Yo > 0, with 9(Y.) h (p/tt). 

Note that  the choice of Y0 is irrelevant,, so adequate choices of this 
parameter  may yield formulas computationally efficient. 
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The  generalized Lagalerre polynomials cm~ be obtained recurrently tB; 
the relatimks: 

\!r (o)  - ~ )L ,7~r  ), j > ~, JLrl (~) (~:) ( 2 j  - -  (1~-  ] - -  ~l;]l~j 1 (X) -- ( j  --  (X 

L~x)(x) = O. L~"~)(x) = 1. 

Proof of the Lemmas 2.2, 3.1 and 3.2. 
The  proofs of the~e lennr, as are simila.r. So we only give the  proof of 

Lemma, 2.2. 

Proof. By definition c~. (-#o)~g(k)(t ,o)/k! ,  and 9(-) given in (2.6) is a,~ 
anatytic function, so for eav:h #0 > 0 we have: 

v ( ( 1 - O > o )  p ,,o v t~o 

�9 ~xr, (_~(~,-0-o),,o~7 )) 
1 

Z,'~o", Iol < ~, 
k>O 

(5.4) 

with ~ t*o m~d (p n /2  q- 1). 

Applying Ca.uchy's inequality to (5.4), we bound  the coe~cients  c k" 

1 
I(~'~.I < p-~" m ~  9((1 -O)#o) l ,  re ,  0 < p < -~. 

0 = p  r 

Consk|er ing (5A), 

m a x { o ( ( 1 - O ) # o ) I  < 2/) ( l _ v { )  I 
{~l=,, P #o 

�9 exp(  ~(P  (1+1/{)#0.)).2p 

2p ( (p-0 

(5.5) 

(5.6) 
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We find a better bound if we consider: 

inf p-~'(1 /)~) 1=  ( ~: ) - ~ (  1 ) -1 
0<p<l/~ ~(1 + k) ~ ' 

(5.7) 

so we have (2.9). [] 
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