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Abstract  

The one-sided t,es~ing problem can be natura.lly formnla.ted as t h e  comparison 
between two nonnes ted  models. In an object ive Bayesian setting, t h a t  is, when 
subject ive pri,.>r informa.tion is not  ava.ila.ble, no general me thod  exists ei ther  for 
deriving proper  prior dis.tributions on parameters  or for comput;ing Bayes factor  and 
model poster ior  probabil i t ies.  The encompass ing  approach  s.olves th is  dili%ult, y by 

convert ing the  problem into a. nes%ed model  compa.rison for which s tandard  me thods  
can be applied to derive proper  priors. 
We argue tha t  t he  usual way of encompass ing  does not have a. Bayesia~ justifica,t:ion, 
and propose a. va:riant of this  me thod  thag provides, a:n object ive B~yesian ~lut;ion. 

The s.olu~ion proposed here is fur ther  extended to  the  case where nuisance pa-  

r a m e t e r s  are present  a.n.d where the  hypotheses  t o  be tes ted  are ,.~..parated by a.n 
interval. Some illustra.tive examples  are given for regular a.nd non-regular  sa.mpling 
dis tr ibut ions.  

Key Words: Ba~'es factor, fra.ctional prior,  intrinsic prior, nomles ted  models,  
one-sided testing,  
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1 I n t r o d u c t i o n  

Consider the sampling model f (:clO), where 0 ~ O is an unknown parameter 
tha,t, for simplicity, we assume to be one-.dimensional. The o n , s i d e d  testing 

problem consists of testing the null hypothesis H1 " 0 <_ Oo yetBus the 
alterna,tive H2 " 0 > 00, where 00 is a specified va,lue. 
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In a Bayesian setup the problem is formulated as a model selection 
problem in which we have to colnpare the nlodet 

M~ .f(<o~), ~:~(<) < ; ( < ) 1  i . . . .  ,~,,)(0~), 

to 
~I2 : f(:eIe2 ), rc2(e2) = ~:2 rc(e2)1(e0,~,)(e2), 

where re(e) is the prior for para.nieter 0 in f(x{e), a n d / q ,  k2 are nornmlizing 
constan%. 

Suppose that  the, da ta  x = (a], ...,a,.,~) are indepe,nde,ntty drawn from 
either model ill1 or/~12. Given a. prior P on the set {i~,I1, " ~ } ,  say- P(M~ le) 
= {, 0 < { <  1, Bayes theorem provides the  posterior probability 

where m(ar't't,fi ) J'~,~/(a:]O~)rr~(Oi)~.tO.i is the marginal densib* of : r '  condi- 
tional on model M~. 

hi choosing between the two models it is easily seen that  the optilimt 
decision under 0-1 loss function is to cho@e M1 if the inequality P(-~.il Ix, ~)/ 
P(.,~,f.,Ix, O > i hok~. This ratio can a~o be written as 

P ( J ~ ( [ I I X , ~ )  _ B12(x ) s 
P(M2tx,{)  1 ~' 

,,'here Bx2(x) rn,(x]~lll)/,~,(xt~.J2 ) is the Bayes factor of model ~lll ver'~sit,s 
~1fz, and contains all the information the da ta  provides on the posterior 
odds. Other  interesting loss functions for model choice cml be found in 
San Martini and Spezza.ferri (1984) and Bernardo and Sniith (1994). 

When subjective priors are not  available, objective priors, also called 
automatic or defa.utt priors, are often used instead. Tha.t is, { is set to 
1/2 and ~v(0) is usually taken as the Jeff 're> or the referellce prior (.]ef- 
Deys, 1961; Berger' and Bernardo, 1992). This prior is typically improper 

and he~ce it fonows tha t  ~i7 tO.,) = c,h, t0d, where t~(0~) is ~ nonil~tegrabie 
function and. consequently, ci is an arbi t rary positive constant. In this 
sit, ua.tion, the posterior probability of M1 

1 
P(J~,~qlx) 1 + B~'~(x)' (]) 
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is ill-defined since B.j\; (x) = rn~ ~ (x)/rn~ \~ (x) depends on the arbi trary con- 
stant c 2/c 1 . 

To overcome this difficulty, solutions based on empirical measu r~  such 
as intrinsic B ~ e s  factor (Berger and Pericchi, 1996b} and fractional Bayes 
fa~:tor (O'Hagan, 1995), have been proposed in the literature. Although 
these measures correspond to actual Bayes factors for nested models (Berger 
and Pericchi, 1996b: Moren% 1997; Moreno et al.~ 1998) the same cannot 
be said for the nonnested modeL~ of the onmsided testing problem. 

This promp% the need for converting the nonnested one-sided testing 
problem into a nested one. In the  nested formulation of the probtem the en- 
compassing approach suggested by Cox (1961) plays a central role. In fact, 
(Berger and Mortera, 1999, p. 545) argue, "Arith,me~ic In~r~insic Bayes jac- 
tor~ are often not suitable jbr nonnested situations, especially when ~estinq 
one-sided hypotheses as he~ (see Dmoehowski, 199@. An attruetive alter- 
native, given by BeNer  and Pericehi (1996a, b), is to embed the competing 
models in a larqe encompassing model, say Ho, so tha~ all of ~he Hi are 
nested within Ho" 

However, this does not appear to be fully satisfactory. In Section 2 we 
argue tha t  this form of encompassing yields a procedure tha t  does not cor- 
respond to an actuat Bayes factor for the  original one-sided testing problem. 
To avoid this difficulty, an alternative form of encompassing is proposed in 
Section 3. It is shown tha t  the resulting model selection procedure provides 
an objective Bayesian solution. It is a&o shown that  this latter procedure 
cm~ be generalized to the  o n , s i d e d  testing problem in the presence of nui- 
sance parameters,  and to the case of testing the null Hi  : 0 _< 0~ versus 
H2 : 0 > 0~, where 0(~, 0~) are specified values such tha t  0~ < 0~. \u  give 
examples with regular and nonregutar sampling distributions. Concluding 
remarks are made in the tt~st section. 

2 Encompassing approach in one-sided testing 

A varieb~ of techniques have been introduced to remove the dependence of 
the Bayes fa~:tor on the constant c2/ci. Here we will briefly mention those 
which atlow not only the  calculation of empirical Bayes factors, but  as  
the construction of suitable priors for computing actual Bayes factors. 
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2.1 Intr ins ic  B a y e s  factor  

Barfer  and  Periceh.i (1996b) propased replacing Bw ( x ) i n  (1) with  B~. ~ (x) 
whieh is justified as follows. Tile sample  x is split  into two parts (x((), x(n 
()). The  par t  x(f),  called, the tr'~dning s~mpl~, is designed to convert  the 
improper  prior into a proper  p(~terior. T h a t  is, 

,, 'here x(() is such tha t  0 < m}':(x(()) < oc. With  the remainder  of the 
data,  :c(n- (), the B ~ e s  factor is computed  t~Mng (2) as the prior. This 
gives 

B;(x) = If(x(,,,, 

which is cMled a partial  Bayes f~ctor (PBF) by O'Hagan (1995). Note tha t  
the  PBF corrects B~'l(x) with the  term Bj\;(:c(e)), and tha t  the  arbi trary 
constants cl and c2 cancM out in (2). 

It should be noted tha t  for a. given sample x we cml consider different 
t raining samples x ((), aad hence there exists a nmtt ipl ic iV of PBFs,  one for 
each training sample. To avoid dependence  on a part icular  training s a m p b ,  
Barfer  and  Pericchi (1996b) first suggested considering all possible subsam- 
ples x(f) for which there is no proper  subsample  satisfying the inequalities 
0 < m )  ~ (x(e)) < oc. for any e.i. They termed this subsampte  a .minimal 
truining sample. Second, they take tile ar i thmet ic  mean d the PBFs  for li t  
minimal  t raining samples. This produces the so-called ar i thmet ic  intrinsic 
Bayes factor (AIBF), defined as 

L 

(=1 

where L is the nmnber  of minimal  training samples contained in the  sample. 
Other  ways of "averaging" PBFs  are possible (see Berger and Pericchi, 
1996b,c, 1998). 

2.2 Frac t iona l  B a y e s  factor  

An alternative approach to avoiding the arbitrariness of choosing the train- 
ing sample  for which the  PBF is computed  was developed by O'Hagan 
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(1995). He replaces the correction term B~\I (x(g) ) in  (3) with 

ftf(xlO )y/,,   
F,2~ (x) f {f(xlO~)}e/~rj ~: (O~)dO~' 

where f < n. In this way, he defines the  fractional Bayes fact, or (FBF) a~ 

B S t x )  = i x ) .  

Other fractions apart  from g/n can be considered. In fact, O'Hagan (1995) 
argues ttiat a larger fraction would reduce sensitivi~, to the  prior and  he 
also proposes using the  frav:tions logrt/n or VqT/n. However, compelling 
arguments  exist in favor of the fraction f/n (Berger and Mortera,  1995; 
Moreno, 1997)~ 

The  above "Bayes factors" have been extensively studied,  see, for in- 
stance, O'Hagan (1995, 1997); Berger and Pericchi (1996b,c, 1997, 1998); 
Sansd e:t al. (1996); De Santis and Spe:zzaferri (1999). 

2.3 In tr ins i c  and  f r a c t i o n a l  pr iors  

Note tha t  the intrinsic aa~d fractional Bayes factors are not  actual Bayes 
fa~:tors. Further ,  s t ab i l i~  of the  AIBF is a ma t t e r  of concern. Conceivably, 
for a given sample  x, the number  of minimal  training samples might  be 
small and minor  changes in the  da ta  could cause this number  to vary sub- 
stantially. Moreover, the  equati~; B,~/(x) = 1/Bi} / (x) is not. necessarily 
satisfied, so tha t  tile coherent  equaiit3~ P(~l/ l tx)  1 - P(~.I2ix) does not  
hold. 

To be coherent, it is impor tan t  to know whether  B}~/(x) corresponds to 
an actual  Bas~es factor for sm~sible priors. If so, consistency of the B ~  I (x) 
is assured. With  the so-called intrinsic priors, the above question has been 
answered asymptot ical ly  by Berger and Pericchi (1996b). There  are priors 
:r~ (01) and rr~(02) for which the corresponding Be;es factor 

= re,, (<)d<' 
and B,}~/(x) are asymptotical ly equivalent under  the  two modes  AI1 and 
M2. Note tha t  if we use intrinsic priors for comput ing  the Ba)~es factor, 
instead of the improper  priors we s tar ted  from, coherency is assured. 
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By equating the limit of B,~ I (x) and B~I (x) as r, ~ ~o under the two 
mode[~, we have 

B21(x) : B�89 + op(1) ) ,  

Berger and Pericch.i (1996b) showed that intrinsic priors satisfy the func- 
tional equations 

u~'~ >"~ ~ ( < )  ~i'~(~:'~(<)) (4) 

The expectations in these equations are taken with respect to f ( x  (~)I6q) and 
f (:c(g)lO2), respectively; }'!52 (01 }denotes the limit of the maximum likelihood 
estimator 02 (x) under model ~llz at point 05, and ~/"1 (02) the limit of 01 (x) 
m~der model A,/2 at point 02 (see a.kso Cox, 1961; Huber, 1967; Dmochowski, 
1996). 

For nested models, the equations ill (4) collapse into a single equation. 
Although the solution (rc~.~r~) to this single equation is not unique~ and 
the resulting class is not robust (Moreno, 1997), a sensible selection is s 
pair 

�9 : k c r 2  N 

Some reasons for choosing this pair are: (i) They are a unique limit of 
proper priors (Moreno et M., 1998), (ii) the ~,~so~:i~ted Bm*es f~:tor 

~21 (X) j'i_yl f(x{O1)7-(l\r(O1)dO 1 ' 

does not depend on the arbitrary constants cl, c9, (iii) this Bares factor 
h~s been proved to behave well for some important nested te~ting problems, 

1 S see Berger and Pericchi (1996b, 1998); Ca,~'ella and Moreno (2002a,b, 2005); 
Moreno et aL (1998, 1999, 2000, 2005); Moreno and Liseo (2003), among 
others. 

A similar cor~struction to the intrinsic priors, but using the. fractional 
methodolow, is given by Moreno (1997). Fractional priors are 

~f (<) = ~i '~ (<), ~ ( < )  = ~'~ (<)~(0~) ,  (~) 

where 
x#~2(O2) = lint [Peel F~2(x), 
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provided tha t  j~% ~r~ (02)d02 =: 1. The  iatter condit ion is not  ahvays satis- 
fied, so tha t  fractional priors do not  necessarily exist. 

In a nonnested si tuation,  however, equations in (4) do not  collapse into 
a single equat ion mid their solution depends on the behaviour of flmctions 
h~ (0~) = ~!',,~ ~.'?~ (0~) and h,) (0~) =: .~!?~}:)~ (02). In general, the solutio~ does not  
necessarily exist and if it does it is not  necessm'ily unique (Dmochowski,  
1996; Moreno, 1997; Cano et, al., 2004). 

This difl-iculty can be overcome by reducing the nonnes ted  problem to 
a nested one for which the solution certainly does exist. To do this Berger 
and Pericchi (1996b) adopted  the encompassing approach. However, this 
technique is not  fully satisfacto W when applied to the one-sided test ing 
problem as demost ra ted  in ghe following sectAon. 

2,4 T h e  e n c o m p a s s i n g  a p p r o a c h  in o n e - s i d e d  t e s t i n g  

The  encolnpassing approach proposes embedding  1~J1 and i~~2 in the  larger 
moaol ~I~ = ~% u ,% : {f(:~Ie), <~'~(o) = c3h(0)}. Wilus, M~ ~ d  % 
are nested ill i~I3 SO tha t  intrinsic (or fractional) priors can be constructed 
to corrlpute Bal(x)  mld Bza(x). Finally, Bel(x)  is defined as B21(x) = 
B2,~(x)B:~ (x). 

However, there is no b~sis for accepting the latter equatiLy. This is due 
to the fos tha t  when comput ing  B2a (x) the intrinsic prior for the paga.m- 
eter 0 in ~'~1:r comes from the comparison between ~I2 and 3Ia. This prior 
is not necessarily tile sa.me as the one obtained when comput ing  Bal(x)  
which comes from the comparisorl between 21fl and 2lid. Hence, in the 
p roduc t  B2,,(x)Ba, (x) the  denominator  of B2a(x)does  not  cancel out  with 
the numerator of Ba~(x) ~ d  co,>eq,,entb, Bas(x) does not correspoi~d to 
all actual  B ~ e s  fa~:tor. 

E x a m p l e  2.1.  Consider" the problem of testing H1 " 0 < 0 < 1 ver',sus 

H2 : 1 <_ O, where 0 is the pararaeter of the ezponentiat density. In other 
words, we want to compare the models 

.'~,fa: f ( x { 0 1 ) =  ~-Texp{ :c/01}, ~r{ '~(01) = 1(0,1) (01) , 

and 

1 exp{ ,~:/<}, ~:~'~(02)= 02 ."~f2 : f(:rIO2 ) = ~ c'21(~,~.)(e2), 
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where ~ (o) c/o is tf~e J4:~/~ v~o~ .fo~ o. It i., easitu seen that no pae-  
tional or intrinsic priors exist for this problem. This example proves that 
formulating the one sided testing proble'm as a no.nnested model comparison 
does not necessa~rity yield a sohttion. 

The encompassing apprvaeh requires transfo~rming the prvblem into a 
ne.sted one although the above mentioned diCficufty ar~ise.s. Indeed, the en- 
compassing modal is 

A.{~'f(ziO), 7r~\~ (0) 01(o ~)(0). 

The minimal training ,sample is a single rvplication of  X .  From (5) it 
Jbllows that the intrinsic pr~iors for comparing M1 and A.f.j are 

7rI(01 __-- =:.__ ( ) ( : 1  7r1/3(0) __ C1 {41 1(0'1)'01~' 0(1 + 0) 1(0,~)(0). 

Similarly, the intrinsic prior=s for  comparing Mz with M:~ a~  

I C2 
~r~(02) = 1(i'~)(02)' ~r2a(0) -- (1 + 0) 1(~ 

S~nee ~:~(0) r ~L(0), the p','od~,,t B:~(x)B~:,(x) is not a B,,ye.~ faeto','. 

3 A n  a l t e r n a t i v e  s o l u t i o n  

Here we propose a sohition for one sided testing that exploits the fact t, hat 
the. two hypotheses being conipa.red can be joined ~;  mearis of a point. 

3.1 One- s ide  t e s t i n g  

The solution we propose considers the auxiliary niodet defined by the sin- 
gutar point 00, 

Afo : f(xlO),~r(O ) = 1{oo)(0), 

which is nested in Ma. Thus, according to (5) the intrinsic priors for com- 
paring ;~fo and ;~f:~ are 

~ (o)Ed<~)IoB~,~ (~(e)), (r) 

where B;)'~(~(e)) 7 ( ' 4 0 1 0 o ) / f ~  f(~(e)lO)~2 ~ (o)do. 
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Note that  rrr(8180) is a proper prior. Therefore, we can consider its 
restriction to the set {0 < 00} and {0 > 00}. So we ha.re modek~ with 
proper priors, say 

1 .i 

,,,here a,1 = .t ~' .  ~'  (8,18o),~81, ana k~ = j~~' ~' (8~180)~8~. 

For a sa.mple x we can now compute the Bayes factor 

f f(xI81 )rc~ (8118o)d81 
B12(x) = f f (xl0z)rc~ (8~I0 o)d82" 

A similar construction can be done with the fractional priors given in (0). 

E x a m p l e  3.1 ( E x a m p l e  2.1 ( c o n t i n u e d ) ) .  The auxilia~! model in this 
e~xample is 

1 exp{ x Mo: f(xI8 ) = g g},  7r0(8) = 1{1}(8). 

Thus, using (7), ~he intrinsic pr~io'r;s for 1111 and M~ are 

2 2 
~(8111) (1 +81) :1(~ ~J(8:I1) (1 +8.) 2 1(1'')(8:'~)' 

By constr"uction, both intrinsic priors are probability densities. 

P'rvceeding iv, a similar jdshion using ((;) gives the fractional prior.s 

1 
~r((8~ 11) 1.7---7 exp{ 1 -  81 }1(0,1) (81) , 7rF (8211) exp{1 -- 82 }l(1,c~) (82). 

While the intr"insie prior~s do not ezhibit discontinuity, ~he fractional prior.s 
present a discontinuity at point 81 82 1. 

For the sample x, the Bayes factor B~] (x) ./or intrinsic priors is 

J~'21(X) : j l  ~ 8 2 r " ( 1  --82) 2 exp{--,t :c/82} <182 
]~18;,,(1 + 81)_~exp{ ,~ ~/81} ~81' 

and ./or ./}'actional p rior:s is 
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D2~(x) = i. r2 i F  ~ ~' :~:/o2 o2} dO2 

The above Bayes fitctors are computed and rvported in the ~econd col- 
umn o2 Table [ f o r  dif[~rer,,t values of the statistic (n, 2). The po<~terior 
probability of M~ when using intrinsic priors is denoted as P =: P(M~ Ix) 
and '.,hen ~,.~ing f,,,ctio~.,l p~or's is denoted a,~ P P(~r 

Table i: Ba;yes [a.cwrs and posterior probabilities 

(r~, x) B'21D21 P. P 
(5 ,0 .1 )  ~ O, ~ 0 1.00, 1.00 

(~,o.~) 0.24,0.41 O.Sl, O.rl 
(~,1.1) 1.71,2.r0 o.37,o.27 
(5,1.8a) 16.3,21.9 o.0<0.04 

Table .i shows ~hat both the intrinsic and the fractional analyses convey 
essentially the same message. For small values of Y, that intuitively javor  
;'~11~ the posterior probability of i]/11 is high, more so as the sample size in- 
creases. As  the sample mean increases the poste~or  probability decreases. 

For a lawe sample size and 2 1, it can be seen tha~ the posterior proba- 
bitim of .,~.~q is o.~, ,which is sensible. For (~, :0  = (5, 1.sa) the p-'~al~e is 
equal to 0.05 (tnd the posterior pwb(~bility of M1 jbr the. intrinsic prior 7s 
0.06 and 0.04 for the fractional prior-, so that the thr~e measures of evidence 
agree. 

Our procedure is applicable to one-sided testing problems associated 
with nonregular sampling distributions as the following exmnple shows. 

E x a m p l e  3.2. Suppose that X is a random var~iable with un~/orm den- 

sit:,I f@I O) 0 ~l(o,e)(:,:), O ~ R +. The r~fer~.r,,ee prior ./or this n,,odel is 
veto(O) = c/0. Sv, ppose that we are interested in testing H~ :0 <_ 0o versus 
H2 " 0 > 0o. The ~'wo default models being compared are 

J~r : f (x i01  ) =: 0 1 1 1 ( 0 , 0 ] ) ( X ) ,  5T~ \' (01) = 1(o,<~} 
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and 
2~2 f(xI02 ) O~](o,a2)(x), 7r~ v (O2) :~ - 

The auxiliary model is 

1 
Mo : f(xIO ) = -~l(o,o)(x), fro(O) = 1{<,)(0). 

1 Oo 

Fractional prior:s do not exist in this prvblern. 

For a sample x, consider the suj~'eient statistic t,,,, max{x1,  ...,x,~}. 
The Bayes factor  B2~(n,t,~) =: ~ ift,~ > 0o. For t,~ <_ Oo the Bayes .factor 
i8 { , . - 1  ) 

~ \ ~ !  - 1  if n > 2. 

For Oo = 3, n = 5 and differvnt values of t~ the corresponding Bayes 
,factor and ~he posterior probability of M1 are given in the second and third 
row of Table 2, respectively. 

t5 1.00 1.70 2.97 > 3 

Sgl(5,t5) S x 10 -a 7 x 10 -2 16.2 ao 

P(M1 it.s) 0.99 0.9a 0.06 0 

Table 2 shows that for increasing values of t,,. the posterior prvbabilft:q 
of M1 deerease.% as expected. Note that P ( M z l t s )  <_ 1/2 for the rwion 
ts _~ 2.64, .so these points favor model 312. In this example the p-value for 
f5 2.97 is 0.05 and the po,sterior probability of M1 ]br that point @ 0.06. 
The two measures of evidence ag'me. 
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3.2 O n e - s i d e d  t e s t i n g  in t h e  p r e s e n c e  of  a n u i s a n c e  p a r a m e t e r  

T h e  p rocedure  descr ibed above generalizes to the  case of one-sided tes t ing 
problems in presence of a nuisance parameter ,  aussuming tha t  the  pa rame te r  
of interest  and  the  nuisance parameter  are a pr iori  independent. .  Consider  
the  sampl ing  mode l  f ( z IO , ?)  and  suppose  we are  interes ted in tes t ing H~ : 
0 < Oo v e r s u s / / 2  : 0 > 00, where  .~'~ is a nuisance parmneter .  

We consider  the  auxitia.ry mode l  Mtj : f(mlOo, % ) ,  where  ~',~) is an arbi- 
t r a ry  but  fixed coordinate ,  and  c o m p u t e  the  intrinsic prior for the  pa ram-  
e ter  (0, ~r t ha t  results f rom conlpar ing M0 and  M:~ = M1 tO M2. This prior 
is given 1),5; 

~ (0 <0o .< ) ~" (0, ...~' ~ M:~ f (~(e)!0o, .~::>0) 
, , = "J*~,, . (<o ,', j '  f f (~. (e) io .r  ~ (0, v.,)<~0,~., ' 

where  7r A' (0, 'r ~r v (O)rc N (~.'~) is the  reference prior for the  sampl ing  model  
f(x'tO,'~') ). \'~,~ denote  the  restr ic t ion of 7rs(O,~,.',lOo,<.',o) to the  set  {0 < 00} 
and  {0 _> 00} as ~rs (0, ~.{,I00, ~/'0), i = 1, 2 respectively. Hence,  for the  sampte  
x the  Bayes factor  is 

Ji.<.>, ~ Ji? > L >o,, S (xlO, .<,.:> >~' (o, <,."~I Oo, <,,,o > "  (< )  do d.~.:><s.~<>o 
. , , ( x )  L.>o~ L.>~ J;~,, f C x l O  <.,,>~(o <.,>!0o,<.,,o> ~'(~,:,>~,)<~0<~.~,<.,<~.~,<~<,' 

where  the  a rb i t r a ry  coordina te  4"~o has been in tegra ted  out  wi th  re,  pect, to 
the  reference prior ~r ~' (~'~o)- Note  that, this B w e s  factor  is well-defined as 
tong as the  a rb i t r a ry  constmit  involved in ~r :~" (4"~o) cmme[~ out in the  ratio. 

E x a m p l e  a .a .  Let X be a random variable wi th  normal  densi ty  f(~Io) 
= N(xlix. , cr2}~ where Is and (7 are 'unknown. Suppose that we are. interested 
in testing H1 : t* <: 0 versus H2 : 1, > O, so that u is a nuisance pa.rumete'r. 
The two d@,'ult models being compared arv 

M1 " f ( x I01  ) N (x!t*l,o-7),Trl v (0,) c-~Lla xR+(/"*,o-'), 
o-1 

and 

M2 : f ( x I02  ) = N (:cll~2,cr~) x 
o- 2 

arbitrary but f ixed point  and derive intrinsic pr iors  for  comparing 
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It can be shown that the intrin~sic prior .for par~zmeter (t*, c~) in M3 is 

rr~ (,,, crI0, <to) N @,I(), <r~) + c0 ) = H C  + ( < 0 ,  ~o ), 
2 

wherv H C  + denotes a ha!f Cauchy on R +. 

The r'e.striction of 7r1(t,,c*iO , Oo) to. # < 0 and # > O, the .subspace.s of 
model M1 and model M2, gh~es 

/ 

, ( 

cr~) +2 a~) 1~_ (;~,3)HC+(crli0, ~ro), 

cr~ +2 o-~) 1R+(;t2)HC+(cr210, ao). 
Some algebru shows that for a sample x, the Bayes .factor.for these priors 
can be written 

j',?' d;, J[/~ 9(x, V, ;,,)~;r 
B21 (X) 

1 - (~~+ 1 )/2 
g(x, ~,tt) = ,< -"  + ~sin---- ~ sin P #2 n.,~ 2 + n ( 2 - # ) z  

Note that the Bayes factor depends on the sample thrvugh the s'u:~'eient 
statistic s2= E(x,~ x)2/n,  x = E x i /n ,  and n. 

Similarly, it can be shown that the fractional priors are 

~r~(ttl,<rilO,<ro) = 2N ([ZllO, ~ )  IR-(/t l)H]V+ (<rllO, ~ )  , 

~r~(tt2,o210,<ro)) =2N @t210, ~)1~+ (F.2)HIY + (or210 , ~ ) ,  

where H N  + denotes a half normal distribution on IR +. The eorzvsponding 
Bayes factor is 

&i(x) /3 ;,(x, 
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w h  ere  

_ e x p { ~  t ~  ~ ~}  ( t, ~ + ~,,~ + ~(~ ~ ~,,)~-(~+~)/~ 
h(x,~,  

sin ~ F \ cos 2 g 2 s in 2 J 

Tuble 3: Be.yes f~.ctors and posterior probabilities 

(~, ;~, s 2) B~ f ~  P, P 

(5,0.0,1) 1.00, 1.00 0.50,0.50 

(5, o.~, 1) 1.s3, 1.s6 o.a5,o.35 

(5,0.5,1) 4.36,4.60 0.19,0.18 

(5,~.o,~) ~5.or,~r.6o o.o6,o.o5 

In this example Bayes .]acto'r'~ jo t  in#rinsic and fr'actional prior:s behave 
al'rr~ost identically. For a given sample size and sample variance, positive 
vaStes of the sample mean favor model M2, mort. so as the sample size and 
the sample mean inerease. For" ( n , x , s  2) = (5, 1.07, 1) the p-value is equal 
t.o 0.05. For this symmetmc one-sided testing problem the latter" measure of 
evidence is in agreement with the posterior probability of  Mt .  

3 .3  S e p a r a t e d  o n e - s i d e d  t e s t i n g  

The  procedure in Section 3.1 applies to the case of test ing the  null H1 : 
0 < 01 versus H2 " 0 > 0~ where 01 < O~ are specified values such tha t  

7rN (0~ 1(o,~,o~) (0o). ~,~io : f(:<Oo),~o(oo) = j<~<' ~,," (o)do 

Tile intrinsic priors for compar ing  %Jo versus A l ' f ( : c lO) ,  7r ~\: (0) is ,  accord- 
ing to (5), given by 

_I  ,o (oo) = ~o(Oo), ~ (o IOo) = ~'~ (O)E2{<oB ='~ ix(e)), 

,,,h~ro B" (~(e)) = ],.,o l ( : ~ I 0 o > , ( 0 o ) ~ a , / ] ~ 2  f (:~(e)I0>i" (0)d0. 
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Note that  7rI(016)0) is a proper prior. Therefore. we can cow,sider its 
restriction to t, he set {0 <_ 0~} and {0 _> 0~}. So we have models with 
proper priors, say 

1 I 
3.11 "f(xlO,), ~(01 I@0)=  k.-~ (011@0)1(>~,o~)(0~), 

1 
3.4 : f (xIO2 ), 7c~(02100)= ~ r  (02]00)1(o~,~)(0~), 

'CK~ 
where L:I = ~['~ ~rr(OlI6)o)d01, aad k2 = Jo~ 7rI(0210o) do2" Now,. the Bayes 

factor and model posterior probabilities for comparing M1 versus M2 can 
be computed. 

4 C o n c l u d i n g  r e m a r k s  

A fully default BayeMan analysis of the one-sided testing problem involves 
formalizing tile prior distribution on model parameters and the  prior on the 
models themselves. We have showll tha t  in an objective Bayesian setting 
these priors can be %finalized. The method  employs a %rm of encom- 
pa.ssing tha t  enables us to per%rm a Bayesian analysis. Furthermore~ the 
method  is quite simple to apply~ yields a reasonable m~swer for regular and 
nonregutm" sampling modeLs~ and the presence of nuisance parameters does 
not produce any particular theoretical or computat ional  difficulties. 

For most of the exmnples considered, and %r small sample sizes a smnple 
point tha t  rejects the null hypothasis with a p-value of 0.05 gives a posterior 
probabi l i~ of the null close to 0.05. Therefore it suggests tha t  the two 
meeksures of evidence agree. This conclusion seems to be in disagreement 
with the  numerical results obtained ~ Berger mid Mortera  (1999), bu t  we 
remark that  the priors they use differ Kom our. 

Whether  or not our default analysis and a robust analysis matche~, 
in the spirit of the paper by De Santis (2002), is a point that  deserves 
exploration but, goes beyond the scope of this paper. ALso, we point out  tha t  
extensions to multiple hypotheses testing are straightforward and hence 
they have not been detailed. 
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