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Abstract

The one-sided testing problem can be naturally formulated as the comparison

between two nonnested models. In an objective Bayesian setling, that is, when
subjective prior information is not available, no general method exists either for
deriving proper prior distributions on parameters or for computing Bayes factor and
model posterior probabilities. The encompassing approach solves this difficuity by
converting the problem into a nested mwodel comparison for which standard methods
can be applied to derive proper priors.
We argne that the usual way of encompassing does not have a Bayesian justification,
and propose a variant of this method that provides an objective Bavesian solution.
The solution proposed here is further extended to the case where nuisance pa-
rameters are present and where the hyvpotheses to be tested are separated by an
interval, Some llustrative examples are given for regnlar and non-regular sampling
distributions.

Key Words: Bayes factor, fractional prior, intrinsic prior, nonnested models,
one-gided testing,
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1 Introduction

Consider the sampling model f(z]6), where 6 € © is an unknown parameter
that, for simplicity, we assume fo be one-dimensional. The one-sided testing
problem consisis of tesiing the null hypothesis Hy ;0 < 0y wersus ihe
alternative Hy . 8 > 0, where 8y is a specified value.
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In a Bayesian setup the problem is formulated as a model selection
problem in which we have to compare the model

J[l :f(:.'jigl)) 7(1(91) = k} 7((91)1{_00_95})(91))

to
My ¢ fla}f2), ma(fa) = ke 7(02)15, w0y (f2),
where (6} is the prior for parameter 6 in f{x|6}, and k;, ks are normalizing
constants.
Suppose that the data x = (#1,...,,) are independently drawn from
either model My or My, Given a prior P on the set {M;, Mo}, say P(M,[€)
=&, 0 < £ < 1, Bayes theorem provides the posterior probability

m(x|M;) €
m{x|My) &+ m(x{My)(1 - &)’

P{M[x.€) =

where m{z|M;) = f{_}{ J{@|0)mi(6;)do; is the marginal density of @ condi-
tional on model M;.
In choosing between the two models it is easily seen that the optimal

decision under 0-1 loss function is to choose M if the inequality P(M,|x, £}/
P(M51%,&) > 1 holds. This ratio can also be written as

- IQ(X)L

1- &

Maz) is the Bayes factor of model My versus

P(M;1x.8)
P(inurg ix,f)

Miy/m(x
My, and containg all the information the data provides on the posterior
odds. Other interesting loss functions for model choice can be found in
San Martini and Spezzaferri (1984) and Bernardo and Smith (1994).

where Bia(x) = m(x

When subjective priors are not available, objective priors, also called
automatic or default priors, are offen used instead. That ig, £ is set fo
1/2 and w(#) is usnally taken as the Jeffreys or the reference prior (Jef-
freys, 1961; Berger and Bernardo, 1992). This prior is typically improper
and hence it follows that 7' (6;) = ¢;h(6;), where h(f;) is a nonintegrable
function and, consequently, ¢; is an arbitrary positive constant. In this
situation, the posterior probability of M,

1

P(Mx) = ————
R N TAEY

(1)
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is ill-defined since B3 (x) = my (x}/m{ (x) depends on the arbitrary con-
stant ¢g /e

To overcome this difficulty, solutions hased on empirical measures such
as intrinsic Bayes factor (Berger and Pericchi, 1996b) and fractional Bayes
factor (O'Hagan, 1995), have been proposed in the literature. Although
these measures correspond to actual Bayes factors for nested models (Berger
and Pericchi, 1996b; Moreno, 1997; Moreno et al., 1998) the same cannot
be said for the nonnested models of the one-sided festing problem.

This prompis the need for converting the nonnested one-sided testing
problem into a nested one. In the nested formulation of the problem the en-
compassing approach suggested by Cox (1961) plays a central role. In fact,
(Berger and Mortera, 1999, p. 545) argue, “Arithmetic Intrinsic Bayes fac-
tors are often not suitable for nonnested situations, especially when testing
one-sided hypotheses as here (see Dmochowski, 1996). An attractive olter-
natiwe, given by Berger and Pericchi (1996a.b), is to embed the competing
models in a large encompassing model, say Hy, so that all of the H,; are
nested within Hy"

However, this does not appear to be fully satisfactory. In Section 2 we
argue that this form of encompassing vields a procedure that does not cor-
respond to an actual Bayes factor for the original one-sided testing probleni.
To avoid this difficulty, an alternative form of encompassing is proposed in
Section 3. It is shown that the resuliing model selection procedure provides
an objective Bayesian solution. It is also shown that this latfer procedure
can be generalized o the one-sided testing problem in the presence of nui-
sance parameters, and o the case of testing the nall Hy : 8 < 6] versus
Hy : 6 > 62, where 6,62 are specified values such that 6} < 62, We give
examples with regular and nonregular sampling distributions. Concluding
remarks are made in the last section.

2 Encompassing approach in one-sided testing

A variety of techniques have been iniroduced o remove the dependence of
the Bayes factor on the constant ¢y /c;. Here we will briefly mention those
which allow not enly the calculation of empirical Bayes factors, but also
the construction of suitable priors for computing acfual Bayes factors.
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2.1 Intrinsic Bayes factor

Berger and Pericchi (1996b) propeosed replacing B (x) in (1) with Bzt (x)
which is justified as follows. The sample x is split into two parts (@(€), z(n—
£)). The part «(£), called, the fraining sample, is designed fo convert the
improper prior info a proper posterior. That is,

fl(€)10)7 7 (0,) ;
WX @)
where @(€) is such that 0 < m (z(€})) < oco. With the remainder of the

data, x(n — (), the Bayes factor is computed using (2} as the prior. This
gives

~1.2 (2)

9 )1 (92] (f)){wg A7 A ;
BP Jf ]2 i __B"\XB]\ i ; 3
21 ) ff 7’.’.7 P EQI)IS (91 F(P))del 21( ) }2( ( )) ( )
which is called a partial Bayes factor (PBF} by O'Hagan (1995). Note that
the PBF corrects B2 (x) with the term B3 (x({)), and that the arbitrary
constants ¢y and ¢z cancel out In (2;)

It should be noted that for a given sample x we can consider different
training samples  (€), and hence there exists a multiplicity of PBFs, one for
each fraining sample. To aveid dependence on a particular training sample,
Berger and Pericchi (1996h) first suggested considering all possible subsam-
ples z(¢) for which there is no proper subsample satisfying the inequalities
0 < m{xz(f)) < oc for any ¢;. They termed this subsample a minimal
training sample. Second, they take the arithmetic mean of the PBFs for ali
minimal training samples. This produces the so-called arithmetic intrinsic

Bayes factor (AIBF), defined as

L
. o1 .
Al _ N Ny,
By (x) = Bm(X)E; By (a(t)),
where L is the number of minimal training samples confained in the sample.
Other ways of “averaging” PBFs are possible (see Berger and Pericchi,
1996h,c, 1998).

2.2 Fractional Bayes factor

An alternative approach to avoiding the arbitrariness of chooging the frain-
ing sample for which the PBF is computed was developed by O'Hagan
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(1995). He replaces the correction term Bay(x(€}) in (3} with

J{F(x(02) 1 7 (62)dBo
J{r(xle }””fu (01 )db-”

where ¢ < n. In this way, he defines the fractional Bayes factor (FBF) as

By, (x) = Biy(x) Fy (x).

For(x) =

Other fractions apart from ¢/n can be considered. In fact, O’'Hagan (1993)
argues that a larger fraction would reduce sensitivity {o the prior and he
also proposes using the fractions logn/n or n/n. However, compelling
argunments exist in favor of the fraction €/n {Berger and Mortera, 1995;
Moreno, 1997).

The above “Bayes factors” have been extensively studied, see, for in-
stance, O'Hagan (1995, 1997); Berger and Pericchi (1996b,c, 1997, 1998);
Sansé et al. (1996); De Santis and Spezzaferri (1999).

2.3 Intrinsic and fractional priors

Note that the intrinsic and fractional Bayes factors are notf actual Bayes
factors. Further, stability of the AIBF is a matter of concern. Conceivably,
for a given sample x, the number of minimal training samples might be
small and minor changes in the data could cause this number to vary sub-
stantially. Moreover, the equality Bi!(x) = 1/B;Y (x) is not necessarily
satisfied, so that the coherent equality P{M;|x) = 1 — P{M3|x) does not
hold.

To be coherent, it is important to know whether B5Y (x) corresponds to
an actual Bayes factor for sensible priors. If so, consistency of the B3 (x)
is asured. With the so-called intrinsic priors, the above question hag been
answered asymptotically by Berger and Pericchi (1996h). There are priors
71 (61) and 74 (02) for which the corresponding Bayes factor

joz x|f 772 3 (02)d6;
jgl X I( (9 )d@l

and B3/(x) are asymptotically equivalent under the two models 3 and
Ms. Note that if we use intringic priors for computing the Bayes factor,
instead of the improper priors we started from, coherency is assured.

Boi{x) =
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By equating the limit of B3 (x) and By (x) as n — oo under the two
models, we have
By1(x) = B (x)(1 + op(1)),
Berger and Pericchi (1996h) showed that intrinsic priors satisfy the func-
tional equations

Bl Bo(0) = UL CY

w3 (¥ (6:)) mi (8
0y) w7 (3 (0
B B G(0) = M 2 T ) @
) (62) mi(¢1(62))
The expectations in these equations are taken with respect to f(x(€)}61) and
Fla{0)62), respectively; 1h9(f ) denotes the limit of the maximum likelihood

estimator 92( ) under model M, at point 8y, and (09} the limit of 0, (x)
ander model Ms at point 05 (see also Cox, 1961; Huber, 1967; Dinochowski,
1996).

For nested models, the equations in (4) collapse into a single equation.
Although the solution (x{, 7} to this single equation is not unique, and
the resulting class is not robust (Moreno, 1997), a sensible selection is the
pair

T () = wy (61), my(02) = m) (92) B, Brole(l)). (5)

Somie reasons for choosing this pair are: (i) They are a unigue Hmit of
proper priors {(Moreno et al., 1998), (i) the associated Bayes factor

Jo, f (&)E}g’;ﬁ) B (w(0))dB,
fg (x[61 )72 (61 )t

does not depend on the arbitrary constants ¢y, ¢, (iil) this Bayes factor
has been proved o behave well for some imporiant nested fesiing problems,
see Berger and Pericchi (1996b, 1998); Casella and Moreno (2002a,b, 2005);
Moreno et al. (1998, 1999, 2000, 2005); Moreno and Liseo (2003), among
others.

By (x) =

A similar construction to the intrinsic priors, but using the fractional
methodology, is given by Morene (1997). Fractional priors are

T (01) = 7 (01), 7 (B2) = w3 (62)F12(62), (6)

where

Fm(ez) = nhj})lc [Fs,] Fia(x),
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provided that jez 75 (65)df; = 1. The latter condition is not always satis-
fied, so that fractional priors do noi necessarily exist.

In a nonnested situation, however, equations in (4) do not collapse into
a single equation and their solution depends on the behaviour of functions
hu(B1) = (6 ) and ho(fs) = 1201)1(f2). In general, the solution does not
necessarily exist and if it does it is not necessarily unique {Dmochowski,

1996: Moreno, 1997; Cano et al., 2004).

This difficalty can be overcome by reducing the nonnested problem to
a nested one for which the solution certainly does exist. To do this Berger
and Pericchi (1996h) adopted the encompassing approach. However, this
technique is not fully satisfactory when applied to the one-sided tfesiing
problem as demosirated in the following section.

2.4 'The encompassing approach in one-sided testing

The encompassing approach proposes embedding M and My in the larger
model My = M; UM, : {f(zl), 7' (8) = czh(0)}. Thus, M; and M,
are nested in M3 so that intrinsic (or fractional) priors can be constructed
to compute Byi(x) and Bgy(x). Finally, Boi(x) is defined as Bo(x) =
BQS(X)BBI(X)-

However, there is no basis for accepting the latter equalify. This is due
to the fact that when computing Boy(x) the intrinsic prior for the param-
eter @ in M3 comes from the comparison between Ms and M3, This prior
is not necessarily the same as the one obtained when computing By (x)
which comes from the comparison between M, and M;. Hence, in the
product Bag(x) By (x) the denominator of Bay(x) does not cancel out with
the numerator of Bs;(x) and consequently By;(x) does not correspond to
an actual Bayes factor.

Example 2.1. Consider the problem of testing Hy 1 0 < 8 < 1 versus
Hy o 1 < 8, where 8 is the parameter of the exponential density. In other
waords, we want to compare the models

1 A c
M, f(zif) = ge}cp{f:r/@l}, () = él(m)(fh),

and .
; Co
My f(zife) = G—e}cp{f:n/ﬂg}, ¥ (0:) = 6_21“’3°)(92)’
2 2
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where @™ (0} = ¢/0 is the Jefreys prior for 0. It is easily seen that no frac-
tional or intrinsic priors exist for this problem. This example proves that
Jormulating the one sided testing problem as a nonnested model comparison
does not necessarily yield o solution.

The encompassing approach requires transforming the problem into a
nested one although the above mentioned difficulty arises. Indeed, the en-
compassing model is

My« flald), =5 (0) = %1mx)(9>-

The minimal training sample is a single replication of X. From (5) it
follows that the intrinsic priors for comparing My and My are

€1

7"{(91) = ;—11(0,1)(91)5 f (9) (1 +9) {0, ao)(g)'

Stmilarly, the intrinsic priors for comparing My with My are

Co

o) = 2 o e
”2(92) - 921(1,90)(92): 23(9) (1 T 9) {U o) (9)

Since wiy(0) # 7, (0), the product By (x)Bas(x) is not a Bayes factor.

3 An alternative solution

Here we propuoge a solution for one sided testing that exploits the fact that
the two hypotheses being compared can be joined by means of a point.

3.1 One-side testing

The solution we propose considers the auxiliary model defined by the sin-
gular point ¢y,

My : f(fgg)ﬁ(g) = 1{90}(9):
which is nested in M;. Thus, according to (5) the intrinsic priors for com-
paring My and M, are

73(0) = 1oy (0), 7 (9100) = = (0) B3 B (e(6), ()

where B ((€)) = [(x(6){6,)/ [, [(a(€)j9)=S (9)do.
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Note that 77(6]6,) is a proper prior. Therefore, we can consider its
restriction to the set {# < 6} and {# > 0Oy}. So we have models with
proper priors, say

1
M, : flxlor), 71(6:160) = wa(eiiég)i{_m_m(91),
1
My : f(x]02), m3(02]00) = E?‘"I(f)zlf?u)l(au,x}(92%
where k; = jf‘; 7l (81160)db1, and ke = ﬁf 7l (82100 )d0s.

For a sample x we can now compute the Bayes factor

_ S F(0)mi(61165)d6,
[ F(x(02 )73 (82160 )dfs”

A similar construction can be done with the fractional priors given in (6).

Bia(x)

Example 3.1 (Example 2.1 (continued)). The auxiliary model in this
example is

1 ®
My« f(zl0) = aexp{f E} m(f) = 144;(0).
Thus, using (7), the intrinsic priors for My and My are

2 2
w1 (01]1) = mlm’“wl)’ m(0211) = Wlum)(%)-

By construction, both intrinsic priors are probobility densities.

Proceeding in a similar fashion using (6) gives the fractional priors

1 (61]1) =

—s exp{1 = 01} 100 (01), 7 (0211) = exp{l — O2}1 ) (62).

While the intrinsic priors do not exhibit discontinuity, the fractional priors
present o discontinuity at point 87 =6y = 1.

For the sample x, the Bayes factor Bo(x) for intrinsic priors is

By (x) 750,71+ 6) 2 exp{—n T/02} df,
21X} — — - )
fol 67" (14601} 2exp{—n /61 } db:

and for fractional priors is
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[ 05" exp{n 705 62 oy
Jy 00" exp{—n #/61 — 0.} dby

By (x)=1.72

The above Bayes factors are computed and reported in the second col-
umn of Table 1 for different values of the statistic (n, T). The posterior
probability of My when using intrinsic priors is denoted as P = P(M,|x)
and when using fractional priors is denoted as P = P (M;lx).

Table 1. Bayes factors and posterior probabilities

(n, &) BQL.@Q:{ PP

(5,01)  =0,%0 1.00,1.00
(3,0.6) 024,041 0.81,0.71
(3.1.1) 171,270 0.37.0.27
(3,1.83) 16.3,21.9 0.06,0.04

Table | shows that both the intrinsic and the froctional analyses convey
essentially the same message. For small values of T, that intuitively favor
My, the posterior probability of My is high, more g0 as the sample size in-
creases. As the sample mean increases the posterior probability decreases.
For o large sample size and T = 1, it can be seen that the posterior probo-
bility of My is 0.5, which is sensible. For (n, &) = (5,1.83) the p-value is
equal to 0.00 and the posterior probabilily of My for the intrinsic prior is
0.06 and 46.04 for the fractional prior, so that the three measures of evidence
agree.

Our procedure is applicable fo one-sided festing problems associated
with nonregular sampling distributions as the following example shows.

Example 3.2. Suppose that X is a random variable with uniform den-
sity flz|f)y = 9*11(():9) (z}, 8 € RY. The reference prior for this model is
7V (0) = ¢/8. Suppose that we are interested in testing H, : 6 < 0y versus
H, .8 > 0y. The two default models being compared are

_ . c
My f@lfh) =6 Lo (2). 7 (61) = ilw,eu)(@z):



Bayesian One-Sided Testing 191

and .

A — ] N -2

My : flz|f2) = 0; ji(Uzﬁz)("E}: 7y (02) = _21(90-00)(92)'
The auziliary model is

, 1
My : f(zif) = _1,03 (x), m(f) = 1{9“}(9)-
Using (7), the intrinsic priors for My and My are
7 1 I to

71 (01100) = g0 (01}, m2(02i00) = 7 1igy,00) (02)-

Fractional priors do not exist in this problem.

For a sample x. consider the sufficient statistic t, = max{zy, ..., &, }.
The Bayes factor Bey(n,t,) = oo if t,, > 8y. Fort, < 6y the Bayes factor
15

_ —1
0g f_( Zf = 1:

BQI(”:?LH - -1
( = 1) if n>2.

n—O—}

For 8y = 3, n = 5 and different values of ts the corresponding Bayes
factor and the posterior probability of My are given in the second and third
row of Table 2, respectively.

Table 2: Values of t5, Ba1{5. %5} and P{My|ts)
5 1.00 1.70 2.97 >3
Bo1(5,t5) 8x107% T7Tx107? 162 oo
P{M,|ts) (.99 (.93 006 O

Table 2 shows that for increasing values of t,, the posterior probability
of My decreases, as evpected. Note that P(Milts) < 1/2 for the region
ty = 2.64, s0 these poinis faovor model M,. In this example the p-value for
ts = 2.97 is 0.05 and the posterior probability of My for that point iz 0.06.
The twe measures of evidence agree.
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3.2 One-sided testing in the presence of a nuisance parameter

The procedure described above generalizes to the case of one-sided testing
problems in presence of a nuisance paramefer, assuming that the parameter
of interest and the nuisance parameter are a priori independent. Consider
the sampling model f(x]0, ) and suppose we are interested in testing H, :
f < 8y versus Hy . 8 = 0y, where 4/ is a nuisance parameter.

We consider the auxiliary model My : f(z|8y,4y), where ¢y is an arbi-
trary but fixed coordinate, and compute the intrinsic prior for the param-
eter (6,4) that results from comparing My and My = M; U M. This prior
is given by

0 ol v VEMS f(/:(f)mo W)
(0, )00, o) = 70, 0)ED T T @), d)x™ (0. ¢)dody

where 7™ (6, 1) = =7 (0)7" () is the reference prior for the sampling model

f(x]0,4). We denote the restriction of 71(0,4|0y, 1) to the set {0 < y}
and {# > 6y} as 7, ((7' Wb, 1), i = 1,2 respectively. Hence, for the sample
x the Bayes fd(,tor is

ooy Jeon Josay FOel0. 90w (0,010, v )™ (o )dOdvpdaig
Jewo Sy Jocon F(18, 075 (8, 901600, 4io)m ™ (o )dBdydin”

where the arbitrary coordinate 17y has been integrated out with respect to

Ba{x) =

the reference prior =¥ (thg). Note that this Bcwes factor is well-defined as
long as the arbitrary constant involved in «* (u()) cancels out in the ratio.

Example 3.3. Let X be a random variable with normal density f(z|0)
= N(z|p, a?}, where p and o are unknown. Suppose that we are interested
in testing Hy @ p < 0 versus Ho 1 0 > 0, s0 that o is o nuisence parameter.
The two default models being compared are

My : f(w]6h) = N {|p1,07) 77 (1) = ;11&7 <R+ (1, 01),
1

and

AT [
My f(w]f2) = N (wlp2,02) 73 (02) = éiwxw(#z,az)-

We first consider the auriliory model My : N (:Ei(), ag); where gy is an

arbitrary but fired point and derive intrinsic priors for comparing

ﬂi{[) - N (:L‘%U, 0'[2}) VETSUS Il'fg = ﬂfl U 11.[2
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It can be shown that the intrinsic prior for parameter {p, o) in My is

24 52
73 (p, 010, 00) = N (#10: aL ;—a ) HC™(a10,00).

where HC™ denotes a half Cauchy on BT,

The restriction of 7i{p,0l0,00) to p < 0 and p > 0, the subspaces of
model My and model M, gives

2 2
oy + 03

i (g, 0100, 00) = 2NV (H-l]o: ) Lg- (2 HCOT (0410, 00),

2 2
oy + 05

73 (p12,0210,00)) = 2N (H2|O.~ ) Lp+ (2 JHCT (0210, 05).

Some algebra shows that for a sample x, the Bayes factor for these priors
can be written

o d!“ju p)dyp
Sodu T ( #)d*

Boy(x) =

where

ns? +n(T — p)* ) —{n+1}/2

g(x. o p) =sin™" e i+ 5
2sin“ @

Note that the Bayes factor depends on the sample through the sufficient
statistic 82 =Y (x; — T)*/n,7 =Y x;/n, and n.
Stmtlarly, i can be shown thatl the fractional priors are
9

—F — 9N 7o T+ a3
7y (1, 01]0.09) = 2N (MEU: ?) lg- (pey)JHN ( 110, )

2 2

: , T .
73 (p2, 0210, 00)) = 2N ('“ 0, _> L+ (pg) HN' (CTin‘ 20) ,

where HNT denotes a half normal distribution on RT. The corresponding
Bayes factor is

w2
s S du fi h( #)d@
21(x) =5 7/2 :
j,. dp ﬁ @, p)dep
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where
exp{— tan® o} [ p* ns® +n(z — p)? ~(nt2)/2
h(xp, p) = ——— — — -
sin™ ¢ COs= (o 2sin® ¢
Bay{n, T, %), Bzi(n 62) and the posterior probabilities of My are reported

for some values of (n,z,s%) in Table 3.

Table 3: Baves factors and posterior probabilities

(n,T,s") Bay By PP

(5, ) 1.00,1.00 (.50, 0.50
(5,02.1) 183,186  0.35,0.35
( ) 4.36,4.60 (0.19,0.18
(5 ) 15.07,17.60  0.06,0.05

In this example Bayes factors for intrinsic and fractional priors behave
albmost identically. For a given sample size and sample variance, positive
values of the saomple mean fovor model Ms, more 50 as the sample size and
the sample meon increase. For (n,&,s?) = (5,1.07,1) the p-value is equal
to 0.05. For this symmetric one-sided testing problem the latter measure of
evidence is in agreement with the posterior probability of M.

3.3 Separated one-sided testing

The procedure in Section 3.1 applies to the case of testing the null Hy @

f < 91) versus Hy : 8 > 02, where 8] < 07 are specified values such that
Jo, 7V (0)d0 < oo with ©¢ = (05,05). The auxiliary model in this case is

Ff\-" (9())

My : f(zlfo),ma(f0) = ————
jaff ¥ (6)de

1 (o}.63y (90)-

The intrinsic priors for comparing My versus M : f{z]0), 7 (0) is, accord-
ing to (5), given by

T (90) = molfo), ©{0180) = TV () EN,,, BY (2(0)),
where BY (z jou z{to o (B )by / jx (z(0)|0)73 (8)d0.
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Note that 7f(0]8y) is a proper prior. Therefore, we can consider its
restriction to the set {# < 9(1)} and {0 > 93} S0 we have models with
proper priors, say

i
My flaltn), 71(61(90) = I (011©0)1( e g1y (01),

1
My : f(wl62), m(02100) = =" (02100) 1162 oo (62),
o
where by = jf‘l’x 71 (61100)db;, and Fy = j;g 71 (02104 )dfs. Now, the Bayes
factor and model posterior probabilities for comparing M; versus Ms can
be computed.

4 Concluding remarks

A fully default Bayesian analysis of the one-sided testing problem involves
formalizing the prior distribution on model parameters and the prior on the
models themselves. We have shown that in an objective Bayesian setfing
these priors can be formalized. The method employs a form of encom-
passing that enables us to perform a Bayesian analysis. Furthermore, the
method is quite simple fo apply, vields a reasonable answer for regular and
nonregular sampling models, and the presence of nuisance parameters does
not produce any particular theoretical or computational difficulties.

For most of the examples considered, and for small sample sizes a sample
point that rejects the null bypothesis with a p-value of 0.05 gives a posterior
probability of the null close to 0.05. Therefore it suggests that the two
measures of evidence agree. This conchision seems o be in disagreement
with the numerical results obtained by Berger and Mortera (1999), but we
remark that the priors they use differ from our.

Whether or not our defaull analysis and a robust analysis maiches,
in the spirit of the paper by De Santis (2002), is a point that deserves
exploration but goes beyond the scope of this paper. Also, we point out that
extensions to multiple hypotheses testing are straightforward and hence
they have not been detailed.
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