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In cont inuous variable, smooth,  nonconvex nonlinear  programming,  we analyze the complexity 
of  checking whether 

(a) a given feasible solution is not a local min imum,  and 
(b) the objective function is not bounded below on the set of  feasible solutions. 

We construct  a special class of  indefinite quadratic programs, with simple constraints and integer 
data, and show that checking (a) or (b) on this class is NP-complete. As a corollary, we show 
that checking whether a given integer square matrix is not copositive, is NP-complete. 
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I. Introduction 

Cons ide r  the smooth  nonl inear  p rogram (NLP)  

minimize  O(x) 

subject  to gi(x)~>0, i = l  to m (1) 

where each o f  the funct ions  is a real valued funct ion defined on N", with high degree 

of  differentiabili ty.  This N L P  is called 
a convex NLP,  if O(x) is convex,  and gi(x)  is concave for all i, 

a nonconvex NLP,  otherwise.  
Under  some constraint  qualifications,  necessary and sufficient opt imal i ty  condit ions 
are known for  convex NLPs  [2, 4, 7]. Using them,  it is possible to check efficiently 

whether  a given feasible solut ion satisfying the constraint  qualifications is a (global) 

op t imum solut ion or not. 
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We will use the following abbreviations in this paper. 

NLP 

CQ 

PSD 

QP 

LCP 
BFS 

-Nonlinear Program 

-Constraint Qualifications 

-Positive Semidefinite 

-Quadratic Program 

-Linear Complementarity Problem 
-Basic Feasible Solution 

For nonconvex NLPs, under some CQ, necessary conditions for a local minimum 

are known, and there are some sufficient conditions [2, 4, 7]. There are no known 

simple conditions, which are both necessary and sufficient for a given point to be 

a local minimum. The complexity of checking whether a given feasible solution is 

a local minimum is not usually addressed in the literature. In fact, many text books 
in nonlinear programming leave the reader with the impression that algorithms 

converge to a global mini mu m in convex NLPs, and to a local minimum in nonconvex 

N LPs. The documentation for many professional NLP software packages also creates 

the same impression, which could be quite erroneous, 

In this paper, we examine the computational complexity of  determining whether 

a given feasible solution is not a local minimum, and that of determining whether 

the objective function is not bounded below on the set of feasible solutions, in this 
class of problems. For this purpose, we analyze an indefinite QP with integer data, 

which may be considered as the simplest nonconvex NLP. On this problem, the 

above questions can be studied using the discrete techniques of computational 

complexity theory, and in fact we will show that these questions are NP-complete. 

This clearly shows that on a general smooth nonconvex NLP, the questions men- 

tioned above are "hard problems", as defined in computational complexity theory. 

Thus, in nonconvex minimization, even the down-to-earth goal of guaranteeing that 
a local minimum will be obtained by an algorithm (as opposed to the lofty goal of 

finding the global minimum) may be hard to attain. We make some more comments 

on this issue at the end of the paper. 

2. Finding a global minimum in a smooth nonconvex NLP is a hard problem 

Computing a global minimum, or checking whether a given feasible solution is 

a global minimum, for a smooth nonconvex NLP, may be hard problems in general. 

We provide two examples. Example 1 is an interesting digression. It refers to a 

famous unsolved problem in mathematics, but one which has not been formally 

shown to be a "hard problem" in the usual complexity sense. In Example 2 we 

formally establish that finding a global minimum in a nonconvex NLP is a hard 

problem, by showing that a well known NP-complete problem can be posed as a 
special case of it. 



K.G, Murty, &N. Kabadi / NP complete QPs 119 

Example 1. Fermat's Last Theorem. Some of  the most difficult unsolved problems 

in mathemat ics  can be posed as problems o f  finding a global minimum in a smooth 

nonconvex  NLP.  Consider  Fermat 's  last theorem, unresolved since the year 1637. 

It states that there exists no positive integer solution (x, y, z) to the equation 

x " + y n  = z "  

when n is an integer />3 (here, x, y, z c R ~). Even though this conjecture has been 
shown to be true for several individual values o f  n, in general, it remains open. 

Obviously,  Fermat 's  last theorem is not true iff the global minimum objective value 

in the fol lowing N L P  is 0 and attained where ce is a positive penalty parameter.  

minimize (x" + y " -  z") 2 

+ a ((1 - cos(2-rrx)) 2 + ( 1 - cos (2-try)) 2 + ( 1 - cos(2rrz)) 2 

+ ( 1 - cos(27r n))2) 

sub jec t to  x, y, z > l, n >~ 3. 

This problem uses t ranscendentals ,  and therefore involves a different model  of  

computa t ion .  Even though  this example t ransforms a famous unsolved problem in 

mathemat ics  into a nonconvex  NLP, it does not mathematical ly establish that 

comput ing  a global min imum is a hard problem, since Fermat 's  last theorem is not 

known to be complete  for any class. 

Example 2. Subset Sum Problem. This is a problem in discrete optimizat ion which 

is known to be NP-comple te  [3]: given positive integers do; d l , . . . ,  d,,; is there a 

solution to 

L di)) = do, 
i=1 

y j=Oor  1 for a l l j .  

Now consider  the fol lowing QP: 

minimize 

subject to 

(2) 

( L  n 
djy)-do +j~ yj(1-y~) 

k j = l  I 

O<~yj<~l, j = l  to n. 
(3) 

Because o f  the second term in the objective function,  (3) is a nonconvex QP. Clearly 

(2) has a feasible solution iff the global min imum objective value in (3) is zero. 
Checking whether  (2) has a feasible solution is NP-complete ,  and hence, comput ing  
the global min imum in (3), a very special case of  a smooth nonconvex NLP, is an 

NP-hard problem. This formally establishes that in general, comput ing  a global 

minimum in a smooth  nonconvex  NL P  is a hard problem. 
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3. Can we compute  eff ic iently a local  m i n i m u m  for a s m o o t h  noneonvex  N L P ?  

We will now study the quest ion of  whether  it is possible  to efficiently 

(a) compute  a local m in imum,  or 
(b) check whether  a given feasible solut ion for such a problem is not a local 

min imum.  
To  do this, we first review the known opt imal i ty  condit ions for a given feasible 
solution ~ of  (1) to be a local min imum.  Let A = {i: gi(ff) = 0}. Opt imal i ty  condit ions 
are derived under  the assumpt ion  that some CQ [2, 4, 7] are satisfied at ~', which 
we assume. 

First order necessary conditions for  .4 to be a local minimum Jbr (1) 

There must  exist a /2A = (/2,: i c  A) such that  

V 0 ( : ~ ) -  E /2 ,Vg , ( s  
lEA 

(4) 
/2i~>0 for all i c A .  

Here V0(s  Vgi(g) are the gradient  vectors (row vectors) o f  these functions evalu- 

ated at ~. Given the feasible solution 2, it is possible  to check efficiently whether  
(4) holds, using any of  the avai lable po lynomia l  t ime algori thms for l inear program-  
ming. A feasible solution s is called a K K T p o i n t  for  (1 if these first order  necessary 
condit ions hold at .L 

Second order necessary conditions for  ~ to be a local minimum .~or (1) 

These condi t ions include (4). Given  ~ a  satisfying (4) together  with ~, let 

L(x ,  ~LA) = O ( X ) -  ~. ~s 
i~-A 

In addit ion to (4), in these condi t ions  we require  

yTH),>~O for  a l l y ~ { y : V g i ( ~ ) y = 0  for each i E A } ,  (5) 

where H is the Hess ian  matrix (the matr ix  of  second part ial  derivatives) of  L(x, ~a)  
with respect  to x at x = :L Condi t ion  (5) requires  the solution of  a quadrat ic  p rogram 

involving only equality constraints .  It is equivalent  to checking the posit ive semi- 
definiteness of  a matrix which can be carr ied out efficiently [7, 8, 9]. 

Sufficient conditions.for X to be a local minimum for  (1) 

Given the feasible solution .~1 for  (1), and the mult ipl ier  vec tor /2a ,  which together  

satisfy (4) and (5), define H as above  and  let T ~ be the set of  feasible solutions of  

y ~ 0 ,  

7 g i ( ~ ) y = O  for  each i E A  such t h a t / 2 i > 0 ,  

7g~(.~) ~> 0 for each i c A such that/2~ = 0. 
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The most  general sufficient optimality condi t ion known states that if 

yVHy>O for a l l y c T  ~ (6) 

then ~ is a local min imum for  (1). Unfor tunate ly  when H is not PSD, checking 

whether  (6) holds is equivalent  to a nonconvex  QP which may be hard to solve, as 

we will see later (Theorem 4). 

Aside f rom the quest ion o f  the difficulty o f  checking whether  (6) holds, we can 
verify that  the gap between condit ions (5) and (6) is very wide, particularly when 

the set {i: i ~ A and/2;  = 0} ~ [3. In this case, condi t ion  (5) may hold, and even if we 

are able to check (6), if it is not satisfied, present  theory does not enable us to 
determine whether  :~ is a local min imum for (1). 

The questions investigated 

We will now study the fol lowing questions:  
(i) Given a smooth  nonconvex  NLP,  can we check efficiently whether  a given 

feasible solut ion is a local min imum or not?  

(ii) At least in the simple case when the constraints are linear, can we check 
efficiently whether  the objective function is bounded  below or not on the set o f  
feasible solut ions? 

We will use a simple indefinite QP for our  investigation. Let D be an integer 

square matrix o f  order  n. D is PSD iff xVDx >~ 0 for all x ~ ~". So, checking whether 
D is PSD involves the decision problem 

is there an x ~ R" satisfying x-rDx < 0? 

It is well known that this quest ion can be settled by performing at most n Gaussian 

pivot steps along the main diagonal  o f  D, requiring a computa t ional  effort of  at 
most  O(n 3) [7 or 8]. 

The matrix D is said to be copositive if xTDx >1 0 for all x/> 0. All PSD matrices 
are copositive, but the converse may not be true. Testing whether the given matrix 
D is not copositive involves the decision problem 

is there an x ~> 0 satisfying xrDx < 07 

If  D is not PSD, no efficient algori thm is known for this problem (some enumerative 

methods  are available [7], but the computa t ional  effort required by these methods 

grows exponential ly with n in the worst case). In fact we show later that this decision 
problem is NP-complete .  To study this decision problem, we are naturally led to 
the fol lowing QP. 

minimize Q(x)= xr Dx 
(7) 

subject to x t> 0. 

We will show that this QP is an NP-hard  problem. 

We assume that D is not PSD, so Q(x) is nonconvex  and (7) is a nonconvex QP, 
in fact is can be considered the simplest nonconvex NLP. We consider the following 
decision problems. 
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Problem i. Is x = 0  not a local min imum for  (7)? 

Problem 2. Is Q(x)  not bounde d  below on the set o f  feasible solutions of  (7)? 

Clearly, the answer to Problem 2 is in the affirmative iff the answer to Problem 

1 is. We will show that both these problems are NP-complete .  To study Problem 1, 

we can replace (7) by the QP. 

minimize Q( x ) = xV Dx 
(8) 

subject to 0 ~< xi <~ 1, j = 1 to n. 

Lemma 1. The decision problem "is there an x feasible to (8) which satisfies Q( x ) < 0", 

is in the class NP. 

Proof. Given an x feasible to (8), checking whether Q ( x ) < 0  can be done by 
comput ing  Q(x)  which takes O(n 2) time. I f  the answer to the decision problem is 

in the affirmative, an op t imum solution x of  (8) satisfies Q(x)  < 0. There is an LCP 

corresponding to (8), and an opt imum solution for (8) must correspond to a BFS 

for this LCP. There are only a finite number  of  BFSs for this LCP, and they are all 

rational vectors o f  polynomial  length relative to the input size of  (8). So, a nondeter-  

ministic algori thm can find one o f  them satisfying Q ( x ) < 0  (if such a BFS exists), 

in polynomial  time. Hence this problem is in the class NP. []  

Lemma 2. The optimum objective value in (8) is either 0 or ~ - 2  -L where L is the 

size of  D. 

Proof. Since the set of  feasible solutions of  (8) is a compact  set and Q(x)  is 

cont inuous,  (8) has an op t imum solution. 

By well known results, the necessary optimality condit ions for (8) lead to the 
following LCP [7 or 8]. 

�9 . .  />0, � 9  />0, (lO) 

v 

where y is the column vector o f  Lagrange multipliers associated with the constraints 

"-~i ~ 1 for all j " ;  u, v, are the column vectors in R" of  dual and primal slack 



K.G. Murty,  S.N. Kabad i  / N P  complete QPs 123  

variables;  and e is the co lumn vector  of  all l ' s  in W'. For every op t imum solution 

x of  (8), there exist vectors  u, v,y such that  (u, v ,x,y)  solves (9), (10) and (11). 
Also, it can be verified that  whenever  (u, v, x, y)  satisfies (9), (10) and (11), xVDx = 
-eVy. Thus,  there exists an op t imum solution of  (8) which is a BFS of  (9), (10). By 

the results under  the el l ipsoid a lgor i thm [6, 7], in every BFS of  (9), (10), each yj is 
ei ther 0 or >t2 -L. I f  the o p t i m u m  object ive value in (8) is not zero, it must  be <0 ,  

and this together  with the above  facts implies  that  an op t imum solution x of  (8) 
cor responds  to a BFS (u, v,x,y)  of  (9), (10) in which -eVy<O. All these facts 
clearly imply  that  the o p t i m u m  objective value in (8) is either 0 or <~-2 -L. [] 

We now make  a list of  several  decision prob lems ,  some of  which we have already 

seen, and some new ones which we need to establish our  results. Problem 5 is the 
subset  sum prob lem with data do; d r , . . . ,  d,, (all posit ive integers) defined earlier. 

Problem 3. Is there an x/> 0 satisfying Q(x)< O? 

Problem 4. For any posit ive integer ao, is there an x ~ R " satisfying e T x  = ao, x >t 0 
and Q(x) < O? 

Problem 5. Subset sum problem. Is there an integer vector  y = (yi) 6 W' satisfying 

~ djy~=do, 0<~35 <~1, j = l  to n. 
j = l  

Let 6 be a positive integer satisfying 

n 

6 n 3 . 

Let l be the size of  this subset  sum problem,  that  is, the total numbe r  of  digits in 

all the da ta  for  the problem.  Let e be a posit ive rational number  <2  -''t~. 
Now we define several funct ions that  will be needed  in the proofs  to follow. They 

involve nonnegat ive  variables  y = ( y ~ , . . . ,  y,,)v and s = ( s ~ , . . . ,  s,,) T, related to the 

subset  sum problem.  

f l (y , s )= djyj-do +6 ( y j + s ~ - l )  2 + Y. yj,~j 
i =  J . i  J j = 1 

= diyi + Z .vj~)+6 Z (yj+sj)2-2d,, d/y) 
\ j = l  j = l  j=J ,j l 

-26 E O~+sj)+na+d~,, 
j = l  

f2(Y, s) =f,(y, s ) + 2 d o  =~ 4y)(1 - ) ) )  
j i 

= diy~ +6 (vi+sj) 2+ 2 yjsj-2do dy.~ 
\ j  = I j = l j = I j ] 
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4. Can we efficiently check local minimality in unconstrained minimization problems? 

In Section 3 we discussed constrained opt imizat ion problems. In this section, we 

will show that results corresponding to those proved in Section 3, hold even for 

unconstra ined optimization problems. 

Let O(x) be a real valued smooth  funct ion defined on R' .  Let H(O(x)) denote  

the Hessian matrix of  O(x) at x. Consider  the unconstra ined N L P  

minimize O(x). (12) 

A necessary condit ion for a given point g c  ~" to be a local minimum for (12) is 

V 0 ( g ) = 0  and H(O(~))is PSD. (13) 

A sufficient condit ion for ff to be a local min imum for (12) is 

7 0 ( 2 )  = 0  and (H(O(Y)) is positive definite. (14) 

Both condit ions (13) and (14) can be checked very efficiently. If  (13) is satisfied, 

but (14) is violated, there are no known simple conditions to check whether or not 

g is a local minimum for (12). Here, we investigate the complexity of  checking 

whether or not a given point g is a local minimum for (12), and that of  checking 

whether O(x) is bounded  below over N". 

As before, let D = (d(i) be an integer square symmetric  matrix o f  order  n. Consider  

the unconstra ined problem, 

minimize h(u)=(u~, . . . .  uT,)D(u~,...,u,,) . (15) 

Clearly, (15) is an instance o f  the general unconstra ined minimization problem (12). 

Consider  the following decision problems. 

Problem I1. Is tT=O not a local minimum for (15)? 

Problem 12. Is h(u) not bounde d  below on ~"?  

We have, for i,j = 1 to n, 

Oh(u) =4uj((u~ . . . . .  u~)Dj), 
aUi 

a2h(u) 
- 8uiujdij, i # j  

Oui auj 

a2h(u) 
- 4 ( u ~ , . . . ,  u2,,)D.i + 8u)dij, au) 

where Dj  is the j th  column vector of  D. So, a = 0 satisfies the necessary condit ions 
for being a local min imum for (15), but not  the sufficient condit ion given in (14). 
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Using the transformation x~ = u~, j = 1 to n, we see that (15) is equivalent to (7). 

So Problems 1 and 11 are equivalent. Likewise, Problems 2 and 12 are equivalent. 

By Theorem 2, we conclude that both Problems 11 and 12 are NP-hard. Thus, even 

in unconstrained minimization, to check whether the objective function is not 
bounded below, and to check whether a given point is not a local minimum, may 

be hard problems in general. This also shows that checking whether a given smooth 

nonlinear function (even a polynomial) is or is not locally convex at a given point, 
may be a hard problem in general. 

5. What are suitable goals for algorithms in nonconvex NLP? 

Much of the nonlinear programming literature stresses that the goal for algorithms 

for solving nonconvex NLPs should be to obtain a local minimum. Our results here 
show that in general, this may be hard to guarantee. 

Many nonlinear programming algorithms are iterative in nature, that is, beginning 

with an initial point x ~ they obtain a sequence of points {xr: r = 0, 1,...}. For some 

of the algorithms, under certain conditions, it can be shown that the sequence 

converges to a KKT point for the original problem. Unfortunately, there is no 

guarantee that a KKT point will be a local minimum, and our results point out that 
in general, checking whether or not it is a local minimum may be a hard problem. 

There are several algorithms in the nonlinear programming literature which are 

based purely on the first order necessary conditions for a local minimum. These 

algorithms never use the objective value to guide them towards more desirable 

points. Instead, they concentrate purely on finding a solution to the system of first 

order necessary conditions. The class of complementary pivot methods or simplicial 

methods for NLP [1,5,7,  10] are examples of algorithms in this class (these 

algorithms convert the system of first order necessary conditions into a Kakutani 
fixed point problem, which is then solved by complementary pivoting on a triangula- 

tion of the space). These algorithms may at best lead to a KKT point. However, 
since the objective value is never even computed at any point, we do not have any 

circumstantial or neighborhood information that the KKT point obtained may be 

a local minimum. Thus, these algorithms may not be desirable algorithms to use on 
nonconvex NLPs. 

Descent algorithms for NLPs are iterative algorithms with the property that the 

sequence of points generated is a descent sequence: either the objective function, 

or a measure of the infeasibility of the current solution, or some merit function 

which is a combination of both, strictly decreases along the sequence. Given the 
current point x", these algorithms generate y r # O  such that x " + h y  r, h~>O, is a 

descent direction for the functions discussed above. The next point in the sequence, 

x r+l, is usually taken to be the one that approximately minimizes the objective (or 

merit) function on the half-line { x r + h y :  h/>0}, and is obtained by using a line 

minimization algorithm. For general nonconvex problems these methods suffer from 
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the same difficulties: they cannot theoretically guarantee that the point obtained at 

termination is a local minimum. However, it seems reasonable to expect that a 

Solution obtained through a descent process is more likely to be a local minimum, 

than a solution based purely on necessary optimality conditions. Thus, a suitable 

goal for algorithms for solving nonconvex NLPs seems to be a descent sequence 

converging to a KKT point. Several descent algorithms in the nonlinear programming 

literature do reach this goal, which suggests that descent algorithms may be the 
most desirable practical algorithms for tackling nonconvex NLPs. 

One final note. Nowadays the probabilistic analysis of various aspects of optimiz- 

ation algorithms is a popular area of study. Consider the case where D = (d  o) is a 

random square matrix of order n with unit diagonal elements, and with a probability 

distribution for off-diagonal entries which is symmetric around 0, and so the marginal 

expectation of each d~j is zero (i # j ) .  Simple instances of this occur if each off- 

diagonal dii is a random variable independent and identically and uniformly dis- 
tributed on the interval [ -1 ,  +1]; or when the vector of off-diagonal entries in each 

column of D is generated by the uniform distribution on the boundary of the unit 

sphere in R" 1 with its center at the origin. Such probabilistic models have been 

used extensively in the study of the average computational complexity of complemen- 

tary and simplex-type pivot methods for linear programming. Here is a research 

problem. Under this probabilistic model, calculate the probability, q, that 0 is not 

a local minimum for the function h(u) defined in (15). This q is the probability 
that the answer to Problem 11 in Section 4 is "yes". 

The probability q is a measure on the possibility that existing NLP algorithms 

reach a wrong conclusion for problems generated by the above probabilistic mechan- 
ism. Our suspicion is that 1 - q  is small. 
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