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Abstract 

We give some convergence results on the generalized Newton method (referred to by some 
authors as Newton's method) and the chord method when applied to generalized equations. The 
main results of the paper extend the classical Kantorovich results on Newton's method to 
(nonsmooth) generalized equations. Our results also extend earlier results on nonsmooth equations 
due to Eaves, Robinson, Josephy, Pang and Chan. 

We also propose inner-iterative schemes for the computation of the generalized Newton 
iterates. These schemes generalize popular iterative methods (Richardson's method, Jacobi's 
method and the Gauss-Seidel method) for the solution of linear equations and linear complemen- 
tarity problems and are shown to be convergent under natural generalizations of classical 
convergence criteria. 

Our results are applicable to equations involving single-valued functions and also to a class of 
generalized equations which includes variational inequalities, nonlinear complementarity problems 
and some nonsmooth convex minimization problems. 

Keywords: Generalized equations; Generalized Newton method; Variational inequalities; Nonlinear comple- 
mentarity problem; Kantorovich theorem 

1. Introduction 

Let  H be a Hilbert  space equiped  with a scalar product  ( . ,  �9 ), let f :  H ~ H be a 

Fr6chet-different iable  funct ion and let g be a nonempty  subset of  H • H.  In the sequel ,  

we will regard the s tatements  [x ,  y ] ~ g ,  g ( x ) ~ y ,  - y + g ( x ) ~ O  and y E g ( x )  as 

synonymous .  
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We are interested in the (numerical) solution of the problem 

f(,.,) + g(,.,) ~ 0 .  (1.1) 

Such problems have been studied by Robinson [31-33] who coined the term "gener- 

alized equations" for them. If H = ~"  and .~(.v~ . . . . .  x,,) - g~(.v~) .'4 ..  - • g,,(x,,) 
where g, ~ ~ • [~,~ for = 1 . . . . .  n. then (1. I ) will be said to be separable. In this case. 

if we set 

f (  x ,  . . . . .  . ,  ,, ) ~- (.t ' ,  ( .,-, . . . . . .  , , ,  ) . . . . .  .l;,( .,-, . . . . . .  , - . )  ) .  

then we can express (1.1) in the form 

. f , ( , ,  . . . . .  , , . )  + g , ( , , )  ~ 0 .  , =  1 . . . . .  , , .  ( 1 . 2 )  

An important class of problems of this type is obtained by taking 

g , = { 0 }  " , < ( - ~ - , 0 ] U ( 0 , ~ ) > . ~ { 0 }  = { [ s ,  t ] ~ , •  t_<0, s t = 0 }  

(1.3) 

for all ~. In this case (1.2) becomes the nonlinear complementarity problem 

f , (u ,  . . . . .  ,,,,) > 0 ,  u,>_-0. , =  a . . . . .  ,,, ~ u~.:,(u, . . . . .  ,,,,) 0. (1.4) 
k 1 

Such problems have been studied extensively in the literature from the point of view of 

existence of solutions and approximation of  solutions (cf. [8,13.19]). 

On the other hand. if ch : H -~ ( -  ~. 7-] is a proper lower semicontinuous convex 
function and 

g(x) = ~,:,(x) - {. ~ H: 6(.,) - +(>') -< (., -, - y), V>, �9 H} 

(called the subgradient of 4~ at x), then (1.1) becomes the variational inequality 

f ( u )  + 0&(u) 9 0 .  (1.5) 

Such problems were introduced in the early sixties by Stampacchia [34] and have found 

important applications in the physical and engineering sciences and in many other fields 
[1-3,6,1 1]. 

If we take f as the gradient V~'~ of a differentiable convex function ~//: H ,---, R, then 

(1.5) reduces (cf. [I, Theorem 3.3]) to the search for the minimum of the nonsmooth 

convex function ~/~ + ~b. 
A basic class of variational inequalities is obtained by letting ,./~ be the indicator 

function of a nonempty closed convex subset C of H. defined as 

= { 0, if x ~ C, , / , (  
zc, otherwise. (1.6) 

In this case problem (1.5) reduces to the search for u E C satisfying 

( f ( u ) ,  u - v )  <-<0, V v E C .  (1.7) 

This problem will be designated in the sequel as VI(f .  C, H). 

It is well known that every variational inequality of the foma (1.5) can be associated 

with a v~iational inequality of the form VI(F.  C. V). This is done by setting C = 
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{[x, A ] ~ H •  (called the epigraph of q)), F[x, A]=[f(x). 1] for all 
[x,  A ] e H X  I~. and V =  H •  07{, equiped with the scalar product ( [x ,  A], [y, r]> = 

(x,  y) + At. Then it is not difficult to see that if u solves (1.5) then [u, 40(u)] solves 
VI (F ,  C, V), and that if [u, a] solves VI(F,  C, V) then u solves (1.5). 

The generalized Newton method for the iterative solution of problem (1.7) is given 
by the scheme 

( . f ' ( . . , , ) . . , + ,  ,,, .... , -  ( . r ' ( u , , , ) . , , , - . f ( . , , , ) .  ,,,,,+ , -  v) .  

Vv~C,  m = 0 ,  1 . . . . .  (1.8)  

Early studies on the convergence of the scheme were can'ied out by Eaves [12], 

Robinson [32], Josephy [15,16], and by Pang and Chan [28]. These works were reviewed 
recently by Harker and Pang [13]. 

A version of this method that is directly applicable to tile variational inequality (1.5) 
is the scheme 

f ' (  u,,,)u,,, +, + ild)( u,,, +, ) ~ f ' (  u,,~ )u,,, - f (  um). m = 0, 1 . . . . .  (1.9)  

which was studied in [37,39] without being aware of the previous work done on (1.8). 
When 4-> is of the form (1.6) this scheme reduces to (1.8). 

If we use (1.8) to solve the epigraph fommlation VI(F ,  C, V) of (1.5), what we 
obtain is precisely the epigraph formulation of the numerical scheme (1.9). However,  a 
drawback of this approach to the numerical solution of (1.5) is the increase in the 
number of variables which could have an adverse effect on the numerical scheme. 
Another drawback arises from the fact that the derivative of the function F occurring in 

the epigraph formulation of (1.5) is given by F ' [x ,  AllY, r ] = [ f ' ( x ) y ,  0] for all 
[x, A], [y, r ]  E V, and fails to satisfy the coercivity (positive definiteness) condition 
frequently required (cf. [28,37]) for the convergence of the scheme (1.8). However,  
some results on the convergence of (1.9) can be obtained - via its epigraph fommlation 

- from known results on (1.8). The results of Josephy [15,16] and Robinson [31,33] are 
based on Robinson's notion of regular solution [32] instead of coercivity and can be 
applied to (1.9) in this manner. Eaves [12] follows a different approach and proves a 
local convergence result for (1.8) which when applied to VI(F,  C. V), imposes a 
coercivity condition on f ' ( x )  instead of F ' [ x .  A]. This result could be used to obtain 
Theorem 1 of Uko [39]. 

The numerical scheme (1.9) is a special case of the generalized Newton scheme 

.f"(u,,)u,,,+ l + g ( u , , , + , )  ~ f ' ( u , , , ) u , , , - f ( u , , , ) ,  m - 0 ,  I . . . . .  (1.10) 

which can be used for the iterative solution of the generalized equation (1.1). A related 
scheme is the generalized chord method which is given by 

.# (<>) . , , ,+ ,  ,) > f ' ( , , o ) . . , ,  m = o .  1 . . . . .  ( 1 . 1 1 )  

Unlike (I.10), the generalized chord scheme uses only one derivative evaluation for all 
iterations and is usually employed in situations in which the computation of derivatives 
is costly. 
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The scheme (1,8) is usually referred to (cf. [12,13.15,28]) as "Newton 's  method". In 
fact, if C = H, it reduces to Newton's method for the equation f(u)= 0. However, 
when g is single-valued, then (1.10) differs from Newton's method and could be used to 
solve tile equation 

f(  u) + g( u) = 0  (1.12) 

in situations in which Newton's method cannot be used. due to the lack of differentiabil- 

ity of g. For this reason, we refer to (1.10) - and, by implication, to (1.8) - as the 
generalized Newton method. 

The main advantage of the generalized Newton scheme is the fact that it is applicable 
to problems involving nondifferentiable and possibly mullivalued functions, while 

retaining the quadratic termination property which is usually associated with Newton's 
method. In fact, when both methods are applicable, the generalized method may require 

less outer iterations than Newton's method to achieve a specified accuracy. To illustrate 
this, let H = ~, let f be a twice continuously differentiable function, and let g be 
single-valued and differentiable at the solution u of (1.12). Then the asymptotic error 
constant for the generalized Newton method for problem (1.1) is given [39] by 

I ,,., + t - " I I f " (  u ) I 
e * -  lira 

,,,-* = lu, ,  - ul 2 I f ' ( u )  + g ' ( u )  I" 

The asymptotic error constant for the classical Newton method is 

I f " ( , 6  + g ' ( , )  I 

l . K ( u )  + g ' ( , , ) l  " 

Therefore, i f  g (u)J ( u ) >  0, then e ~ < e, which means that the generalized method 

wi]] converge in fewer iteration steps than Newton's method. 

The major drawback of the generalized Newton method is the fact that its' iterates - 

which are defined by ( I . I 0 )  - actually need to be computed by means of some further 

inner-iterative method. 

Another approach to the solution of generalized (nonsmooth) equations - especially 

those of the form (1.4) - uses generalized derivatives that are applicable to functions 

that are not differentiable in the traditional sense of Fr~ehet and G~iteaux. This idea 

(which is not pursued in the present paper) has lead to the development of Newton-like 
methods that are applicable to nonsmooth equations. Such methods include the B-deriva- 
tive-based Newton method proposed by Pang [27], the generalized Jacobian-based 
Newton method proposed by Qi [30], the Gauss-Newton method proposed by Dennis 
and Schnabel [10], and the nonsmooth quasi-Newton methods studied by Ip and 
Kyparisis [14] and Kojima and Shindo [19]. The survey paper [29] by Pang and Qi 
introduces and motivates these schemes and also contains proofs of the superlinear 
convergence of each of them. 

Many results on the convergence of the generalized Newton method and the 
generalized method of chords can be found in [15.16,31,33,12,13,28,37,39]. In the 

present paper we obtain further results not contained in the previous papers. We are 
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particularly interested in results which extend to generalized equations the Kantorovich 

technique [17,25,35] for the solution - via Newton's  method and the method of chords - 

of equations involving differentiable functions. 

The main results of the present paper are contained in Section 2. The first results in 

this section extend previous results on the generalized Newton method obtained by 

Eaves [12], Pang and Chan [28], and Uko [37,39]. The last two theorems of  the section 

are of the Kantorovich type and extend the Kantorovich technique to problem (1.1) 

approximated with the generalized Newton method and the generalized method of 

chords. Similar results have been obtained by Robinson [33, Theorem 5.1]. However, his 

hypotheses differ from ours, and his results are not applicable to the general problem 
(1.1). 

In Section 3 we study methods for the numerical computation of the generalized 

Newton iterates. The methods studied in this section are generalizations of classical 

methods (Richardson's method, Jacobi 's  method, and the Gauss-Seidel method - cf. 

[9,21,24]) for solving linear equations and linear complementarity problems. 

2. The nmin results 

Let H be a Hilbert space with scalar product ( . ,  �9 ) and norm I1" 1]. Let D O be the 
interior of  a closed convex subset D of  H, and for any u 0 e D O and r >  0, let B[u o, r] 

designate the set { x e  H :  [I x - u  0 II ~< r} while B(u 0, r)  designates the interior of 

B[u o. r]. 
All through this section we will assume that f :  D ~ H is a continuous function that 

is Fr&het differentiable at each point of D o and satisfies the condition 

I l f ' ( x ) - f ' ( y ) l ]  ~ M l l x - y r r  Vx, y ~ O  o. (2.1) 

It is well known (cf. [25, p. 70]) that (2.1) implies that for all z E D and y ~ D o, we 
have 

II f ( x )  - f ( y )  - f ' (  y ) (  x - y )  I[ ~ 4M II x - y II 2 (2.2) 

II f ( x )  - f ( z )  - f ' (  y ) (  x - Z II ~< M max{ II x - y II, II z - x II} II x - z I[. 

(2.3) 

We will make repeated use of  these inequalities in the sequel. 

We will also assume that g is a (multivalued) maximal monotone function from H 

to H. ll~is means that g is nonempty subset of H • H which is monotone in the sense 
that there exists c~ ~> 0 (its monotonicity modulus) such that 

[ ,r , ,  3'1 ] e g and [ x2, Y2 ] ~ g =~ ( 2'2 - Yl, 3:2 - xl ) >~ ~ ]] xl - x2 ]]2. (2.4) 

and which is not contained in any larger monotone subset of H X H. It is well known 
(cf. [5,23]) that g is closed in the sense that 

[x,,,, y , , , l e g ,  lira y , , ,=y  and lim x , , ,=x  ~ [x ,  y l E g ,  (2.5) 
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and that, given any fixed positive real number /x. the resolvent operator (1 + p.g)-~ 

exists as a single-valued function and satisfies 

li x - y/L 
I I ( l + / ~ g ) - ~ ( . v ) - ( l + # g ) - ' ( y ) l l ~ <  - Vx, v e i l .  (2.6) 

I +/xcr 

If a, > O, g will be said to be strongly maximal monotone. A well "known example 

[4,23] of a maximal monotone operator is the subgradient 04, of a proper lower 

semicontinuous convex function d) mapping H into ( - z .  z]. 

One of the most important results in the theory of equations is the Kantorovich 

theorem [17, Ch. XVII, Theorem 6] which we state as follows. 

Theorem 2.1. Suppose that (2.1) holds. / f f ' ( u . ) - i  exists and is such that II f ' ( uo ) - t  II 
b, ] ] f ' (u  o)-l .f(uo)ll~<a, h=-Mab<~ ~, and B[u o. r _ ] c D  O where r •  

+_ {1 - 2h ), then 

(a) The equation f ( u )  = 0 possesses a unique solution u in B(u o, r+ ) ('1D. 

(b) The sequence defined inductively by Newton's method 

. , , ,  + ,  = ,.,.,, - f ' ( . , , , )  ~ f ( . , , , ) .  m = o .  l . . . . .  

converges to u a t  the rate [I u - u,,, II ~< (a/h)(2h) ' -"2 ". 

(e) l f  h < 4, then the sequem:e defined inductively by the chord method 

u,,,+, = u , , , - f ' ( , , 0 )  'J'(u,,~), r e = O ,  1 . . . . .  

converges to u at the rate II u - u,, il ~ ( a / h )[1 - {1 - 2 h ]'" + i 

Our main aim in this section is to extend this result to the generalized equation (I. 1). 

approximated with the iterative schemes (1.10) and (1.11). However, before giving this 
extension we first give some general convergence results for these approximating 

iterative schemes. The first result gives sufficient conditions for each of  these approxi- 
matim,~..~~ equations to have a unique solution. 

L e m m a  2.2. Let g be a marimal monotone operator satis~'ing (2.4) and let A be a 

bounded linear operator mapping H into H. I f  there exists c ~ ~ such that c > - oe and 

( Ax, x)  > e II .. II 2, V x  e H. (2.7) 
Then, ./or any b E H, there exists a unique z ~ H satisfying the generalized equation 

Az + g ( z )  ~ b. (2.8) 

Proof.  It is easy to see that problem (2.8) is equivalent to the sem-ch for the fixed points 

of the operator T~x = (1 + # g ) - ~ ( x  + txb - # A x )  for any fixed positive parameter/*. 

Using (2.6) and (2.7), we see that 

IIT.x-T. y l I = I I ( I + . X )  ~(.v+~,b #A.v) 

- ( 1  + p . g ) - r (  y + # b -  tzAy)[I 

1 

1 + p.c~ 

{ 1  - 2u, c+ u5 II A l l  ~ 
II x - y l l ,  Vx, y ~ D .  

1 + txa' 



L.U. Llko / Mathematical l'rogre i~ n i&g 73 f1996) 251 -268  2 5 7  

If [L AII > ~ ,  we choose  0 < / z  < 2(c  + o~) / (  II AII  2 _ ~ a ) ;  otherwise ,  we let /x be any 

arbi trary posi t ive real number .  'lq~en we have ~/I - 2 / , c  + / z  2 II AII 2 < 1 + ,,c~, which 

shows that T** is a strict contract ion mapping  f rom the convex set D to itself. The 

exis tence  of  a unique f ixed point for T, therefore  fo l lows f rom Banach ' s  contract ion 

mapp ing  principle .  [] 

R e m a r k  2.3. If  g is the subgradient  of  a convex function,  and if (2.4) holds with o~ = 0, 

then L e m m a  2.2 becomes  the classical  L i o n s - S t a m p a c c h i a  theorem [20, Theorem 2.1] 

on the soNabi l i ty  of  var iat ional  inequali t ies.  

R e m a r k  2.4. If  (2.7) holds ,  we will  say' that A is weakly  coercive.  This  concept  of  

coerc iv i ty  is w e b e r  than the usual one (cf. [20]) since we do not require that c be 

posi t ive.  

L e m m a  2.2 assures us that if 

3 c >  - c ,  such that ( f ' ( z ) x ,  x ) > c l l x [ [  2 V x e H .  V z E D  0. (2 .9 )  

then all the genera l ized  Newton iterates u,,,+ ~ in (1.10) exist.  The next theorem contains  

a convergence  result  that uses this hypothes is .  

T h e o r e m  2.5. Let g be a maximal monotone operator satisJS:ing (2.4). Suppose that 

(2.1) and (2.9) hold and that the generalized equatiopz (1.1) has a unique solution u in 

D o. I f  the initial vector in (1.10) satisfies the condition d -  ( M / 2 ( c  + c~ ))II u - u~l II < 

1, then the generali~.ed Newton iterates u,, dc{f~ned inductively by (1.10) converge to u 

at the rate 

2 ( c + ~ )  
II z, - ,,,, II ~< d 2''', 

M 

Proo f .  Tile exis tence  of  the solut ions to (1.10) fo l lows f rom (2.9) and L e m m a  2.2. 

For  m = 0. 1 . . . . .  if we use (2.4), (1 . I )  and ( I .10) ,  we obtain 

II ~,., + ,  - u I I 2 ~ ( f ( u )  - f (  ,,,,, ) - f ' (  . , , ,  ) ( .  . . . .  , , , , , , ) ,  u,,, +,  - ,,,). 

Rewri t ing  this in the form 

cl[ u,,,+, - u Ij 2 + ( f ' ( u , , , ) ( u  ..... , - u ) ,  u,~+, - u) 

~< ( f (  u ) - . f (  u,,, ) - f ' (  u,, ) ( u - u,,, ) ,  u .... , - u ) 

and making  use of  (2.9) and (2.2), we obtain II u,,,+ i - u [{ -%< ( M / 2 ( c  + oe)) ]1 u,, - u II ~ 

An induct ion a rgument  now shows that I[ u,, - u II ~< (2(c  + o ~ ) / M ) ( M / 2 ( c  + oe)]l u - 

u011 )2"' = (2 (c  + o ~ ) / M ) d  2'', which comple tes  the p roof  of  the theorem. [] 

R e m a r k  2.6. The conclus ions  of  the theorem hold true - -  with the same proof  - -  if 

instead of  (2.1) we emp loy  tile weaker  condi t ion  11 f ' ( u )  - f ' ( x ) ] l  ~< M ]l u - x ]1, V x  

D 0 - 
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R e m a r k  2.7. In the special case in which g is the subgradient  of a proper lower-senti-  

cont inuous  convex funct ion and (2.4) hokls with ez = 0, then Theorem 2.5 reduces to 

Corollary 26 of Ptmg and Chan [28]. A similar results was obtained by Josephy [15] 

using Rob inson ' s  not ion [32] of regular solution instead of the coercivity condi t ion  (2.9). 

Theorem 2.5 is of  l imited practical utility because its hypothesis and convergence rate 

are expressed in temls of  the exact solution of ( 1.1 ) which is not  usually known  apriori. 

The next result is more useful  in this regard since it provides a convergence  rate which 

we could compute apriori if we Mlew the value of the constants  M, c~ and c in (2.1), 

(2.4) and (2.9). 

T h e o r e m  2.8. Let  g be a max imal  monotone  operator  satislG.'ing (2.4), and suppose  that 

(2.1) and (2.9) hold. Let  {u,,, : m = O, 1 . . . .  } be the general ized  Newton  i terates f r o m  

(1.10), and suppose that  d = ( M / 2 ( c + c r ) ) l [ u l - u o [ I  < 1 and that B[u  o, r ] C D  o . 

where r =  (2(c  + a ) / M ) ~ = o  d~'~. Then all the u,,~ lie in B[u o, r ]  and converge  to a 

solution u o f  (1.1) at the rate 

2 ( c +  ~)  :~ 
II u -  z,,,, II < ~ d 2:. 

M k- . ,  

Proof l  The existence of the solutions u,,,+ i to (1.10) fol lows from (2.9) and L e m m a  2.2. 

For m = 0, 1 . . . .  , if we use ( l .10) .  the corresponding general ized equat ion for 

m - -  1, and (2.4), we obtain 

a [I u , , + , -  u,,, [[ 2 + ( f  ' 

( f ( u , . )  - f ( u , , , _ ,  

If we now make use of (2.9) 

- u,, ill 2. An induct ion 

( , , , , , ) ( , , ~  - . , , , ) ,  . . . .  , - u , , , )  

) --  f ' (  /'/m l ) ( / d m -  U r n - l )  ' Um --  h im+l ) "  

and (2.2), we obtain II u,,+ i - u,, [I ~ ( M / 2 ( c  + or))II u,,, 

argument  now shows that II Urn4-1 -- U,, II ~ (2(C + 
a ) / M ) ( ( M / 2 ( c  + o~))II u~ - u 0 ]l) 2'' = (2(c  + a ) / M ) d  2". Using this fact we see that 

[[ u,,,+ , - u 0 [[ ~< g~.'= 0 l[ u ,+  i - u ,  I[ ~< r.  which implies  that u,,,+ 1 ~ B[u 0, r] ,  Vm. 
m + I t  - I t n  4-  I" Finally,  since l[ u , , + ,  - u,, II ~ E~ .... II uk+ 1 - ua II < (2(c  + a ) / M ) s  ld2", it 

follows that u,,, is a Cauchy sequence,  converging to some u E D. The fact that u solves 

(1.1) follows from (1.10) and (2.4), and the convergence  rate is obtained by letting p 

tend to infinity. [] 

R e m a r k  2.9. Let g = 8+, where d) is a proper lower-semicont inuous  convex function 

q~, and suppose that (2.4) holds with cr = 0. If we take f as the gradient  V0 of a 

real-valued function 4' defined on D, and replace the condi t ion d < 1 in Theorem 2.8 

with the more restrictive condi t ion d < 4, we recover Theorem 2 of [39]. 

The coercivity condi t ion  (2.9) employed in tile last two theorems implies that 

f ' ( z . ) - l  exists for all z E D o and is rather strong. Since this condi t ion  will not be 
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satisfied in most problems occurring in applications we are led to consider the less 

restrictive hypothesis: 

BCo> -o r  such that ( f ' ( u o ) x ,  x)>CollXll  2 V x ~ H .  (2.10) 

This turns out to be the natural hypothesis for the extension of the Kantorovich 
technique to the solution of (1.1). For simplicity we first give the relevant Kantorovich- 

type result for the generalized chord method before giving the analogous result for the 

generalized Newton method. 

Theorem 2.10. Let g be a maximal monotone operator satisfying (2.4), and suppose 

that (2.1) and (2.10) hold, Let u o E D O and suppose that there exists u o E H such that 

g( u o) ~ v o and I] f(Uo) + uo ]] <~ bo fo r  some b o > O. Let a o = bo / (  C o + c~ ) and h o = 

Mao/(Cc~ + ce) and suppose that 

' ( 2 . 1 1 )  ho < 2. 

/.fr o = 2 a o / ( l  + ~/1 - 2ho ), R~, = 2 a o / ( l  - (1 - 2h o ), andB[u o, %] c D 0, then there 

evists a unique solution u o f  (1.1) in B(u  o, R o) A D. Moreouer, the generalized chord 

iterates u,,, (with initial vector u o) converge to u at the rate 

. . . .  ' 

II u - u,,, II ~ ho ( 2 . 1 2 )  

Proof, For any x E B[uo, %], Lemma 2.2 ensures that we can define w(x)  uniquely by 
means of the generalized equation 

f ' ( U o ) W ( X )  + g ( ( w ( x ) )  ~ f ' ( u o )  x - f ( x ) .  

Using (2.4) and the definitions of w(x)  and u o, we obtain 

o e l l w ( x ) - u  oil 2~< u o + f ( x ) - f ' ( u o )  ( x - w ( x ) ) ,  u o - u ' ( x ) ) .  

Rewriting this in the form 

II w ( x )  - u o  I1: + ( f ' ( u o ) ( . ( . , - )  - . o ) .  w ( x )  - u o )  

<~ ( f ' ( u o )  ( x -  Uo) - f (  x )  - u o, w ( x )  - uo) 

and making use of (2.2), (2.11) and the hypothesis on u o, we obtain 

( co + ,~ ) II w ( x )  - u o II ~< II vo + . f ( x )  - f ' (  , 'o) (  x - ~,o) It 

= [] v o + f ( u o )  + f ( x )  - f ( u o )  - f ' ( u o ) ( X - U o ) ] ]  

II f ( u o )  + Uo ]l + ]] . f(x)  - f ( u o )  + . f ' ( u o )  ( x -  Uo)II 

1 2 
~< b o + -~M ]l x -  u o l] 

We conclude that 

2 
(Co + c~)II w ( x )  - u o II ~< bo + ~-m II x - u o II 

which implies that I ] w ( x ) - u  oIl ~ a  o + M r o / 2 ( c  o + a ) = r  o 

Therefore w maps the set B[u o, %] into itself. 

(2.13) 

for all x E B [ u o ,  ro]. 
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Also, for any x, y ~ B[u o, r], it follows from (2.4) and the definition of w that 

II w ( x )  - w ( y ) I I  2 < ( f ' ( , < , , ) ( w ( x )  - , , ' ( y ) )  + f ( x )  - f ( 3 , )  

- f , ( < ) (  .,- _ y ) ,  , , , ( y )  - ,.,,(.~-)). 

We now rewrite this m the form 

II , , ( x )  - , , ( y )  II ~ + ( .r ' (  , , , , )(  , , . ( . , )  - , , ( y ) ) , - . ( . , )  - , , . ( y ) )  

.< ( f , ( , , , : , )  ( . , - -  y )  - . / ( . , . )  + f ( > . ) .  , . ( . , )  _ , . ( y ) )  

and make use of (2.3) and (2.11). We obtain 

1 
11 .'(-x) - . (> ' )  II -<< - - I I  f ( . x )  - f ( > ' )  - f ' (  ,,<))( .v - y ) I I  

C 0 + 

M 
-< II x - :,, II max{ II .v - % II. )' - % 11} 

C o + c~ 

Mro 
- - I l x - v H  = ( I - ( 1 - 2 h  0 J l x - v l [ .  
C 0 + (/ " 

t 
Letting q = 1 - V'I - 2h o , we have Ii , ' ( v )  - w ( y )  11 ~< q x - y II. It therefore fol- 

lows that w is a strict contraction mapping flom the set B[u o, r 0] to itself. Since (1.I I) 

is the successive approximation scheme u .... t =  w(u,,,), it follows from Banach 's  

contraction-mapping theorem that there exists a unique u ~ B[u 0, %] satisfying w ( u ) =  

u, which is equivalent to (1.1). The error estimate (2.12) is obtained by observing that 

for m = 0, 1 . . . . .  we have 

ll,~..,-ull = II w( , , , ,  ,) - w ( u ) l i  < q ' l l u 0  .In-v<q",0 = ~ q ' " + '  

If u is another solution to (1.1), then u is another fixed point for w. On using (2.13), 

we obtain the inequality 

I 
(Co + o~)II v - % II ~ G + s M  II L , -  ,,~, I[ 2. 

By solving this inequality, we see that either II u - u o l[ > Ro or II u - u 0 II ~< %. Thus, if 

u E B ( u  o, Ro) ,  then we must have u e B[ur,,  r,~] which implies that u = u by the 

uniqueness assertion of the previous paragraph. The proof of  the theorem is complete. 
[] 

The next result proves the second part of our Kantorovich-type result for the 

generalized equation (1.1), approximated with the generalized Newton scheme (1.10). 

Robinson [33, Theorem 5.1] has proved a similar result for problem (1.7), approximated 

with the generalized Newton scheme (1.8). He used a concept of regularity developed in 

his earlier work [32] in place of a coercivity hypothesis. However,  his result is not 

applicable to the general generalized equation (1.1), and our proof is much simpler than 

his. 
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T h e o r e m  2.11. L e t  all  the hypo thes i s  of T h e o r e m  2.10 hold,  wi th  the sole  except ion  that  

(2.1 I) is r ep laced  wi th  the w e a k e r  a s s u m p t i o n  

I 
h o ~< 2. (2 .14)  

Then  there  exists  a so lu t ion  u o f ( l . 1 )  in B [ u  o, to] to w h i c h  the generali~.ed N e w t o n  

i terates  u,,, c o n v e r g e  at  the rate  

a~ (2  ho)2"2  - ' '  (2 .15)  II ,,,,, - u II -<< he-7 

F u r t h e r m o r e .  u is the on ly  solut ion o f  (1.1) in B(u  o, R o) 7~ D. 

P roof .  W e  prove by induct ion that for m = 0, I . . . . .  we have 

,,,,, E B[ ~'o, r0 ] .  (2 .16)  

3 v , , ~ H  such that v , , , ~ g ( u , ~ ) ,  2.17)  

::lb,, > 0 such that II f (u , , , )  + u,,, l[ ~< b,, .  2 .18)  

Elc,,, > -o~  such that ( . f ' ( u , , , ) x ,  .v) > c',,, 11 .vii 2, V x ~ H ,  2 .19)  

M b  ,, 
17,,.- ~ ~< , .  2 .20)  

The hypothes is  of  the theorem ensure that the induction hypo thes i s  is true if m = 0. W e  

assume that m >/- 0 and that the induction hypothes is  holds  for m. Then it fo l lows from 

(2.19) and L e m m a  2.2 that there exists  a unique u .... i ~ H sat isfying (1.10). 

Using (2.17), (1.10) and (2.4), we obtain 

o~ II u,,,§ - , , , , ,  II 2 + (v,,, + . f ( , , , , )  - f ' (  , , , , ,)( ~,,,, - u,,,+ , ) ,  u,,,+ , - ,.,,,,) <.< O. 

Rewri t ing this in the form 

oe II u,,,, , - u,,, II e + ( f ' ( , , , , , ) ( u , , , + ,  - u,,,), u,,, :_ - u,,,) 

-<< ( - f (  , , , , ,  ) - ~, . . . .  , , , , ,  + ,  - , , , , ,  ) 

and making  use of  (2.18) and (2.19). we see that 

3 m 
li . , , , +  ~ -  <,,11 ~< - -  - a , , , .  (2.21) 

/ 
If we set r~ = 2 a k / ( l  + 71 - 2h k ). for k =  0. 1 . . . .  m + 1 then it is easy  to check 

that r k - r k + l = a k  for k = 0  . . . . .  re. Therefore .  Hu,,,+ - u o H  ~ E ~ = o H u k + l - - u k l ]  ~< 

Y~'=oak ~< Y~=o(r~ -- r~+ , )  = r o -  r,,,+ i < ro which implies  that u,,+ i ~ B[uo,  ro] c 
D o . and hence that (2.16) holds  when m is rep laced  by m + 1. 

Next,  using (2.1) and (2.21), we obtain ]1 f ' ( u  .... I ) - f ' ( U m )  n ~ M ]] u,,,+ j - u,,, n ~< 
Ma ,,,. Therefore ,  

(f'(u,,,)x-f'(,,,,,+,)x, x)  ~< II f ' ( , , , , , )  - . f ' ( , , , , , ,+ , ) I I  I1 xll ~-<< Mare II xll ~' 

for all .~~ H,  which implies,  because  of  (2.19). that ( f ' (Um+ I).V, X) >~ C,,+ ~ n X H e for 
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all x ~ H ,  w h e r e  c,,,+ t = c,, - Ma,,,. The  i nequa l i ty  Cm+ I > - - ~  f o l l o w s  f r o m  (2 .20)  

and s h o w s  that  (2 .19)  ho ld s  w h e n  m is r ep l aced  by m + 1. 

Le t  Vm+ I = - - f ( um )  -- f ' (u , , , ) (U, ,+ ~ -- U,,,). T h e n  (2.8)  s h o w s  that  (2 .17)  ho ld s  w h e n  

m is r e p l a c e d  with  m is r e p l a c e d  wi th  m + 1, ,and we  h a v e  

II f (  U,, + ,  ) + v,, +1 II = II .f(  u. ,  + 1  ) f (  U,~ ) -- . f ' (  l,.,, ) ( U,~ + ,  -- U., ) II 

[ I "} 
5 M  I[ . , , ,+ ~ - . , .  [12 .< TMa;,, = b,,,+l" 

1 
Fina l ly ,  (2 .20)  s h o w s  that  h,,,+ r = h 7 , , / 2 ( 1 -  h,,,): ~< 5, w h i c h  p roves  that  (2 .20)  

ho lds  w h e n  m is r e p l a c e d  with  m + 1. Tha t  c o m p l e t e s  the p r o o f  o f  the fact  that 

( 2 . 1 6 ) - ( 2 . 2 0 )  ho ld  fo r  all pos i t i ve  in tegers  m. 

B e c a u s e  o f  (2 .20) ,  we  h a v e  h,,, ~< 5-h;-,,_ i / ( l  - h,,, ,)2 -K< 2 h ; , _  ~ ~< . . .  ~< �89 . 

Th is  i m p l i e s  that  

am- ibm-  I 
~a, , ,  ~h,,, ~<~h,,,_,h,,  2 . . . h o a o  

a,,, 2 ( 1 -  h,,, i )  

- -  m - )  ? m I ~ . ,  2 

<~ 2 [ - G  ]- +~ + . . . .  'a~ 

C o n s e q u e n t l y  we  h a v e  

r e + p -  I 

I1,, .... , - < , , I t <  )2  I1.~+, 
k = Ill 

= 2  .... [2h0]'- .... ' a  0. 

m .~- p - I 

p ] 

9_.,[.~h ]2 .... ~a ] 2~- 
- L -  oJ o ~ ,  2 - ~ [ 2 h o  i 

/ , =  0 

It f o l l o w s  that  u,,  is a C a u c h y  s e q u e n c e  and so c o n v e r g e s  to s o m e  u ~ D sa t i s fy ing  

II u . . ,  ]] ~< 2 - ' " [ 2 h o ] "  -'ao E k 2 t -  .~% - - .  -- "'" 2 [ 2 h o ]  ' 2 - " [ 2 h o ]  2" a~  
k=o ho 

A l so .  s ince  u .... , ~ u. f ' ( u . , ) ( u , , ,  - u,,,+ i) - f ( u , , , )  ~ - f ( u ) .  and g ( u . , +  i) 

f ' ( u . , ) ( u . , -  u.,+ i ) - f ( u , , , ) ,  it f o l l ows  f r o m  (2.5)  that  g ( u ) ~  - f ( u ) ,  so that  u so lves  

(1.1).  
I I 

I f  h o < ~ u n i q u e n e s s  in B(u~ .  Re,) f o l l ows  f r o m  T h e o r e m  2.10.  L e t  h 0 = T and let v 

be ano the r  so lu t ion  o f  (1 .1)  b e l o n g i n g  to B(u~,. R o) A D.  T h e n  there  ex i s t s  0 ~< 0 < 1 

such that  II v - u~, 11 = ORo = 2 a 0 0 .  For  m = 0. 1 . . . . .  it f o l l o w s  f r o m  (1.1),  (1 .10)  and 

(2.4)  that 

c~l lu  .... , - v l i ' + ( f ' ( u . , ) ( u . , ~ , - v ) . z ,  ..... , - v )  

~< ( f ( t , )  - f ( u , , )  - f ' (  u, , ,)(  v - u, , ,) ,  u .... , - u ) .  

T h e r e f o r e ,  us ing  (2 .19)  mid (2.2) .  we  ob ta in  II u .... , - c, II ~< ( M / 2 ( C m  + c~))II u,,, - v II 2. 

S ince  7 ~< 1 - h,,  and c,,,+ I + c~ = (1 - h,,,)(c,,, 4- c~). an i nduc t ion  a r g u m e n t  s h o w s  that 

II u,, - v II ~< ((c,,, + c ~ ) / M ) O  2'' <~ ( (% + c z ) / M ) O  2" and  imp l i e s  that  u = lim,,_> :. u,,, 

= v. T h a t  c o m p l e t e s  the p r o o f  o f  the t heo rem.  [] 
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3. Inner iteration methods 

In some (rare, one-dimensional) situations (cf. [37]) it is possible to solve the 

generalized equations (1.10) and (1.1 1) in closed form. For instance, let H = [R and let 

g~, g2, hi, h 2 be real constants satisfying the inequalities gj < 0 < g2 and h I < h 2. Let 

g be the subgradient of the convex ftmction 

(gj(t-h~), t<h~, 
05(t) = / 0 .  h l ~ t < ~ h 2 ,  (3.1) 

g i (  t -  h~ ) ,  t > h 2. k 
Then it is easy to verify that the generalized Newton iterates (1.10) are given by 

Hm+ l / ~ . , -  g , / f ' ( , , , , , ) .  

= ~,,, + ( h ,  - ~ , , )  + - (~' , , ,  - t ' : )  + 

~v.,,-g2/f'(u,.), 

if v,, < h I + g , / f ' ( u , , ) ,  

if h I + g l / f ' (  u,,~) <<. v., 

h2 + g_~Zf'(",,,). 

if v,,, > h 2 + g 2 / f ' ( u , , , ) ,  

where v,, = u , , - f ( u , , ) / ( f ' ( u , , , )  and t +=  max{t, 0) for all t ~  JR. An analogous expres- 

sion can be easily be obtained for the generalized chord scheme. 

In general, the generalized Newton iterates and generalized chord iterates satisfy a 

generalized equation of the form (2.8). This generalized equation would not usually have 

a closed-form solution and would have to be solved using some inner iterative numerical 
method. 

One possible numerical scheme for the solution of problem (2.8) is the generalized 
Richardson scheme 

z ( k ~ ' ) = ( l  + / x g )  ' ( z c a ) + t x b - l x a z j k )  ).  k = 0 ,  1 . . . . .  (3.2) 

When g = 0 the scheme becomes the well known method of Richardson [24] for the 
solution of  linear equations, and when g is the subgradient of the proper convex 

function qS, it reduces to the numerical scheme referred to by Cohen [7] as the 

"auxiliary problem principle" for the solution of (2.7). 
The scheme (3.2) is the successive approximation scheme z Ck+~)= Tuz ~) corre- 

sponding to the operator T, employed in the proof of  Lemma 2.2. It follows that if the 

conditions of Lemma 2.2 hold, and if /x is small enough to ensure that T u is a 
contraction mapping, then the generalized Richardson scheme converges globally - -  

that is, for every choice of the initial vector z ~~ - -  to the unique solution of  (2.8). 
For separable problems, the generalized Newton iterates are obtained by solving 

generalized equations of  the form 
it 

~ a u z j + g , ( z . , )  ~ b , .  , =  1 . . . . .  n, (3.3) 
j I 

where A = ( a  u) is an n •  matrix and (b~ . . . . .  b , , )~[~" .  On setting P , = ( 1  + 

( 1 / a u ) g , ) - J ,  we can write each of these problems in the form 

- = P ,  - -  b , -  z.j l =  l n .  
4t a ~  . t a t )  ' ' . . . .  
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This formulation suggests the following iterative method 

-{'~+ '~ P, b , -  s a,,z~ *' (3.4) % = , I = 1 . . . .  , n ,  

j = e t  

which we will refer to as the generalized Jacobi scheme. Another iterative approach is to 

update one component at a time, in which case we are led to the numerical scheme 

['( )] - t ~  ( 3 . 5 )  _ t k + "  1) _ ( / ~ *  I I s  , l :  I . . . . .  t l .  = P~ - -  b t -  Z a u , 7  
~t (,l J < t  J~- t 

which we will refer to as the generalized Gauss -Se ide l  scheme. 

If we choose g~ . . . . .  g,~ = 0 in these schemes, we recover the Jacobi and the 

Gauss -Se ide l  methods for the solution of linear equations, and if the g, are given by 

( l .3)  we recover the projected Jacobi and Gaus,s-Seidel methods proposed by Cryer [9] 

and Mangasarian [21] for the solution of linear complementari ty problems. If the g, are 

subgradients of general convex functions we recover the numerical schemes proposed by 

Uko [36] for separable variational inequalities. 

The theorem below gives sufficient conditions for the iterates generated from the 

generalized Jacobi method and the generalized Gauss -Se ide l  method to converge 

globally in the maxinmm norm II .v Ii ~ = m a x ,  .<, ~ ,, [ .v, I. 

T h e o r e m  3.1. Let g l . . . . .  g,; be maximal  monotone operators in ~ x ~ with mono- 

tonicity moduli  c~ I . . . . .  ~,, (respectively).  I f  

a,, > 0 a,Td ~ l a , j I  < a , ,  + o n ,  , = I . . . . .  n, (3 .6)  
J = t  

then (3.3) has a unique solution z. j b r  any b E ~" .  Moreover ,  the iterates obtained 

fi 'om the generalized Jacobi  scheme and the generalized Gauss -Se ide l  scheme converi?e 

globally to z in the maximum norm. 

Proof.  It is easy to see that the solution c = ( :~ . . . . .  z,,) of (3.3) is a fixed point of the 

operator defined, for a - e  ~" ,  by Jx = ((Jx) ,  . . . . .  (,Iv),,) where (Jx) ,  = P , [ ( l / a , , ) ( b , -  

E j ~  , a , j . v ) ] ,  1 - I . . . . .  , ,  

On using (2.6) and the definition of the ~,  we obtain the inequalities 

( E , ~ , ] a , j l  I Ix  vll~-, V.v, ~=1  
(l  ~ r -~- OL ~ .'*' ~ ~ n , 

17. I I ( J x ) , -  ( Jy ) ,  II 

This implies that 

I] J x  - J y  ll ~ <~ 
( ~ , = ,  I %  

max II i~l - ~ ~11~-, V x ,  v ~ ~ " .  
I ~ n  (l t~-~- O: j 

Therefore, (3.6) shows that J is a contraction mapping from H into H. Since the 

generalized Jacobi scheme is the successive approximation scheme associated with J.  its 

convergence follows from Banach 's  contraction mapping principle. 
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The solut ion z = (z~ . . . . .  z,,) of (3.3) is also a f ixed point  of  the opera tor  def ined,  for 

x ~ N". by Gx = ((Gx) l . . . . .  (Gx), ,)  where 

(c_ ; . , - ) ,=  e, ~ , -  , F _ , , , , ( G . ~ . - ) , -  c,,j.~, . , =  l . . . . .  ,,. 
J < :  " l 

W e  prove by induct ion that 

. , )  .... 
I (Gx) ,~-(Gy), , , I  ~< I I x - v l l = ,  Vx, vEIR" (3 .7 )  

a,,,,,, + o~,,. " ~ ' 

holds  for all m. It is obv ious ly  tree if m = 1, because  of the def in i t ion  of  G and of  the 

ct,. Suppose  k > l and that it holds for m = 1 . . . . .  k -  1. 

Then it fo l lows f rom (3.6) that [(Gx),,, - (Gy),,, I <~ I[ x - y II ~. for all such m. so that 

I ( a - r ) k - ( G y ) k l <  , F _ _ , - - I % 1 - I ( G . r ) j - ( a y ) j l + ~  __ lak j l  I x j - 5 1  
j < k  akk + (Yk )>k akk-'}-Ogk 

<- E l u . , - -  y u + E l I I - y u 
d<k akk -]- Olk j>k  akk + Olk 

< max (F- 'Jr  yl,~, Vx ,  V ~ R -  - " 
l ~ l < t l  atl + ol I 

This proves,  by induct ion,  that (3.7) holds  for all i terates, and hence,  that 

( Z J e = ' l a u l ) l l x - y , , =  Vx ,  y ~ , , "  [[ G x -  Gy II .. ~ max . . . .  
I~l~<n ar t+of .  ~ 

Since (3.5) is the successive approx imat ion  scheme assoc ia ted  with G, the conver-  

gence of  the genera l ized  G a u s s - S e i d e l  scheme also fo l lows f rom Banach ' s  contract ion 

mapp ing  principle .  [] 

R e m a r k  3.2. If oej . . . . .  oe,, = 0, then (3.6) reduces  to the d iagonal  dominance  

condit ion:  

Y'. la,jl  < a , , ,  , =  1 . . . . .  n. ( 3 . 8 )  
j4:r 

It is well  known (cf. [24]) that if  the matr ix  A = (a,. i) satisfies this condi t ion  then the 

equat ion Az= b has a unique solut ion z, and the i terates f rom the Jacobi  and 

G a u s s - S e i d e l  schemes  converge  g lobal ly  to z. However ,  if at least  one of the ee i is 

strictly posi t ive  (that is. if some g, is s t rongly max ima l  monotone) ,  then condi t ion  (3.6) 

- which suffices for  the convergence  of  (3.4) and (3.5) - is weaker  than the diagonal  

dominance  condi t ion  (3.8). 

In order to make  the numerica l  schemes  (3.2). (3.4) and (3.5) fu l ly  construct ive,  we 

require a lgor i thms for calculat ing the resolvents  (1 + / _ t g ) - t ( x ) ,  for all p. > 0. Fortu-  

nately,  such a lgor i thms  exist  for the most  c o m m o n  maximal  mono tone  opera tors  g that 

occur  in appl ica t ions .  
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For instance, in the nonlinear complementari ty problem we come across the operator 

g ( ,~  . . . . .  x,,) = g ~ ( . , , )  X - - .  X ~,,( , , , ) .  

with the g, defined by (1.3). In this case the resolvent is given by the simple expression 

(1 + / x g )  I( .r ,  . . . . . .  r,,) = ( x ?  . . . . . .  v; : ) ,  V / z > 0 .  

Some models of heal f low through thick walls [11] employ variational inequalities 
which - -  when discretized - -  reduce to generalized equations involving the operator 

.~( x ,  . . . . . .  ~-,,) = ,~4, , ( .~- , )  x . . .  x ~,I,,,(x,,). 
in which each &, is of the t'orm (3.1). An explicit formula for resolvent of such an 
operator is given in [36. Example 2b]. 

If  g ( x )  = x II x II ", where q is a real exponent greater than or equal to one, then the 

resolvent can be computed with an algorithm given in [36. Example 2a]. However,  if the 

exponent q has value 3, 4 or 5. then explicit formulae for the resolvent can be found in 

[ 3 s ] .  

If g ( x , ,  . . . .  x , , )  = (.r I I x  I ] q', . . . .  . vT, Ix,,. ]q") (ql >/" I . . . . .  q,, >~ 1), then letting 

g , (x )  = x, i x, ] q' for z = 1 . . . . .  n. we have 

(1  +/zg) -~(  . , ,  . . . . .  .,-,,) = (( l  +/z~,  ) - ~ ( . , - , )  . . . . .  (l +/zg,,)-~(~, , ) ) .  
Therefore we can compute each component of the resolvent by using the algorithms 
employed in the previous paragraph. 

The general variational inequality problem employs the operator g = ~4', where #) is 

an indicator convex function of  the form (1.6). In this case (1 + / z g ) - ~  is independent 

o f /Z  and coincides - cf. [39. Lemma 4.1] - with the orthogonal projection onto a closed 

convex set. Explicit expressions for such projections can be given in many cases. 

Acknowledgements 

The author would like to thank the referees for their patience and their suggestions 

which improved the contents and presentation of the paper. He is also grateful to Prof. 

Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at 

the International Centre for Theoretical Physics, Trieste. 

References 

[I] C. Baiocchi, "'Disequazioni variazionali". Bolletmo dell" Unione Matematica Italiana 18-A (1981) 
173-187. 

[2] C. Baiocchi and A. Capelo, Variational am/Quasiuariational Inequalities: Applications to Free Bound- 
ao' Problems (Wiley, New York, 1984). 

[3] H. Brdzis, "'Problemes unilateraux,'" Journal de Mathematique Pures et Appliqueds 5 (1972) 1- 168. 
[4] H. Brdzis, Op&'ateur Maximaux Monotones et Semi-gro~qw.v de Contractions dan.~' les Espaees de Hilhert 

(North-Holland, Amsterdam, 1973). 
[5] F.E. Browder "Nonlinear maxmml monotone operators in B,'mach spaces," Mathematische Ammlen 176 

(1968) 88-113. 



L.U. Uko /Mathematical Pro~,rammin.r 73 (1996)251-268 267 

[6] M. Chipot, Variational Inequalities and Flaw in Porous Media (Springer, New York, 1984). 
[7] G. Cohen, "'Auxilliary problem principle and decomposition of optimization problems," Journal (~f" 

Optimization Theory and Applications 32 (1980) 277- 305. 
[8] R.W. Cottle, F. Gianessi and J.L. Lions, Variational Inequalities and Complementario, Problems: Theory 

and Applications (Wiley, New York, 1980). 
[9] C.W. Cryer, ""Fhe solution of a quadratic programming problem using systematic overTelaxation," SIAM 

Journal on Control 9 (1971) 385-392. 
[10] J.E. Dennis and R.B. Schnabel, Numerical Methods fi~r Unconstrained Optimization and Nonlinear 

Equations (Prentice-Hall, Eng|ewood Cliffs. N J, 1983). 
[i 1] G. Duvuat and J.L. Lions, Inequalities m Physics and Mechanics (Springer, Berlin, 1976). 
[12] B.C. Eaves, "A  locally quadratic algorithm for computing stationary points," Technical Report, 

Department of Operations Research, Stanford University (Stanford, CA, 1978). 
[13] P.T. Harker and J.S. Pang. "'Finite dimensional variational inequality and nonlinear complementarity 

problems: a survey of theory, algorithms and applications," Mathematical Programming 48 (1990) 
161-220. 

[14] C.M. Ip and J. Kyparisis, "'Local convergence of quasi-Newton methods for B-differentiable equations," 
Mathematical Programming 56 (1992) 71 -90. 

[15] N,H. Josephy, "'Newton's method for generalized equations," Technical Report No. 1965, Mathematics 
Research Center, University of Wisconsin (Madison, W1, 1979). 

[I6] N.H. Josephy, "A Newton method for the PIES energy model," Technical Report No. 1977, Mathemat- 
ics Research Center, University of Wisconsin (1Vladison, WI, 1979). 

[17] L.V. Kantorovich and G.P. Akilov, Functional Analysis (Perganmn, New York, 1982). 
[18] S. K,-u-amardian, "'The complementarity problem," Mathematical programming 2 (1972) 107 129. 
[19] M. Ko.jima and S. Shindo, "Extensions of Newton and quasi-Newton methods to systems of PC ~ 

equations." Journal of the Operations Research Society of Japan 29 (1986) 352-374, 
[20] J.L. Lions and G. Stanapacchia. "Variational inequalities.'" Communications in Pure and Applied 

Mathematics 20 (1967) 493-519. 
[21] O.L. Mangasarian, "Solution of symmetric linear complementarity problems by iterative methods," 

Journal of Optbnization Theol T and Applieatkms 22 (1977) 465-485. 
[22] G.J. Minty, "'On the monotonicity of the gradient of a convex flmction," Pacific Joarnal of Mathematics 

14 (1964) 243-247. 
[23] G.J. Minty, "Monotone (nonlinear) operators in Hilbert space," Duke Mathematics Journal 29 (1973) 

341-346. 
[24] J.M. Ortega, Introduction to Parallel and Vector Solution q[Linear Systems (Plenum, New York, 1988). 
[25] J,M. Ortega and W.C. Rheinboldt, lterative Solution of Nonlinear Equations in Several Variables 

(Academic Press. New York, 1970), 
[26] A.M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces (Academic Press, 1973). 
[27] J.S. Pang, "Newton's method for B-differentiable equations," Mathematics qf Operations Research 15 

(1990) 3 l 1 - 341. 
[28] J.S. Pang and D. Chart, "'Iterative methods for variational and complementarity problems," Mathemati- 

cal Pro~,,ramming 24 (1982) 284 313. 
[29] J.S. Pang and L. Qi. "Nonsmooth equations: motivations and algorithms," SIAM Journal on Opt#ni~,a- 

tion 3 (1993) 443-465. 
[30] L. Qi. "'Convergence analysis of some algorithms for solving non-smooth equations," Mathematics of 

Operations Research 18 (1993) 227-244. 
[31] S.M. Robinson, "Generalized equations and their solutions, part 1: basic theory," Mathematical 

Programming Study 10 (1979) 128-141. 
[32] S.M. Robinson, "'Strongly regular generalized equations." Mathematics of Operations Research 5 (1980) 

43 -62. 
[33] S.M. Robinson, "'Generalized equations," in: A. Bachem, M. Gretschel and B. Korle, eds.. Mathemati- 

cal Pro wamminq,: the State of the Art (Springer, Berlin, 1982) pp. 346-367. 
[34] G. Stampacchia, "Formes bilineares coercitives sur les ensembles convexes," Comptes Rendus del 

L'Academie des Science de Paris 258 (1964) 4413-44 16. 
[35] R.A. Tapia, "The Kantorovich Theorem for Newton's method," American Mathematical Monthly 78 

(1971) 389-392. 



268 L.U. Uko /,~hlthematical l"ro:r 73 (1996) 25 I -  268 

[36] L.U. Uko, ""llm solution of l]nite dimensional variational inequalities using sy.stcmatic relaxation," 
.lourmil r the Nis Malhernath-ol .%'o( iety 8 (1989) 61-75. 

[37] L.U. Uko, "The generalized Nev, ton's method." .h~urm~! r{/ the Nigeri~t:z Mo#temanc~tl Socie~" l0 
(1991) 55-64. 

[38] L.U. Uko, ' O n  a class of general stmngl.,, nonlinear quasivarizilional inequali t ies,  Rit:ista di Matematica 
Pura ed Al~pli(am I I (1992) 47-55. 

[39] L.U. Uko. "'Remarks on the generalized Ne'~;ton method." Mathema[ica! P,-r 59 (1993) 
405-412. 


