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Abstract

We give some convergence results on the generalized Newton method (referred to by some
authors as Newton's method) and the chord method when applied to generalized equations. The
main results of the paper extend the classical Kantorovich results on Newton’s method to
(nonsmooth) generalized equations. Our results also extend earlier results on nonsmooth equations
due to Eaves, Robinson, Josephy, Pang and Chan.

We also propose inner-iterative schemes for the computation of the generalized Newton
iterates. These schemes generalize popular iterative methods (Richardson’s method, Jacobi’s
method and the Gauss—Seidel method) for the solution of linear equations and linear complemen-
tarity problems and are shown to be convergent under natural generalizations of classical
convergence criteria.

Our results are applicable to equations involving single-valued functions and also to a class of
generalized equations which includes variational inequalities, nonlinear complementarity problems
and some nonsmooth convex minimization problems.

Keywords: Generalized equations; Generalized Newton method: Variational inequalities; Nonlinear comple-
mentarity problem; Kantorovich theorem

1. Introduction

Let H be a Hilbert space equiped with a scalar product (-, -), let f: H—> H be a
Fréchet-differentiable function and let g be a nonempty subset of H X H. In the sequel,
we will regard the statements [x, y]E g, g(x)3y, —y+g(x)30 and y € g(x) as
Synonymous.
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We are interested in the (numerical) solution of the problem

Flu) +g(u)20. (1.1)
Such problems have been studied by Robinson [31-33] who coined the term *‘gener-
alized equations’” for them. If H=R" and glx,.... x)=g(x)x - Xg(x)
where g, € R X R for 1= 1...., n then (1.1) will be said to be separable. In this case,
if we set

Flx),o.0 v)=(fx, 1S SR N TP )Y,
then we can express (1.1) in the form

fluy,ooou)+g(u)30, 1=1..... n. (1.2)
An important class of problems of this type is obtained by taking

2, ={0} X (==, 0]u(0, %) > {0} ={[s.1]eERXR:520. <0, st=0)

(1.3)
for all 1. In this case (1.2) becomes the nonlinear complementarity problem
n
Fluy,coou)=20, w20, 1=1..... nooy uf(uu,) =0. (1.4)
k=1

Such problems have been studied extensively in the literature from the point of view of
existence of solutions and approximation of solutions (cf. [8,13.19]).

On the other hand. if ¢: H— (—=, %] is a proper lower semicontinuous convex
function and

g(x)=dp(x)={veH: d(x)—d(y)<(v, x—y).VyeH]}
(called the subgradient of ¢ at x), then (1.1) becomes the variational inequality

f(u) +ad(u) 30. (1.5)
Such problems were introduced in the early sixties by Stampacchia [34] and have found
important applications in the physical and engineering sciences and in many other fields
[1-3.6,11]

If we take [ as the gradient Vi of a differentiable convex function ¢ : H — R, then
(1.5) reduces (cf. [1, Theorem 3.3]) to the search for the minimum of the nonsmooth
convex function ¢ + .

A basic class of variational inequalities is obtained by letting ¢ be the indicator
function of a nonempty closed convex subset C of H. defined as

~_J0, if xecC,
¢(%) {x, otherwise.

In this case problem (1.5) reduces to the search for u € C satisfying
(flu).u—v)<0, VvecC. (1.7)

This problem will be designated in the sequel as VI(f. C, H).
It is well known that every variaticnal inequality of the form (1.5) can be associated
with a variational inequality of the form VI(F. C, V). This is done by setting C =

(1.6)
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{[x, Ale HX R: $(x) < A} (called the epigraph of ¢). F[x, Al=[A(x). 1] for all
[x. Al€ HX R, and V=H X R, equiped with the scalar product {[x, AL [y. 7]) =
(x, ¥)+ A7. Then it is not difficult to see that if u solves (1.5) then [u. ¢(u)] solves
VI(F. C. V), and that if [, A] solves VI(F. C, V) then u solves (1.5).

The generalized Newton method for the iterative solution of problem (1.7) is given
by the scheme

(-fl(Llrwt)Lln1+ 1 ’“m-f-l - U) < (‘f,(llm)llm ﬁf( um)“ um+l - U)’
VveC, m=0,1...., (1.8)

Early studies on the convergence of the scheme were carried out by Eaves [12],
Robinson [32], Josephy {15,16]. and by Pang and Chan [28]. These works were reviewed
recently by Harker and Pang [13].

A version of this method that is directly applicable to the variational inequality (1.5)
is the scheme

f"(”m)“m*—! + a(b(”m—‘--]) B.f’(um)”m _‘f(”m)‘ m= O’ 1" te (]9)

which was studied in [37,39] without being aware of the previous work done on (1.8).
When ¢ is of the form (1.6) this scheme reduces to (1.8).

If we use (1.8) to solve the epigraph formulation VI(F, C, V) of (1.5), what we
obtain is precisely the epigraph formulation of the numerical scheme (1.9). However, a
drawback of this approach to the numerical solution of (1.5) is the increase in the
number of variables which could have an adverse effect on the numerical scheme.
Another drawback arises from the fact that the derivative of the function F occurring in
the epigraph formulation of (1.5) is given by F'[x. Ally. r]=[F(x)y, 0] for all
[x. AL Ly, 7] €V, and fails to satisfy the coercivity (positive definiteness) condition
frequently required (cf. [28.37]) for the convergence of the scheme (1.8). However,
some results on the convergence of (1.9) can be obtained — via its epigraph formulation
— from known results on (1.8). The results of Josephy [15,16] and Robinson [31,33] are
based on Robinson’s notion of regular solution {32] instead of coercivity and can be
applied to (1.9) in this manner. Eaves [12] follows a different approach and proves a
local convergence result for (1.8) which when applied to VI(F, C, V), imposes a
coercivity condition on f'(x) instead of F'[x. A]. This result could be used to obtain
Theorem 1 of Uko [39].

The numerical scheme (1.9) is a special case of the generalized Newton scheme

_f"(Ll,,!)L{,,;+1 +g(“m+l) 5~f/(l'1171)lt:rl _f( “m)v~ m :O“ ]""’ (110)

which can be used for the iterative solution of the generalized equation (1.1). A related
scheme is the generalized chord method which is given by

.f,(u())unH-l+g(“m-+l)B«fl(uﬁ)um_f‘(”m)‘ ITI=O, 1‘ (1‘11)

Unlike (1.10), the generalized chord scheme uses only one derivative evaluation for all
iterations and is usually employed in situations in which the computation of derivatives
is costly.
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The scheme (1.8) is usually referred to (¢f. [12,13.15,28]) as **Newton’s method™’. In
fact, if C = H, it reduces to Newion’s method for the equation f(u)= 0. However,
when g is single-valued, then (1.10) differs from Newton’s method and could be used to
solve the equation

flu) +g(u)y=0 (1.12)

in situations in which Newton’s method cannot be used. due to the lack of differentiabil-
ity of g. For this reason, we refer to (1.10) — and, by implication, to (1.8) — as the
generalized Newton method.

The main advantage of the generalized Newton scheme is the fact that it is applicable
to problems involving nondifferentiable and possibly multivalued functions, while
retaining the quadratic termination property which is usually associated with Newton’s
method. In fact, when both methods are applicable, the generalized method may require
less outer iterations than Newton’s method to achieve a specified accuracy. To illustrate
this, let H =R, let f be a twice continuously differentiable function, and let g be
single-valued and differentiable at the solution # of (1.12). Then the asymptotic error
constant for the generalized Newton method for problem (1.1) is given [39] by

- . Iunz*—lﬁl{' |f“(“)|
e’ = lim = - .
mew |, —ul® L f () + g (u)]

The asymptotic error constant for the classical Newton method is
|7 () + 8" () |
e=— - .
| (u) +g' (1)l

Therefore, if g"(u)f"(u) > 0, then e¢” < e, which means that the generalized method
will converge in fewer iteration steps than Newton’s method.

The major drawback of the generalized Newton method is the fact that its’ iterates —
which are defined by (i.10) — actually need to be computed by means of some further
inner-iterative method.

Another approach to the solution of generalized (nonsmooth) equations — especially
those of the form (1.4) — uses generalized derivatives that are applicable to functions
that are not differentiable in the traditional sense of Fréchet and Gateaux. This idea
(which is not pursued in the present paper) has lead to the development of Newton-like
methods that are applicable to nonsmooth equations. Such methods include the B-deriva-
tive-based Newton method proposed by Pang [27]. the generalized Jacobian-based
Newton method proposed by Qi [30], the Gauss—Newton method proposed by Dennis
and Schnabel [10], and the nonsmooth quasi-Newton methods studied by Ip and
Kyparisis [14] and Kojima and Shindo [19]. The survey paper [29] by Pang and Qi
introduces and motivates these schemes and also contains proofs of the superlinear
convergence of each of them.

Many results on the convergence of the generalized Newton method and the
generalized method of chords can be found in [15,16.31,33.12.13,28,37,39]. In the
present paper we obtain further results not contained in the previous papers. We are
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particularly interested in results which extend to generalized equations the Kantorovich
technique [17,25,35] for the solution — via Newton's method and the method of chords —
of equations involving differentiable functions.

The main results of the present paper are contained in Section 2. The first results in
this section extend previous results on the generalized Newton method obtained by
Eaves [12], Pang and Chan [28], and Uko [37,39]. The last two theorems of the section
are of the Kantorovich type and extend the Kantorovich technique to problem (1.1)
approximated with the generalized Newton method and the generalized method of
chords. Similar results have been obtained by Robinson [33, Theorem 5.1]. However, his
hypotheses differ from ours, and his results are not applicable to the general problem
(L.1).

In Section 3 we study methods for the numerical computation of the generalized
Newton iterates. The methods studied in this section are generalizations of classical
methods (Richardson’s method, Jacobi’s method, and the Gauss—Seidel method — cf.
[9.21,24]) for solving linear equations and linear complementarity problems.

2. The main results

Let H be a Hilbert space with scalar product (-, - ) and norm |- ||. Let D, be the
interior of a closed convex subset D of H. and for any u, € D, and r> 0, let Blu,, r]
designate the set {x€ H:[| x —u,|l <r} while B(u,, r) designates the interior of
Blu,. rl.

All through this section we will assume that f: D — H is a continuous function that
is Fréchet differentiable at each point of D, and satisfies the condition

1£ () =F(») I <Ml x=yl V. yeD,. (2.1)

It is well known (cf. [25, p. 70]) that (2.1) implies that for all z€ D and y € D,, we
have

1f(x) =f(2) =F () (x=y) I <3M Il x=yl*. (22)

IfCxy =f)=F () x=2) <M max{ | x—yll, lz—x I}l x— zI.

: (2.3)

We will make repeated use of these inequalities in the sequel.

We will also assume that g is a (multivalued) maximal monotone function from H
to H. This means that g is nonempty subset of H X H which is monotone in the sense
that there exists « = 0 (its monotonicity modulus) such that

[x.y]€gand[x,, v,]Eg = (yzwyl,x7_~.\'|)>a||x1—x2||2. (2.4)

and which is not contained in any larger monotone subset of H X H. It is well known
(cf. [5.23]) that g is closed in the sense that

[.\',”. y,,,] Eg, limv Vo.=yand limx,=x = [\ y] Eg. (2.5)

m-x
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and that, given any fixed positive real number w. the resolvent operator (1 + ug)™!
exists as a single-valued function and satisfies
o - hx =yl
(1 +pg) ()-(+pg) (MI<——F7—. Vx.yeH. (2.6)
1 + pa
If >0, g will be said to be strongly maximal monotone. A well known example
[4,23] of a maximal monotone operator is the subgradient d¢p of a proper lower
semicontinuous convex function ¢ mapping H into (— . %],
Orne of the most important results in the theory of equations is the Kantorovich
theorem [17. Ch. XVIIL. Theorem 6] which we state as follows.

Theorem 2.1. Suppose that (2.1) holds. If f'(u,)™" exists and is such that || f'Cuy) ™"l
<b, I flu) " Rupll<a. h=Mab< %, and Blu,. r_1C D, where r = (a/hX1
+ V1 —2h), then -

(a) The equation flu} =0 possesses a unique solution w in B{u,. r.) N D.

(b) The sequence defined inductively by Newton's method

vy - L
a1 = Y, _f ( “m) ./( un:) N m= () Lo
converges to u ar the rate || u—u, || < Ca/B2R)"27".
(c) If h < 3. then the sequence defined inductively by the chord method

Uy T Uy ‘j'( ”()) : If( unz)' = ()’ L.,
converges to u at the rate | u —u, || <Ca/MI1 = VI =20}

Our main aim in this section is to extend this result to the generalized equation (1.1),
approximated with the iterative schemes (1.10) and (1.11). However, before giving this
extension we first give some general convergence results for these approximating
iterative schemes. The first result gives sufficient conditions for each of these approxi-
mating generalized equations to have a unique solution.

Lemma 2.2. Let g be a maximal monotone operator satisfying (2.4) and let A be a
bounded linear operator mapping H into H. If there exists ¢ € R such thar ¢ > — a and

(Ax. x)=cllxl’. VxeH. (2.7)
Then, for any b € H. there exists a unique = € H satisfying the generalized equation
Az+g(z)25b. (2.8)

Proof. It is easy to see that problem (2.8) is equivalent to the search for the fixed points
of the operator 7, x = (1 + wg) ' x+ ub— pwAx) for any fixed positive parameter .
Using (2.6) and (2.7), we see that

1T, x =T, vl = (1 +pg) ' (x+pb— pAx)
—(1+ug) (v+ub—pan)ll
1
< — | x—y— pAx + pAy|
1+uaH‘ o pAvE pavl
Vi—2pe+ il Al
< | x—yll, Vx, yeD.

I+ pa
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If || All > @, we choose 0 < o <2(c+ o) /(|| All 2 — a?); otherwise, we let w be any
arbitrary positive real number. Then we have \/T— 2uc+ ptll Al 2 <1+ pa, which
shows that 7, is a strict contraction mapping from the convex set D to itself. The
existence of a unique fixed point for 7, therefore follows from Banach’s contraction

mapping principle. O

Remark 2.3. If g is the subgradient of a convex function, and if (2.4) holds with « =0,
then Lemma 2.2 becomes the classical Lions—Stampacchia theorem [20, Theorem 2.1]
on the solvability of variational inequalities.

Remark 2.4. If (2.7) holds. we will say that A is weakly coercive. This concept of
coercivity is weaker than the usual one (cf. [20]) since we do not require that ¢ be
positive.

l.emma 2.2 assures us that if
Je> —a suchthat (f'(2)x, x)=cll x|l ! VYxeH.V: eD,. (2.9)

then all the generalized Newton iterates u,,, , in (1.10) exist. The next theorem contains
a convergence result that uses this hypothesis.

Theorem 2.5. Ler g be a maximal monotone operator satisfying (2.4). Suppose that
(2.1) and (2.9) hold and that the generalized equation (1.1) has a unique solution u in
Dy. If the initial vector in (1.10) satisfies the condition d= (M/2(c + aNllu — u,ll <
1, then the generalized Newton iterates u,, defined inductively by (1.10) converge to u
at the rate

20c+ta) _,
lu—u,ll < ———a*".
M
Proof. The existence of the solutions to (1.10) follows from (2.9) and Lemma 2.2.
For m=0,1,..., if we use (2.4), (1.1) and (1.10), we obtain
&4 |I um+i —u || ? < (f(M) *f( um) _jw(“m)(um+l - Mm s um+l - “)'

Rewriting this in the form

(‘” um+ | U H : + (f’(um)(umdA 1 l{), um+ P “)
< (f( “) _f( um) _f,( um)( u— um)‘ Mm+I - “)
and making use of (2.9) and (2.2). we obtain || «,,, , —ull <{M/2(c+ a)|lu, — ull :

An induction argument now shows that [[u,, —u| < (2(c+ a)/MXM/2(c+ a)llw —
ug ¥ = (2(c + a)/M)d*", which completes the proof of the theorem. [

Remark 2.6. The conclusions of the theorem hold true — with the same proof — if
instead of (2.1) we employ the weaker condition || f'(u) — f( | <M llu—x|l,Vxe&
D,.
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Remark 2.7. In the special case in which g is the subgradient of a proper lower-semi-
continuous convex function and (2.4) holds with « = 0, then Theorem 2.5 reduces to
Corollary 26 of Pang and Chan [28]. A similar results was obtained by Josephy [15]
using Robinson’s notion [32] of regular solution instead of the coercivity condition (2.9).

Theorem 2.5 is of limited practical utility because its hypothesis and convergence rate
are expressed in termus of the exact solution of (1.1} which is not usually known apriori.
The next result is more useful in this regard since it provides a convergence rate which
we could compute apriori if we knew the value of the constants M, « and ¢ in (2.1),
(2.4) and (2.9).

Theorem 2.8. Ler g be a maximal monotone operator satisfving (2.4), and suppose that
(2.1) and (2.9) hold. Let {u,:m=0,1....} be the generalized Newton iterates from
(1.10). and suppose that d=(M/2(c+ aNllu, —u,ll <1 and that Blu,, r1CD,.
where r = (2(c + a)/M)ZLOdzk. Then all the u,, lie in Bluy, r] and converge 10 a

solution u of (1.1) at the rate

20ec+a) &

Y Z d.

k=m

oo —u, Il <

Proof. The existence of the solutions u,, ., to (1.10) follows from (2.9) and Lemma 2.2.
For m=0, 1...., if we use (1.10), the corresponding generalized equation for

m— 1, and (2.4), we obtain

2
a ” L{m+ 1 - Mm “ + (f’(u’m)(l’lnw}» 1 - Mm)’ M’m—t' 1 - le)

< (f( um) _f( um-l) _f,(“mfl)(um - um— l)’ U, — um+ l)'

If we now make use of (2.9) and (2.2), we obtain |[u, ., —u, | <(M/2(c + a)llu,
—u, ,II°. An induction argument now shows that |, ., —u, |l <Q(c+
a)/MX(M/2c+ aDllu, —uy1)*" = Q2c + @) /M)d*". Using this fact we see that
leyy ) —ugll ST7_olluy,, — |l < r. which implies that u,, ., € Blu,, rl, Vm.

Finally, since [l u,, , = u, | < £720 Mgy, —u I < Qe+ a)/MITEE 2 'd it
follows that u,, is a Cauchy sequence, converging to some u € D. The fact that u solves
(1.1) follows from (1.10) and (2.4), and the convergence rate is obtained by letting p
tend to infinity. O

Remark 2.9. Let g = d¢, where ¢ is a proper lower-semicontinuous convex function
¢, and suppose that (2.4) holds with a=0. If we take f as the gradient Viy of a
real-valued function i defined on D, and replace the condition d < 1 in Theorem 2.8
with the more restrictive condition d < 1, we recover Theorem 2 of [39].

The coercivity condition (2.9) employed in the last two theorems implies that
f{z)"" exists for all €D, and is rather strong. Since this condition will not be
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satisfied in most problems occurring in applications we are led to consider the less
restrictive hypothesis:

Jc, > —a such that (f'(ug)x, x) > ¢l xII?. VxeH. (2.10)

This turns out to be the natural hypothesis for the extension of the Kantorovich
technique to the solution of (1.1). For simplicity we first give the relevant Kantorovich-
type result for the generalized chord method before giving the analogous result for the
generalized Newton method.

Theorem 2.10. Let g be a maximal monotone operator satisfying (2.4), and suppose
that (2.1) and (2.10) hold. Let uy € D, and suppose that there exists vy € H such that
gluy) D vy and || fluy) + vyl < by for some by> 0. Let ag=by/(c, + ) and hy=
May/(c, + «) and suppose that

hy< 3. (2.11)

Ifro=2ay/(1 +1 = 2hy), Ry=2a,/(1 — {1 = 2h,), and Blu,, r,]1 € Dy. then there
exists a unique solution u of (1.1) in B(u,, Ry) N D. Moreover, the generalized chord
iterates u, (with initial vector u,) converge to u at the rate

m

| u—u

m

(¢} n+
||<7°(1~V1—2h(,) . (2.12)
0

Proof. For any x € Blu,, r,]. Lemma 2.2 ensures that we can define w(x) uniquely by
means of the generalized equation

fug)w(x) +&((w(x)) 3 (up) x = (%),
Using (2.4) and the definitions of w(x) and v,. we obtain
allw(x) = ugll < (vo + () = f'(ug)(x = w(x)), ug = w(x)).
Rewriting this in the form
allw(x) = ug I+ (f (o) (w(x) = 1y). w( %) = 14p)
< (f(uo)(x = 1) = fx) = vg. w(x) = ug)
and making use of (2.2), (2.11) and the hypothesis on v,, we obtain
(co+a)lw(x) —upll < lvy +f(x) = (ug)(x—uy) |
= llvg +f(ug) +5(x) = flug) = (1g)(x = uo) |
< |l fuy) + v I+ 0 fCx) = fQua) +f (ug) (x —ug) |
<bg+ Ml x—ugll’.
We conclude that
(co+a)llw(x) —ugll <by+ M| x—u,ll’. (2.13)

which implies that || w(x) —uyll <a, + Mri/2(c,+a)=r, for all x€ Blugy, ryl
Therefore w maps the set Blu,. ry] into itself.
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Also, for any x, y € Blu,. rl], it follows from (2.4) and the definition of w that
allw(x) = w( ) 17 < (£ () (e( 1) =w()) +£(x) = A ¥)
= () (2= ¥), w(3) = w(x)).
We now rewrite this in the form
allw(x) = w( ) 12+ (F () () = w(3)) . w(x) = w( )
< (F () (x=y) = F(x) +£( 2w} ()

and make use of (2.3) and (2.11). We obtain

w(x) —w(y) < SOy =A(3) =)y =)l

< X — ¥V || max X— U

T a v = vl max{ll v — g I}
Mr, _

< x=yll =1 =yl =2y}l x=xl.
el Rl (1= yT=2h I x =¥l

Letting ¢ = 1 — y1 — 2h,, we have [l w(x) —w{ 3| <¢qll x—yll. It therefore fol-
lows that w is a strict contraction mapping from the set Blu,, rq] to itself. Since (1.11)
is the successive approximation scheme u, ., = w{u,). it follows from Banach’s
contraction-mapping theorem that there exists a unique u € Blu,,. r,] satisfying w(u) =
u, which is equivalent to (1.1). The error estimate (2.12) is obtained by observing that
form=0.1..... we have

ap .
o, =l =Ww(a, ) —w)ll g™ lug —ull <g™ry= ;_qm .
19

If v is another solution to (1.1), then v is another fixed point for w. On using (2.13),

we obtain the inequality

(cota)llo—uyll <bhy+iMIlv—u, 2.

By solving this inequality, we see that either | v — u, || = Ry or [l v — uy || < rg. Thus, if
v e B(u,, R,), then we must have v € Blu,. r,] which implies that v =u by the
uniqueness assertion of the previous paragraph. The proof of the theorem is complete.
O

The next result proves the second part of our Kantorovich-type result for the
generalized equation (1.1), approximated with the generalized Newton scheme (1.10).
Robinson [33, Theorem 5.1] has proved a similar result for problem (1.7), approximated
with the generalized Newton scheme (1.8). He used a concept of regularity developed in
his earlier work [32] in place of a coercivity hypothesis. However, his result is not

applicable to the general generalized equation (1.1). and our proof is much simpler than
his.
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Theorem 2.11. Let all the hypothesis of Theorem 2.10 hold, with the sole exception that
(2.11) is replaced with the weaker assumption

hy< 3. (2.14)

Then there exists a solution u of (1.1) in Blu,. ry] 10 which the generalized Newton
iterates u,, converge ar the rate

ao 2”, —m g
lu, —ull < —(2hy)" 27" (2.15)
hg )
Furthermore, u is the only solution of (1.1) in Blu,. Ry) N D.
Proof. We prove by induction that for m =0, 1...., we have
u, €Blu,, ry]. (2.16)
dv, € H suchthat v, €g(u,), (2.17)
Ab, >0 such that || f(u,) +v,ll <b,,. (2.18)
¢, > —a such that (f'(u,)x. x)=c,ll xll 2 VxeH, (2.19)
Mb,
h, = 1. (2.20)

=—F<
((‘f” +a)~

The hypothesis of the theorem ensure that the induction hypothesis is true if m = 0. We
assume that m > 0 and that the induction hypothesis holds for m. Then it follows from
(2.19) and Lemma 2.2 that there exists a unique u € H satisfying (1.10).

Using (2.17), (1.10) and (2.4), we obtain

m+ 1

2 . .
a ” Mm+ 1 - um “ + (Uln +f( I'{m) _]U( um )( “m - “m+ l)’ um+ 1 - Mln) < O
Rewriting this in the form
2
54 ” Mm+ 1 Mm || + (fl(um)( Mm w1 ”m » Mm 1 Mm)

< (_f( um) - Um’ “m+l - um)

and making use of (2.18) and (2.19), we see that
b

n

=a,,. (2.21)

” “m+ 1 ”m ” < m

¢, +a
If we set r,=2a, /(1 +y1—2h,). for k=0.1....,m+ 1 then it is easy to check
that r, —r,,, =a, for k=0,...,m. Therefore, [lu, . —u,ll STV _ ol —ull <
veoay S XY (r,—ri )=ry—r,,, <r, which implies that u, , € Blu,., ry]C
Dy,. and hence that (2.16) holds when m is replaced by m + 1.
Next, using (2.1) and (2.21), we obtain || f(u,, . ) —f e, )l <M llu, ., —u
Ma,,. Therefore,

(f,(um)'x_f,(unz-f-I)'X‘ ".) < ” f,(“m) _f,(uan]) || “ “\-” : < Mam

for all x € H, which implies, because of (2.19). that ( f'(x,,, Jx. x)>c, ., | x|I’ for

m+ |
<

l

2

x|
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all xe H, where ¢, ., =c, — Ma,. The inequality ¢, ,, > —a follows from (2.20)

m

and shows that (2.19) holds when m is replaced by m + L.
Let v,, = —f(u,)—f G, Xu, ,, —u,). Then (2.8) shows that (2.17) holds when

m

m is replaced with m is replaced with m + 1, and we have

“f(um+ l) + Um+l H = ”f( um+l) 7f(um) _f’(um)(“m-kl - le) ”

< EIM || Uy — Uy, || < %Mah = bm+ 1

Finally, (2.20) shows that h, . =h’ /2(1 —h, )" <3, which proves that (2.20)
holds when m is replaced with m + 1. That completes the proof of the fact that
(2.16)—(2.20) hold for all positive integers m.

Because of (2.20), we have h, < <h’_ /(1 —h,_ VP <2h_ < - <3207
This implies that

a

m=1"m-1

h
<a h

a,= —————— _h, o <h
m 2(1—]’1’",‘) m—=1"m-1

m=1"m=2 hOaO

<22 P =2 2 I

Consequently, we have

m+p-| m+p—1

m H < Z H ul\+l Uy ” < Z a,l;

k=m k=m

| u —u

m+p

r—1

< 2_”‘:[2/70]2 ) au Z [2/70]2 B

k=0
It follows that u,, is a Cauchy sequence and so converges to some u € D satisfying

m a
2720, g Z 2420 T <272k, ]2 .

Nu—u,l <

0

Also, since u, ., —u, f'Cu, Nu, —u,.)—flu,)—=> —fu), and glu,, )>
FG, X, —u, ) — fGe,), it follows from (2.3) that g(u) > —f(u), so that u solves
(1.1).

If h, < 1 uniqueness in B(u,. R,) follows from Theorem 2.10. Let h, = 3 and let v
be another solution of (1.1) belonging to B(u,. R,) N D. Then there exists 0 < 6 <1

such that || v — u, Il = 6R, = 24a,6. For m =0, 1...., it follows from (1.1). (1.10) and
(2.4) that
a||u)71+1_U”2+(f”(“m)(”m--l U) m~|4u)

<(f(e) = fu,) = fu ) (v—1,) u, , —v).

Therefore usim7 {2.19) and (2.2), we obtain || « —vll <M/ 2Ae, Falllu, —uvll :

m+ | m
Since 3< 1 —h, and ¢, +a=(l—h e, + «). an induction argument shows that
e, — H < ((c,,, +a)/MIOY <((cy+ @)/M)8*" and implies that u = iim,, . u,

= p. That completes the proof of the theorem. O



L.U. Uko / Mathematical Programming 73 (1996) 251-268 263

3. Inner iteration methods

In some (rare, one-dimensional) situations (cf. [37]) it is possible to solve the
generalized equations (1.10) and (1.11) in closed form. For instance, let # =R and let
8., &, h,, h, be real constants satisfying the inequalities g, <0< g, and h, <h,. Let
g be the subgradient of the convex function

g(t=h). t<h,
(1) =10, ho<t<h,, (3.1)
g.(1—hy), 1>hy.
Then it is easy to verify that the generalized Newton iterates (1.10) are given by

v, — & /f(u,), if v, <h +g,/f(u,),

v, +(h —v, N —(v, — hz)+, if by +g,/f(u,)<uv,
<hy +8,/f (u,).

v, = 8./f (u,). if v, >h, +g,/f(u,),

where v, =u, — fu,)/f (u,) and "= max{r, 0} for all € R. An analogous expres-
sion can be easily be obtained for the generalized chord scheme.

In general. the generalized Newton iterates and generalized chord iterates satisfy a
generalized equation of the form (2.8). This generalized equation would not usually have
a closed-form solution and would have to be solved using some inner iterative numerical
method.

One possible numerical scheme for the solution of problem (2.8) is the generalized

Richardson scheme

ZH D = (1 -&—,LL<g')7](z(A')+,ub—/.1,A:“"’)~ k=0,1,.... (3.2)
When g =0 the scheme becomes the well known method of Richardson [24] for the
solution of linear equations. and when g is the subgradient of the proper convex
function ¢, it reduces to the numerical scheme referred to by Cohen [7] as the
““auxiliary problem principle’’ for the solution of (2.7).

The scheme (3.2) is the successive approximation scheme :**" =7 z*) corre-
sponding to the operator T, employed in the proof of Lemma 2.2. It follows that if the
conditions of Lemma 2.2 hold, and if w is small enough to ensure that 7, is a
contraction mapping. then the generalized Richardson scheme converges globally —
that is, for every choice of the initial vector z'>> — to the unique solution of (2.8).

For separable problems. the generalized Newton iterates are obtained by solving
generalized equations of the form

Uy =

Yoa,;,+tg(z)3b. 1=1.... n, (3.3)

j=1
where A =(a,) is an nXn matrix and (b,....b,)ER". On setting P,=(1+
(1/a,)g,)™", we can write each of these problems in the form

1
_(b:_ Za,jij)], i=1,....n

it 7=

3, =P
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This formulation suggests the following iterative method
(k+ 1) ! (&)
7T =P T(b'_ Zauzj ) o=l n, (3.4)
I J=

which we will refer to as the generalized Jacobi scheme. Another iterative approach is to
update one component at a time. in which case we are led to the numerical scheme

(6= Ta, 4= Ta,go) | =1 (3.5)
J<1

e

|
Jtk+ 1) _
o - a,
which we will refer to as the generalized Gauss—Seidel scheme.

If we choose g, = --- =g, =10 in these schemes. we recover the Jacobi and the
Gauss—Seidel methods for the solution of linear equations, and if the g, are given by
(1.3) we recover the projected Jacobi and Gauss—Seidel methods proposed by Cryer [9]
and Mangasarian [21] for the solution of linear complementarity problems. If the g, are
subgradients of general convex functions we recover the numerical schemes proposed by
Uko [36] for separable variational inequalities.

The theorem below gives sufficient conditions for the iterates generated from the
generalized Jacobi method and the generalized Gauss—Seidel method to converge
globally in the maximum norm || x| = max, ., .,/ x|

Theorem 3.1. Let g,..... g, be maximal monotone operators in R X R with mono-
tonicity moduli «, .. .., «, (respectively). If
a,>0 and Y la,l<a,+a, 1= 1,...,n, (3.6)
171

then (3.3) has a unique solution z. for any b € R". Moreover, the iterates obrained
from the generalized Jacobi scheme and the generalized Gauss—Seidel scheme converge
globally to z in the maximum norm.

Proof. It is easy to see that the solution z=1(7,..... z,) of (3.3) is a fixed point of the
operator defined, for x & R”, by Jx=((Jx),...., (Jx),) where (Jx), = P[(1 /a, )b, —
Z.a,x)lv=1... n.

On using (2.6) and the definition of the «, we obtain the inequalities

Xela,l
I(Jxy, = (I, <|——=lx—yll., Vx, yeER", r=1....,n.
o, + o

i 1]

This implies that

N o= la,l _ _ )
c<omax |2 eyl Y yeRY

lgign [l”+(l’l

| Jx —Jy

Therefore. (3.6) shows that J is a contraction mapping from H into H. Since the
generalized Jacobi scheme is the successive approximation scheme assoctated with J, its
convergence follows from Banach’s contraction mapping principle.
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The solution z=1(z,,..., 2 z,) of (3.3) is also a fixed point of the operator defined, for
xeR" by Gx=(Gx),,.... (G.\)n) where

—(b,— Y a,(Gx), —- Zalj.r])]. 1=1..... n.
1<t

1 1>

(Gx), =

We prove by induction that

Zj.im | amj'
Ay, T

mm m

|(G\ (GV ml < ( )” (\'__V”x, VX, ‘\’ER”. (37)
holds for all m. It is obviously true if m = 1, because of the definition of G and of the
a,. Suppose k> 1 and that it holds for m=1,...,k— 1.

Then it follows from (3.6) that [(Gx),, — (Gy), | < |l x — yll« for all such m. so that

m

(69 (G301 < X 2 (), - (an), |+ & +' 5=y,

J<k Qex T Oy 1>k Gk TG

lay, |
<y ——lx=yl-+ X —"—lx—yl

j<AaAA+a gk Gk T

X la,l
< max | 22— lx—yll.., Vx, yeR".
+ «,

l<ign a,,

This proves, by induction, that (3.7) holds for all iterates, and hence, that

ryj+ila,l
IGx—Gyll. € max (—/

l<ign a

lx—yll. Vx, yeR"
i al
Since (3.5) is the successive approximation scheme associated with G. the conver-
gence of the generalized Gauss—Seidel scheme also follows from Banach’s contraction
mapping principle. O

Remark 3.2. If @, = -+ =qa,=0, then (3.6) reduces to the diagonal dominance
condition:
Zlaul<a_,,, t=1,...,n. (3.8)
J#1

It is well known (cf. [24]) that if the matrix A = (q,,) satisfies this condition then the
equation Az=25, has a unique solution z, and the iterates from the Jacobi and
Gauss—Seidel schemes converge globally to z. However, if at least one of the «; is
strictly positive (that is, if some g, is strongly maximal monotone), then condition (3.6)
— which suffices for the convergence of (3.4) and (3.5) — is weaker than the diagonal
dominance condition (3.8).

In order to make the numerical schemes (3.2). (3.4) and (3.5) fully constructive, we
require algorithms for calculating the resolvents (1 + wg)~'(x), for all u> 0. Fortu-
nately, such algorithms exist for the most common maximal monotone operators g that
occur in applications.
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For instance, in the nonlinear complementarity problem we come across the operator

gl ox) =g (x) X Xg,(x,).
with the g, defined by (1.3). In this case the resolvent is given by the simple expression

=1 - “
(T+ug) (x...... vy =(x .....x)), Vu>0.
Some models of heat flow through thick walls [11] employ variational inequalities
which — when discretized — reduce to generalized equations involving the operator

glx,o.,x,)=dd,(x)) X - xad,(x,).
in which each ¢, is of the form (3.1). An explicit formula for resolvent of such an
operator is given in [36. Example 2b).

If g(x)=x| x|’ where g is a real exponent greater than or equal to one, then the
resolvent can be computed with an algorithm given in [36. Example 2a]. However, if the
exponent g has value 3, 4 or 5. then explicit formulae for the resolvent can be found in
[38].

If glx...... v )=l [0 vlx, %) (g, 21,...,¢,=1). then letting
g(x)=xlx 1% fort=1.....n we have

(1+ug) (xex,) = (( L+ug) '(x).. ... (1 +ug,) I(x"))‘
Therefore we can compute each component of the resolvent by using the algorithms
employed in the previous paragraph.

The general variational inequality problem employs the operator g = d¢. where ¢ is
an indicator convex function of the form (1.6). In this case (1 + ug)~' is independent
of u and coincides — cf. [39, Lemma 4.1] — with the orthogonal projection onto a closed
convex set. Explicit expressions for such projections can be given in many cases.
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