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Abstract 

In this paper we present a new algorithm for the solution of nonlinear complementarity problems. 
The algorithm is based on a semismooth equation reformulation of the complementarity problem. 
We exploit the recent extension of Newton's method to semismooth systems of equations and 
the fact that the natural merit function associated to the equation reformulation is continuously 
differentiable to develop an algorithm whose global and quadratic convergence properties can be 
established under very mild assumptions. Other interesting features of the new algorithm are an 
extreme simplicity along with a low computational burden per iteration. We include numerical 
tests which show the viability of the approach. 

Keywords: Nonlinear complementarity problem; Semismoothness" Smooth merit function; Global 
convergence; Quadratic convergence 

1. Introduct ion 

We cons ider  the nonl inear  complementar i ty  problem,  N C P ( F )  for short, which is to 

find a vector  in R" sat isfying the condi t ions  

X > O, F ( x )  > O, x T F ( x )  = O, 

where  F : N n --, R"  is a given funct ion which we shall always assume to be cont inuously  

differentiable.  

* Corresponding author. Email: soler@peano.dis.uniromal.it. 
I Email: deluca@newton.dis.uniromal.it. 
2 Email: kanzow@math.uni-hamburg.de. 

0025-5610 Copyright @ 1996 The Mathematical Programming Society, Inc. 
Published by Elsevier Science B.V. 
Pll S0025-5610 (96)  00028-7 



408 77 De Luca et al./M~tthematical Programming 75 (1996) 407-439 

The fastest algorithms for the solution of NCP(F)  are Newton-type methods, which, 

however, are in general only locally convergent. In the last years much attention has 
been devoted to techniques for globalizing these local algorithms. To this end there have 
been several different proposals, but a common scheme can be seen to underlie most of 
these methods: 

(a) reformulate NCP(F)  as a system of (possibly nonsmooth) equations (1)(x) = 0; 

(b) define a local Newton-type method for the solution of the system of equations; 
(c) perform a linesearch to minimize a suitable merit function, usually Ilq~(x)r[ 2 or 

Ilcb(x) I], in order to globalize the local method. 
There are several possibilities to redefine NCP(F)  as a system of equations. The first 

proposal is probably due to Mangasarian, see [29], where a class of reformulations, 
mainly smooth ones, is described; the smooth reformulation approach has been further 
explored in [9,15,25-27,30,32,49]. In the last years, however, nonsmooth reformula- 
tions have attracted much more attention [ 5,7,8,10,14,16,18,20,32,34-36,41,46,54,55 ], 
since they allow the definition of superlinearly convergent algorithms even for degen- 

erate problems, and the subproblems to be solved at each iteration tend to be more 
numerically stable. However, there is a price to pay: the globalization (point (c) above) 
becomes more complex since the merit function IlcI)(x)]l 2 is nonsmooth. Furthermore, 
the subproblems which have to be solved at each iteration, usually (mixed) linear com- 
plementarity problems, are more complex than in the smooth reformulation case. We 
note that a connnon analytical property of the recent nonsmooth reformulations is that, 
though not F-differentiable, they are B-differentiable, so that the machinery developed 
in [34,43-45] can be usefully employed. 

In this paper we describe a new algorithm for the solution of NCP(F)  which is 
both globally and superlinearly convergent. We use a nonsmooth equation reformula- 
tion which is based on the simple function 05(a,b) := v ' ~ + b  2 -  (a + b) which 

was first introduced by Fischer [11] and further employed by several authors, see 
[7,8,12,16,25,27,39,52]. The resulting system of equations is not F-differentiable, but 
nevertheless it is semismooth [31,40]. Semismoothness is a stronger analytical prop- 
erty than B-differentiability so that, using the recent powerful theory for the solution 

of semismooth equations [37,38,40], it is possible to develop a fast local algorithm 
for the solution of NCP(F)  which only requires, at each iteration, the solution of one 
linear system. Furthermore, the natural merit function I1~ (x)II 2 is, surprisingly, smooth, 
so that global convergence through a linesearch procedure can easily be enforced. The 
assumptions under which global and superlinear convergence can be proved compare 
favourably with those of existing algorithms and the overall algorithm seems to convey 
the advantages of both smooth and nonsmooth reformulations of NCP(F)  in a very 
simple scheme. 

The use of the function 05 mentioned above to reformulate nonlinear complementarity 
problems as systems of nonsmooth equations seems a very promising approach. Algo- 
rithms for linear complementarity problems based on this function were considered in 
[ 12,27], while the nonlinear case was studied in [7,8,16,25]. The results of this paper, 
however, are an improvement on previous results because the semismooth nature of the 
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reformulation is here fully exploited for the first time and the overall analysis cmvied out 

is much more refined and detailed than in previous works. While we were completing 

this paper, we became aware of  a recent report of  Jiang and Qi [23] which has some 

similarities with this work in that the same local approach is adopted. However, the 

global algorithm is quite different and the analysis is restricted to the case in which F 

is a uniform P-function. 
This paper is organized as follows, in the next section we collect some background 

material, in Section 3 we state the algorithm and its main properties, Sections 4 and 

5 are devoted to some technical, but fundamental results, while in Section 6 we prove 

and further discuss the properties of the algorithm. In Section 7 we report some prelim- 

inary numerical results to show the viability of  the approach adopted. Some concluding 

remarks are made in the last section. 

Throughout this paper, the index set { 1 . . . . .  n} is abbreviated by the upper case letter 

l. For a continuously differentiable function F : R" --+ R", we denote the Jacobian 

of  F at x E D, '~ by U ( x ) ,  whereas the transposed Jacobian is denoted by V F ( x ) .  

II ' II denotes the Euclidean norm and S(5:, 8) is the closed Euclidean sphere of  center 

2 and radius 8, i.e. S(x, 8) = {x E R" : ] I x -  21[ _< 8}. If  D is a subset of R", 

dist{x [ ~ }  := inl~,.ca Ily - xll denotes the (Euclidean) distance of x to ~ .  If M is 
an n x n matrix with elements Mj~, j , k  = 1 . . . . .  n, and J and K are index sets such 

that J,K C_ {1 . . . . .  n}, we denote by Ma.x the IJ I • IKI submatrix of  M consisting of  

elements Mjk, j E J, k E K and, assuming that mj,  j is nonsingular, by M / M j ,  j the 
- I  Schur-complement of  Mj.s in M, i.e. M / M j ,  j = MK, K -- MK, j M j . j M j . K ,  where K = I \ J. 

If  w is an n vector, we denote by wj the subvector with components w j, j E J. 

2. Background material 

In this section we collect several definitions and results which will be used throughout 
the paper. 

2. I. Basic definitions 

A solution to the nonlinear complementarity problem N C P ( F )  is a vector x* c R" 

such that 

F(x*)  >_ O, x* > O, F ( x * ) T x  * = O. 

Associated to the solution x* we define three index sets: 

o~ := {i [ x~ > 0}, f i : = { i l x * = O = F i ( x * ) } ,  y : = { i l F i ( x * ) > O } .  

The solution x* is said to be nondegenerate if fi = (0. 

Definition 1. We say that the solution x* is R-regular if VF~.~(x*) is nonsingular and 

the Schur-complement of  XTF~.~(x*) in 
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( VF,~.,~(x*) VF~,B(x*)  ) 

VFB,,  (x*)  VFB,,8 (x*) 

is a P-matr ix  (see below).  

Note that R-regularity coincides with the notion of  regularity introduced by Robinson 

in [47] (see also [42] ,  where the same condition is called strong regularity) and is 

strictly related to similar conditions used, e.g., in [ 10,32,36]. 

We next introduce a few classes of matrices and functions and recall some related 

properties. 

Defini t ion 2. A matrix M C R ' 'x ' '  is a 

�9 Po-matrix if each of  its principal minors is non-negative; 

�9 P-matr ix  if each of  its principal minors is positive; 

�9 So-matrix if 

{x E R" I x>_O, x770, Mx>O}:~( i ) .  

It is obvious that every P-matr ix is also a P.-matrix and it is known [4] that every P0- 

matrix is an S0-matrix. We shall also need the lol lowing characterization of  Po-matrices 

[4].  

P r o p o s i t i o n  3. A matrix M C R ' 'x ' '  is a Po-matrix iff for  eveo, nonzero vector x there 

exists an index i such that xi v~ 0 and xi( M.'g)i ~ O. 

Defini t ion 4. A function F : R" -* R" is a 

�9 P0-function if, tbr every x and y in R" with x 4: y ,  there is an index i such that 

xi 4= Yi, ( x i - Y i ) [ F i ( x )  F i ( y ) ]  .>_0. 

�9 P-funct ion if, for every x and v in R" with x v~ y, there is an index i such that 

(xi - Yi) [ ~ ( x )  - Fi(y)]  > O. 

�9 Uniform P-function i f  there exists a positive constant/.z such that, for every x and 

v in N", there is an index i such that 

( x i -  y i ) [F i (x )  - F i ( y ) ]  >_ tzllx _ y]]2. 

It is obvious that every unifbnn P-function is a P-function and that every P-function 

is a P0-function. Furthermore, it is known that the Jacobian of every continuously 

differentiable P0-function is a P0-matrix and that if the Jacobian of  a continuously 

differentiable function is a P-matrix for every x, then the function is a P-function. I f  

F is affine, that is i f  F ( x )  = Mx  + q, then F is a P0-function iff M is a P0-matrix, 

while F is a (uniform) P-function iff M is a P-matrix (note that in the affine case 

the concept of  uniform P-function and P-function coincide).  We finally note that every 
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monotone function is a P0-function, every strictly monotone function is a P-function 

and that every strongly monotone function is a uniform P-function. 

2.2. Differentiability of functions and generalized Newton's method 

Let G : ]R" -+ R" be locally Lipschitzian; by Rademacher's theorem G is differentiable 

ahnost everywhere. If we indicate by Dc the set where G is differentiable, we can define 

the B-subdifferential of  G at x [38] as 

OBG(X) : = { H ' 3 { x k } ,  x k E D a ,  with xlimG'(xk)=H}k~., 

and the Clarke subdifferential of  G at x as 

c)G(x) := co anG(x), 

where co denotes the convex hull of  a set. 

Semismooth functions were introduced in [ 31 ] and immediately shown to be relevant 

to optimization algorithms. Recently the concept of semismoothness has been extended 

to vector valued functions [40].  

Definition 5. Let G : iR" ---, IR" be locally Lipschitzian at x E R". We say that G is 

semismooth at x if 

lim HL,' ( l ) 
HE(IG(x+tu') 

t,' ~c . t lO 

exists for all v E R". 

Semismooth functions lie between Lipschitz functions and C I functions. Note that 
this class is striclly contained in the class of B-differentiable functions. Furthermore it 

is known that if G is semismooth at x then it is also directionally differentiable there, 

and its directional derivative in the direction L: is given by (1). 

A slightly stronger notion than semismoothness is strong semismoothness, defined 

below (see [38] and [40] where, however, different names are used). 

Defini t ion 6. Suppose that G is semismooth at x. We say that G is strongly semismooth 
at x if for any H E 8G(x + d), and for any d ---, 0, 

H a  - G '  ( x :  d) = O ( l l d l l b .  

In the study of  algorithms for the local solution of  semismooth systems of  exluations, 
the following regularity condition plays a role similar to that of the nonsingularity of  

the Jacobian in the study of  algorithms for smooth systems of equations. 

Definition 7. We say that a semismooth function G : R" ~ R" is BD-regular at x if all 

the elements in 3BG(X) are nonsingular. 
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We note that this condition was introduced by Qi in [38] under the name of  strong 

BD-regularity. However, since this turned out to be a central notion, Qi himself called 

the same condition BD-regularity in a number of  subsequent papers, see e.g. [37].  
A generalized Newton method for the solution of  a semismooth system of n equations 

G ( x )  = 0 can be defined as 

x k+l = x k - ( H k ) - l G ( x k ) ,  H k E OBG(x ~) (2 )  

( H  k can be any element in 3BG(x~) ) .  The following result holds [38].  

Theorem 8. Suppose that x* is a solution o f  the system G ( x )  = 0 and that G is 

semismooth and BD-regular at x*. Then the iteration method (2) is well defined and 

convergent to x* superlinearly in a neighborhood o f  x*. I f  in addition, G is direction- 

ally differentiable in a neighborhood o f  x* and strongly semismooth at x*, then the 

convergence rate o f  (2)  is quadratic. 

We finally give the definition of  a SC j function. 

Definition 9. A function f : R" --+ IR is an SC I function if f is continuously differen- 

tiable and its gradient is semismooth. 

SC I functions can be viewed as functions which lie between C 1 and C 2 functions. 

2.3. Reformulation o f  N C P ( F )  

Our reformulation of  N C P ( F )  as a system of equations is based on the following 

two variables convex function: 

05(a,b) := v/~a2 + b 2 - ( a + b ) .  

The most interesting property of  this function is that, as it is easily verified, 

05(a,b) = 0 r a >_ O, b > O, ab = 0; (3) 

note also that 05 is continuously differentiable everywhere but in the origin. The function 
05 was introduced by Fischer [1 1] in 1992, since then it has attracted the attention of  

many researchers and it has proved to be a valuable tool in nonlinear complementarity 

theory [7,8,12,16,22,23,25,27,39,52]. An up-to-date review on the uses of  the function 

05 can be found in [ 13]. 
Exploiting (3) it is readily seen that the nonlinear complementarity problem is equiv- 

alent to the following system of nonsmooth equations: 
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O ( X l , F l ( x ) )  

~ ( Y )  := ~ ( x i ,  F i ( y ) )  = 0 .  

q~(x,,, F,,(x) ) 

It is then also obvious that the nonnegative function 

1 2 1 ~  )2 * ( x )  :-- ~ l l , ~ ( x ) l l  2 = q~(xi,fi(x) 
i=1 

is zero at a point x if and only if x is a solution of NCP(F) ,  so that solving NCP(F)  
is equivalent to finding the unconstrained global solutions of the problem {rain �9 (x)}.  
The following results have been proven in [7] or easily follow from [39, Lemma 3.3]. 
Part (c) has also been shown in the recent paper [22]. 

Theorem 10. It holds that 
(a) ~ is semismooth everywhere; furthermore, if eveo' Fi is twice continuously dif- 

ferentiable with Lipschitz continuous Hessian, then ~ is strongly semismooth 
everywhere; 

(b) �9 is continuously differentiable," furthermore, if evet:y Fi is an SC l function, then 
also "P is an SC' function; 

(c) if  F is a uniform P-fimction then the level sets of  ~I r are bounded. 

3. The algorithm 

In this section we present the algorithm for the solution of NCP(F) .  Roughly speaking 
this algorithm can be seen as an attempt to solve the semismooth system of equations 
�9 (x) = 0 by using the generalized Newton's method described in the previous section 
(see (2) ) .  To ensure global convergence, a linesearch is pertbrmed to minimize the 
smooth merit function 'l ' ;  if the search direction generated according to (2) is not a 
"good" descent direction, we resort to the negative gradient of 'I r. 

Global algorithm. 

Data :x  ~  (0 ,1 /2) ,  e > 0. 
Step 0: Set k = 0. 
Step 1: (Stopping criterion). If I[Vqz(xk)]] < e stop. 
Step 2: (Search direction calculation). Select an element H k in OBOp(x~). 

Find the solution d k of the system 

Hk d = -qb ( x t  ) . 

If system (4) is not solvable or if the condition 

(4) 
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v (xh d k < -PlldkH, ' 

is not satisfied, set d k =  --~Tq~(xk). 

Step 3: (Linesearch). Find the smallest i ~ = 0, 1,2 . . . .  such that 

~ ( x  k + 2 - ? d  k) < q-'(x k) + [ 3 2 - ? V q ~ ( x k ) T d k  

Set x k-~ z = x k + 2-i*dk. k ,-- k + 1 and go to Step I. 

(5) 

(6) 

We note that the above algorithm is virtually indistinguishable from a global algorithm 

for the solution of an F-differentiable system of equations. Formally, the only point which 

requires some care is the calculation of  an element H belonging to C)BCI}(x k) in Step 2. 

This, however, turns out to be an easy and cheap task, as it will be discussed in Section 

7. 
Another point which is worth of  attention is that, if it exists, the direction obtained 

by solving (4) is always a descent direction for the function q~, unless @(x k) = 0. 

This is a standard property of  the Newton direction for the solution of  a smooth system 

of equations, but it is no longer true, in genera[, when the system of equations is 

nonsmooth. To see that this assertion is true, it is sufficient to note that, as it is stated 

in Theorem 10 (b),  W is differentiable at xk; on the other hand, applying standard 

nonsmooth calculus rules (see [3] ), we obtain 

i)qJ'(X k) = { ~ 7 x p ( x k ) }  -- vTq-~(.~. "k) for every V c O~]~(xk); 

so that the expression on the right hand side is independent of  the element V E cT~(x k) 

chosen. Hence we can t ~ e  V = H k and write, taking into account (4),  

This fact clearly shows, once again, the similarity of  our algorithm with Newton's 

method for the solution of a system of equations; furthermore, in our opinion, it also 
indicates that the direction (4) is a "good" search direction even when far from a 

solution of  the system {I~(x) = 0, which is not true for a general semismooth system. 
The stopping criterion at Step 1 can be substituted by any other criterion without 

changing the properties of  the algorithm. In what follows, as usual in analyzing the 
behaviour of algorithms, we shall assume that e = 0 and that the algorithm produces an 

infinite sequence ol' points. The following result, sunmlarizing the main properties of  
the algorittm], will be proved in Section 6, where we shall also discuss the properties of  

the algorithm in greater detail. 

Theorem 11. It holds that 
(a) Each accumulation point of" the sequence {x k} generated by the algorithm is a 

stationary' point of  xp. 

(b) If  one of  the limit points o f  the .s'equelwe {x~}, let us say x*, is an isolated 

solution of  NCP( F),  then {x k} ~ x*. 
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(C) I f  one o f  the limit points o f  the sequence {xk}, let us say x*, is a BD-regular 

solution of  the system do(x) = O, and if  each F, is an SC I function, then {x k } 

x* and 

( 1 ) eventually d k is always given by the solution of  system (4) (i.e., the negative 

gradient is never used eventually), 

(2) eventually the stepsize o f  one is always accepted so that x k+l = x k + d ~, 

(3)  the convergence rate is superlinear; furthermore if  each Fi is twice continu- 

ously differentiable with Lipschitz continuous Hessian, then the convergence 

rate is quadratic. 

The results stated in this theorem are somewhat "crude" and need to be completed 
by answering the following two questions. Under which conditions is a stationary point 

x* of the function ~ a global solution and hence a solution of NCP(F)?  In the next 
section sufficient and necessary-and-sufficient conditions will be established in order to 

ensure this key property. The second question is: under which conditions is a solution 
of NCP(F)  a BD-regular solution of the system (D(x) = 0? In fact, according to 
Theorem 11, a superlinear (at least) convergence rate of the algorithm can be ensured 
under the assumption of BD-regularity of solutions of the system do(x) = 0. More in 
general, the possibility of using the (hopefully) good "second order" search direction 
(4) even far from a solution is closely related to this issue. Conditions guaranteeing the 
nonsingularity of all the elements in c ~ ( x )  will be analyzed in Section 5. 

We note that, as discussed in [38], other strategies are possible to globalize the local 
Newton method (2) for the system do(x) = 0. However the one we chose here, i.e., 

using the gradient of qr in "troublesome" situations, appears to be by far the simplest 
choice. The possibility of using the gradient, in turn, heavily depends on the surprising 
fact that {1~ l[ 2 is continuously differentiable, which is not true, in general, for the square 

of a semismooth system of equations. This peculiarity of the system do (x) = 0 paves the 
way for a simple extension of practically any standard globalization technique used in 
the solution of smooth systems of equations: Levenberg-Marquardt methods, trust region 

methods etc. In this paper we have chosen the simplest of these techniques since we 
were mainly interested in showing the potentialities of our approach and its numerical 
viability. 

4. Regularity conditions 

In this section we give some (necessary-and-) sufficient conditions for stationary 
points of our merit function 'P" to be solutions of NCP(F) .  We call these conditions 
regularity conditions. We first recall a result of Facchinei and Soares [7, Proposition 
3.1]. 

Lemma 12. For an arbitrary x E •", we have 

c)q)(x) T C_ Da(x )  + V F ( x ) D b ( x ) ,  
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where D , ( x )  = diag(al ( x )  . . . . .  a,, (x ) ) ,  Dt,(x)  = diag(bl ( x )  . . . . .  b, , (x)  ) E IR "xn are 

diagonal matrices whose ith diagonal element is given by 

xi F , (x )  
a i ( x ) -  I](x~,F~(x))lI ~' b ~ ( x ) -  II(x~,F~(x))ll l, 

i f  (xi ,  F i (x )  ) gO,  and by 

a i (x )  = se i -  1, h i (x )  = p i -  1 f o r  every (( i ,  Pi) E R ~- such that [l(~~,pi)ll-< 1, 

i f  (xi ,  F i (x )  ) = O. 

In the lollowing, for simplicity, we sometimes suppress the dependence on x in our 

notation, For example, the gradient of  the differentiable function qr can be written as 

follows: 

Vqs(x)  = Da(x)cI~(.r) + V F ( x ) D t , ( x ) c l ~ ( x )  = D,cI~ + VFDt,@. 

In the analysis of  this section, the signs of the vectors D,,r C R" and Db~ E R" play 

an important role. We therefore introduce the index sets 

C := {i C I [ xi >_ O, F , (x)  >_ O, x iF , (x )  = 0} (complementary indices), 

:= 1 \ C (residual indices), 

and further partition the index set 7~ as follows: 

:= {i E 7~ I xi > O, El(X) > 0} (positive indices), 

. A / ' : = 7 ~ \ ~  (negative indices). 

Note that these index sets depend on x, but that the notation does not reflect this 

dependence. However, this should not cause any confusion because the given vector 

x E ~"  will always be clear from the context. 
The names 7:' and JV" of  the above index sets are motivated by the following simple 

relations, which can be easily verified: 

( D a ~ ) i  > 0 r  ( D l ~ ) i  > 0 r i ~ 7 ~, 

( D , ~ ) i  = 0 ~  (Di, a))i = 0 - :  ;, i E C, (7) 

(D,r < 0 " = ~  (Dh*)~ < 0 r  i C .N'; 

in particular, the signs of  the corresponding elements of D,cI~ and DbcI) m'e the same. 
The following definition of regular vector is motivated by some similar definitions in 

the recent papers of Pang and Gabriel [36, Definition 1], Mot6 [32, Definition 3.1] 

and Ferris and Ralph [10, Definition 2.4]. 

Definition 13. A point x C R" is called regular if for every vector z :~0 such that 

zc = O, zT~ > O, z.~c < O, (8)  
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there exists a vector y E JR" such that 

yp >_0, YN <_ O, y~ ~ O 

and 

y T V F ( x ) z  >_ O. 

417 

(9) 

It is difficult to compare our definition of  regular vector with the corresponding ones 

in [ 10,32,36] since we use different index sets (the definition of the index sets depends 

heavily on the merit function chosen). Nevertheless, we think that the following points 

should be remarked: 

(a) As pointed out by Mor6 [32],  the definition of  regularity given by Pang and 

Gabriel [36] depends on the scaling of  the function F, i.e., a vector x E R" 

could be regular for N C P ( F )  in the sense of  Pang and Gabriel [36],  but not 

for the equivalent problem NCP(E~), where E~.(x) = s F ( x )  for some positive 

scaling parameter s. Obviously our definition is independent of  the scaling of  E 

(b) In the related definition of  regularity given by Mor4 [32] and Ferris and Ralph 
[10],  a condition similar to (9) is employed. However, they have to assume 

y T V F ( x ) z  > 0 instead of  (9).  In this respect, our definition of regularity seems 

to be weaker. For example, if V F ( x )  is a positive semidefinite matrix, then we 

can choose 3' = z and directly obtain from Definition 13 that x is a regular vector. 

More in general, whenever directly comparable, our regularity conditions appear 

to be weaker than those introduced in [ 10,32,36]. 

The following result shows why the notion of  regular vector is so important. 

Theorem 14. A vector x C R n is a solution of  NCP( F) i f  and only if x is a regular 

stationary point o f  "I'. 

Proof. First assume that x C R" is a solution of  N C P ( F ) .  Then x is a global minimum 

of  gr and hence a stationary point of'IP by the differentiability of  this function. Moreover, 

= .IV" = 0 in this case, and therefore the regularity of x holds vacuously since z = zc, 

and there exists no nonzero vector z satisfying conditions (8).  

Suppose now that x is regular and that V ' I r (x)  = 0. As mentioned at the beginning 

of  this section, the stationary condition can be rewritten as 

DaO + V F ( x ) D b ~  = O. 

Consequently, we have 

yT(D~qb) + y T V F ( x )  (DI, OP) = 0 (lo) 

for any y C R". Assume that x is not a solution of  N C P ( F ) .  Then 7-4. -7' 0 and hence, 

by (7),  z := Db~ is a nonzero vector with 

ze -- O, zp > O, z.,V < O. 
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Recalling that the components of  Dat'I ) and z = Db~ have the same signs, and taking 
y C R ~ from the definition of  regular vector, we have 

,T yT(Daq))  = yT (D , ,~ )C  + yT(Daeb)7~ + )o~'(D,,~).V > 0 (11) 

(since Yrr 7(0) and 

y T V F ( x )  (DbdP) = y V ~ F ( x ) =  > 0. (12) 

The inequalities ( I1 )  and (12) together, however, contradict condition (10).  Hence 

= ~. This means that x is a solution of N C P ( F ) .  [] 

From Theorem 14 and the remark (b) after Definition 13, we directly obtain that 

a stationary point x is a solution of N C P ( F )  if the Jacobian matrix F ' ( x )  is positive 

semidefinite. In particular, we have the result that all stationary points of  �9 are solutions 

of  N C P ( F )  for monotone functions F, i.e., we reobtain in this way a recent result of  

Geiger and Kanzow [ 16, Theorem 2.5 ]. 

In the remaining part of  this section we shall investigate weaker sufficient conditions 

which ensure regularity of  a point. In light of Theorem 14 these conditions also ensure 

that stationary points of  the merit function ",II are global minimizers of  �9 and hence 

solutions of  N C P ( F ) .  
Let T q RI7r215 denote a diagonal matrix with diagonal entries given by 

+1 i f i E 7  9, 
T/i:= - 1  i f iE,A/" 

and note that T/" = / .  Using this notation, we can prove the following result. 

Theorem 15. Let x E R" be a vector such that the matrix TF ' ( x )Tc~T  is an So-matrix. 

Then x is a regular" point. 

Proof. By the definition of  S0-matrix and the assumptions made, there exists a nonzero 
vector )7~ such that 

TF' ( x)~7~T)7?. > O. (13)  .97~ >_ 0 and 

Let y be the unique vector such that 

yr = 0, y n  = T ) ~ ;  

by the definition of  T and (13) we have that yTr 7(0 and 

y~ > 0, y• <_ 0. 

Then it is easy to see that, for every z E R" such that z 7 (0 and 

zc = O, zp > O, z,v < O, 

we can write, recalling (14),  

(14) 
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y T V F ( x ) z  = y ~ V F ( x ) ~ z e z ~  

= y~  ( TT) V F(  x )~re(TT)  zTz 

= (y~zT) (TVF(x)7~reT)  ('/'ere) 

= 9~T(F~(x)7~re)TT(Tzre) >_ O, 

where the last inequality follows by (13) and the fact that (Tzre) > 0. [] 

419 

(15) 

In the following corollary, we summarize some simple, but noteworthy consequences 

of Theorem 15. First recall that a vector x E R" is called feasible for N C P ( F )  if x _> 0 

and F ( x )  >_ O. 

Corol lary  16. It holds that 

(a) I f  x E R" is a vector such that the submatrix F ~ ( x ) ~  is a Po-matrix, then x is 

a regular point. 

(b) I f  F : R" ~ R" is a Po-function, then all vectors x E R" are regular points. 

(c) I f  x E N" is a feasible vector such that the submatrix F(x)TzTz is an So-matrix, 

then x is a regular point. 

Proof. 
(a) 

(b) 

(c) 

Since a square matrix M is a P0-matrix if and only if the matrix D M D  is 

a P0-matrix for all nonsingular diagonal matrices D, the assertion is a direct 

consequence of  Theorem 15 and the fact that every P0-matrix is also an S0- 

matrix. 
Since F is a continuously differentiable P0-function, its Jacobian F1(x) is a P0- 

matrix for all x E R", see Mord and Rheinboldt [33, Theorem 5.8]. The second 

assertion is therefore a direct consequence of  part (a) since, by definition, all 

principal submatrices of a Po-matrix are also P0-matrices. 
Since x is assumed to be a feasible vector, we have .A/" = 13. Hence the diagonal 

matrix T introduced before Theorem 15 reduces to the identity matrix, and part 

(c) follows directly from Theorem 15. [] 

We finally prove a result which includes and generalizes the sufficient conditions for 

regularity obtained so far. To this end we introduce some further notation. Let C be such 

that 13 C C C C. We consider the following partitioned submatrix of  the Jacobian F ' ( x ) :  

U ( x )  = 
F ' (X)dd  F '  (X)dTv F~(x)&v "~ 
F'(x)7~ e F'(x).p79 F ' (x )~ .& r 

F ' (x )Ar  d F ' ( x ) H ' ]  z' f ' ( x ) H d V ' J  

and define 

J ( x )  := 7~P'(x)7 ", 

where the transformation matrix 7 ~ has the diagonal structure 
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+ l d  0 ) 
7 ~ := +l~p . 

0 - I v "  

Then we have 

F, (x)dc? F'(x)dT~ 
](x)  = F ' ( x )pe  F ' ( x ) p P  

- F ' ( x ) N e  -F ' (x )V.7  ~ 

= ( F ' ( x ) d d  ] ( x ) e ~  ) 
](x)~e i ( x ) ~  ' 

(16) 

- F ' (X)dN ) 
-F'(x)7~N" 
F' ( x)HA/" 

(17) 

where, we recall, 7~ = 7 ~ U.N'. Using this matrix, we can prove the following result. 

The o rem 17. Let x ~ R" be given and assume that the submatrix Fr (x )dd  is nonsin- 
gular atzd the Schur-complement of this matrix in ](x)  is an So-matrix. Then x is a 
regular point. 

Proof.  We first show that there exist ~p, YH >- 0 with .97~ 5 ~ 0 and qp, qv. >_ 0 such 
that 

] ( x ) . 9  = q, (18)  

where 9 = ( .gd ,~p,~v. )  "r, q = (Od,qp,qH) T. In view of  (17) ,  system (18) can be 
rewritten as 

F ' (X)ddY d + ](x)dTzyza = 0 o, (19) 

](x)Tadyg + ](x)7~z~yra = q~. (20) 

Solving the first equation for ~gd yields 

.ge = - F '  ( x) dc Y( x) eT~ .9ze" (21) 

Substituting this into (20) and rearranging leads to 

( ]( x)~z~ - ] ( x )~dF '  ( x) ScJ( X)d~ ) .9~ = qsz. (22) 

Since, by assumption, the matrix of  the linear system (22) is an S0-matrix, there exists 

an 97~ _> 0, y~z 7(0, and a qre >_ 0 satisfying this system. Then define .9c by (21) and 
set y := T.9, where .f E 1t~" and the nonsingular diagonal matrix T E R n• are obtained 
from .9 and 7 ~ respectively by setting 

.')i = Yi if i E C U 7~, .9i = 0 otherwise, 

Tii = fcii i f i E C U T ~ ,  Tii = l otherwise. 

By definition we have yp  = .9~ = 9p > 0, y~- = - .gN = -YN" <- 0 and yze 4 0, so 
that the vector y E IR" satisfies all the conditions required in Definition 13 for a regular 
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vector x. Now let Z 5 / 0 be an arbitrary vector with zc = 0, zT~ > 0 and zN < 0, then 
:= Tz satisfies the conditions Zc = 0c, YT~ > 0, zN > 0. Therefore, define ~ E R I~u7r 

by setting Zi = :~ for i E CLJT~. Then, since zi = Yi = 0 for i E C \C ,  and since T = T - l ,  
we obtain from (18):  

yTVF(x)z  = zT F~ (x)y 

= zTTI'Ft(x)TFy 

= zT(TF~(x)T)y 

= ~T,/(x)y 

= ~Tq 

= ~,q~'  + Z~'qN 

> 0 ,  

i.e., x is regular. [] 

I f  C = 0, then Theorem 17 reduces to Theorem 15. If  C = C we obtain a result 

similar to the ones in [ 10,32,36]. Note however that in all these papers a certain Schur- 

complement is assumed to be an S-matrix, which, again, is a stronger assumption than 

the one used in our Theorem 17. 

In order to illustrate our theory, consider N C P ( F )  with F : R + -+ R 4 being defined 

by 

I 3x~ + 2xlx2 + 2x~ + x3 + 3x4 - -  6 
2 9 2x 1 + Xl 6- x-~ + 3x3 + 2x4 -- 2 

F(x) := 3x21 + xlx2 + 2x~ + 2x3 + 3x4 - 1 

9 -1- 9 x~ , 3X~ + 2x 3 6- 3x4 -- 3 

This small example is due to Kojima [28] and is a standard test problem for nonlinear 

complementarity codes. Harker and Xiao [20] report a failure of  their method for this 

example. Their method converges to the point 

2 = ( 1.0551, 1.3347, 1.2681,0) T, 

where 

F(2) = (4.9873,6.8673,9.8472,  5.9939) T, 

which is obviously not a solution of N C P ( F ) .  The corresponding Jacobian matrix is 

( 9'0001 7'4491 1 i /  
F1(2 ) _- 5.2204 2.6695 3 

7.6653 6.3940 2 
2.1102 8.0084 2 
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Obviously, F ' ( 2 )  is an S0-matrix. Since .t is also feasible, Corollary 16 (c) guarantees 
that our method will not tenninate at 2. 

We note that our conditions for a stationary point to be a solution of  N C P ( F )  are very 
weak. Similar results, which are almost as strong as those given in this section, have 

been shown only by Mor6 [32],  who considers the bound constrained reformulation 

min~ll lh(x,y)l le  s . t . x > 0 ,  v > 0  (23) 

of N C P ( F ) ,  where 

F ( x )  - y ) 
h(x,  y ) : =  gr 

and Y := diag(yl . . . . .  y,,) E R ' '• Mord proves that if z* := (x*,y*)  is a stationary 

(i.e., Karush-Kuhn-Tucker) point of  (23) such that a certain submatrix of  the Jacobian 

F / ( x  *) is a nonsingular P0-matrix, then x* is a solution of  N C P ( F ) .  The fi)llowing 

example shows that this result is not true without this nonsingularity condition: let n = 2 
and define F : !R 2 -~ R ~ by 

(~ '0)(;;) + (5.)  : ( . ; , . )  
Obviously, F: (x ) ,  along with all its principal submatrices, is a singular P0-matrix for 

all x E R: ,  and it is easy to verify that the vector z* = (x* ,y*)  := (0, 1,0, 1/2) is a 

stationary point of  (23).  However. x* is not a solution of N C P ( F )  since x~F2(x*) = 1. 
On the other hand, by Corollary 16 (b) x* is a regular point and therefore cannot be a 

stationary point of  xp. 

5. Nonsingularity conditions 

In this section we study conditions which guarantee that all elements in c?O(x) are 

nonsingular. 

We begin with three lemmas that will be needed later in this section. 

L e m m a  18. l f  M ~ R ''x'' is a Po-matrix, then every matrix qf  the form 

D.  + Dt~M 

is nonsingular fbr  all positive definite (negative defipzite) diagonal matrices D. ,  Dt, E 
~ 11 X n * 

Proof. We only consider the case in which the two matrices are positive delinite, the 

other case is analogous. Assume that M is a P0-matrix and D,, := diag(al . . . . .  a,,), Dr, 

:= diag(bl . . . . .  b,,) are positive definite diagonal matrices. Then (D~, + D h M ) q  = 0 for 

some q E R" implies D,q  = -Dt ,  Mq  and therefore qi = - (  bi/ai) ( Mq) i  ( i ~ I ) .  Since 
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M is a Po-matrix, we get from Proposition 3 that q = 0, i.e., the matrix Da + DbM is 

nonsingular. [] 

We note that it is also possible to prove the converse direction in the above lemma, 

i.e., the matrix Da + DbM is nonsingular for all positive (negative) definite diagonal 

matrices Da, Db E R "x" if and only if M is a P0-matrix. In the following, however, we 

only need the direction stated in Lemma 18. 

L e m m a  19. Let M be any matrix and consider the following partition 

(ML.L ML1) 
M = \ Mj, L M j ,  j " 

Assume that 

(a) ML,L is nonsingular, 

(b) M/MLL is a P-matrix ( Po-matrix), 

then, for ea,ery index set K such that L C K C L U J, MK, K/ML,L is a P-matrix 

(Po-matrix). 

Proof. The assertion easily follows by the fact that MK, K/ML.L is a principal submatrix 

of  M/ML.I. which, in turn, is a P-matrix (P0-matrix). [] 

We now introduce some more index sets: 

cr :={i  C 1 ] xi > 0, Fi(x) = 0 } ,  

/ 3 : = { i c 1  [ xi =O, Fi(x) = 0 } ,  

y : = { i  E l lxi=O, Fi(x) > 0}, 

,:s:= i \ {o, u/9 u.y} 

(once again, we suppress in our notation the dependence on x of  the above index sets). 

If  the point x under consideration is a solution of N C P ( F )  then 8 = (3 and the sets o~, 

/3 and y coincide with those already introduced in Section 2. Using the notation of  the 

previous section, the index sets or,/3 and y form a partition of  the set C, whereas 8 

corresponds to what has been called 7s in Section 4 (here we changed the name of  this 

set just for uniformity of  notation). Note that/3 denotes the set of  degenerate indices at 

which qb is not differentiable. Further note that at an arbitrary point x E R", the index 
sets oL,'y and, in particular,/9 are usually very small (and quite often empty). 

The last lemma is introduced in order to simplify the proof of  the main theorem 

(Theorem 21). It gives conditions which guarantee that all elements in Oqb(x) are 

nonsingular, assuming /3 = 0. This result will then be used to prove the general case 

/940, 

L e m m a  20. Let x c N n be given and set M := U ( x ) .  Assume that 

(a) /9(x) = 0, 
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(b) Ma,a is nonsingular, 
(c) the Schur-complement M.u6,,.ua/M.,. is a Po-matrix. 

Then the function �9 is differentiable at x and the Jacobian matrix ~ '  ( x) is nonsingular. 

Proof. Since f l (x )  = 0, the function r is differentiable at x with ~ ' ( x )  = Da + DaM 
where D~, and Dr, are the diagonal matrices introduced in Lemma 12. Let q E R" be an 
arbitrary vector with (D,, + DhM)q = 0. Writing 

( D,,,. ) 

Da = Da,r , 
D ,,.a 

I Db,,~ \ 

( D~"r Dh,a) ' 
D1, 

( M~,.~ Mc,,r m,~.6"~ 
M= Mr'~' Mr'r Mr'61 ' 

M&. M6,r Ma.a ] 

q = (q~,, qr, q,s )r, 

where D,,.a, Da#, 
the equation (D.  

. , .  are abbreviations for the diagonal matrices (D,,) . . . .  (Da)y.~, . . . . .  
+ DhM)q = 0 can be rewritten as 

M. . .q .  + M..rqr + M,.,~qa =0,~, (24) 

Da,rqr = Or, (25) 

Da,aq~ + Db.6M6,.q,r + Dt,.~Ma, rqr + Dt,.eMs.6q6 = 0,% (26) 

where we have taken into account that, by Lemma 12, Da.,~ = O~.,,~,Db,r = 0r,r and 
that Dt,,. is nonsingular. Since the diagonal matrix Do.r is also nonsingular, we directly 
obtain 

qr = Or (27) 

from (25). Hence Eqs. (24) and (26) reduce to 

M..~.q. + M.,~q~ =0. ,  (28) 

D,,,6q~ + Dh,aM~,.q. + Dt,.~M~,~q~ = 0a. (29) 

Due to the nonsingularity of the submatrix M., . ,  we directly obtain from (28) 

- 1  q= = - M ~  , ,M. aq~. (30) 

Substituting this into (29) and rearranging terms yields 

(D.,a + Db,,s [M&s - '  - Ma,,~M,~,~M,,,a]) qa = Oa. (31) 

According to the negative definiteness of the diagonal matrices Da,a and Db,6, we obtain 
from assumption (c), Eq, (31) and Lemma 18 that qa = 0a. This, in turn, implies that 
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q,~ = 0,~ by (30). In view of (27), we therefore have q = 0, which proves the desired 

result. [] 

Theorem 21. Let x E]K" be given, and set M := F ( x ) .  Assume that 
(a) the submatrices M~,~ are nonsingularfor all ce C_ & C_ (a  U/3), 
(b) the Schur-complement M.u/3u~,c,u~u~/M... is a Po-matrix. 

Then all elements G E 3 ~ ( x )  are nonsingular. 

Proof. We first note that by Lemma 19 and the assumptions made, the Schur-complement 

M,~uL,~u3/M,~,,~ is a P0-matrix tbr every ~ C 6 C (6 U/3). 
Let us now consider a C & C ( a  U/3). We prove that the Schur-complement 

M ~uLe~u3/ M ~.~ 

is a Po-matrix for all S C 6 C ~ U [ (/3 U oe) \ &]. By assumption (a) and the quotient 
formula for Schur-complements (see Cottle, Pang and Stone [4, Proposition 2.3.6]), 

we have that M~.c~/M,~.,~ is nonsingular and 

M~u3,~u3/M~,c~ = (Mc~u3.~u~/M,r,,~) / (Mc~,a/M~,,~). (32) 

By the first part of the proof, the matrix Mau3,~u3/M~,,,~ is a P0-matrix. Hence, recalling 
that Lemma 2.3 of Chen and Harker [2] states that the Schur-complement of a non- 
singular principal minor of a P0-matrix is also a P0-matrix, we have that the right-hand 
side of (32) is a P0-matrix. Therefore the matrix on the left-hand side of (32) is also 

a P0-matrix. 
Now, recalling that/3 denotes the set of degenerate indices at which (xi, Fi(x))  = O, 

and considering ((i ,Pi) E R z such that [[((i, Pi)I[ - 1 as in Lemma 12, let us partition 

the index set/3 into the following three subsets: 

/31 :={i E / 3 l ~ i  > O, pi =0},  

/32 := {i E/31 = 0, pi > 0},  

/33 :=/3\ (/31U/32), 

and define ~ := a U/31, "/:= Y U/3z and ~ := ~ U/33. It is now very easy to see that the 
nonsingularity of any element of 3 ~ ( x )  can be proved following exactly the lines of the 
proof of Lenuna 20 by replacing the index sets a,  y and fi by c~, "~ and ~, respectively, 
and taking into account assumptions (a) and (b).  [] 

In view of Lemma 19 the assumptions (c) of Lemma 20 and (b) of Theorem 21 
are satisfied, e.g., if the Schur-complement M/M,~,,~. is a Po-matrix. Due to Chert and 
Harker [2, Lemma 2.3], Schur-complements of nonsingular submatrices of a P0-matrix 
are again Po-matrices, hence assumption (b) of Theorem 21 is satisfied in particular 
if U ( x )  is a P0-matrix. In turn it is known, see [33, Theorem 5.8], that U ( x )  is a 

P0-matrix if F itself is a P0-function. 
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In the next two corollaries we point out two simple situations in which the assumptions 
of  the previous Theorem are satisfied. The first of  the two corollaries was already proved 
by Facchinei and Soares [8, Proposition 3.2]. 

Corollary 22. Let x* E R" be an R-regular solution of  NCP( F).  Then all the elements 

o f  the generalized Jacobian Od) ( x* ) are nonsingular. 

Proof. We prove that assumptions (a) and (b)  of  Theorem 21 are satisfied. From 

the definition of R-regularity we have that M,~., is nonsingular and that the Schur- 
complement of  M,.,~ in Al,~ug.,u~ is a P-matrix. By [35, Lemma 1], these conditions 
directly imply assumption (a).  Since x* is a solution of N C P ( F ) ,  we also have 8(x*)  = 
~, so that assumption (b)  is obvious by the R-regularity. [] 

Due to the upper semi-continuity of  the generalized Jacobian (see Clarke [3, Proposi- 
tion 2.6.2 (c) ] ), Corollary 22 remains true for all x in a sufficiently small neighbourhood 
of an R-regular solution x* of N C P ( F ) .  

Corollary 23. Suppose that U ( x )  is a P-matrix. Then all the elements of  the gener- 

alized Jacobian c ~  ( x)  are nonsingular. 

Proof. Since every principal submatrix of a P-matrix is nonsingular and the Schur- 
complement of  every principal submatrix of a P-matrix is a P-matrix,  we obviously 
have that the assumptions of  Theorem 21 are satisfied. D 

Jiang and Qi [23, Proposition 1 ] recently proved that all elements of  the generalized 
Jacobian O~b(x) are nonsingular if F is a uniform P-function. Since it is not difficult 
to see that the Jacobian matrices of a uniform P-function are P-matrices, we reobtain 
their result as a direct consequence of Corollary 23. 

6. Convergence of the algorithm 

The main aim of this section is to prove and discuss Theorem 1 i. 

Proof of point  (a) of  Theorem 11. Suppose, renumbering if necessary, that {x t} --~ 
x*. We first note that if, for an infinite set of indices K, we have d k = - v q s ( x  k) 

for all k E K, then x* is a stationary point of qz by well known results (see, e.g., 
Proposition 1.16 in [1 ] ) .  Hence, withoul loss of generality, to prove the theorem we 
only need to consider the case in which the direction is always given by (4).  Suppose, 
by contradiction, that V ~ ( x * )  4: 0. Since the direction d ~ always satisfies (4) ,  we can 
write 

]l~p(x~)ll = IlHkdkll <_ IlHkll Ildkll, (33) 

from which we get 
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IId~ll > II~(xk)ll (34) 
- iiHkll 

(recall the IlH~ll cannot be 0, otherwise (33) would imply r k) = 0, so that x ~ would 
be a stationary point and the algorithm would have stopped). 

We now note that 

0 < m ~ Ildkll ~ M, (35) 

for some positive m and M. In fact if, for some subsequence K, {lld~ll}g --, 0 we have 
from (34), that { l l , ~ ( x  ~) TT}x ~ 0 because H ~ is bounded on tile bounded sequence {x  ~ } 
by known properties of the generalized Jacobian. But then, by continuity, ~ ( x * )  = 0 

so that x* is a solution of the nonlinear complementarity problem, thus contradicting 

the assumption Vxtt(x *) 4: 0. On the other hand J[dkll cannot be unbounded because, 
taking into account that V q ' ( x  ~) is bounded and p > 2, this would contradict (5). 

Then, since (6) holds at each iteration and xp is bounded from below on the bounded 
sequence {x k} we have that {qZ(xk+~) - q r ( x ~ ) }  ~ 0 which implies, by the linesearch 

test, 

{ 2 - i k V ~  ( xl~) T d k} --~ O. (36) 

We want to show that 2 -ik is bounded away from 0. Suppose the contrary. Then, 
subsequencing if necessary, we have that (2 -ik} ~ 0 SO that at each iteration the 

stepsize is reduced at least once and (6) gives 

q t ( xk  + 2 - ( ? - l ) d k )  _ qt(Xk ) 
>/3Vqr  (xk)Tdk. (37) 

2--(?-1) 

By (35) we can assume, subsequencing if necessary, that {d k} ---, d 4: 0, so that, 

passing to the limit in (37), we get 

Vqr (x*)Td _> f l V q ~ ( x * ) T d .  (38) 

On the other hand we also have, by (5), that Vq~(x*)Td < -pl ld]l  p < 0, which 

contradicts (38); hence 2 -ik is bounded away from 0. But then (36) and (5) imply 
that {d k} --~ 0, thus contradicting (35), so that xuqs(x*) = 0. [] 

Proof  o f  point (b) of Theorem 11. Let {x k} be the sequence of points generated by the 
algorithm and let be x* the locally unique limit point in the statement of the theorem; 
then x* is an isolated global minimum point of q~. Denote by ~ the set of limit points 
of the sequence {xk}; we have that x* belongs to ~ which is therefore a nonempty 
set. Let fi be the distance of x* to s'l \ x*, if x* is not the only limit point of {xk}, 1 
otherwise, i.e. 

inf { l lY-x*l l}  i f ~ \ x * 4 = O ,  
= yEa\x* 

1 otherwise; 
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since x* is an isolated solution, we have g > 0. Let us now indicate by 1)1 and 1)2 the 
following sets, 

D, = {y E R n : dist{y I 0`} <- 6/4}, {'~2 = {y ~ R " :  Ilyll > IIx*ll + s}. 

We have that for k sufficiently large, let us say for k >_ k:, x k belongs at least to one of 
the two sets l~l, O.2. Let now K be the subsequence of all k for which [Ix k -  x* 1[ _< 6/4 
(this set is obviously nonempty because x* is a limit point of the sequence). Since all 
points of  the subsequence {xk}~: are contained in the compact set S(x*, 6/4) and every 
limit point of  this sequence is also a limit point of {xk}, we have that all the subsequence 
{Xk}x converges to x*, the unique limit point of  {x k} in S(x*, 6/4). Furthermore, since 
x* is a solution of N C P ( F )  we have that {llvqs(xk)]l}x -~ 0 which in turn, by (5) ,  

implies that {d ~} tends to 0. So we can find ,~ > k. such that ]]dkl] < 6/4 if k E K and 
k >_ ~:. Let now ~: be any fixed k > k belonging to K; we can write: 

dist{x~+Xl~ \ x * }  > inf {l ly  - x* l l}  - ( l lx* - x ~ l l  + IIx ~ - x~+ ' l l )  
yE~q\x" 

>_ 6 -  6 / 4 -  6/4 = 6/2. (39) 

This implies that x ~+I cannot belong to Ill \ S(x*;,~/4): on the other hand, since 
x ~+I = x k + aekd/:" for some ~ ~ (0, 1 ], we have 

Ilx~+'ll <_ IIx~II + II~d~ll _< tlx* + (.x -~ - x * ) l l  + IId~ll 

-< Ilx*ll + II ,~~ -x* l l  + IIJ~ll _< Ilx*ll + 6/4 + 8/4, 

so that x ~+l does not belong to f12. Hence we get that x k-~l belongs to S(x*; 6/4). But 
then, by definition, we have that k + 1 C K, so by induction (recall that k + 1 > ,~ also, 
so that lid/~+l II -< 6/e) we have that every k > f< belongs to K and the whole sequence 
converges to x*. [] 

R e m a r k  24. We explicitly point out that in the proof of point (b)  we have shown that 
if the sequence of points generated by the algorithm is converging to a locally unique 
solution of the nonlinear complementarity problem, then {]]dkH} ~ 0. This fact will be 

used also in the proof of  point (c) .  

P roof  of  point  (c) of  Theorem 11. The fact that {x k} -~ x* follows by part (b) noting 

that the BD-regularity assumption implies, by [37, Proposition 3],  that x* is an isolated 
solution of the system ~P(x) = 0 and hence also of N C P ( F ) .  Then, we first prove that 
locally the direction is always the solution of system (4) and then that eventually the 
stepsize of  one satisfies the linesearch test (6) ,  so that the algorithm eventually reduces 
to the local algorithm (2) and the assertions on the convergence rate readily follow 
from Theorems 8 and 10. 

Since {x k} converges to a BD-regular solution of the system ~ ( x )  = 0, we have, by 
Lemma 2.6 [38] ,  that the determinant of H k is bounded away from 0 for k sufficiently 
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large. Hence system (4) always admits a solution for k sufficiently large. We want to 

show that this solution satisfies, for some positive Pl, the condition 

W~'(xk)Td k < --p~ IId~ll 2. (40) 

We first note that, by (4) ,  

Ildkll _< II(n~)-Xll ]t,~(xk)ll, 

so that, recalling that ~Tqr(x k) can be written as H k ~ ( x t ) ,  

Vq.r()ck)Wdk =._ll,~(x~)ll 2 < Ildkll 2 _ -  M-----T-, ( 41 )  

where M is an upper bound on Ii(H~)-llI  (note that this upper bound exists because 

the determinant of  H k is bounded away from 0). Then (40) follows by (41) by taking 

Pl ~ 1/M 2. But now it is easy to see, noting that {lldkll} ---, o, that (40) eventually 

implies (5) for any p > 2 and any positive p. 

Now to complete the proof of  the theorem it only remains to show that eventually the 
stepsize determined by the Armijo test (6) is 1, that is, that eventually i k = 0. But this 

immediately follows by Theorem 3.2 in [6],  taking into account (40) and the fact that 
,It is SC l by Theorem 10. [] 

We can now use Theorem 11 and the results of  Sections 4 and 5 to easily obtain the 

following two theorems. 

Theorem 25. Let x* be a limit point of the sequence generated by the algorithm. Then 

x* is a solution of NCP( F) iff it is a regular point according to Definition 13. In 
particular x* is a solution of NCP( F) if it satisfies any of the conditions of Theorem 
15, Corollary 16, Theorem 17, Theorem 21, Corollar)' 22, or Corollary 23. 

Proof. The proof is obvious except for the fact that the conditions of  Theorem 21, 

Corollary 22, or Corollary 23 are sufficient to guarantee that x* is a solution of  N C P ( F ) .  
But to prove this it suffices to note that, by Theorem 11 (a),  V ~ ( x * )  = 0. But 

employing elementary rules on the calculation of  subgradients, it can be shown that 

VqS(x *) = O~(x*)TO)(x *) (see discussion in Section 3). If  x* is not a solution of  

N C P ( F )  , then ~l)(x*) 4: 0, so that, since Theorem 21. Corollary 22, and Corollary 23 

guarantee the nonsingularity of  all the elements of  0~b(x*), it cannot be ~7~(x*) = 0 

(note that to prove the result it would be sufficient to show that there exists at least one 
nonsingular element in Od)(x*)). [] 

The next result is an immediate consequence of  the analysis carried out in Section 5. 

Theorem 26. Let x* be a limit point of the sequence generated by the algorithm, and 

suppose that x* satisfies any of the conditions of Theorem 21, Corollate' 22, or Corolla�9 
23. Then x* is a BD-regular solution of system ~ ( x )  = 0 so that all the assertions of 
point (c) of  Theorem 11 hold true. 
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It is interesting to note that Theorem 21, Corollary 22, or Corollary 23 guarantee 

the nonsingularity of  all the elements of c?q~(x*) while, according to Theorem I0, 

BD-regularity, i.e. nonsingularity of  all the elements in OB~(x*), is sufficient to have 
superlinear/quadratic convergence. Hence a fast convergence rate could take place also 

when the conditions of Theorem 21, Corollary 22, or Corollary 23 are not met. We 

illustrate this with a simple example. Consider the unidimensional complementarity 

problem with F(x) = - x ;  obviously the unique solution of  this problem is x* = 0. For 
this problem we have ~ ( x )  = x/x 2 + x 2 - x + x  = x/2txl. Hence 8B~b(0) = {--v/2, x/~}, 

so that x* = 0 is a BD-regular solution of q)(x) = 0. On the other hand none of  

the conditions of Theorem 21, Corollary 22, or Corollary 23 can be satisfied since 

0rI)(0) = [-x/2-,  v/2] contains the singular element 0. 

To complete the discussion of  the properties of  the algorithm we note that if the 

function F is a uniform P-function then the level sets of  qr are bounded by Theorem 

10 (c) so that at least one limit point of the sequence produced by the algorithm exists. 

By Theorem 11 (a),  each limit point is a stationary point of  ~ ,  and by Corollary 16 

(b) every stationary point is a solution of  N C P ( F ) .  Since a complementarity problem 

with a uniform P-function has a unique solution, we obtain the result that any sequence 

{x ~} generated by our algorithm converges to this unique solution. We note that the 

case of  a uniform P-function is, basically, the case considered in [23].  

7. Numerical results 

In this section we perform some numerical tests in order to show the viability of  the 
approach proposed. 

In Section 3 we left unanswered the problem of calculating an element of c?B~(x), 
which is needed in Step 2 of  the algorithm. Our first task is therefore to show how this 

can be accomplished. 

Procedure to evaluate an element H belonging to 3B~(x) .  

S t e p l :  S e t / 3 = { i : x i = 0 = F i ( x ) } .  
Step 2: Choose z C R" such that zi 4 : 0  tbr all i belonging to/3. 

Step 3: For each i ~"/3 set the ith row of H equal to 

~/.r~ q- Fi(x)  2 \ ~)_~ + Fi(x)  2 ] VFi(x) T. 

Step 

( 
4: For each i C/3 set the ith row of H equal to 

Zi 

;~.?  -ff ( V E ( x ) T z )  2 
-1) eT + V - 1) Z? -}-, (~-TFi(x)Tz)2 

(42) 

V ~ ( x ) T .  (43) 
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Theorem 27. The element H calculated by the above procedure is an element of  

a~I~ ( x ). 

Proof. We shall build a sequence of  points {yk} where ~b(x) is differentiable and 

such that V@(yk) T tends to H; the theorem will then follow by the very definition of  

B-subdifferential. 
Let yk = x + ekz, where z is the vector of  Step 2 and {e k} is a sequence of positive 

numbers converging to 0. Since, if i ~/3,  either xi 4 : 0  or F,.(x) 4= 0, and zi ~ 0 for 
all i C /3, we can assume, by continuity, that e k is small enough so that, for each i, 

either ),/k 4 : 0  or Fi(y k) --/: O, and �9 is therefore differentiable at yk. 

Now, if i does not belong to /3, it is obvious, by continuity, that the ith row of 

vq~(y~) T tends to the ith row of H; so the only case of concern is when i belongs to 

/3. We recall that, according to Lenuna 12, the ith row of Vq~(yk) T is given by 

(a i (y  k) - l ) e ~ +  (bi(y  k) - l ) V F i ( y k )  T, 

where 

ai(y  k) = e ~" zi bi ( 3 '~) = Fi ( y k )  

~ ( e t ) 2 z  7 + Fi(vk) 2' ~ (ek)2z~  + / ' i ( Y  k) 

We note that by the Taylor-expansion we can write, for each i E/3, 

(44) 

Fi(y l') = Fi(x)  + e ~ V F ( f k ) r z  = e k V F ( f k ) T z ,  with (k __, x. (45) 

Substituting (45) in (44) and passing to the limit, we obtain, taking into account the 

continuity of  V F  that also the rows of  Vcl~(y~) T relative to indices in /3 tend to the 

corresponding rows of  H defined in Step 4. [] 

Changing z we will obtain a different element of  OB(~)(X). In our code we chose to 

set zi = 0 if i r  and zi = 1 if i ff/3. We note that the overhead to evaluate an element 

of  C)B~(X) when qJ is not differentiable is negligible with respect to the case in which 

is differentiable. This, again, is a favourable characteristic of  our reformulation, which 

is not true, in general, for semismooth systems of  equations. 
The implemented version of  the algorithm differs from the one described in Section 3 

in the use of  a nonmonotone linesearch, which can be viewed as an extension of  (6).  To 
motivate this variant we first recall that it has been often observed in the field of  nonlinear 

complementarity algorithms that the linesearch test used to enforce global convergence 

can lead to very small stepsizes; in turn this can bring to very slow convergence and even 
to a numerical failure of  the algorithm. To circumvent this problem many heuristics have 
been used, see, e.g., [20,25,36]. Here, instead, we propose to substitute the linesearch 

test (6) by the following nonmonotone linesearch: 

~ ( x  k + 2 - i d  k) <_ )A2 + / 3 2 - i V ~ ( x k ) T d  k, (46) 

where W is any value satisfying 
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~ ( x  ~) _< W42 < m a x  aJ f ( xk - J )  (47) 
j=O, I , . . , ,M k 

and M k are nonnegative integers bounded above for any k (we suppose for simplicity 

that k is large enough so that no negative superscripts can occur in (47)) .  This kind of  
linesearch has been first proposed in [ 17] and since then it has proved very useful in the 

unconstrained minimization of smooth functions. Adopting the same proof techniques 

used in [ 17] it is easy to see that all the results described in the previous section can 

be extended if we substitute the linesearch (46) in place of  (6) in the algorithm of 
Section 3. If  at each iteration we take 142 = qr(x k) we obtain exactly the algorithm of 

Section 3, however much more freedom is allowed by (46).  In particular, according to 

the most recent experiences in nonmonotone minimization algorithms [51],  we chose 

to keep ]A2 fixed as long as the algorithm seems to make progress and to vary. it only if 

for a certain prefixed number of  consecutive steps the function values ' t ' ( x  k) increase; 

the precise scheme is the following, where we have indicated by ~ i n  the smallest value 
among q~ ( x ~ �9 (x I ) . . . . .  ~P (x k ). 

�9 Set W = q~(x ~ at the beginning of  the algorithm. 
�9 Keep the value of  VV fixed as long as 

k rain ~ ( x ~ - j )  = q~mi,,- (48) 
j--O I,...,5 

�9 If  ( 4 8 )  is not satisfied at iteration k, set ?A2 = ~I,(xk) .  

�9 In any case. at most every 30 iterations reset W to maxj_-0.j.....5 xIt(xk-J). 
We implemented this version of  the algorithm in Fortran and ran it on a RISC/6000 

workstation. The main stopping criterion was 

II min{ xk, F(x~)}[I <- 10-6. 

To take into account the possibility of  convergence to a stationary point of  q~ which is 
not a solution of  the complementarity problem, we also considered the stopping criterion 
]]Vqr(x k) 11 _< 10 -9. However, in our tests the algorithm never stopped because of this 

latter criterion. We also set p = 2.l ,  p = 10 -8 and ,8 = 10 -4. The results obtained on 

a set of  test problems are reported in Table 1, where we give for each problem the 

dimension (Dimen.),  the number of iterations (it.) and the number of  evaluations of F 

needed ( F ) ;  in some cases we used more than one starting point, this is indicated in the 

column Start. point. We recall that the number of iterations is also equal to the number 
of Jacobian evaluations and linear systems solved. Below we report, for each problem, 

some relevant data, the starting points and some comments. The source reported for the 

problem is not necessarily the original one. 

K o j i m a - S h i n d o  problem. See [36].  F(x) is not a P0-function. This problem has two 
solutions: x I = ( 0 . 5 v ~ , 0 , 0 , 0 . 5 )  and x 2 = ( 1 , 0 , 3 , 0 ) ;  x I fails to be R-regular and is 

degenerate. We report the point to which convergence occured in parenthesis, after the 

number of  iterations. The linearized complementarity problem at 0 has no solution, so 
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Table 1 
Results for the nonmonotone Newton method 
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Problem Dimen. Start. point it. F 

Kojima-Shindo 4 a 13 (x I ) 14 
4 b 7 (x 2) 12 

Spatial Eq. 42 a 20 23 
42 b 22 23 

Traffic Eq. 50 a 13 14 
Nash-Cournot I 0 a 7 8 

10 b l0 11 
Mod. Mathiesen 4 a 4 5 

4 b 5 6 
Walrasian 14 a 25 51 

14 b 24 49 
HS34 8 a 14 36 
HS35 4 a 5 6 
HS66 4 a 6 8 
HS76 8 a 6 7 
Watson 3 I 0 a 7 12 
Watson 4 5 a 21 22 
Kojima-Josephy 4 a 20 26 

4 b 7 11 

that the classical  Rob inson-Josephy  Newton- type  scheme fails when started at this point.  

Starting points: (a)  ( 0 , 0 , 0 , 0 ) ,  (b)  ( 1 , 1 , 1 ,  1). 

Spatial price equilibrium p r o b l e m .  See [36,50] .  This is a p roblem arising f rom a 

spatial equ i l ib r ium model .  F is a P- func t ion  and the unique solut ion is therefore R-  

regular. 

Starting points: (a)  ( 0 , 0  . . . . .  0 ) ,  (b)  (1 ,1  . . . . .  1), 

Traffic equilibrium p r o b l e m .  See [36] .  This  is a traffic equi l ibr ium problem with 

elastic demand.  

Starting point: (a)  All  the components  are 0 except  xl,x2,x3,XIo,Xll,X20,X21,X~:, 

x29, x30, x40, x45 which are 1, x39, x42, x43, x46 which are 7, x41, x47, x48, x50 which are 

6, and x44 and x49 which are 10. 

Nash-Cournot production p r o b l e m .  See [ 19,36]. F is not twice  cont inuously  differen- 

tiable. F is a P - func t ion  on the strictly posi t ive orthant, and since the solut ion obtained 

has all the componen t s  strictly posit ive,  it is R-regular.  

Starting points: (a)  (10,  10 . . . . .  10), (b)  ( l ,  1 . . . . .  1). 

Modified Mathiesen equilibrium problem. This is a sl ight modif icat ion o f  the Math- 
iesen example  o f  a Walrasian equi l ib r ium model  as suggested in [25] .  F is not defined 

everywhere  and does  not be long  to any known class o f  functions.  There are infinitely 

many solut ions:  ( A , 0 , 0 , 0 ) ,  /l E [ 0 , 3 ] .  For A = 0 , 3  the solutions are degenerate,  for 
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,t ~ (0,3)  nondegenerate; in any case being nonisolated, all the solutions fail to be 

R-regular. When we started from starting point (a) convergence occurred to (0, 0, 0, 0), 
when the starting point was (b),  instead, convergence occurred to (3,0, 0, 0). 
Starting points: (a) (1, 1, 1,1), (b) (10, 10, I0, 10). 

Walrasian equilibrium problem. See [36,48]. This is a Walrasian equilibrium model, 
which is in general difficult for Newton-type methods since most of the standard regu- 
larity conditions are not generally satisfied at the solution. 
Starting points: (a) ( l ,  1, 1, 1, 1, 1,0.4, 1 ,0 ,4 ,0 ,0 ,  1,0), (b) (0.5,0.5,0.5,0.5,0.5,0.5,  
0.4, 1 ,0 ,4 ,0 ,0 ,  1,0). 

HS34 problem. This problem represents the KKT conditions for the 34th problem in 

[21 ]. The resulting F is monotone on the positive orthant but not even P0 on R". 
Starting point: (a) (0, 1.05, 2.9, 0, 0, 0, 0, 0). 

HS35 problem. This problem represents the KKT conditions for the 35th problem in 

[21]. The resulting F is linear and monotone but not strictly monotone. 
Starting point: (a) (0.5, 0.5, 0.5, 0). 

HS66 problem. This problem represents the KKT conditions for the 66th problem in 
[21]. The resulting F is monotone on the positive orthant but not even P0 on R". 

Starting point: (a) (0, 1.05, 2.9, 0, 0, 0, 0, 0). 

HS76 problem. This problem represents the KKT conditions for the 76th problem in 
[21]. The resulting F is linear and monotone but not strictly monotone. 

Starting point: (a) (0 .5 ,0 .5 ,0 .5 ,0 .5 ,0 ,0 ,0) .  

Watson third problem. See [53]. This is a linear complementarity problem with 
F(x )  = Mx + q. M is not even semimonotone and none of the standard algebraic 
techniques can solve it. With the choice q = ( -  1,0 . . . . .  ), which we have adopted, also 
the continuation method of [53] fails on this problem. 
Starting point: (a) (0, 0 . . . . .  0). 

Watson fourth problem. See [53]. This problem represents the KKT conditions for a 

convex programming problem involving exponentials. The resulting F is monotone on 
the positive orthant but not even P0 on R". 
Starting point: (a) (0, 0 . . . . .  0). 

Kojima-Josephy problem. See [28,24]. F(x)  is not a P0-function. The problem has a 

unique solution which is not R-regular. 
Starting points: (a) (0 ,0 ,0 ,0 ) ,  (b) (1,1,  I, 1). 

We see that the algorithm was capable of solving all the test problems, some of 
which are known to be quite troublesome, with a fairly low number of iterations and 
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Table 2 
Results for pure Newton and monotone versions of the algorithm 
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Problem Dimen. Start. point Pure Newton Monotone 
it. F it. F 

Kojima-Shindo 4 a 13 (x I ) 14 l0 (x 2) 22 
4 b 10 (x I) 11 7 (x 2) 15 

Spatial Eq. 42 a 21 22 20 23 
42 b 22 23 21 23 

Traffic Eq. 50 a 13 14 19 97 
Nasb-Cournot l 0 a 7 8 7 8 

10 b 10 11 10 11 
Mod. Mathiesen 4 a 4 5 4 5 

4 b 5 6 5 6 
Walrasian 14 a F(s) 25 51 

14 b F(s) 24 49 
HS34 8 a F(s) 26 113 
HS35 4 a 5 6 5 6 
HS66 4 a F(s) 6 10 
HS76 8 a 6 7 6 7 
Watson 3 10 a 7 8 7 13 
Watson 4 5 b 21 22 21 22 
Kojima-Josephy 4 a F(m) 7 10 

4 b F(m) 7 12 

function evaluations. The algorithm uses the gradient as a search direction extremely 
seldom, and in all cases a fast convergence rate was observed in the last iterations. To 

better understand the characteristics of the algorithm we report in Table 2 the results 
obtained for two other "versions" of  the algorithm. Under the heading "Pure Newton" 
we reported the results for the pure Newton, local algorithm (2) .  In other words at each 
iteration we calculate d k by (4)  and set x k+l = x k + d k. This algorithm can fail for two 
reasons: either because the system (4) is not solvable or simply because the iterates do 
not converge (we set a limit of  500 iterations). The first occurrence is indicated by F(s)  
in Table 2, while the latter is indicated by F(m) .  In Table 2 we also reported the results 

for the algorithm described in Section 3, without the modified nonmonotone linesearch 
technique describe above. This algorithm is called Monotone because it corresponds 
to the standard Armijo linesearch, where the function values are forced to decrease 
monotonically. 

The comparison of  the results of  Table I and Table 2 is instructive. It is well known 

that, generally, when Newton's method "works", it works quite well, but it can fail if 
the starting point is not sufficiently close to the solution. The aim of any stabilization 
technique is to force global convergence from far away starting points. However, ideally, 
we would like that the stabilization technique does not perturb the pure Newton method 
when it "works", and, on the set of test problems used here, this is exactly what our 
(nonmonotone) algorithm does. We see, comparing Tables 1 and 2, that whenever the 
pure Newton method works, our nonmonotone strategy does not perturb it, while, at the 
same time, it is able to force convergence also in the case in which the pure Newton 
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method fails. On the other hand we see that the more standard monotone stabilization 

technique can alter (and make worst) the pure Newton method also when this would 

not be necessary; more in general the monotone version tends to need more iterations 

than its nonmonotone counterpart (see, for example, the traffic equilibrium problem and 

the HS34 problem).  

To conclude it may be interesting to compare some features of  our algorithm with 

those of  the global algorithm proposed by Jiang and Qi in [23].  They try to solve the 

generalized Newton equation (4)  in order to get a search direction dk; if 

~ ( . v  k + d k) < c r ~ ( x k ) ,  (49) 

for some fixed constant o- C (0, 1), they take x ~+~ := x k + d ~ as the next iterate, 

otherwise they set d ~ := - V q ~ ( x  k) and perform a monotone Armijo linesearch. The 

test (49)  is motivated by the fact that ~ ( . r )  = 0 at a solution x = x* of  N C P ( F ) ,  and it 

is not difficult to see that all our convergence results remain true if this acceptability test 

is added to our global algorithm. It is our feeling, however, that condition (49) will not 

be satisfied very often as long as we are far away fi'om a solution of N C P ( F ) ,  so that 

the steepest descent direction has probably to be taken in many iterations and this seems 

unfavourable from a numerical point of  view. In our approach, instead, as we already 

remarked, the steepest descent direction is used only as a safeguard and most of  the 

times the Newton direction is employed. To this end the observation that d k, given by 

(4) ,  is always a descent direction for the merit function q* and locally a "good" descent 

direction (see Sections 3 and 6) seems a crucial point which is missing in [23] .  

8. Conc lud ing  r e m a r k s  

In this paper we presented a new method for the solution of  nonlinear complementari ty 

problems N C P ( F ) .  The central idea was to reformulate N C P ( F )  as a semismootb 

system of  equations q~(x) = 0, to which a generalized Newton method is applied. In 

contrast to other equation-based methods (see, e.g., [20,34,35]) ,  the norm function 

xlr(x) = I]q)(x)]l 2, which is the natural merit function for systems of  equations, is 

differentiable, and the search direction d k from the generalized Newton-equation H~d = 

- q ) ( x k ) ,  H k E OB~(x~) ,  is a descent direction for this merit function under some very 

mild assumptions. From the computational point of  view the most attractive feature of  

the new algorithm is that the solution of  a linear system of  equations at each iteration is 

sufficient to guarantee global and quadratic convergence, even on degenerate problems. 

This contrasts sharply with recent algorithms proposed for the solution of  N C P ( F ) ,  

where the solution of  a (mixed) linear complementarity problem or of a quadratic 

program at each iteration is required to achieve the same results. 

As far as we are aware of, the conditions guaranteeing that a stationary point of  the 

merit function xl* is a solution of  N C P ( F )  are currently the weakest ones among those 

proved for methods of  the kind considered in this paper. In fact, it is our feeling that these 

conditions are close to the boundary of  what is possible to show. Also the assumptions 
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g u a r a n t e e i n g  the  so lvab i l i ty  o f  the  s u b p r o b l e m s  H ~d  = - @  ( x  ~), H k E 0t3~ ( x  ~) ,  appear  

to be  very weak;  in par t icular ,  w h e n  far  away f rom a solut ion,  the  index sets a a n d / 3  as 

i n t roduced  in Sec t ion  5 are usua l ly  empty,  and  L e m m a  20 (o r  T h e o r e m  21)  the re fore  

s ta tes  tha t  each  e l em en t  H t E Oqb(x k) is nons i ngu l a r  if  F is a P0-funct ion .  
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