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Abstract  

Multistage stochastic programs with interstage independent random parameters have recourse 
functions that do not depend on the state of the system. Decomposition-based algorithms can 
exploit this structure by sharing cuts (outer-linearizations of time recourse function) among 
different scenario subproblems at the same stage. The ability to share cuts is necessary in practical 
implementations of algorithms that incorporate Monte Carlo sampling within the decomposition 
scheme. In this paper, we provide methodology for sharing cuts in decomposition algorithms for 
stochastic programs that satisfy certain interstage dependency models. These techniques enable 
sampling-based algorithms to handle a richer class of multistage problems, and may also be used 
to accelerate the convergence of exact decomposition algorithms. 

Keywords: Stochastic programming; Decomposition algorithms; Monte Carlo sampling; Interstage dependency 

1. I n t r o d u c t i o n  

A n  impor t an t  c lass  o f  pract ical  p l a n n i n g  p r o b l e m s  invo lves  sequent ia l  a l loca t ion  o f  

scarce resources  a m o n g  c o m p e t i n g  act iv i t ies  in the face of  uncer ta in ty  with respec t  to 

future  s ta tes  of  the sys tem.  Mul t i s t age  s tochas t ic  p r o g r a m m i n g  wi th  recourse  p rov ides  an  
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attractive modeling framework for many such problems. Van Slyke and Wets [24] first 
applied Benders decomposition to the two-stage stochastic lineal" program (SLP-2) via 
the L-shaped algorithnl; Birge [I] extended their work to ll?e multistage program 

(SLP-T). These algorithms decompose a problem by stage and scenario and iteratively 
improve upper and lower bounds o11 the optimal objective function by successively 

adding cutx to the subproblems of each stage; the cuts form an outer linearization of the 
future cost (recourse) functions. The algorithms terminate when the difference in 

objective bounds is sufficiently small; in this sense, the L-shaped method and its 
multistage counterpart are, within numerical tolerances, exact algorithms. 

In many practical problems, the number of scenarios is so large that exact solution 
techniques are impractical. In this case. bounding and approximation schemes may 

prove useful; see, for example, Birge and Wets [4,5], Edirisinghe and Ziemba [9], 
Frauendorfer [11,12], and Kall et al. [17]. However, these schemes can be difficult to 
apply to problems with many random parameters due to the computational effort 

required to estimate high dimensional expectations, Monte Carlo sampling-based algo- 
rithms (suggested in 1961 by Dan{zig and Madansky [8]) provide an attractive alterna- 
tive for such problems. Stochastic quasigradient algorithms (see Ermoliev [10]) are 
sampling-based algorithms for stochastic programming. For two-stage models, Dantzig 
and Glynn [7], Infanger [16], and Higle and Sen [14] have proposed decomposition-based 
algorithms that incorporate Monte Carlo sampling at each iteration. Infanger [15] and 
Pereira and Pinto [19] have put forward decomposition and sampling-based algorithms 
for SLP-T. 

In this paper, we are concerned with decomposition and sampling-based algorithms 
for multistage stochastic programs. In the nmltistage problem, if the stochastic paranle- 
ters are interstage independent then the future cost functions do not depend on the 
current scenario, and hence, cuts generated for a particular scenario are also valid for 
any other scenario at the same stage. The ability to share cuts among different scenario 
subproblems at the same stage is critical for practical implementations of multistage 
sampling-based algorithms. Even if sufficient memory were available to store cuts 
separately at each node in the scenario tree, the frequency with which any particular 
node is revisited may be quite low (e.g., zero) in a sampling oriented algorithm. The 
purpose of this paper is to provide methodology for sharing cuts in multistage problems 
with stochastic parameters that exhibit certain types of interstage dependeno,. While the 
primary purpose of this paper is to enable sampling-based algorithms to handle a richer 
class of multistage models, the techniques discussed may also accelerate convergence of 
exact decomposition algorithms; see e.g., the implementations due to Gassmann [13] and 
Birge et al. [2]. Morton [18] provides empirical evidence that cut sharing can accelerate 
convergence of such algorithms. 

This paper is organized as follows. In Section 2 we present a mathematical formula- 
tion of SLP-T. In Section 3 we state an exact Benders decomposition algorithm for 
SLP-T; this serves to review decomposition subproblems and optimality cut generation 
techniques that are required in the remainder of the paper. The cut sharing method for a 
linear lag-one interstage dependency model for right-hand-side vectors is detailed in 
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Section 4. Extensions of the cut sharing technique to higher order linear lag models and 

other more general interstage dependency models are described in Section 5 and Section 

6, respectively. We present the cut sharing methodology under the assumption that cuts 

are computed exactly (i.e., they are calculated via population means) only in order to 

simplify the presentation. This is sufficient for application to the sampling-based 

algorithm of Pereira and Pinto [I 9]. The generalizations required for algorithms that use 

sample mean estimates for cutting planes are straightforward. See, for example, Infanger 

[15] for a discussion of issues associated with using sample mean estimates of cutting 

planes in a multistage framework. The paper is summarized in Section 7. 

2. Problem statement  

A T-stage stochastic linear program with recourse (SLP-T) may be formulated as 

follows, 

(SLP-T) rain cixl  + E~h2( xl ,  ~2) 
X I 

s . t .  A l x  I = b I , 

xl>~O, 

where for t = 2 . . . . .  T, 

h~( x~- I, ~t) = rain c , x , + E < ~ , l  ~ ...... ~ h , + l ( x  , ,s~,+I) 

s.t. A~xt= b, + Btx,_ i, 

x~ >~ 0, 

and where hr+ i -= 0. ~, = vec(b,, c,, B,, A,), t =  2 . . . .  ,T, denote random vectors; tile 
vec operator transforms matrices into vectors by reading them columnwise. The sample 

space for stage t is denoted .(7-, and a sample point (scenario) in ~(2, is denoted o 6. We 

use notation .~,'~', or alternatively s~,(o6), to represent a stage t realization. For notational 
convenience, we assume the existence of  a first stage sample space; g2~ is a singleton 

set and {:(o, = vec(b~, c~, A~) represents the known state at the time decisions are made 
in the first stage; clearly, p<O, has value one. We will suppress first stage scenario 
indices, when convenient, to simplify notation. A~", t = 1 . . . . .  T is an m, X n, matrix 

and the remaining matrices and vectors are dimensioned to conform. We assume that 

SLP-T has relatively complete recourse (all stage t subproblems are feasible for any 

feasible stage t -  1 variable x,_ i, see, e.g., Wets [26]) and that each stage's feasible 
region is bounded; these requirements ensure that the subproblems forn~ed in the course 

of the decomposition algorithm outlined in the next section have finite optimal solutions. 

While these assumptions are of little practical restriction, particularly in sampling-based 

algorithms, we note that infeasible or unbounded subproblems can be handled by the 
method of  Van Slyke and Wets [24]. 
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We assume the following special structure of the stage t sample space 

. ( 2 , = 2  I •  . . .  •  for t =  1 , . . . , T .  

A stage t scenario, co, ~ ~ , ,  may be expressed co,= (o-~ . . . . .  or) where o-, ~ 2~, 

i = 1 , . . . ,  t. The scenarios of SLP-T form a multistage scenario tree: each stage t >~ 2 

scenario, co,, has a unique stage t - 1  ancestor denoted a(w,), and a stage t < T  

scenario has a set of descendent scenarios denoted A(co,). We assume that E, has finite 

support and a probability mass function given by P{~, = ~[~} =p;"'.  Conditional 
probability mass functions are written 

= Co, i C_ = ,} =p;o,i ..... 

In the special case of inters,age independence we may write .6t - s~ and p, ' = 

P2'- 
In SLP-T, decisions occur and uncertainties unfold in the following manner. A first 

stage decision, x L, is made with knowledge of (b I, c~, A~) and distributions on future 
data; next, an observation, ~ ' : ,  is revealed and the second stage decision x~ "~ is made 

knowing this data, and the corresponding conditional distributions on future data, etc. 

The goal is to find a first stage decision, x I, that minimizes the expected cost of  
operating the system modeled by SLP-T over T stages. 

3. A decomposi t ion algori thm for SLP-T 

In this section, we review a decomposition algorithm that decomposes SLP-T into 

subproblems by stage and scenario. In the course of  the algorithm, the subproblems' 

right-hand-sides and feasible regions continually change as information is passed 

between subproblems. A subproblem passes resources to its descendents in the form of 
l o t +  the vector B,+~,x'/< ...... > and receives dual prices from its descendents to compute cuts 

that represent an outer linearization of the recourse function. The stage t (1 ~< t < T) 
subproblem under scenario w,, denoted sub(co,), has file following form: 

t i f f  . co t  . s.t. A, :~, = bt -~, + R'~ ~c~(~ 

-C;~ + eo,>  gr176 

x, >~ O. 

The rows of  G; ~ ~ [R l;'''• contain cut gradients; the elements of the vector ~,[o, are cut 

intercepts, and e denotes the vector of all l 's .  The number of cuts appended to sub(o),) 

at an arbitrary point in the algorithm is denoted l , ' ;  as the decomposition algorithm 
proceeds, this value grows. The stage T subproblems are similar to (1) except that the 
cut constraints and scalar variable 0, are absent. 

rain z,=c? ~x,+0, (l) 
- v ~ , O  t 
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The dual of sub(w,) may be written: 

max z, = 7r,(b~ ~ + B'L"x"~")'~, , - I  ] + cqg~' ,  
TCI " ~ l  

cO f s.t. 7r , ,47"-  cr,G[ ~ ~< c, , (2) 

era, = 1, 

a,>~O, 

where if t = T, the cut gradient matrix G~' ,  cut intercept vector ~o,, and corresponding 

dual vector a~ are absent. In this and subsequent sections, we require use of both the 
matrix of cut gradients, denoted G~,, and a particular cut gradient, denoted G[ ~. We 

similarly distinguish between the vector of cut intercepts, ~{o, and a scalar cut intercept 

g~O,. Let ( % z, , 7h '~ cq ~'') denote an optimal solution of (2). When the descendents of  
. .,o, the cut gradient and intercept sub(w,) are solved at a particular stage t decision, say x, , 

that may subsequently be appended to sub(w,) are found via 

o,% ~ ,o., ~ ,o,~,%,~, B" '- ,  = p , + ,  , + ,  ( 3 )  

and 

g~O, = ~., p[+'i, I "~','~_'T, b/~? i , + Y', p[9] ,  I ~ , a , ; ' i ' ~ _ ' ~  i ' (4) 

where the second term in (4) is absent if t = T -  1. An equivalent expression for gy ' ,  
that does not require this caveat, is 

g2 '  = E P;-~'I' I~, .~, i ,  ,o, ,o, + - G ,  x ,  . ( 5 )  

w,+ ~ ~ A( to , )  

A decomposition algorithm for SLP-T is summarized in Fig. 1; in designing such an 
algorithm, we have considerable flexibility with respect to the order in which subprob- 
lems of the scenario tree are solved. The algorithm of Fig. 1 uses the f a s rpass  tree 
traversing strategy; see Wittrock [27], Gassmann [13], and Morton [18] for further 
discussion of alternate tree traversing strategies. There are number of other enhance- 
ments and variants of  this algorithm; for example, Birge and Louveaux [3] propose a 
multicut algorithm, Ruszczyfiski [21] uses multicuts and a quadratic proximal term, and 
Wets [25] describes a bunching technique designed to efficiently solve a collection of 
same-stage subproblems. However,  we will not pursue these issues here because the 
primary purpose of this section is to provide necessary background with respect to basic 
cut generation techniques in decomposition algorithms for SLP-T. Note that, as SLP-T is 
a linear program, finite convergence of the decomposition algorithm is ensured; see, 
e.g., Birge [1]. 

We close this section by stating a result concerning valid cut generation. A val id  cut  
is defined to be a hyperplane that lies below the recourse function. Proposition 1 states 
that dual feasible (but not necessarily optimal) price vectors of the descendent subprob- 
lems generate valid cuts; see [ 18] for a proof. 
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P r opos i t i on  1. Consider SLP-T and ipl particular, sub( ~o,); let K, = I A(a)~)l. 

(i) l f  t = T -  1 and (7r~ . . . . .  rr x '  ') is a collection of  dual feasible vectors for  the 

descendents of  s u b ( ~ o f  ,). thepl these dual vectors generate, via (3) and (4), a 

valid cut for  sub(wT._ i)- 

(ii) I f  t <~ T -  2, the descendents o f  sub(~%) contain valid cuts. and 

[(%+i i, c~xl+ 1), . . . . . . . .  .(%~'1 cb~'l)] is a colh'ction of  dual feasible vectors for the 

descendents of  sub(o0t), then these dual vectors generate, via (3) and (4), a valid 

cut for  sub(w,) .  

Induct ive application of Proposit ion I can be used to verify that cuts generated by the 

decomposi t ion algorithm for SLP-T with stochastic parameters exhibi t ing interstage 

s tep  0 

s t e p  1 

s tep  2 

s tep  3 

s tep  4 

define toler > 0; let ~ = +co: initialize sub(ca~)'s set of cuts 

with 0t _> - M ,  Vwt E f2,, t = 1,. . .  ,T - 1; 

solve sub(wt) and obtain (x~,01); 
let z_ = clzl  +0~; 

(forward pass:) 

d o t = 2 t o T  

do w, 6 -Q~ 
, a(w~) form RHSofsub(~,) :  B~"z~_ 1 +b~" 

solve sub(w,) and obtain z~'; 
if t = T also obtain rr~. r ; 

enddo 
enddo 

( s topp ing  rule:)  

if ,f < ~- then let 2 = ~ and z~ = zl ;  

if~" - ~ < rain (]2], [z_l). toler then stop: z~ is a solution yielding 

an objective function value within (]00-toler)% of optimal; 

(backward  pass:) 

do t = T -  I downto 2 
do ~o: E f2, 

augment sub(w,)'s set of cuts with 0, - GT'z~ > g~"; 

form RHS of sub(w~): zJ, . . . .  z~_ 1~(~'9 + b~'~", 

solve sub[w,) and obtain (r~' ,  a~"); 

enddo 

enddo 

augment sub(wl)'s set of cuts with 01 - G l . e l  > 91; 
goto step i; 

Fig. I. Decomposition algorithm for SLP-T. 
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independence, may be shared among subproblems at the same stage. Specifically, cuts 

generated for a particular stage t subproblem, say sub(o),), are valid for any other stage 

t subproblem, say sub(col), under interstage independence, because the descendents of 

sub(co,,) and sub(col) have identical dual feasible regions and the stochastic parameters 

in the cut gradient and intercept formulas (3) and (4) for the respective descendent 

problems are also identical. The base case of the inductive hypothesis (i.e., descendent 

subproblems contain valid cuts) is verified by applying part (i) of Proposition 1. 

4. Cut sharing under  linear lag-one RHS dependency 

Pereira and Pinto [20] first suggested the possibility of incorporating autoregressive 

sequences for the right-hand-side vectors in a nmltistage decomposition and sampling- 

based algorithm. In this section, and Section 5 and Section 6, we show how the ability to 

share cuts can be extended from the interstage independence case (described above) to 
several different interstage dependency structures. We begin by assuming a simple linear 

lag-one dependency model of the right-hand-side vectors 

bt=Rr- lb , -1+~7,  for t = 2  . . . . .  T, (6) 

where -q,, t = 2 . . . . .  T, are random m,-vectors and the matrices R,, t = 1 . . . .  , T -  1, are 
known; without loss of generality, let R j = 0. We assume 

vec(rb, c,, B,, A,) .  t = 2  . . . . .  T are independent. (7) 

This dependency model is a generalization of the well-known autoregressive lag-one 

model (AR1) in which R, = R does not depend on t. The random right-hand-side 
vectors of a multistage stochastic program may exhibit seasonal patterns. In such cases, 
the AR1 model can be used to separately analyze each period of the season; this can 

lead to a model of the form (6) in which R,+p = R, for t > 2, where p denotes the 

length of the season. Box and Jenkins [6] and Tsay and Tiao [23] discuss parameter 
estimation and associated issues for univariate autoregressive models. See Tiao and Box 

[22], and references cited therein, for analyses and parameter estimation procedures for 

vector autoregressive models; these analyses typically assume that r b is normally 
distributed. Note that while the AR1 model is a generalization of serial independence, it 

reflects a very specific interstage dependency structure. For example, the structure 
implies that the number of descendents and their corresponding probability mass 
functions are the same within each time stage. 

4.1. Illustration: The SLP-3 case 

In order to illustrate the basic idea behind the cut sharing methodology, we begin 

with the simple case of T =  3 and focus on cut calculations for the second stage 
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subproblems as this is the only nontrivial case for SLP-3. The second stage cut gradient 

and intercept are given by 

_ , ' 3  " 3 - 3  ( 8 )  

~.,., c A( ~o 2 ) 

and 

Since c 3 and A 3 are independent of the second stage parameters, the collection of  dual 

variables {r r~  : o0 3 E A(022)  } #on1 the solution of one set of descendents is feasible for 

the descendents of any second stage scenario. Thus, by Proposition 1, part (i), these dual 

variables will generate a valid cut for any second stage subproblem, and we now show 

that these cuts may be generated and r e c a l l e d  in subsequent iterations in closed form. 

Due to the dual feasibility, structure, we may label the dual variables with a 0- 3 index. In 
this framework, the conditional probability mass function p~~ I,,,: = p~-, does not depend 

on 02,. Furthermore, as B 3 is independent of the second stage random parameters, the 

cut gradient formula (8) is valid for all 022 ~ ~Q2, and the 022 index on G 2 may be 
dropped. The cut intercept formula, however, involves b 3 which contains interstage 

dependency according to (6). Upon substitution of  the lag-one model into (9) it is clear 

that 

,o, ind dep, 022 ) ( 1 0 )  g 2  " =  g2  4 - g 2  ~. , 

where 

= p3-'n-3 -r/3 - , (11) 
Cr3E ~3 

~ ' 3  

In (10), the second stage cut intercept has been expressed as the sum of an 
c%-independent (ind) term and an 022-dependent (dep) term. The scenario dependent 
tem~ given by (12) has a simple structure. Construction o f  g~ep(02 2) for a particular 

second stage scenario requires knowledge of the second stage right-hand-side realiza- 
r 2 tion, b 2 , and the expected value of the third stage dual variables, ~"3, used to generate 

the original cut. Thus, in a three-stage model the following information is stored for 
ind each cut: (i) cut gradient, G 2, (ii) scenario independent cut intercept term, g2 , and (iii) 

expected dual vector, ~3. Given a second stage scenario, 02 2, valid cuts may then be 
formed for sub(02 2) from this information by computing the scenario dependent cut 

intercept (12) and then computing the cut intercept via (10). We regard (12) as a closed 

form, scenario dependent correction term for the second stage cut intercept. 
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4.2. The S L P - T  case 

SLP-3 does not reveal all of the complexities associated with the lag-one model for a 

general multistage problem. In a T-stage model, the analysis for the three-stage case is 

valid for cuts computed for stage T -  1. However, cut intercepts for a general stage t are 

given by (4), and this formula requires the stage t + 1 cut intercepts which in turn 

require the stage t + 2 cut intercepts, etc. Computationally, it is clearly preferable to 

avoid the recursive calculation of these respective intercept terms through the exponen- 

tially growing scenario tree; in addition to being prohibitively expensive, such computa- 

tion would require storin~ the set of dual variables {(Tr,~+'i ', at+ ..... t )" to,+ l e A(co,)} used 

to generate each cut. Thus, as in the three-stage case. we seek a closed form cut intercept 

correction term for SLP-T with the lag-one dependency model (6). 

Observe that the dual feasible region of  a stage t subproblem (2) does not depend on 

the right-hand-side vectors. This is an important observation because dual feasibility 

ensures that valid cuts can be generated; again, see Proposition 1. This is to be 

contrasted with the case in which A,, c,, or B, contain interstage dependencies; see 

subsequent Section 6.2. Recall that the stage t subproblem is assumed to have m, rows 

(excluding cuts) and I t cuts. We define ~ ,  to be the I t_ l x m t matrix whose rows 

contain the expected value of the structural constraint dual variables, ~',, = E~dr,"'. 

Similarly, sJ~ is defined as the l,_ ~ x l, matrix whose rows contain the expected value 
of the cut constraint dual variables, ~, = E~,c~ ~'. As can be seen from (4), these dual 

variables are used in the cut computation for stage t -  1. The ith row of ..~, and J,, 

contain the expected value of the dual variables used to generate the ith stage t - 1 cut. 

In Theorem 2 we show 

gS, = gl ~ + g~P(oJ , ) ,  (13) 

where 

gdeP(OJ,)  = [~ ' t+  I + - ~ t + t D t + l ] R , b t  ')', ( 1 4 )  

and the matrix D t is defined recursively 

V , = [ ~ , + , + y + , V , + , ] R , ,  V ~ = 0 .  (15) 

Note that an explicit formula for gl ~ is not necessary; when we generate a cut for the 

first time (as opposed to subsequently recomputing it for another scenario) we may first 
compute g~ '  from (5) and then subtract the dependent term calculated via (14) to obtain 

ind g,  �9 

Theorem 2. Assume  the lag-one model  (6) and (7). The cut  intercepts f o r  stage t, 

t = 2 . . . . .  T -  1, are given by (13), (14) and (15). 

Proof.  We proceed by induction. The base case is t = T -  1 and the expression for gT-  1 

is found by the method for the three-stage case; see Section 4.1. The inductive 
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hypothesis is then (13) and (14) and we verify the sanae expressions with t decremented 
by one. It is convenient to adopt the vector analog of (14): 

g, (co~) = i iDa, '"'- 

A stage t -  1 intercept for scenario co,_ ~ is defined as 

g 2 1 '  = E p,,,,I . . . .  7r,'O'b{ ' '  + E p,o,I ...... cq,,,,2.,," (17) 
~orEJ(~o r i ) to,C-.Jic,),_ t) 

Substitution of the lag-one model (6) into the first term on the right-hand-side of (17) 

yields 

tr~ ~r ~-,,Rr tb[~ ' + E~,v-, ~, . (18) 

Substitution of the inductive hypothesis (13), (14) and the lag-one model (6) into the 

second term on the right-hand-side of (17) yields 

[ - ] [ - 1 ~ , ~ ) , e + ~ . ,  '~t*~ + S , . . , D , + ,  R,R,  ~b)"-']'+E,,,c~in ~ , + l  ~ + ~ * l  D,+,  RflT, ~ 

(19) 

Using the definition of D, from (15) and partitioning (18) and (19) into the scenario 
dependent and scenario independent parts yields the desired result. [] 

In SLP-T with lag-one model (6), the following information is stored for each stage t 
ind cut: (i) cut gradient. G,. (ii) the scenario independent cut intercept term, g, , and (iii) 

the cumulative expected dual vector [5,+ i + ~,+ i D,+ t]R, �9 Given a particular stage t 
scenario co,, valid cuts may be formed for sub(co,) from this information by computing 
the scenario dependent cut intercept term (1 4) and then computing the cut intercept via 
(13). When computing a cut for the first time. its associated cumulative expected dual 
vector can be generated from the set of cumulative expected dual vectors contained in 
the descendent scenarios. This follows from (14). (15), and the fact that the rows of the 
matrix D, are the appropriate cumulative expected dual vectors. In other words, there is 
no need to explicitly store the matrices ~ , +  ~ and ~ +  ~. Thus, the additional storage 
requirement, relative to the inters(age independence case, involves saving the vector 

[~',+ i + ~ +  iD,+ ~]Rt ~ JR", for each cut. 

5. Cut sharing under  higher order  l inear lag models  

In some settings, greater flexibility is necessary for modeling interstage dependency 
than is provided by the lag-one models described above. In this section, we describe a 
higher order lag model that is a generalization of vector ARMA (autoregressive moving 
average) models in the same way that the lag-one model of Section 4 is a generalization 
of the ARI model. Again. see [6], [22], and [23] for further discussion of ARMA models 
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and associated estimation and analysis issues. The higher order lag model we consider in 

this section is 

t - I  

b,= E (R jb j+S}r / j )  + r  b for t = 2 . . . . .  T, (20) 
j 1 

where once again, we assume the independence structure given by (7) and R': and Sj' are 

appropriately dimensioned deterministic matrices (some of which may be zero). In this 

case, we have the following theorem regarding scenario dependent cut correction terms. 

T h e o r e m  3. 

stage t, t = 2 . . . . .  T -  1, are given by gy '  = gl ~J + gdep(co,) and 

o,,) 

T 

j = l  i = t + l  j = l  

Assume the higher order lag model (20) and (7). The cut intercepts.fbr 

D~+ i i R t ,  

where D/, i >~ t, is defined as 

T 

| ~ l  ~ t + l ' ' t  - - "  t + l  /---* 
i = t + l  

l +  I _ _  - -  - -  l +  [ 

D, - g t +  I + ,~ ,+  i D,+ i , 
i - -  i . ~  ~ D, - o ~ +  IDt+ I, l ~ t + 2, 

with D r = 0 and ~ r  = O. 

(21) 

(22) 

Proof .  We proceed by induction. The base case Is t = T -  1 

T - I  
= ,o; E ( T ~ ,",T ~r i ' Rj b j ,  + + ind. terms 

j = l  

T - I  
T m = ~ " r  Y'- ( R i b j  :+ Sfrlf~') + ind. terms" 

j = l  

Verification of the base case is complete since the second tern1 in (21) is absent for 

t = T -  1. Throughout this proof, we use '" ind. t eml s "  to denote terms that contribute to 

the scenario independent cut intercept term; e.g., i,d g r - l "  
Now 

t - I  

E s', + g,~- ' l '  = E,,, , j  . . . . .  rr ,  ' k Y Y 
j = l  

t 1 

= ~ ,  • ( , .... , o-, .... ~'~eP(w,) + ind. terms. R:bj , + s > :  )+<, , ,  ..... 
j = l  
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By the inductive hypothesis, i.e., the vector analog of (21). we have 

e,o,, . , ' ~  = u,o, ,o , ._. ( ~ ' + '  '~ w ,  ~ [ v  t +  I \ .l .t 
j = l  

" i (  )] ~r E o '  ' ", " '~ +~ ,+ I : ~ I Rjbj  " "4- SjTlj ' . 

~=t+ l . i=  1 

We separate the terms of  this expression into an %-dependent term and an 

(002 . . . . .  % t)-dependent term. After substitution of the dependency model (20) for b," 

we achieve 

Eaj, l~o,_ ~t")' g~deP( oot) 

+ I+ ] Y!  E = a ,  ,~ ,+,  R', 'b;'J+sj ,7; +Y,§ 
j=  1 i = t +  I 

t - I  

+ J ,  , < + ' E  ' ~ ' t  .... ' " + [,xj)j  . + S?lj ' )  
)=1 

I t (o t ,7 + d , + ,  D ,+tR  I R jb j  ' +  Sj~,~ 
i = t +  .i = 1 

t - I  
i w i cr D:+ , E (Rib,'+ s?7, ,) 

j =  1 

+ ind. terms. (23) 

S~t - l ( # i h , o  ~ + By rearranging the bracketed term of (23) we find that the coefficients of ~y= t , - F j  
i o- i i S~72-) are Dr, i = t . . . . .  T, as defined by (22) and this completes the proof. [] 

6. Cut sharing under more general dependency models 

In this section, we extend the results of the previous two sections in two directions. 

First, we describe a more general RHS lag-one model. Second, we consider interstage 

dependency of stochastic parameters in the transition matrices B t. 

6.1. More general lag-one models fi)r the RHS 

There are many generalizations of the lag-one model (6), but not all such models are 

tractable with respect to deriving closed form cut intercept correction terms. The 

analysis of Section 4 clearly shows the importance of additivity; a general lag-one 

process b, = f , (b ,_  L, rb) does not yield closed form formulae for the intercept correction 
terms. Moreover, an additive model of  the following form: 

b, = f t ( b , _  1 ) +  "q , for t = 3  . . . . .  T, 
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where J) : [R ...... --* [~"' is tractable for a three-stage model, but breaks down in the 

general case. Thus, in addition to additivity, the linearity of  R,_ ~b,_ L plays an 
important role in deriving the correction term; see the proof of  Theorem 2. In Corollary 

4 below, we essentially recover the result of Theorem 2 under the generalized lag-one 
dependency model 

b , = R , _ , [ f t _ , ( G _ , ) + b , _ ~ ]  +vl, for t = 2  . . . . .  T, (24) 

where v~ = vec(r/t, c,, B,, A,), f~ : ~N, ~ R " '  ', and Nr = m~ + n t + m,-  n,_ i + m~ .n~. 
The proof of Corollary 4 is similar to that of Theorem 2 and is omitted. 

Corol la ry  4. Assume the lag-one model (24) and (7). The cut intercepts for  stage t, 
t = 2 . . . . .  T -  1, are given by g y ' =  g),d + g~ir162 ) and 

g~r = [~,+,  +-~,+~D,+,]R,[))(vT, ) +by'], (25) 

where D, is defined by (l 5). 

The lag-one model (24) may be useful, for example, when the random demand for a 
finished product in one time period is correlated with, say, the price of  raw materials 
a n d / o r  demand in the previous period. 

In similar fashion to (24) the higher order lag model may be generalized as 

t - - I  

b , =  ~ ( R } b j + f j ( v j ) ) + ~ l ,  f o r t = 2  . . . . .  T, (26) 
j=l 

where Jj' : ~N, ~ ~,,, .  We now have the following corollary to Theorem 3. 

Corol la ry  5. Assume the higher order lag-one model (26) and (7). The cut intercepts 
__ ind g~eP(w,) and J o r s t a g e t ,  t = 2  . . . . .  T -  1 are given b y g [ " ' - g ,  + 

~ .  t+ IL~O -- rl+ g~eP(w, )=-~ ' ,+ ,  - -  R i o j , •  ' ( v T ' ) )  
j = l  

+ a , + ,  Y', D;+, ( ' ~' �9 R j b j J + f j ( v T ; ) ) ,  (27) 
i=t+ l j= I 

T where D[, i >1 t, is defined by (22) with D T - 0 and ~'r = O. 

6.2. Interstage dependency o f  B t 

Interstage dependency of the objective function coefficients, c,, and the structural 
matrix, A,, directly affect dual feasibility and hence create significant difficulties with 
respect to sharing cuts. Interstage dependency of the transition matrices, B,, also affect 
dual feasibility via cut gradients; see (3). In general, this also poses significant 
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difficulties; there is, however, one case that can be easily bandied. In particular, consider 
the case in which the right-hand-side satisfies (6) and 

B.~=fi, B, + "~3, (28) 

where 7/3 is a random m 3 • n2-matrix, and /?~ is known. In this case, we assume 

vec(r/: ,  c, ,  B,. a : ) . v e c ( r / 3 ,  c~, 7/:,. A3).vec(r/ , ,  c~, B,, A,), t = 4  . . . . .  T, 

are independent 
Under this dependency model, the cut intercept is handled in identical fashion to that 

of Theorem 2 and cut gradients calculated for stages 3 . . . . .  T -  I via (3) remain 
unchanged. The cut gradient for the second stage, however, requires a scenario 
dependent correction term; in analogous fashion to the three-stage cut intercept analysis 
of Section 4.1 we obtain 

G~ ~  G"~d + G~"P(oo2), (29) 

where 

E (30) 

G ~ t ' ( w 2 ) =  [o-,~_5, ~ p~rr[ '] l~oB;":.  (31) 

~'3 

In summary, we have obtained closed form scenario correction terms for cut formulas 
when the right-hand-side satisfies a lag-one model for all stages and the transition 
matrices satisfy a lag-one model only through the third stage. 

7. Summary 

In many applications modeled by multistage stochastic linear programming, the 
number of scenarios is so large that exact solution techniques are not computationally 
practical. It has long been recognized that incorporating Monte Carlo sampling within a 
decomposition scheme might provide an attractive approach for solving problems with 
many scenarios, and recently such algorithms have been proposed for both two-stage 
and multistage problems. One of the (rather demanding) assumptions typically made in 
nmltistage models solved by decomposition and sampling-based algorithms is interstage 
independence of the stochastic parameters. We have shown that certain types of 
interstage dependency structures may be incorporated with relative ease in such algo- 
rithms. In addition, the methodology we have presented may also be useful in accelerat- 
ing convergence (particularly in the early iterations) of exact decomposition algorithms 
for this class of dependency models. 
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