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Abstract  
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1 .  I n t r o d u c t i o n  

In this paper we propose a method for optimizing convex, possibly nonsmooth, per- 
['ormance functions in certain stochastic systems. The criterion to be optimized can be an 

expected value in a static system, or a steady-state performance function in a dynamic 

system, to which average performance along a sample path of  the system will converge 

with probability one. An example of a steady-state performance function is the long-run 

throughput of a pl'oduclion line. We consider systems l\~r which such functions exist 

and in addition obey certain restrictions that will be explained below. 

It is well known that for many stochastic systems such performance functions cannot 

be expressed analytically. Therefore, people use Monte Carlo simulation to evaluate 

them. When it is necessary also to optimize performance with respect to some set of 

parameters, then the function values obtained by simulation must generally be supple- 

mented by (approximate) gradient evaluations [13,24,25]. Several methods for obtain- 

ing approximations to gradients in dynamic systems are commonly used: these include 
for example infinitesimal perturbation analysis (IPA) [11,18,19,40], and methods using 

likelihood ratios (LR) or score functions, for a treatment of which see [ 12,13,35]. 

Given a method for producing approximate gradients, people needing to optimize 

performance functions have often used some variant of  the method of stochastic approx- 

imation [32] to locate an optimizer. More recently, the method of single-run optimization 
(SRO) was proposed in [27] and studied in [44] and [45] as an attempt to improve 

the efficiency of  stochastic approximation; in this method, instead of  making one or 

more simulation runs to obtain gradients, and then making a gradient step in the param- 

eter space, one makes gradient steps at inlervals during a single simulation run, using 

approximate gradients obtained from IPA. The key point here is that the simulation does 
not have to be restarted, with a new warmup period, after each step. 

However, both the classical stochastic approximation method and the SRO variant 

have certain drawbacks. For one thing, inequality constraints - even linear inequalities 
- present severe difficulties since the underlying gradient descent method must then 

be modified in some ad hoc manner so that the sequence of  parameter values remains 
feasible; typically this is done by projecting the new point obtained from the iteration 
into the feasible set in some manner. This difficulty does not appear with linear equation 

constraints because one can reduce such a problem to an unconstrained problem in fewer 

variables by an appropriate affine transformation. 

In addition, if the function being optimized is nondifl'erentiable, then the stochastic 

approximation technique reduces to a variant of subgradient optimization [3,15]. That 
method is known not only to be slow, but also to suffer from other drawbacks, such as 

the lack of  a good stopping criterion and the difficulty in enforcing feasibility already 

mentioned above. This concern about nondifferentiability is not just theoretical; Suri and 
Fu [43] observed nondifferentiability of steady-state throughput in tandem production 

lines, and results of  Shapiro and Wardi [39] show that steady-state functions in discrete 
event dynamic systems can be nondifferentiable when the sample performance functions 
are convex and the event time distributions contain atoms. 
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For nondifferentiable, or even discontinuous, objective functions several authors have 

presented and analyzed methods of the stochastic quasigradient (SQG) class; see for 

example [4] and references therein. These methods can be thought of as pushing the 
philosophy of SRO to an extreme in that they obtain a "quasigradient" estimate, often 
from a single sample realization, move in the parameter space using that estimate, 
obtain another estimate, make another move, and so on. It is possible to obtain the 
quasigradients by using function values only, or by other means that avoid the necessity 
for techniques like IPA or LR. 

To our knowledge there is not much documented numerical experience in applying 

SQG methods to realistic problems, though a code has been made available [6], but 
there are indications that the technique can be slow (see for example the small illustrative 

numerical computation given in [4] ). In any case, the two other drawbacks mentioned 
above - difficulty in enforcing feasibility, and the lack of a good stopping criterion - 
also apply to SQG methods. 

The method we propose, which in its pure form we call sample-path optimization, 

appears to avoid these two difficulties. It exploits the fact that the function we wish to 

optimize is the limit, along almost every sample path, of a sequence of approximating 
functions (outputs of simulation runs of increasing lengths, all using the same random 
number stream(s)).  The basic idea is simply to go out tar enough along the sarnple 
path to have a good estimate of the limit function, and then to optimize the resulting 

deterministic function by the most efficient methods available, taking the result as an 
estimate of an optimizer of the limit function. This is closely related to the method of 

retrospective optimization proposed by Healy and Schruben [ 14], but it differs in that 
we do not suggest making multiple runs for the purpose of averaging or constructing a 
distribution; rather, we use a single sample point and a relatively long run. 

This conceptual method is analyzed in [33], which also contains additional references 
to the literature. The algorithm is shown there to converge with probability one under 

two hypotheses: first, that the sequence of approximating functions epiconverges to the 
limit function; second, that the limit function almost surely has a nonempty, compact set 
of minimizers. It is further shown there that the epiconvergence property holds under 
certain assumptions that are convenient for application in practice. We explain these 
assumptions further in Subsection 2.1 below. 

Our objective in this paper is to show that variants of this method can be applied 
successfully to large, hard problems in which the objective functions may be nonsmooth. 
To accomplish this we used a version of the bundle method, with some adaptations that 
we explain later. We also adapted the basic sample-path optimization idea by retaining 
certain info~Tnation when increasing the simulation run length. Although not theoretically 
supported, this procedure conserved information that in some cases was very costly. 

This implementation of sample-path optimization has, in our view, at least two advan- 
tages as compared to more conventional methods. First, it deals directly with the issue of 
nondifferentiability, and in the process it develops an effective stopping criterion in the 
form of the e-subgradient that is evaluated and tested as part of the algorithm. Second, 
it has no difficulty with linear constraints of any kind (inequality and/or equality), 
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because these can simply be incorporated into the quadratic programming problem that 

determines the step in the parameter space. 

We proposed this approach lor the tandem manufacturing line problem in [31], 
but with little detail except for a specification of the algorithm and a report of some 
computational results. In this paper, by contrast, we attempt to give a careful treatment 

of several issues that were not discussed in [31] because of limited space. We also 

give much more extensive computational results, and we point out some areas that need 
further research. Related methods were described in [7,8,16,17] with computational 

results for solving stochastic linear programs with recourse. 

The remainder of this paper is organized in four main sections followed by six 
appendices containing additional detail, operational or theoretical, supporting the main 

body of the paper. References conclude the paper. Of the main sections, Section 2 
describes the method that we suggest, including some of the details of its implementation, 

while Sections 3 and 4 contain our numerical results. 

In Section 3 we give examples of optimization of tandem manufacturing lines, with 

respect to machine cycle times, for lines with up to 50 machines. The cycle times were 

required to satisfy various linear constraints, including binding inequality constraints. 

We do not know of any reports in the published literature covering optimization of lines 

of this size, with or without constraints. 

In Section 4 we present results for optimization of stochastic PERT problems with 

up to 70 nodes and 110 arcs, with respect to parameters appearing in the probability 

distributions of the activity lengths. Again. we do not know of any published numerical 

work in whichs stochastic networks of this size have been successfully optimized. 
Section 5 briefly summarizes the work presented, and comments on issues that need 

further research. 

2. Modified sample-path optimization 

In this section we describe the algorithm that we suggest, as well as some implementa- 

tion issues. In Subsection 2.1 we describe the underlying algorithm and some expedient 
modifications that we made to it for better performance on the problems presented in 

Sections 3 and 4. We explain in Subsection 2.2 the bundle-type algorithm that we used 
for the computations. We show there how we extended the method's basic stopping 

criterion to take account of linear constraints whose presence was not rel]ected in the 
subgradient estimates obtained from the simulations. We also give more detail about one 

of the modifications just mentioned. 

2.1. Sample-path optimization and its applicabilit3' 

This subsection explains the algorithm that we employed for the stochastic optimiza- 

tion calculations presented in Sections 3 and 4. As explained earlier, the underlying 

method is simply to optimize the deterministic function defined by a simulation run 
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having fixed length and using a single sample path (implemented by the method of  

common random numbers). 

An abstract form of our problem is the following: suppose we are given an extended- 
real-valued stochastic process { S, ,(x)  I n ~> I }, depending on a parameter x E R k. For 

n ) 1 and x E X the S, ,(x)  are defined on a common probability space (~F, 5 r ,  P ) ,  and 

we denote a sample path of  the process by { S,,(4, ,x)  I n >/ 1 } for x C X. The S,,(x) 
could, for example, represent averages derived from simulation runs of length n; we are 

interested in what happens as n --, oc. 

This setup covers both cases with which we are concerned in this paper. In the static 

case, we repetitively simulate a single event (the realization of  a PERT network and the 

subsequent longest-path calculation) and average the results; under weak assumptions 

the strong law of large numbers tells us that these averages converge almost surely to 

the expected value in which we are interested. In the dynamic case, we simulate the 

operation of  a manufacturing line for periods of  increasing length, and assume that 

the system satisfies conditions sufficient for the resulting sample average throughput to 

converge almost surely to a steady-state throughput. 
The pure form of sample-path optimization would fix a large n and a sample point 

and optimize the deterministic function S,,(~. �9 ). As we point out below, we made 

some expedient modifications to this method in our actual implementation. However, 

it is of  interest to ask what the convergence properties of the basic method are. That 

question is dealt with elsewhere [33],  where it is shown that under two assumptions 

the method converges almost surely. This result holds both for exact minimization of S,, 
and for e-minimization. 

The two assumptions just mentioned, expressed in the present notation, are first 

that with probability one the S,,( .  ) are lower semicontinuous proper functions that 

epiconverge to a (possibly random) ftmction S.~( .  ), and second that with probability 

one So~(-)  is lower semicontinuous and proper, and for some positive e0 the level 

set {x ] Soo(x)  ~ (infSc~) + e0} is nonempty and compact. For a good elementary 

treatment of  epiconvergence see [21],  and for more detail see [1 ]. 

The first of the above assumptions (epiconvergence) is rarely given explicitly. We 

give here two assumptions that are more convenient for practical application, and outline 
the result [33, Proposition 2.5], showing that they imply epiconvergence. 

The assumptions deal with random functions Y,,, delined on a relatively open convex 

subset A of  R k. In our applications A will be an open convex subset of  the nonnegative 
orthant R~. For the tandem production lines this subset is just the interior of R~, 

whereas for the PERT networks it is the open set G discussed in Appendix E. 

Assumpt ion 1. For each n, Y,, is with probability one a finite convex function on A. 

Assumpt ion  2. There is a countable dense subset O of A such that for each x E O, 

with probability one the sequence {Y,,(x)} converges to a finite limit Y:-~(x). 
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Now suppose that D is a nonempty closed subset of  A. Proposition 2.5 of [33] shows 
that under Assumptions 1 and 2, with probability one the following hold: 

(1) The limit Y ~ ( x )  exists for e a &  x ~ A (not only for _v ~ O). 

(2) Yoc is a finite convex function on A. 

(3) If  for I ~< n ~ oc we define functions X,, on 1R k to he I/,,, on D and +,oc off D, then 

the X, are lower semicontinuous and proper, and as n ~ ~c the X,, epiconverge to 

XOC. 

In this paper our sample-path functions 5;, play d~e role of the X,, in the above 

result, since they are restrictions of the Y,, to a closed subset D of  A. In our work D 

is a polyhedral convex set, whose definition includes the linear equation and inequality 

constraints imposed on the variables. For the PERT problems these constraints included 

explicit positive lower bounds on all variables. For the tandem production lines the 
definition of D may include implicit positive lower bounds on the cycle times, small 

enough to be inactive at the optimizer, if these are needed to produce a closed set. 

Assumption 1 is tile property of strot~g s tochas t ic  com,e.ri O" introduced by Shanthiku- 

mar and Yao [38].  Assumption 2 always holds, in the case of  the PERT problems of  

Section 4 because the strong law of large numbers applies. It holds in the case of  the 
tandem production lines of  Section 3 if there is a limiting distribution (steady state). We 

do not go into an}, detail here about conditions for existence of  a steady state in such 

lines; see, for example, [301 or [10].  However, we shall discuss the other assumption 

in the context of  our problem types. 

In Appendix E we provide analysis to show that Assumption I (strong stochastic 
convexity) holds for the PERT problems analyzed in Section 4. We also show there how 

to determine the exact form of the subdifferential that is needed for the computational 
work. 

The situation is somewhat more complicated for the tandem production lines treated 

in Section 3. The objective in these problems is to maximize the steady-state tt~'oughput, 

the mean amount of  production per unit time by the last machine in the line. Recall 

that tandem production lines can be either con t im fous  or discrete: in the continuous case 
(e.g. chenfical production), the product flowing through the system is a continuous fluid 

as opposed to separate workpieces in the discrete case (e.g. automobile assembly). We 
shall refer to these as CT and DT lines respectively. 

Shanthikumar and Yao [37, Section IV.B] proved that in a given sample path of  a 

DT line with manufacturing blocking, the departure time D,, of the nth unit of product 
from the system is a convex function of  parameters in the distributions of  the external 

interarrival times and the machine service times, provided that these times themselves 

are convex functions of those parameters. Related results are in [20].  This proof was 

extended to lines with unreliable machines by Fu [5] (Theorem 5.2 for manufacturing 

blocking, and Theorem 5.4 for communication blocking). Fu's results are stated in 
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terms of  flow rates (the reciprocals of  cycle t imes);  however, his technique o1" proof 

is to establish convexity of the departure time as a function of cycle times and then to 

use a version of the theorem on convexity of  composite functions [34, Theorem 5.1] 

to prove that the departure time is also convex as a function of  flow rates. The result 

we need here is the convexity with respect to cycle times; this establishes Assumption 

1 for DT lines. 

However, for the computations of  Section 3 we (lid not use DT simulations, but 

approximations to these by CT simulations. Studies of such approximations, and of the 

errors introduced by using them, appear in [5 ,41-43] .  For example, Suri and Fu [43] 

concluded that l\~r fairly small lines (up to 6 machines),  the throughput values obtained 

from a CT approximation were very close to those of  the DT line being approximated 

(relative errors ranging from 0.0% to - 2 .  I%) .  and for an extensive study of  132 15- 

machine lines the relative error of  throughput was under 4% in 90% of the cases studied. 

Further, the CT simulations had a substantial time advantage over DT simulations: in a 

third of  the 132 cases, the ratio of  the DT simulation time to the CT simulation time 

was at least 10, whereas in 6 of  the cases the ratio was more than 60. 

In view of  these findings, since we wished to optimize lines of  large size - for which 

we thought the time advantage of the CT simulation would probably be even larger than 

for the lines studied in [43] - we decided to approximate the DT lines by CT lines. To 

establish the convexity of  departure times in such lines, we can use another result of  Fu 

[5] .  He begins with a DT line with communication blocking, and then derives from it a 

sequence of  DT lines with communication blocking, constructed so that in the ruth such 

line the size of  a unit of  product is 2 -m times that in the original line. The ith buffer in 

the ruth line holds 2"' times as many products as does the ith buffer in the original line 

(that is, the total product volume is the same in both buffers). The machine failure and 

repair distributions are the same. 

Let us choose one of  the machines and, for a fixed nonnegative integer q, denote 

the earliest time at which q units of  volume (that is, q products in the original line, or 

2"~q products in the ruth line) have departed that machine by D,,,, where m may be any 

nonnegative integer. The original line corresponds to the choice m = 0. Fu proves in 

Theorem 5.6 of  [5] that l i m , , _ ~  D,,, = Dcq', where Dcr  is the earliest time at which q 

units of  volume have departed the chosen machine in a CT line having the same buffer 

sizes, rnean volumes to failure, mean times to repair, and flow rates. If  we define a 

vector c E int R ~" by letting ci be the processing time that the ith machine requires to 

complete one volumetric unit of  product (that is, one unit of product in the CT line, 

or 2"' units in the ruth DT line),  then we can write D m =  Din(c)  for 0 ~< m < co, and 

DCT = DCT(C): these are then functions defined on in tR  k. As stated in the discussion 

above, Fu proves in Theorem 5.4 of  [5] that for 0 ~< m < cx~ the functions D,, ,(c)  are 

convex. As the pointwise limit of  convex functions is convex, we conclude that DCT(C) 

is also convex. Accordingly,  Assumption 1 applies to the CT line models, with cycle 

times as variables, that we used in our work. 

It is important to note that the property of strong stochastic convexity depends on the 

choice of  machine failure model. It is argued in [42] that a natural failure model, for 
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CT lines that are approximations to DT lines, is one where the quantio' produced by a 

machine since the last failure determines its next failure (as opposed to failures' being 

determined by the time o f  operation of the machine since the last failure). The failure 
model used in our CT line simulation is therefore based on the quantity produced by 
each machine. 

In our computations we modified the basic salnple-path optimization method by occa- 

sionally increasing the simulation run length ~z. while carrying over certain information 

(cutting planes: see Subsection 2.2 below) fi'om the shorter simulation runs. The effect 

of  this practice was to introduce additional constraints on the decision variables. We did 

this in the interest of  efficient use of  information, since in large problems the compu- 

tation of  these cutting planes is extremely expensive. In cases where these additional 

constraints proved to be too restrictive we used a heuristic procedure for relaxing them. 

This procedure is described in Subsection 2.2.3. 

In tlzis section we have explained the conceptual method of sample-path optimization 

and have exhibited assumptions under which the method has been shown to converge 

with probability one. We have also noted that in our computations we employed expe- 

dients to improve the speed of computation, which amounted to alterations of the basic 

method. These expedients consisted of  ( 1 ) using CT approximations to the underlying 

DT lines being modeled in Section 3, and (2) retaining some "old" cutting planes after 

increasing the length of  a simulation run. Our actual computations should therefore be 

regarded as results of a variant of  the basic conceptual method. 

2.2. The buJMle/trust-region method 

As our objective functions S,, were in general nonsmooth, we chose to use a nons- 

mooih convex minimization algorithm of the bundle class: specifically, the bundle/trust- 
region (BTR) method of Schraimn and Zowe [36.51]. A very similar algorithm is 

described and justified in [22].  In the first part of  this section we give a brief descrip- 

tion of  the method; then we provide three subsections dealing with, respectively, the 
stopping criterion, modifications to take account of  additional linear constraints, and the 

carryover of  old cutting planes when increasing the length of  a simulation run. 

The basic idea of  the algorithm is to use subgradienls of the objective function to 

construct a cutting-plane approximation, which is then regularized by adding a quadratic 

function in order to control the proximity of the next iterate to the current one. This 
results in a quadratic programming problem of the form 

m i n {  c' + ( 2 t ) - '  {]dL] 2 I c ) <.'r - ee.,, i r  },  ( 1 )  

where the y/* are subgradients and/3 is the set of  indices included in the current bundle. 

The regularization parameter t controls the size of  the step d from the current iterate, say 

x,,, to the next iterate x,,+l. A somewhat simplified description of  the procedure is that 

one applies standard stepsize tests to the candidate step. resulting either in acceptance 

of  that step (a serious step) or rejection (a null step): in either case a new subgradient 
and function value are computed. This enlarges the bundle to be used for the next 
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calculation, in which a different value of  t may also be used. To avoid uncontrolled 

increase of  the bundle size, there is provision for periodic restarts with a smaller bundle. 

A pseudocode summary of  the algorithm is in Appendix A. 

Note that since the step x,,+l - x,, is determined by (1) ,  one can easily incorporate 

additional linear inequality or equality constraints on x,,+i by simply adjoining them to 

the other constraints of  (1) .  We think that this is an important advantage of  using a 

technique (such as the bundle method) that employs constrainls in computing a step, 

rather than modifying an unconstrained method, such as stochastic approximation, by 

projecting iterates onto the feasible set. We discuss this advantage further in Appendix F. 

2.2.1. S topping cri terion 

The stopping criterion for this method is the generation of a y-subgradient x~, of the 

objective function f at the current iterate x,,, with ]]x~]] ~< y, where y is a preset positive 

tolerance. To say that :~r is a y-subgradient of ./" at x,, means that lbr each x C R N we 

have 

f ( x )  >>. f ( x , , )  + ( x ~ . x  - x,,) - ~. 

If  .x~ were exactly zero then we should have a T-minimizer of f ,  but here that is not the 

case. Therefore we comment briefly on why this criterion is a reasonable one to use. 

Suppose that ,f is a closed convex function, and assume further that its level sets are 

compact; this is a regularity assumption on f ,  without which one can perlurb ,f by an 

arbitrarily small amount to produce a function having no minimizer. This assumption is 

equivalent to requiring that the origin be in the interior of  dom f*,  the effective domain 

of  the conjugate function. For each nonnegative e let X~ he the set of all x for which 

there exists x* E O<f'(.v) with ]ix*l] ~< e. Clearly X0 is the set of minimizers of  f .  and 

our stopping criterion amounts to requiring that the current iterate x,, lie in X-r for our 

prcselected positive y. In our numerical results in Sections 3 and 4, we refer to points of  

Xy as y-solut ions .  Also, it is dea r  that the sets X~ are nested, and that their intersection 

over all positive �9 is X0. 

Our regularity condition ensures that 0 ~ int dora f*,  so let /3 be a positive number 

such that the closed Euclidean ball /3B about the origin with radius/3 lies in the interior 

of  dom f * . . / *  is then continuous on that bali; let its minimum and maximunl there be 

p~ and M respectively. Then the indicator l#t~ of  the ball majorizes f*  - M, so we have 

Pll , II = limb ~ ( f *  - M ) *  = f + M. 

It follows that for each x, f ( x )  >~/311x][ - M. 

Now let y < /7. A point x,~ is a y-subgradient of f at a point x exactly when for 

each z we have f ( z )  >~ f ( x )  + ( x ~ , z  - x) - y; this is tt~e same as saying that 

. f ( x )  + . f*(x~)  - (x~,x)  ~ ~. (2)  
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Suppose that actually x ff X~,: that is. we have in addition ll-r~,ll ~< Y. Then using (2)  

we iliad that 

y ~> f ( x )  + f * ( x ~ )  - (x r,.v} 

> (/311xll  - M )  -,- ~ - r l l . , l l  : ( /3  - r )  I1-~11 ( M -  ~ ) .  

It follows that X r is contained in the ball about the origin of radius (/3 - 3/)-I  [3' + 

(m -# )1 .  In particular, the X r are compact sets tot all sufficiently small 3/. 

We now claim that for any preassigned positive e, there exists a positive cS such that 

whenever y < ,5 we have e[X , / ,Xo]  < e, where for two subsets F arid A of  R N we 

define the c:vcess of I" with respect to A to be 

e[  1", AI = sup inf l i t  - ~11, 

Note that if elF,,.3] is small, then each point of I" is close to some point of A, but not 

necessarily vice versa. 

Indeed, if the above claim were not true we could find a positive e and a sequence 

{Y,,} of  positive numbers converging to zero, with a sequence of points {x,,} such 

that for each n, x,, C Xr, , and e[x,, ,  X0] ~> e. The X>, are nested and compact, so a 

subsequence of  the {.v,,} converges to some x0, and by our remarks above this x0 must 

belong to X0. But this contradicts the assumption that el.r,,, X0] ~> E for every n. 

In this sense, the bundle method wittl tile above stopping criterion is a priori conver- 

gent. However, it is not generally feasible to determine such a 8 explicitly for a given e. 

In practice, one just sets the tolerance y at some number thought to be reasonable and 

computes a y-solution, sometimes checking by repeating the computation with a smaller 

value of 7. This is what we did in tile computations of Sections 3 and 4. 

2.2.2, Addi t ional  Iblear constraints 

We next describe the modifications that have to be made to a bundle method when 

additional linear constraints are adjoined to tile problenl. We consider the problem 

of minimizing a closed proper convex function f ,  and to avoid complications in the 

convergence analysis of the bundle method we suppose that the effective domain of 

f includes an open set G large enough to contain all of tile points generated in the 

course of  tile computation. As we pointed out in Subsection 2.1 above, this assumption 

holds for the problems we considered. We shall minimize ./" subject to the additional 

constraints Ax ~< a. where A is m x n and a c- ~'":  these constraints define the set F of  

Subsection 2.1, and we have F C G. Let h = f +  IF, where /v is the convex indicator 

of  F (zero on F and +~c  elsewhere);  then our problem is to minimize tt. 

Solution of the quadratic programming problen~ ( 1 ) under the additional constraints 

A ( x , , + d )  ~ a yields primal solutions l, and d, and dual solutions fLagrange multipliers) 

A and #,  satisfying the first-order necessary optimality conditions: 
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t - l d + ~ - ~ k i Y * + l x A = O .  A ) 0 ,  /.t ~> 0, Z A i =  1, 
iEB iEB 

Z k i C e e , - ( y ; , d ) + v ) = O ,  ( I . t ,a-ACx, ,+d))=O.  
iEB 

Now define 

+"+ = Z a'-u + o-= Z a'+' + - a.+,,), 
iC/3 iE~ 
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(3) 

and recall that in methods of the bundle  class oei is the "linearization error" defined 

by oq = .((x,,) - f ( y i )  - (y[ ,x , ,  - Yi). Under  the assumptions that x,, E F and that f 

is convex we have cr >/ 0. We shall show that s* is a cr-subgradient of  h at x,,, and 

therefore that an appropriate s topping criterion to use is that both s* and cr be small. 

This is the criterion we used for the coraputational work of  Sections 3 and 4. 

We have to show that for each z 6 R 'v, h(z) >~ h(x, ,)  + (s*,,-. - x,,} - or. This is 

clearly true whenever  z ~ F, so assume z c_ F. As 3'7 C c)f(y,) we have for each i E /3 

h ( z )  = f ( z )  ~> f ( y , )  + ( y , , g  - yi) = h(x, , )  + (yi*. z - x , , )  - c~i, {4) 

in which we used the definit ion of  oq and the fact that x,, ~ F. Mul t ip ly ing  (4)  by ai 
and summing  over all i ~ / 3  yields 

*,(z)  > h(x , , )  + ( < ,  : - x,,) - ~ ,~,~ - (~,  A(~ - x,,)) 

> h(x , , )  + (s*, z .v,,) # ,  

where the last line follows from the fact that 

(/..t. A (z - x,,)) = (# .  AZ a ) + ( p . , a - A x , , ) 4 ( p . , a - A x , , ) .  

Therefore s* C- 8+h( x,,), as required. 

Note that if the set of  constraints among Ax <~ a that are active at .r,, contains  the 

set active at x,, + d. then whenever /x.] > 0 we have [A(x,,  + d)  - Oil = 0 fronl (3)  

and therefore by assumpt ion [A.v, - a]i = 0. In this case o- reduces to the convex 

combina t ion  ~ := ~ i r  ")tiOdi ordinari ly  used in the bundle method. This happens in 

part icular when the constraints Ax ~< a represent linear equalities. In the genera[ case, 

O" ~ O/. 

2.2.3. Carryover of cutting-plane it!formation 
Tiffs subsect ion discusses a modi l icat ion that we made to the sample-path opt imiza-  

tion algori thm to conserve information previously computed.  Recall that the bundle  

constraints  shown in (1)  are of the form v >~ (y/*. d) - (-if, where eei= f ( x , , )  - f ( y i )  - 

(y[, x,, -Yi); here f is the objective funct ion,  x,, is the current iterate and Yi is the point  

at which the bundle subgradient  3',* was taken. As f is assumed to be convex, we see 

that the " l inearizat ion error" ozi should be nonnegative.  Much of  the theory behind the 

bundle  method relies on this nonnegativity.  
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For a system satisfying strong stochastic convexity (Assumption 1 above) this non- 

negativity should hold when we carry out the sample-path optimization procedure, since 

for fixed ~ and n, S , , ( & x )  is a deterministic convex function. We ensure that we use 

the same sample point ~ by operating the simulalion with common random numbers, 

and the IPA algorithm [5,42] used for the continuous tandem production line problems 

in Section 3 provides an exact gradient for the sample function. Therefore the bundle 

algorithm will not produce a negative linearization error. 

However. the use of  a fixed st is not necessarily efficient. To shorten the computation 

lime we would like to begin with a short simulation run and then increase the simulation 

effort to provide more accurate information in the later stages of the computation. A 

negative linearization error frequently occurs immediately after such an increase in 

simulation effort due to the change in the sample function being observed. We now 

describe the expedient that we employed to continue the computation in such a case; 

in the description we use the notation .f'olu for the objective function corresponding to 

the previous (shorter) simulation run, and .fi, e,, lk~l" that corresponding to the current 

( longer)  run. 

To recove, from a negative linearization error one could certainly discard the bundle 

elements corresponding to fo~d. However, doing so would waste much of the effort 

aheady expended to produce the current cutting plane model of the objective function. 

An alternate heuristic procedure was suggested to us by A. Ruszczytiski: namely, instead 

of discarding a bundle element, lower the corresponding cutting plane by adding a 

correcting value to the linearization error a,  in ( l ). 

Such a correcting value evidently has to be at least as large as [o~], where i is the 

index of  the constraint in which the negative linearization error occurred. In fact, if the 

negative linearization error occurs directly after a serious step the correction should be 

strictly larger than Icei], for the following reason. The stopping criterion for the method 

involves the creation of a small e-subgradient of f with a small e, where the value E 

iS a convex combination of  the a l  using Lagrange multipliers of  (1)  (which will be 

nonnegative and will sum to 1 ). After a serious step is taken, all a i corresponding to 

indices j of constraints active in the last quadratic programming solution will be equal. 

Thus, if a negative c~i is found after a serious step and if a correction of  taxi] is added, 

these values become zero. This, in turn, makes it appear that an E-subgradient with 

e = 0 has been found. If this e-subgradient happens to be small, premature termination 

follows. Even if the E-subgradient is not sufficiently small, the zero value of e forces 

the algorithm remain at the current point by generating a step d of zero. 

Therefore, for the problems in Sections 3 and 4, if one or more negative linearization 

errors occur after a serious step we add a correcting value of  21min{oei [ i c B}[ to 

all a~ corresponding to fold. In such a case the function value of  the current iterate x,, 

has been estimated via f ,  ew; hence, negative linearization errors do not occur in bundle 

elements corresponding to fnew. 
On the other hand, when a negative linearization error occurs directly after a null step 

the function value at the current iterate x,, has been estimated via .fold, and the new 

bundle element responsible for the negative linearization error at x,, corresponds to .fnew. 



E.L. Plambeck et al./Mathematical Programming 75 (1996) 137-176 149 

In such a case we re-estimate the function value at x,, by fnew and add the correcting 

value fn~w(X,,) - fo ld(X, , )  tO all e(# in the current bundle. 

In our computational results in Sections 3 and 4, we refer to solutions calculated on 
the basis of  both old and new cutting planes as approximate y-solutions. 

This subsection has explained how we modified the underlying method to conserve 

computational effort by carrying over some of the bundle information already computed. 

With this, the description of  our implementation of  the BTR method is complete. The 

next section begins the description of our numerical results. 

3. Numerical results: tandem manufacturing lines 

This section presents the results of  applying the algorithm described in Section 2 

to the optimization of tandem manufacturing lines containing unreliable machines. The 

optimization is with respect to the machine cycle times, which are required to satisfy 

various linear constraints including, in some cases, binding inequality constraints. In 

Subsection 3.1 we explain the structure and functioning of the lines. As part of  our 
numerical experimentation was to compare our proposed method with an existing method 

(SRO),  we describe that competing method in Appendix B. Finally, in Subsection 3.2 

we present numerical results, both for comparison of our method with SRO and for 

solution of  larger problenls that SRO could not handle. 

3.1. Description of  the tandem production line problem 

This subsection describes the manufacturing optimization problem that we first ad- 

dressed in [31].  In a tandem production line processing machines are arranged in series. 

The product, whether discrete or continuous, arrives from an external source and starts 

its processing at the first machine. After being processed, it goes to the second machine, 

and so on, in order, until it is processed by the last machine, after which it departs 
from the system. Machines may have different processing rates. In a DT line, the time 

it takes a machine to process one unit of product is called the cycle time. In a CT line 
the natural description for processing rate of  a machine is the flow rate, which is the 
maximum amount of product that a machine can process in unit time. It is clear that 
for a continuous machine with the same processing rate as a discrete machine, the flow 

rate of the former must be the reciprocal of the cycle time of the latter. Since, in our 
manufacturing problems, the decision variables to be optimized (and which appear in 

some of  the constraints) are the cycle times of  machines in a DT line, we will typically 

use the term "cycle time" in the problem specifications below. However, since we used 
CT lines in the simulations, it should be understood that any cycle time shown represents 

the reciprocal of the flow rate of  the corresponding machine in the CT line sinmlation. 

Between each pair of  machines in a tandem line is a buffer of  a specified size. While 

a machine is processing it may fail, and once/'ailed, take some time to be repaired; both 

these occurrences are characterized by specified random variables. If  a buffer gets full 
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(due to failure, or just slow speed, of  a downstream machine) then upstream machines 

cannot process product at their normal rate. In a DT line upstream machines must 
stop processing until space is available in the next buffer, while in a CT line upstream 
machines may either stop processing or else just be forced to process at a rate less 

than their flow rate, specifically the rate of the bottleneck machine downstream which 

is constricting the flow. Similarly. if a buffer is empty, then downstream machines have 

to stop processing or slow down. All these characteristics result in complex dynamics 

of  a tandem production line, which makes it difficult to analyze these lines and predict 

their performance. The main performance measure for a tandem line is its throughput, 

which is the amount of  production completed by the last machine in unit time. Since the 

throughput is random, typically one is concerned with steady-state throughput, and that 

will be the performance measure for our problems as well. Specifically, our goal will be 

to adjust the cycle times (subject to certain constraints) to maximize the steady-state 

throughput. 

A typical assumption used in determining the steady-state throughput of  such lines 
is that an unlimited supply of raw material is available to the first machine, and the 

last machine has unlimited space for output of its production. We will also use this 

assumption in our simulations. We further assume that for each machine in the line, 

the volume of product processed to failure, and the time required for repair after a 

failure, are exponentially distributed random variables (the exponential distribution is 

convenient, but in no way necessary here). Under these assumptions, analytic expressions 

for steady-state throughput of two-machine CT lines are available in [9].  Also. analytic 

expressions for steady-state throughput for two- and three-machine DT lines have been 

derived under various assumptions (see the extensive bibliography in [42] ). However, 
no such results exist for either DT or CT lines of the length considered here. Therefore 

they must be treated by computer simulation models. A detailed description of  our 
simulation algorithm is in [42].  

Suri and Fu [43] demonstrated that throt, ghput in a discrete or a continuous tandem 

line can be nondifferentiable as a ['unction of cycle times at points where two or more 

machines' cycle times are equal, and in studying these lines, we have found empirically 
that optimizers often have equal cycle times. Therefore, nondifferentiability appears to 
be a common feature in this class of  problems. 

3.2. Test e.rample.s and conq)utational results 

In this subsection we present the results of conlputational experiments that we per- 

formed using bundle-based stochastic optimization (BSO) and single run optimization 

(SRO). The objective is to minimize the reciprocal of steady-state throughput as a 
function of  cycle times for the continuous tandem production line. The simulation used 

to compute objective function and gradient estimates is described in detail in [5,42]. 

We applied both SRO and BSO to optimize a 50-machine line. a 15-machine line, and 
two 2-machine continuous tandem lines, all subject to linear equality constraints. The 

time-consuming job for both algorithms is the computation of  function and gradient 
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estimates via simulation. Therefore, we compared the solutions obtained using BSO and 

SRO with equal simulation budgets. The random number streams for the simulation 

were consistent for BSO and SRO. Appendix B gives the parameter settings used for 

tile SRO method in the cases reported in this section. In addition, we used BSO to 

optimize the 15-machine problem and 50-machine problem subject to additional linear 

inequality constraints. In these cases we did not not fix the simulation budget. Instead 

the algorithm terminated with a y-solution. 

The specilications for the 2-machine tandem lines appear in Table 1. We minimized 

the reciprocal of throughput with respect to cycle times, subject to the constraint that 

the sum of cycle times is constant. Observe that the optimal solution to Case I is a 

nonsmooth homogeneous point (that is, a point at which two or more cycle times are 

equal). 

Cases I and 2 of the 2-machine CT line problem were solved by BSO and SRO 

from two different initial points, denoted "a" and "b." The random number streams 

for the simulation differed in the "a" and "b" cases. Both methods were restricted to 

a total simulation budget of 1,000,000 units of simulated product volume. The BSO 

method used 500 units of simulation warmup volume and 99,500 units of run volume 

per function and gradient evaluation. 

For the 2-machine problem an analytic optimal solution is available [9]. Therefore, 

we checked the accuracy of our results by calculating the Euclidean distance of the 

computed minimizer lu the optimal solution. These values are labeled "Error" in 

Table 2. We also evaluated the reciprocal of throughput at the initial points and at the 

BSO and SRO solution points. These objective values are also shown in Table 2. 

Since analytic sohttions are not available for problems with more than two machines, 

we also verified all solutions by checking that the reduced gradient (thai is, an objective 

Table 1 
Specifications for 2-machine. CT line problems 

Mean volume Mean time BuffEr Optimal 
Case to failure to repair capacity cycle times 

1 100 100 10.0 10.0 4 0.50000 0.50000 
2 60 119 2.0 1.2 3 0.49707 0.50293 

Table 2 
Results for 2-macfiine CT line problems 

Initial values BSO solution SRO solution 

Cycle Objective Objective Norm of Objective Norm of 
Case times value value 1, gradient Error value u gradient Error 

la 0.20.8 0.97202 0.68956 2.0E-I 7.5E-1 1.4E-15 0.68958 2.0E-I 7.5E-1 6.7E-5 
l b 0.9 0.1 1.06928 0.68963 2.0E-I 7.5E-I 1.8E-9 0.68966 2.0E-I 7.5E-I 9.8E-5 
2a 0.20.8 0.82035 0.53741 8.3E-3 7.0E-I 1.8E-4 0.53750 3.6E-2 7.0E-I 8.2E-4 
2b 0.9 0.1 0.93441 0.53741 7.7E-3 7.0E-I 1.7E-4 0.53741 5.9E-4 7.0E-I 7.1E-6 
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gradient reduced by an appropriate linear combination of the constraint gradients) was 

close to zero. For this purpose, we generated an IPA gradient estimate at each solution 

using a simulation warmup volume of 1,000,000 and a run volume of  10,000,000 and 

calculated an approximate reduced gradient by: 

min Lif ' (x)  - A'Allot, = rain{ u I - u l  ~< f ' ( x )  - A*A ~< u l  }, 
A A.a, 

where f~(.r)  is the gradient estimate, A is the constraint coefficient matrix, and 1 is a 

vector with each component equal to 1. A small optimal value of  u should CO~Tespond, 

in a reasonably well conditioned problem with a differentiable objective function, to a 

near-optimal solution x. 

However, in a nonsmooth problem one would not necessarily expect such a reduced 

gradient to be small, because one might find large subgradients close to, or even at, the 

minimizer. We see this illustrated in the nonsmooth Case I, where p is not small even 

though the error in the BSO solution is ot ' the  order of 10 15. On the other hand, in the 

(barely)  smooth Case 2, ~, is fairly small at the computed solution. 

The results shown in Table 2 indicate that BSO is competitive with the SRO method 

for small, equality-constrained CT line problems. We expected the gradient-based SRO 

method to have some difficulty in converging to the homogeneous optimal point in 

Case 1 because of  nonsmoothness, but it successfully solved the problem. Apparently 

the Robb ins -Monro  sequence {a,,}, described in Appendix B, damped the gradient 

values sufficiently. 

We also applied BSO and SRO to optimize a 15-machine line subject to six linear 

equality constraints on the cycle times, and a 50-machine line subject to five linear 

equality conslraints. The 15-machine problem specified in Table 3 is motivated by 

machining system research at Ford Motor Company [49] and was also considered in 

[31].  Note that in Table 3 "Buffer capacity" refers to the buffer preceding the machine. 

The system characteristics for the 50-machine line are similar, with mean operating 

volumes to failure ranging between 80 and 120, mean times to repair between 4 and 10, 

and buffer capacities all equal to 10. A detailed description of the 50-machine CT line 

in Case 4 is in Appendix C. 

In Case 3, the 15-machine CT line problem, the cycle times (el . . . .  cis)  are subject 

to the following constraints: 

cl + c : + c 3 = 0 . 9 6 6 ,  c 4 + c 5 = 0 . 6 ,  c 6 + c 7 + c s = 0 . 9 3 3 ,  

C9-~-CI0 = 0 . 6 ,  CII 4-Cl2-+-C13 = 1 .008 ,  C14-4-Cl5=0 .6 .  

Table 3 
Specifications for Case 3, 15-machine CT line 

Machine I 2 3 4 5 6 7 8 9 I 0 I 12 13 14 15 

Mean volume to failure 100 90 100 90 90 100 90 90 90 90 120 100 90 90 90 
Mean time to repair 10.0 4.5 6.0 4.5 4.5 5.0 5.4 5.4 4.5 5.4 6.0 8.0 1.8 4.5 45 
Buffer capacity 10 I0 i0 10 10 10 10 10 l0 10 10 l0 10 10 
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In Case 4, the 50-machine CT line problem, the cycle times (cl . . . . .  c50) are subject to 

the following constraints: 

I 0 20  30 

Z c " = 7 " 4 3 '  ~ c , , = 4 . 0 9 ,  Z c " = 6 ' 2 4 '  
n=l v=l l  n=21 

4O 5O 

Z c , ,  = 5 7 , ,  Z c , ,  = 5.17 
n=31 n-~. I 

The linear equality constraints in Cases 3 and 4 represent the total work to be done 

by machines of a given capability. We need to allocate the specific amount of work to 

be done by each individual machine in order to maximize throughput. 

We allowed a total computer simulation budget of 1,000,000 units of run volume 

for solving Case 3 and 10,000,000 units for Case 4. Each problem was solved by the 

BSO method and by the SRO method from two different initial points, denoted "a" 

and "b." The BSO method used 5,000 units of simulation warmup and 35,000 units of 

run volume per function and gradient evaluation for the 15-machine problem, and /'or 

the 50-machine problem, 100,000 units of warmup volume and 100,000 units of run 
volume. 

We computed approximate reduced gradient values u to check the accuracy of the 

BSO and SRO results. These values appear in Table 4. As in Cases 1 and 2 above, the 

values u were calculated from an IPA gradient estimate generated by simulation warmup 

1,000,000 and run volume 10,000,000. We also evaluated the Euclidean distance of each 

computed minimizer from an "optimal" BSO y-solution with small tolerance y and 

large simulation warmup and run volume. These values are labeled "Error" in Table 41 

For Case 3 we used warmup volume 50,000 and run volume 350,000 per function and 

gradient evaluation to compute the BSO y-solution with tolerance y = 0.0001. This 

point is labeled '"Optimal" cycle times' in Table 5. For Case 4 we used warmup volume 

I, 000,000 and run volume 1,000,000 per function and gradient evaluation to compute 
the BSO y-solution with tolerance y = 0.001. This point is specified in Appendix C. 
The objective values at these y-solutions are labeled "Optimal" in Table 4. All objective 

values presented in this section are estimated using a simulation with warmup volume 
1,000,000 and run volume 10,000,000. 

In all cases the value of the approximate reduced gradient i, is small relative to the 
norm of the gradient, indicating that the solution nearly satisfies an optimality condition. 

Furthermore, the BSO method consistently found a solution with smaller error than did 

the SRO method. These results indicate that BSO is at least competitive with SRO for 
large CT line problems with linear equality constraints. 

We also used our bundle-based method to optimize the 15-machine and 50-machine 

problems subject to additional linear inequality constraints. Because of the necessity for 
projection or other ad hoc techniques, we did not apply the SRO method to the inequality 
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Table 4 
Resuhs ['or Case 
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3 ( 15 machines) and Case 4 (50 machines) 

BSO s;olution SIlO solution 
Initial "'Optimal" 
objective objective Objeclive Norm of Objective Norm of 

Case value value value Error J, gradient value Error ~t, gradient 

3a 0.9224 0 .6097 0 .6110  2.6E-2 51E-2 2.3E-I 0.6104 4.6E-2 3.7E-2 2.3E-1 
3b 0.6512 0.6097 0.6105 1.5E 2 3.7E-2 2.2E-I 0.6104 2.0E-2 3.8E 2 2.3E-1 
4a 1.1922 1.0509 1.0516 2.2E-1 3.7E-2 2.4E-1 1.0607 9.4E-[ 3.8E-2 2.0E-I 
4b 1.2243 1.0509 1.0514 5.2E-1 5.4E 2 2.5E-1 1.0645 1.3E0 2.9E-2 1.8E-I 

constrained problems. The added constraints on the 15-machine problem were: 

cl ) 0 . 3 3 ,  c 5 ) 0 . 3 1 ,  c c , ) 0 . 4 0 ,  cc~+cs~>0.7,  c15~>0.35, (5) 

and 

c, ) 0.05, i = 1 . . . . .  15. 

The added constraints on the 50-machine problem were: 

cl ) 0.85, eel ) 0.67, C31 >~ 0.66, clo -~ c20 + c30 -t- c4o -}- c5o ) 3.30, (6) 

and 

c~l ) 0 . 3 5 ,  c41 ) 0 . 4 1 .  cl + c 5 o ) 0 . 9 9 ,  c / ) 0 . 0 5  i = 1  . . . . .  50. 

These constraints were designed to perturb the solution slightly from the observed 

optimal solutions for Cases 3 and 4. 

To optimize the inequality constrained 15-machine CT line, we initiated the BSO 

algorithm fi-om a feasible point with objective value 0.9224. Using a simulation warmup 

of 5,000 units and a run volume of 35,000 units per function and gradient evaluation, 

we observed convergence to a y-solution with tolerance y = 0.01 in a total simulation 

volume of 520,000 units. At this solution the value of the objective function was 0.6256. 

In order to verify this solution we continued with the simulation wammp and run volume 

increased by a factor of 10 to 50,000 and 350,000 units per function and gradient 

evaluation. We observed convergence to an approximate y-solution with tolerance y = 

0.001 in an additional simulation volume of 4,400,000 units. At this point, denoted 

""Optimal" cycle times *' in Table 5, the value of the objective function is 0.6242, and 

the constraints shown in (5) are active, while all olhers are inactive. The Euclidean 

distance between the y-solution with tolerance y = 0.01 and the approximate y-solution 

with tolerance y = 0.001 is 0.042. 

To optimize the inequality constrained 50-machine CT line we initiated the BSO 

algorithm from a feasible point with objective value 1.2217. Using a simulation warmup 

of 100,000 units and a run volume of 100,000 units per function and gradient evaluation, 

we observed convergence to a y-solution with tolerance y = 0.05 in a total simulation 

volume of 1,600,000 units. At this point the objective function value is 1.0679. In 
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Table 5 
Case 3, 15-machine CT line, approximate optimal cycle time solutions 
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Machine I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

"Optimal" 
cycle times .322 .322 .322 .300 .300 .311 .3I I .31 I .300 ,300 .327 .327 .353 .301 .299 
"Optimal" 
cycle times �9 .330 .330 .306 .290 .310 .400 .233 .300 .301 .299 .327 .327 .355 .250 .350 

�9 Inequality constrained case. 

order to verify this solution we continued with the simulation warmup and run volume 

increased by a factor of  10 to 1,000,000 and 1,000,000 units per function and gradient 

evaluation. We observed convergence to an approximate T-solution with tolerance Y = 

0.005 in an additional simulation volume of  52,000,000 units. At  this point, specified 

in Appendix C, the objective function value is 1.0537, and the constraints in (6)  are 

active, while all others are inactive. The Euclidean distance between the y-solution with 

tolerance Y = 0.05 and the approximate y-solution with tolerance Y = 0.005 is 0.705. 

4. Numerical results: stochastic PERT problems 

In this section we report the results of  applying our algorithm to stochastic PERT 

(Program Evaluation and Review Technique) problems. We describe the problems in 

Subsection 4.1 and report the numerical results in Subsection 4.2. Appendix E justifies 

the method that we used to compute the subgradient estimates. 

4. I, The stochastic PERT optimization problem 

The PERT technique, advanced in 1959 [26],  is used to estimate the expected duration 

for a project defined as a set of activities which consume time and resources and are 

subject to temporal precedence relationships. In practice, most activities can be finished 

in shorter or longer time periods by increasing or decreasing the resources such as 

funding, labor, or machinery available to them. Typically, reducing the duration of  an 

activity entails an additional cost for resources. We are concerned with the trade-off 

between completion time and cost for a project with random variable activity lengths. 

This type of  problem has been addressed before. In [48] Wallace examines various 

methods for bounding the expected completion time and cost performance function for a 

stochastic PERT network from below. An algorithm is presented in [50] to minimize a 

l i ne~  combination of expected completion time and cost when each activity length has 

a detemfinistic component based on resource investment and a discrete random variable 

component that is independent of  resource investment. This method is based on the L- 

shaped decomposit ion method by Van Slyke and Wets [47].  In [50] Wollmer suggests 

that "sampling may be a viable alternative" when the random variable distributions 

of  activity times are not discrete. However, although the idea of using Monte Carlo 
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simulation to analyze stochastic PERT networks was proposed as early as 1963 [46], to 

our knowledge no computational experiments using IVlonte Carlo simulation to optimize 

expected time and cost performance functions have been published until now. 
We apply bundle-based stochastic optimization to find optimal parameter settings 

for stochastic PERT problems in which activity length distribution parameters may be 

perturbed at some cost. These parameters are subject to linear constraints representing 

limits on resource availability and on activity duration. We consider problems of two 

types: the first has uniformly distributed activity lengths, and the problem is to minimize 

expected completion time and cost with respect to the means in the uniform probability 

distributions. The choice of the uniform distribution is motivated by problems in which 

the expected value of an activity length may be reduced at some cost, but the variance 

is fixed. In the second type of problem, each activity length has a triangular probability 

distribution characterized by the parameters a, b, and c which represent the minimum, 

maximum and mode, respectively. Tile triangular distribution is often used in place of a 

beta distribution [28], partly because it requires less computer time for random variable 

generation. We optimize a cost function in the second type of problem with respect to 

a common factor x in tile distribution parameters (which thus became ax, bx, and cx) .  

This setup is motivated by problems in which both the mean and variance of activity 

length may be reduced at some cost. 

4.2. Numerical  results: stochastic PERT 

This subsection presents numerical results for four stochastic PERT problems. In these 
problems we took the objective (to be minimized) to be the sum of two components: 

( l )  the expected project completion time, and (2) a cost function that was a sum of 
terms of tile form k, zi - I ,  where tile zi were parameters in the underlying distributions. 

This choice of objective form expresses a tradeoff of increased cost against decreased 
proiect length. 

To evaluate the cost function and its subgradient, we repeatedly simulated a set of 

activity lengths using a combined multiplicative linear congruential random number gen- 

erator [23], then solved the resulting longest-path network problem using the Bellman- 

Ford algorithm [29, Section 1.3] with an obvious modification to find longest instead of 

shortest paths. This calculation provided the completion time and a subgradient. Mean 

subgradient and completion time values were then combined with the corresponding 
cost components to provide objective values and subgradients 1o1 the bundle algorithm. 

We first considered two PERT problenls, T1 and UI, characterized by an activity-on- 
arc network with 7 nodes and 11 arcs. Tile incidence matrix of this network was: 
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Ihble 6 
Triangular distribution parameters and objective cost coefficients ibr problem TI 

157 

Activity I 2 3 4 5 6 7 8 9 I0 11 

ai 10.0 2.0 4.0 I2.0 3.0 10.1 7.3 4.9 ll.1 3.5 4.9 
ci I1.l 2.2 4.9 12.4 3.5 10.3 7.9 5.1 11.3 3.6 5.1 
b~ 12.3 3.0 5.2 13.0 4.1 10.5 8.2 5.5 11.9 3.8 5.5 
k, 0.6 1.0 0.4 0.8 1.4 0.2 1.6 1.8 1.2 0.6 0.4 

- 1  - 1  - 1  - 1  0 0 0 0 0 0 0 

+1 0 0 0 - 1  0 0 0 0 0 0 

0 +1 0 0 0 - 1  - 1  0 0 0 0 

0 0 +1 0 0 0 +1 § 0 - 1  0 

0 0 0 +1 0 0 0 - 1  0 0 - 1  

0 0 0 0 +1 + I  0 0 -1  0 0 

0 0 0 0 0 0 0 0 +1 +1 +1 

In problem TI the activity (arc) lengths have triangular distributions with minimum, 

maximum, and mode equal to aixi ,  bi-vi, and cixi  respectively. The decision variables 

are the factors Ai, and these were required to satisfy the following additional linear 

constraints: 

x2 q- xv ~> 1.8, X3 ~> 0.8, x9 ) 0.6, xi >~ 0.5, i = 1 . . . . .  1 1. 

The objective function to be minirnized is the sum of expected project completion time 

and ~l=ll k i x , ' .  The parameter values, ai, bi and ci, and the objective cost coefficients, 

ki, are given in Table 6. 

To solve T1 we initiated the BSO algorithm from the point xi = 1, i = 1 . . . . .  11, which 

has an objective value of 36.1039. We used 5,000 network solutions per function and 

subgradient calculation to achieve convergence to a T-solution with tolerance y = 0.01. 

To validate this solution we continued the BSO algorithm with the number of network 

solutions per function and subgradient evaluation increased by a factor of 5 to 25,000, 

and observed convergence to an approximate y-solution with tolerance Y = 0.001. The 

T-solutions for Y = 0.01 and Y = 0.001, the corresponding objective function values, 

and the total number of network solutions required are shown in Table 7. In order to 

obtain increased accuracy, the objective function values at the initial point (given above) 

and at the computed solutions (given in Table 7) were estimated using 50,000 network 

solutions. 

Problem UI has the same network configuration as TI with 7 nodes and I1 arcs, 

but the activity (arc) length distribution in U1 is uniform. Our objective is of the 

same form as before, except that the mean activity lengths t-ti, i = 1 . . . . .  11 replace 

the factors xi. The costs ki me specified in Table 8, which also shows the spreads 
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"Fable 7 
Results for 7-node, I l-arc, triangular distribution problem T I 

Tolerance Network Ol~ieclive 
y solutions value Solution 

0.010 360.000 27.1949 0.500 1.338 2.534 0.512 0.864 0.500 
1.217 1.255 0.600 0.676 1.668 

0.001 1.335,000 27.1944 0.500 1.307 2.546 0.510 0.861 0.501 
1.227 1.265 0.600 0.666 1.675 

( lengths  o f  supports)  of  the uniform distr ibutions for activity lengths. The variables/,*i,  

i = 1 . . . . .  I 1 are subject to the fo l lowing constraints:  

/z4 +/..z8 >/ 9, /.zi >/ 2, i = 1  . . . . .  I1. 

We initiated the B S O  algor i thm from the point  # i  = 5, i = 1 . . . . .  l l ,  which has 

object ive  value 25.6. We used 5,000 network solutions per function and subgradient  

es t imat ion to achieve convergence to a 3,-sohttion with tolerance 3, = 0.01. To validate 

this solut ion we cont inued the B S O  algori thm with the ntunber of  network solutions 

increased by a factor of  5 to 25,000, and observed convergence to an approximate  

3,-solution witb tolerance 3, = 0.001. The 3,-solutions for 3/ = 0.01 and 3' = 0.001, 

the cor responding  object ive  function values, and the total number  o f  network solut ions 

required are contained in Table 9. Note  that all object ive function values presented in 

this sect ion were est imated using 50,000 network solutions.  

We also applied B S O  to problems T2 and U2 characterized by an act ivi ty-on-arc  

network with 70 nodes and 110 arcs. This network is specified in Appendix  D. In 

problem T2 the activity lengths have tr iangular distributions. As for the previous p rob lem 

with tr iangular  distributions,  the decision variables are factors x i  in the min imum ( a i x i ) ,  

m a x i m u m  (bixi)  and mode  (cixi)  o f  the activity length distribution. We chose the values 

Table 8 
Spreads of uniform activity distributions and o/!iective cost coefficients for problem U I 

Activity I 2 3 4 5 6 7 8 9 I 0 I I 

Spread 0.2 0.3 0.6 0.7 0. I 0.2 0.4 0.6 0.1 0.4 0.5 
ki 3.0 5.0 4.0 6.0 1.0 7.0 3.0 5.0 9.0 6.0 3.0 

Table 9 
Results for 7-node, I I-arc. uniform distribution problem U I 

Tolerance Network Objective 
"y solutions value Solution 

0.01 125,000 24.134 5.023 3.411 8.775 4.527 2.929 4.592 
5.513 4.473 4.472 3.432 7.714 

0.0(11 850,000 24.133 5.052 3.416 8.812 4.487 2.908 4.613 
5.504 4.513 4.487 3.460 7.749 
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of ai, ci and bi randomly from [2 .0 ,2 .2 ] ,  [2 .2 ,2 .4]  and [2 .4 ,2 .6 ] ,  respectively. The 

objective function is the sum of  expected project completion time and ~:1=o k i x ,  l; here 

the ki were chosen from the interval [0, 3]. Parameter values ai, bi, ci, and costs ki are 

specified in Appendix D. The decision variables are required to satisfy the following 

constraints: 

-r26 -}- X27 ) 2.0, X31 + .r44 ) 1.9. X36 + xs0 + xss <~ 3, 

X58 -t- Y61 -I- XI01 ~ 3, xi >~ 0.6, i = I . . . . .  110. 

In problem U2 each activity length has a uniform distribution with spread, si, in the 

interval [0, 1]. As for the previous problem with uniform distributions, the decision 

variables ~i  are the mean activity lengths. The objective function is the sum of  the 

V ' l m k i # F I  with ki in the interval [1 ,10] .  Pa- expected project completion time and z-,/=l , 

rameter values si and costs k, are specified in Appendix D. The decision variables are 

subject to the following constraints: 

/-*26 +/.z27 >~ 29, /*31 -1-/./,44 ~ 19, /xso + txs8 ) 6, /.zss + #61 ~< 20, 

/zl ) 5 ,  #6 ~>5, /-z8~>5, #27~>6, /.z37~> 12, /z4o~>3, 

],2,94 ~ 6, ,a95 ~> 26, /zi ) 2, i = 1 . . . . .  110. 

To solve T2 we initiated the BSO algorithm from the point xi = 1, i = 1 . . . . .  I10 

with objective value 200.3, using 1,000 network solutions per function and subgradient 

evaluation. In a total of  51,000 network solutions we observed convergence to a y- 

solution with tolerance y = 0.5. At this solution the value of  the objective function was 

1 19.7. In order to verify this solution we continued with the number of network solutions 

increased by a factor of 5 to 5,000 per function and subgradient evaluation. After an 

additional 390,000 network solutions we observed convergence to an approximate y- 

solution with tolerance y = 0.05 and objective value 119.0. The Euclidean distance 

between the 0.5-solution and the 0.05-solution, which appears in Appendix D, was 7.8. 

The following constraints were active at both solutions: 

x 2 ) 0 . 6 ,  .rvl /> 0.6, x s s ) 0 . 6 ,  

x 3 6 + x s 0 + x s 8  ~<3, . rs~+x(, l  +x~01 ~<3. 

To solve U2 we initiated the BSO algorithm from a feasible point with objective 

value 252.0, using 5,000 network solutions per function and subgradient evaluation. 

We observed convergence to a y-solution with tolerance y = 0.5 in a total of  195,000 

network solutions. At this solution the value of the objective function is 144.3. In order 

to verify this solution we continued with the number of network solutions increased by a 

factor of  5 to 25,000 per function and subgradient evaluation. We observed convergence 

to an approximate y-solut ion with tolerance y = 0.05 in an additional 850,000 network 

solutions. At the y = 0.05 solution the wllue of  the objective function is 142_8. The 
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Euclidean distance between the 0.5-solution and the 0.05-solution, which appears in 
Appendix D, is 15.1. The following constraints are active at both solutions: 

#! ~>5, #c~/>5, ~s /> 5, #40~ 3, 

/-s ~ 2, ]J'89 ~> 2, #94 >~ 6, #v5 >~ 26. 

5. Conclusion 

This paper has proposed a method, related to retrospective optimization, for optimizing 

performance functions in certain stochastic systems, with respect to parameters appearing 

in the underlying probability distributions of the systems. These performance functions 

may be nonsmooth, and the optimization may be made subject to linear constraints of 

both equality and inequality type. The essential requirement for applying this method is 

that the function to be minimized be a limit of functions that are convex, with respect 

to the parameters, along almost every sample path of the system. We have explained 

in Sections 2, 3, and 4 respectively the mathematical foundations of the method and 

the results of its application to continuous tandem production lines (Section 3) and to 

stochastic PERT problems (Section 4). In these numerical studies the method appeared 
to give good results on problems that by current standards would be considered very 

difficult to solve. 

Appendix A. Summary of the bundle-based stochastic optimization algorithm 

This appendix contains a pseudocode sunnnary of the Bundle-Based Stochastic Op- 

tirnization algorithm used to solve the continuous tandem production line problems 

in Section 3 and stochastic PERT problems in Section 4. The algorithm is derived 
from bundle/trust-region code written by Helga Schramm. For further information see 

[36,51]. 

Step 0: INITIALIZATION 
Given an initial feasible point x C ~N and parametErS: 

kmax >/ 3 (maxintum number ~f bundle elements for the quadizttic program) 
y > 0 (tolerance used in stopping criterion) 
f . ~  (rough approximation of,function minimum used to scale 

the quadratic program) 
comment We use kma• = 200 in our experiments. In the CT-line problems of Section 3, 

fmin takes the value of the largest ratio of "mean time to repair" to "mEan volume 
to failure" for a machine in the line. In the stochastic PERT problems of Section 4 

WE use fmin = 0.) 
estimate f ( x )  and y~ C 0ff.v) via simulation 

(use consistent randonz tltlnzber streom) 
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initialize k <-- O, n ,-- 1, a'~+l '~- O, o-k +- O, s~ ,'- yi ~, 

tm~x <-- max{ 1OO(f(x) - f m i ~ ) ,  1 }, 

t ~-- min{ tmax, max{ ( 1001[y F II> -'< , f (x )  - fmin ), [[)'~ II-' }} 

I6I 

Step 1: B U N D L E  UPDATE 

add c~k+l and .~k~ I to the bundle: k +-- k + 1 
reset (QP) scale variables: t /~ -  0, t. ~ tmax 

Step 2: QUADRATIC P R O G R A M  

m i n { v + ( 2 t ) - I H d l l 2 [ A ( x + d )  <.a. t . ,>~(yT,d)-ce~ i = 1  . . . . .  k} (QP) 
comment  In the quadratic programming problem (QP) the y~* are subgradients, o<i are 

cutting plane linearization errors at x, and k is the number of elements in the 

current bundle. 

solve (QP) for primal solutions l, and d, and for dual solutions A and # corresponding 

to the cutting plane constraints t, >~ (3'7, d) -a ' i  and the additional linear constraints 
A ( x  + d) <<. a, respectively 

compute s;  =Eik: ,  Aiy~" + IzA and o-k = ~ i  I'-, Aicei + (/z, a - Ax) 

if [Hs;l] ~< y and crk ~< y] 

stop (x is approximate y-solution) 

if the simulation computational budget is exhausted 

stop ( x is approximate solution) 

else go to 

Step 3: DESCENT TEST. 

Step 3: D E S C E N T  T E S T  
comment  To shorten the total computation time, we may choose to begin with a short 

simulation run and then increase the simulation effort in the later stages of  the 

computation, when s~. and o-~ we sufficiently small. This may cause one or more 

negative linearization errors. When the simulation effort is increased set n ~-- k. 

estimate . f ( x  + d) and .';~ I E 3.f(x + d) via simulation. 

(use consistent random number stream) 

if f ( x  + d) - f ( x )  < 0.1c, 

tl~---t 
if (Yk+J,d) >~ 0.2 or  t,, - t ~ 0.1 

go to Step 4a: SERIOUS STEP (after a serious step the model will provide 

a different search direction or t is near its upper bound) 
if in the last iteration of Step 3, t was increased without a serious step but d 

was unchanged 

go to Step 4a: SERIOUS STEP. 

else (attempt to increase the search step size in the quadratic program) 

if t, =/max 
t +--- rain{ 5t, tm,~ } 

else t ~ rain { tt + 0 . 5 ( t , -  tl), max {5t, tt + 0 . 2 5 ( t , , -  tt)}} 
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go to Step 2: QUADRATIC PROGRAM 

i f  [ f ( x  + d )  - f ( x )  >10. lt:] 

(the cutting plane model o f  f is not adequate or t is too large) 
t u ~-- t.  

i f  tt = 0 

i f  f ( x )  + (y~t t ,d)  - f ( x  + d )  ~ max{crk,y} 
go to Step 4b: NULL STEP 

i f  I f ( x +  d) - f ( . x ) l  ~< IIsZ_,il + ~  , 
go to Step 4b: NULL STEP 

else 

t ~ t / + 0 . 1 ( t , ,  t/) 

go to Step 2: QUADRATIC PROGRAM 

e~se it, > 0] 
(in the last iteration of  step 3, T was increased without a serious step) 
t e-- t: + 0.5(t ,  - t:) 

go to Step 2: QUADRATIC PROGRAM. 

Step  4a: S E R I O U S  S T E P  

i f  f ( x  + d)  f ( x )  -<. 0.7t, or  this is the third consecutive serious step 
(without a null step or increase in t in Step 4a) 

t +-- inin{ 5t , tmax } 

x ~ x + d (accept candidate x + d) 

f o r / =  1 . . . . .  k 

O~i ~ (Ol i q- f ( x  + d) - f ( x )  - (y~.d))  
c~k+l *--- 0 (update the linearization ertwtw) 

i f  a i  < 0 

(negative linearization error caused by an increase in simulation effort in Step 3) 

A ~-  2 1 m i n { ~ l  i ~ 1 . . . . .  , e -  l} l  
for i = 1 . . . . .  n -  1 

O=' i ~-- O{ i -]- A 

go to Step 5: BUNDLE RESET 

Step  4b:  N U L L  S T E P  

i f  this is the ( N +  l)st  consecutive null step 

(without a serious step or decrease in t in Step 41)) 

t u_ 0.5t 

cek+r +-- f ( x )  f ( x  + d)  + {Y~+I, d) (update the linearization error) 
i f  o~k+i < 0 

(negative linearization error caused by cm increase in simulation effort in Step 3) 

re -e s t imate  f ( x )  and Y~+2 r 8 f ( x )  via simulation 

A f  is the increase in the estimate of f ( x )  due to the increase in simulation effort 
in Step 3 ( c ~ l  < 0 implies ; . I f> O) 

for i =  1 . . . . .  k + l  
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Og i +--- Oli @ A f 
O~k+ 2 +'- 0, k +--- k + 1 

go to Step 5: BUNDLE RESET 

Step 5: BUNDLE RESET 
if k ~> kmax (reset the bundle) 

j ~ - O  

for  i = I . . .  k (retain cutting planes that provide a good approximation to f at x 

or that correspond to an active constraint u >~ (Yi*, d) - cei in the last 

solution o f  (QP) )  
if Ai > 0 or Og i = 0 

j ~-- j + 1, a i "-- a i ,  o~i ~ -  ~ i  

if j < kmax 

k ~ j 

if  j >/ kmax (still too many cutting planes) 

OQ +--- ~{=1 AiO~i' >'~ ~-- ZJi=l .'~i)'~ 

i f c r i > 0 f o r a l l i = l  . . . . .  j 

else l ,--- a rgmax{i  I oei = 0, i ~< j} 
y* y/*, k ~ - - 2  ~2 +-- OQ, . 2 ~-- 

go to Step 1: BUNDLE UPDATE 

Appendix B. Single run optimization (SRO) 

This appendix describes single run optimization (SRO),  a competitive stochastic 
approximation method that we implemented for comparison purposes. The fundamental 
concept of  SRO is to apply a single run gradient estimator to a stochastic system in 
order to get sensitivity information while the system is evolving. The gradient estimate 
is used to improve the parameter settings while the system continues to evolve. By 

repeatedly producing a gradient estimate and updating the parameter settings the system 
may be optimized during a single experiment. SRO converges rapidly in comparison 
to other conventional simulation optimization algorithms because the simulation does 
not have to be restarted, with a new warmup period, after each gradient step. However, 
one disadvantage is that transient phenomena are introduced at each iteration. Another 

Table B. 1 
SRO settings for CT line problems in Section 3.2 

Case ao Iterations Run volullle per iteration 

I I 1 . ( )00 1 , 0 0 0  
2 1 1,000 1,000 
3 I 1 O0 10,000 
4 I 0 I O0 100.000 
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disadvantage is that SRO, like other stochastic approximation methods, requires some 
ad hoc method, such as projection, to deal with linear inequality constraints. Empirical 
studies of single run optimization algorithms can be found in [25,44,45]. 

The SRO algorithm we use combines an adaptation of the stochastic approximation 
method of [32] with infinitesimal perturbation analysis (IPA) gradient estimates. Es- 

sentially, the simulation model of the CT line is optimized by iteratively estimating the 
gradient of throughput with respect to cycle times and then updating the cycle time val- 

ues based on the gradient estimate, without restarting the simulation. The IPA gradient 
estimation algorithm is restarted after each change in the cycle times. For a complete 
discussion of the IPA algorithm and the CT line simulation model see [5,42]. 

The sequence of cycle times {ci} is generated by 

c i  ~ l = c i  - -  a,g< ( c i ) ,  

where ai = i - l a o  and g , : ( .  ) is the IPA estimate of the gradient of the reciprocal 
of throughput, projected onto lhe feasible region. We terminate the SRO algorithm 
after a fixed simulation computational budget, and take tile final set of cycle times in 
the sequence as the approximate optimizer. To achieve correct convergence, the SRO 

method requires tuning of the scale factor a,  and the run volume per iteration (cycle 
time update). The values of a0, number of iterations, and run volume per iteration used 
to solve the problems in Section 3.2 appear in Table B.I. Cases 1 and 2 are 2-machine 
CT line problems for which the total simulation budget is 1,000,000 volumetric units. 
Cases 3 and 4 are 15-machine and 50-machine line problems with simulation budgets 
of 1,000,000 and 10,000,000 volumetric units, respectively. 

Appendix C. Specification and solution for the 50-machine CT line 

This appendix provides a detailed description and approximate solutions for the 50- 
machine continuous tandem line problems considered in Seclion 3.2. 

For each machine in the CT line Table C.1 specifies the following parameters: tile 
machine number m, the mean volume to failure MV~, the mean time to repair MTR. 
and the buffer capacity BC. Note that buffer capacity refers to the buffer preceding 
the machine, Table C.1 also contains an approximate minimizer of tile reciprocal of 

throughput for the 50-machine CT line subject to the following cycle time constraints: 

10 20 30 

~-'~'c,, = 7.43, ~ c , ,  = 4.09, Z c "  = 6.24, 
#t= I n= I ! n=21 

40 50 

c,, = 5.71, ~ c,, = 5.17. 
n=31 n=41 

This approximate minimizer, denoted by CT in the table, is a BSO y-solution with 
tolerance y = 0.001 calculated with simulation warmup 1,000,000 and run volume 
1,000,000 pet function and subgradient estimation. 
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Table C. I 
Parameters and approximate optimal cycle time solution for 50-machine CT line 

m MVF MTR BC CT CT* m MVF MTR BC CT CT* 

165 

I 116.65 4.82 0.808 0.850 26 102.58 567 10 0.605 0.609 
2 101.44 8.79 10 0.747 0.753 27 98.44 9.85 10 0.614 0.596 
3 I 01.86 7.02 10 0.747 0.750 28 109.22 5.89 10 0 . 6 3 0  0.624 
4 112.07 6.91 10 0.746 0.752 29 117.36 8.27 I0 0.623 0.625 
5 112.42 9.69 10 0.727 0.722 30 96.46 8.55 i0 0 . 6 2 2  0.633 
6 1 I6.08 9.11 I0 0.729 0.724 31 110.98 6.80 l0 0 . 5 3 8  0.660 
7 97.69 9.75 l0 0.729 0.715 32 118.29 5.12 10 0.535 0.601 
8 95.06 7.25 10 0.730 0.723 33 90.25 6.39 10 0 . 5 2 8  0.393 
9 115.51 6.59 10 0.733 0722 34 103.57 6.87 10 0 . 5 3 7  0.443 

l0 99.05 5.29 l0 0.734 0.719 35 88.05 8.15 10 0 . 5 3 2  0.378 
I I I 11.69 9.18 10 0.245 0.353 36 113.83 5.77 10 0 . 6 1 6  0.633 
12 101.34 9.82 10 0.242 0.320 37 84.58 4.06 I 0 0 . 6 3 7  0.622 
13 115.08 5.16 10 0.286 0.355 38 87.14 6.55 10 0 . 6 2 8  0.651 
14 98.38 9.22 10 0.290 0.357 39 113.94 4.27 10 0.628 0.663 
15 82.09 4.51 l0 0.419 0.463 40 118.64 9.38 I0 0 . 5 2 9  0.665 
16 I01.59 5.71 l0 0.435 0.470 41 89.88 5.22 l0 0.371 0.483 
17 86.58 7.87 10 (/.430 0.316 42 108.54 6.36 10 0 . 4 9 2  0.492 
18 105.86 4.15 10 0.566 0.421 43 101.22 9.33 10 0.365 (I.327 
19 104.92 5.49 10 0.575 0,413 44 95.23 4.60 10 0.611 0.262 
20 81.22 4.19 10 0.601 0.622 45 96.02 4.75 10 0 . 6 4 9  0.504 
21 96.88 4.94 10 0.668 0.670 46 103.29 7.48 10 0 . 4 8 2  0.695 
22 95.89 4.27 10 0.668 0.668 47 114.63 4.91 10 0.674 0.372 
23 99.93 8.33 10 0.606 0.602 48 98.60 4.34 10 0 . 4 4 9  0.696 
24 87.48 9.83 10 (].603 0.605 49 87.42 8.47 10 0.373 0.678 
25 100.32 6.45 [ 0 0.602 0.6(]7 50 93.68 6.51 10 0 . 7 0 6  0.661 

.Inequality constrained case. 

The final co lumn o f  Table C.1, labeled CT*,  is an approximate  min imizer  for the 

p rob lem subject  to addi t ional  l inear inequal i ty  constraints:  

cl /> 0 .85,  c21 ~> 0.67,  c31 >~ 0.66 clo 4- c20 4- c30 4- c40 4- c50 • 3.30, 

ell  ) 0 .35,  c41 ~> 0.41,  Cl + c50 ~> 0.99,  ci >~ 0.05 i = I . . . . .  50. 

This  point  is an approx imate  B S O  9,-solution with tolerance 9' = 0.005 calculated 

with initial s imula t ion  warmup  100,000 and run volume 100,000, and with increased 

s imula t ion  warmup  1,000,000 and run volume 1,000,000 in the later stages o f  the 

computa t ion ,  as descr ibed  in Sect ion 3.2. 

Appendix D. Structure and solutions for stochastic PERT problems T2 and U2 

This append ix  conta ins  a detai led descr ipt ion and approx imate  opt imal  solut ions  for 

the s tochast ic  PERT p rob lems  T2 and U2 in Sect ion 4.2. 

The p rob lems  T2 and U2 are character ized by an act ivi ty-on-arc  ne twork  with 70 

nodes  and 110 arcs. The ne twork  topology,  which  is the same for both,  is specif ied in 
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Table D.1. Note  that node  l and node  70 ,are the d is t inguished  nodes  Star t  and Finish,  

respectively.  

In p r o b l e m  T2 the activity (arc)  lengths have tr iangular  dis tr ibut ions.  The decis ion 

variables xi,  i = 1 . . . . .  110 are factors in the m i n i m u m  ( a i x i ) ,  max i mu m (Dixi), and 

mode  ( c i x i )  o[" these tr iangular  activity length dis tr ibut ions.  The object ive funct ion is 

X-"l I~ The parameters at, hi, ci, and the sum o f  expected  comple t ion  time and z._. ,=j 

costs  ki appear  in Tables D.2 and D.3, which also contain the approximate  y-so lu t ion  

with to lerance y = 0.05 found by bundle-based  s tochast ic  opt imizat ion .  The value o f  the 

objec t ive  funct ion at this point  is 119.0. Note that all object ive values presented  in this 

appendix  were  es t imated using 50,000 ne twork  solut ions.  

In p rob lem U2 each activity (arc)  length has a uni form distr ibution with spread st. 

The decis ion  variables #~, i = 1 . . . . .  110 are the mean activity lengths. The objec t ive  
V "l l~ funct ion is the sun1 of  expected  comple t ion  time and z-,i=i ki/-z, - I  The parameters  ki and 

si appear  in Table D.4, which also conta ins  the approximate  y-solu t ion  with tolerance 

y = 0.05 found by bundle -based  s tochast ic  opt imizat ion.  The value of  the object ive  

funct ion at this point  is 142.8. 

Table D. 1 
Network structure for stochastic PERT problems T2 and U2 

Origin Terminal Origin Terminal Origin Terminal Origin Terminal 
Arc node node Arc node node Arc node node Arc node node 

1 I 2 29 19 23 57 39 26 84 58 59 
2 1 30 30 18 22 58 26 27 85 26 28 
3 I 29 31 22 57 59 38 40 86 56 60 
4 2 3 32 12 13 60 40 41 87 58 60 
5 3 4 33 13 24 6I 43 51 88 59 61 
6 3 5 34 23 27 62 36 42 89 60 61 
7 4 6 35 24 27 63 36 44 90 52 53 
8 4 l0 36 25 24 64 36 45 91 53 4I 
9 l0 5 37 25 26 65 45 47 92 53 54 

10 l0 14 38 12 25 66 45 46 93 54 55 
l1 3 iI 39 I2 39 67 46 48 94 55 56 
12 2 12 40 8 39 68 46 49 95 56 62 
13 2 8 4I 29 39 69 44 49 96 55 63 
14 3 9 42 29 37 70 42 50 97 41 28 
15 9 13 43 30 33 71 38 52 98 54 65 
16 11 13 44 31 37 72 52 67 99 65 66 
17 6 13 45 30 31 73 51 67 100 64 66 
18 6 19 46 31 32 74 50 49 101 41 69 
I9 6 7 47 32 34 75 4!) 64 I02 69 68 
20 5 7 48 34 38 76 67 64 103 52 68 
21 5 16 49 32 35 77 48 66 104 66 70 
22 16 17 50 35 36 78 20 57 [05 68 70 
23 7 15 51 33 34 79 28 21 106 63 70 
24 15 18 52 36 34 80 27 56 107 62 70 
25 19 17 53 35 43 81 21 58 108 61 70 
26 17 2I 54 43 52 82 21 59 109 68 70 
27 18 20 55 37 38 83 57 58 IIO 57 62 
28 14 18 56 39 40 
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Table D.2 
Triangular distribution parameters, objective cost coefficients and approximate optimal solution for problem 
T2 (Arcs 1-56) 

Arc Cost Parameters Soln. Arc Cost Parameters Soln. 

i k i Cli Ci 17i -ri i k_ i ai ci bi .ri 

I 2.071 2 . 0 0 3  2 . 2 6 2  2.597 1.239 29 0.241 2 . 1 9 0  2 . 3 9 1  2 . 5 0 9  3.292 
2 0.295 2 . 0 7 2  2 . 2 1 8  2 . 4 1 4  0.600 31) 0.504 2 . 1 9 9  2 . 2 7 0  2.460 1.177 
3 0.218 2 . 0 9 0  2 . 3 1 7  2.541 1.852 31 2.579 2 . 0 5 6  2 . 2 4 3  2 . 5 9 6  2.721 
4 0.947 2 . 0 4 7  2 . 3 5 1  2 . 5 9 8  0.926 32 I. 182 2 . 0 7 1  2 . 2 5 0  2 . 4 9 1  7.978 
5 2.577 2 . 0 2 4  2 . 2 0 8  2.445 1.699 33 0.276 2 . 1 2 7  2 . 2 8 1  2.566 1.093 
6 1.582 2 . 1 9 6  2 . 3 8 2  2 . 5 1 3  4.980 34 0.496 2 . 1 3 7  2 . 2 3 3  2 . 4 1 5  4.630 
7 2.613 2 . 0 4 1  2 . 2 0 2  2 . 4 3 3  2.724 35 2.895 2 . 1 5 4  2 . 3 6 2  2 . 4 9 9  3.511 
8 2.472 2 . 0 3 8  2 . 3 8 6  2 . 4 1 5  2.156 36 1.350 2 . 1 5 3  2 . 2 2 7  2.425 1.162 
9 0.722 2 . 1 4 2  2 . 2 2 8  2.538 1.491 37 0.633 2 . 0 4 2  2 . 2 0 3  2 . 5 6 1  3.234 

10 2,361 2 . 0 4 9  2 . 3 7 5  2.416 3.847 38 1.458 2 . 0 6 1  2 , 3 3 9  2.410 4.742 
I1 0.965 2 . 0 5 3  2 . 3 1 9  2 . 4 1 4  3.843 39 0.702 2 . 1 8 9  2 . 3 0 5  2 . 5 8 7  3.463 
I2 1.037 2. I92 2 . 2 7 6  2 . 4 8 6  2.679 40 1.214 2 . 1 9 0  2 . 3 5 0  2 . 5 7 2  3.343 
13 0.994 2.154 2 . 2 1 2  2 . 5 0 2  2.884 41 0.735 2 . 1 8 7  2 . 2 2 8  2.486 5.480 
14 0.844 2 . 1 8 7  2.274 2 . 5 9 0  3.972 42 1,106 2 .151  2 . 2 7 2  2.5II 5,659 
15 1.979 2 . 1 7 4  2 . 3 5 3  2.424 5.892 43 2.492 2 . 1 8 2  2 . 2 6 4  2 . 5 3 0  4.341 
16 2.611 2 . 0 6 5  2 . 2 1 9  2.464 6.301 44 2.547 2 , 0 7 9  2 . 3 7 4  2 . 4 0 5  6.506 
17 2.457 2 . 0 9 1  2.289 2.492 5.749 45 0.(/39 2 . 1 7 3  2 . 2 2 3  2.490 0.600 
18 0.416 2 , 0 2 0  2 . 3 5 2  2 . 5 4 3  2.366 46 0,804 2 .001  2 . 2 3 1  2,405 1.090 
19 2.043 2 . 0 1 3  2.334 2.459 2.977 47 0.931 2 , 0 4 4  2 . 2 9 4  2.564 5.141 
20 1.173 2 . 0 5 3  2 , 3 3 5  2.542 1.962 48 0.341 2 . 0 5 1  2 . 2 9 8  2 . 4 6 5  0,912 
21 2.404 2 . 1 2 0  2 . 3 5 8  2 . 5 2 8  4.658 49 2.250 2 . 0 2 3  2 . 2 2 6  2,481 1.879 
22 0.778 2 . 0 9 6  2 . 3 4 4  2,544 2.735 50 2.135 2 . 0 4 3  2 . 2 9 9  2.498 1.238 
23 1.850 2 . 1 9 3  2 . 3 8 8  2 . 5 7 0  1.893 51 0.881 2 . 1 3 4  2 . 3 7 9  2 . 4 2 2  2.600 
24 2.459 2.1)53 2 . 2 1 6  2 . 5 1 2  2.233 52 1,235 2 . 1 2 7  2 . 2 3 2  2 . 5 5 3  2,380 
25 1.874 2 . 0 9 7  2 , 3 1 5  2 , 4 9 7  5.995 53 1.308 2 , 1 5 1  2 . 3 0 2  2.497 2. I I I 
26 1.239 2.016 2 231 2 . 4 1 2  2.932 54 2.476 2 . 0 0 7  2 . 3 4 1  2 . 4 7 2  3.060 
27 0.409 2.136 2 , 2 2 6  2.457 I. 104 55 0,053 2 , 0 4 3  2 , 2 9 1  2 . 5 2 9  0.763 
28 2.313 2 . 0 2 9  2 , 3 7 9  2 . 5 4 9  3,653 56 2.098 2 , 1 5 0  2 . 2 6 3  2 . 5 8 5  3.466 

Appendix E. Convexity properties of PERT problems 

This appendix  shows  that the PERT prob lems  analyzed in Sect ion 4.1 satisfy As-  

sumpt ion  1 ( s t rong  s tochast ic  convexi ty)  and expla ins  how to compu te  subgradien ts  o f  

the expec ted-va lue  objec t ive  funct ions .  

The under ly ing  p rob lem is defined by an acyclic directed network with nonnegat ive  

( r a n d o m )  arc lengths,  in which we try to lind the longest  path be tween two d i s t inguished  

nodes,  F i n i s h  and S tar t .  This is the dual (ac t iv i ty-on-arc)  form of  the PERT problem;  

the arc lengths  represent  t imes required to per form various activities, and the length  o f  

the longes t  path is, by duality, also the shortest  t ime in which  one can comple te  all 

activit ies whi le  obse rv ing  the required precedence  relations.  For addit ional  detail see 

e.g. [2, Sect ion 8.3] ,  and for terms and results from convex analysis  see [34] .  

Suppose  we denote  by A/" the set o f  flows in the network that are feasible for our 

p rob lem ( that  is, that result in send ing  one unit o f  flow fi'om F i n i s h  to S t a r t  while 

conse rv ing  flow at all o ther  nodes ) ,  and the arc lengths  by g := (gl . . . . .  g , ) .  Then the 
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TabIe D.3 
Triangular distribution parameters, objective 
T2 (Arcs 57-110) 
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cost coefficients and approximate optimal solution for problem 

Arc Cost Parameters 

i ki ai ci 

Soln. Arc Cost Parameters 

I;i .~ , i ki ai ct hi 

Soln. 

,ri 

57 0.712 2 . 0 4 2  2 . 2 7 8  2 . 4 1 8  4.320 84 2 . 1 7 5  2 . 0 5 6  2 . 2 4 8  2.559 2.701 
58 2 . 9 5 8  2 . 1 4 4  2 . 2 6 3  2 , 5 6 7  1.266 85 1 .528  2 . 1 7 2  2 . 2 7 3  2.532 3.757 
59 1 .308  2.{)78 2.329 2 . 4 9 2  2.529 86 1 .299  2 .081  2 . 2 4 3  2.572 2.229 
60 2 . 0 9 6  2 . 1 4 5  2 . 2 4 9  2 . 4 7 7  2.387 87 2 . 1 3 3  2.060 2 , 2 5 5  2.529 1.625 
61 0.896 2 071 2 . 3 6 1  2 . 5 2 1  0.693 88 0 . 2 0 5  2.I59 2 . 2 1 1  2.596 0.600 
62 1 . 1 3 5  2 . 1 9 6  2 . 3 2 1  2 , 4 8 4  4.612 89 2 . 9 5 0  2 . 0 3 8  2 . 2 6 8  2.505 1.783 
63 2 . 5 5 8  2 . 0 2 2  2 . 3 4 7  2 , 4 6 3  6.846 90 0 . 9 8 8  2.200 2 , 2 3 6  2.518 1.376 
64 0.207 2 . 0 2 8  2.356 2 . 5 6 6  1,767 91 i .481 2 . 0 8 5  2 . 2 0 3  2.552 2.879 
65 1455 2 . 1 6 8  2.400 2 . 4 4 0  9.3{)3 92 2 . 5 8 8  2 . 0 4 8  2.250 2.441 2.779 
66 0 . 2 9 6  2 . 1 4 3  2 . 3 8 7  2 . 4 6 6  2.170 93 1.571 2 . 1 0 9  2 . 2 7 8  2.500 2.215 
67 2.126 2 135 2 . 2 1 1  2 . 5 6 7  5.984 94 2 . 8 0 5  2.130 2 . 3 1 5  2.535 3.13l 
68 0.596 2 . 1 4 2  2.272 2 . 5 2 6  6.909 95 1 ,916  2 . 0 0 9  2 . 2 1 9  2.451 2.724 
69 2 . 1 7 7  2 . 1 9 3  2338 2 . 4 8 8  6.202 96 2 . 6 9 6  2.124 2 .291  2.578 6.667 
70 1,081 2 . 1 0 4  2 . 3 8 3  2 . 4 6 5  4.506 97 2 . 1 6 6  2 . 1 6 7  2 . 3 0 3  2.441 2.268 
71 0 . 0 3 8  2 . 1 5 7  2 .331  2 . 4 9 9  0.6{)0 98 0 . 3 0 9  2 . 1 8 5  2 . 3 5 2  2.566 4.303 
72 1 . 6 6 2  2 . 0 2 7  2 . 2 9 1  2 . 5 4 1  6,953 99 0 . 1 9 8  2 . 1 6 1  2 . 3 0 6  2.552 3.571 
73 1 . 7 8 0  2 . 1 3 7  2 . 2 5 0  2 . 5 3 9  9.084 100 0 . 3 3 5  2 , 0 5 3  2 . 2 9 4  2.410 1.423 
74 0 . 8 4 5  2 , 1 7 7  2 . 3 3 8  2 . 4 6 6  3,948 101 2 . 0 8 8  2 . 0 4 4  2 . 3 4 2  2.573 1.042 
75 0.312 2 134 2 . 3 7 8  2 . 5 2 3  1,656 1(12 2 . 8 8 4  2 . 1 9 5  2 , 2 9 6  2.474 4.891 
76 0 . 6 5 2  2 . 1 0 8  2 . 3 7 8  2 . 4 6 8  3.709 103 0 . 2 5 6  2 . 0 9 4  2 . 2 8 7  2.560 5,215 
77 2 . 3 5 3  2 . 1 3 3  2.286 2 . 4 4 0  6.199 I(14 1.267 2. t35 2 . 2 9 2  2.421 2.307 
78 2.840 2 ] 12 2 . 3 5 1  2 . 4 9 3  2.828 t05 2 , 8 4 4  2.005 2 . 3 3 2  2 . 5 9 0  11.633 
79 2 . 2 7 1  2 . 0 9 3  2 . 2 0 8  2.420 2. I36 106 0 . 1 0 2  2 .001  2 . 2 4 7  2.403 1.395 
80 0.802 2 . 0 4 8  2 . 2 9 3  2 . 5 6 7  1,798 107 2 . 5 8 6  2.180 2.226 2.587 2.543 
81 1.327 2 . 0 1 5  2 . 3 2 4  2 . 4 0 5  1.557 108 2 . 1 1 2  2 . 1 9 5  2 . 3 4 7  2.563 1.198 
82 2 . 7 0 5  2 . 1 1 6  2 . 3 1 3  2 . 4 7 5  4.200 109 2 . 2 5 8  2 .121  2.354 2.435 4.374 
83 2 . 0 3 4  2 . 1 4 5  2 . 3 8 9  2.571 1.864 110 2 . 0 8 6  2 . 1 2 2  2 . 2 8 9  2.534 3.798 

length o f  the longest  path is l ~ . ( g )  ( the  support  funct ion o f .N r, evaluated at g ) .  and this 

is a c losed  convex funct ion of  g. In our p rob lems  g will be an n -d imens iona l  r andom 

variable,  and we wish to compu te  the expectat ion o f  l~ . - (g) .  

We now suppose  that each gi may depend  cont inuously  oil a vector  o f  paraineters  

zi r IR"L and we let 

z = ( z l  . . . . .  :,,) E R  N, g ( ~ ) = ( g i ( z i )  . . . . .  g , , ( g , , ) ) ,  

i i  
where  N = Zi=I  Hi. Therefore  we can write the length o f  the longest  path as a compos i t e  

funct ion of  z: 

~(z) :=/~.,(g(:)). 

We wish to investigate various proper t ies  o f  & (such as convexi ty)  and to develop  a 

formula  [br its subdifferent ial  in temls  o f  other  quanti t ies  already introduced.  

Note  for future reference  that /~.  is nondecreas ing  in the vector  g: that is, if  g '  ~> g 

then l ~ ( g ' )  >~ I~ , . (g ) ,  because any feasible  flow in .A/ will be  nonnegat ive.  Therefore ,  
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Table D.4 
Uniform distribution spreads, objective cost coefficients and approxirnate optimal solution for problem U2 

Arc Cost Spread Soln. Arc Cost Spread Soln. Arc Cost Spread Soln, 

i ki si #i i ki .~i #i i ki si tLi 

1 6.902 0.017 5.000 38 2.499 0.294 7.646 75 4.859 0,303 7.871 
2 4.452 0.986 3.133 39 3.910 0.263 10.691 76 2.519 0 . 0 5 1  12.569 
3 0.983 0.361 5.827 40 0.I54 0.712 3.000 77 2.340 0.946 14.175 
4 7.695 0.070 4.320 41 8.012 0 . 6 0 1  19.122 78 4.57I 0.934 7.913 
5 0.728 0,451 2.000 42 1,816 0.642 10.170 79 4.046 0.950 5.816 
6 7,334 0.703 14.552 43 2.594 0.481 8.120 80 6.551 0.859 5.720 
7 3.158 0.234 5.108 44 3.419 0.718 9.239 81 2.450 0.935 4.613 
8 1.317 0.989 5.000 45 6.168 0.964 3.860 82 9.156 0.432 12.130 
9 8.591 0.12I 7.705 46 0.563 I-).852 2.000 83 3.687 0.756 4.892 

10 2.347 0.226 10.501 47 8.196 0.265 12.676 84 6 . 9 2 1  0.557 7.378 
1 I 5.272 0 . 9 8 1  10,936 48 2.767 0.558 3,269 85 8.306 0.909 18,945 
12 6.618 0.565 9,374 49 6.246 0.483 4.656 86 3.619 0.650 16.524 
13 8.711 0.207 16.994 50 2.148 0.485 3.586 87 8,490 0.395 7.733 
14 4.618 0.167 9,022 51 4.129 0.080 10,282 88 0,566 0.025 2.405 
15 8.240 0.189 12.068 52 3.63 i 0.062 4.538 89 0 . 1 3 1  0.864 2.000 
16 4.348 0.077 9.935 53 1.362 0.682 6.316 90 9.330 0,450 5,092 
17 2,408 0.708 13.678 54 2.421 0.285 8.447 91 2 . 6 8 1  0.003 l 1.089 
18 4,815 0.688 7.972 55 7.710 0. I44 8.723 92 9.975 0.024 5.416 
19 7.869 0.244 15.038 56 9.433 0.747 I 1.337 93 3.105 0.219 3.149 
20 7,085 0.082 7.500 57 0.803 0.949 9.503 94 7.818 0.820 6.000 
21 3,215 0.264 7.513 58 5.659 0,544 7.346 95 I. 136 0.255 26.000 
22 4,709 0.070 9.221 59 1.679 0994 I0.873 96 7.336 0.327 20,409 
23 3,455 0.961 4.687 60 6.182 0.301 8.639 97 7.50! 0.115 9.019 
24 5.301 0.428 5.792 61 8.598 0.278 9.944 98 6 . 0 6 1  0.405 i 5.278 
25 3.313 0.77I 15.993 62 4.636 0.979 10.215 99 7.I 17 0.216 16.342 
26 7,575 0.509 19.249 63 3.941 0.355 15.263 100 8,048 0.489 9.202 
27 2,815 0.933 9,753 64 0.416 0.456 4.853 I0I 2.936 0,672 14,368 
28 5,148 0.949 14.860 65 0.921 0.635 10.230 102 2.436 0.108 13.391 
29 6.596 0.868 9.342 66 7.570 0,830 17.593 103 4.116 0,636 17,279 
30 4.540 0.122 6,424 67 1.655 0.684 12.543 104 6.430 0,767 7.131 
31 8.702 0.325 1 1.518 68 4.312 0.076 13.999 105 4.359 0.756 17.626 
32 0.959 0.320 10,373 69 9.650 0.769 21,164 106 3 . 1 7 1  0.484 I5. I96 
33 8.189 0.454 8.765 70 8.905 0.496 13.886 107 8.254 0.033 4,002 
34 5,775 0.458 8.746 71 4.501 0.765 3,607 108 3.914 0.362 3.437 
35 1.385 0,098 3.529 72 8,88I 0.126 20.327 I09 0.177 0.216 5.010 
36 3.911 O715 16,745 73 2.1 I1 0,212 13.668 I10 3.130 0.646 13.956 
37 6.809 0,067 13.033 74 6.884 0.806 12,306 

if  g >~ 0 then  a l so  l ~ r ( g )  >~ 0. A l so ,  we  have dora  1),~,- = IR" s ince  the n e t w o r k  is acycl ic  

and the n u m b e r  o f  arcs  is finite. T h e r e f o r e  05 = l]~r o g is finite for  each  z s u c h  that 

g ( z )  >/0. 
The first result is a simple extension of [34, Theorem 5.1 ]. 

L e m m a  1. Let f be a convex func t ion  ~)ore ( - ~ c , + o c ] "  to ( - o c , + o c ]  that is 

nondecreasing with respect to the part ial  order induced on R" by iR'~, and such that i f  

any component  o f  xi is + o c  then f ( x )  = +oc.  Let gl . . . . .  g,, be proper  convex func t ions  

on R, and f o r  z E IR N define g ( z )  = ( g l ( z t )  . . . . .  g , , ( z , , ) )  and let 05 := f o g .  Then 05 
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is C'om,ex. Further, i f  we suppose that the gi are continuous and peal-valued, that f is 

lower semicontinuous,  and that there is a point  ~ ~ R" with g( ? ) E dora f ,  then 49 is 

closed and proper. 

Proof.  Let z I and z 2 be points of R" and a ~=_ (0, I) .  Then 

49[(1 - A ) Z  I + A Z  2] = f [ g ( ( 1  - A ) z  I + A ~ : ) ]  

<~. / [ ( I  - /~ )g(z  ~) + M(z2) /  

<~ (1 - A ) & ( z  ~ ) + A d , ( z : ) ,  

where the first inequality holds because for each i, 

g i l ( l  - a)zi  I + a s . ~ ]  < (1 - ag i ( z , i  I) -FA,~i( -2),,, 

by the convexity of gi, and because of  the nondecreasing property of  f .  Noting that 49 

cannot take - ~ c  because f cannot, we see that 49 is convex by [34, Theorem 4.1]. 

With the additional assumptions we see that &r < + ~ ,  so that 05 is not everywhere 

+: ,c .  We already noted that it cannot take - ~c, so it is proper. It will therefore be closed 

if it is lower semicontinuous, and this property follows immediately from continuity of 

g and lower semicontinuity o f . / .  17_ 

A very simple calculation using the nondecreasing property shows that for any f 

satisfying the conditions of Lemma I. we have im 3 f  C R"_. 

To apply Lemlna 1 to the PERT problems of Section 4, note that for the case of  

uniform distributions, a random number u C [0 .1]  will generate an arc length li = 

#i  + si ( u -  .5); therefo,'e the function g i (# , )  is just /.t, plus a constant. This is certainly 

continuous and convex: it will be positive if we place appropriate lower bounds on the 

/J.,. For the case of  triangular distributions, the parameter is xi and the resulting density 

function has support in [ai.'r wilh mode c, xi. A random number u ~ [0, 1] 

generates an arc length 

xi[ai  + {ll(ci - [1,)(b i - a, ) }l/2j if tt C- [0, (ci - a i ) / ( b i  - ai)] 

I i= X i [ b i - - { ( 1 - l l . ) ( b i - c i ) ( h i - o , ) }  I/2 ] i l ' u E  [ ( c i - a i ) / ( b i - a i ) , l ] ,  

In this case g~(x~) is linear in .v~, and this function is also continuous and convex; it is 

positive whenever x, > 0. We have already noted that If,,, is closed, proper, convex, and 

componentwise nondecreasing. 

Lemma 1 now shows that for any tixed u C [0, 1] the composite function 49 = l~r o g 

will be closed proper convex as a function of the decision variables p. or x. We already 

noted that there is an open set G, of the form {,tL [ ,ui > fli} or {x ]xi  > 0} on which 

g (~ )  /> 0, where here .: may be either/1-, or xi. Therefore 49 is continuous and convex 

on G. The cost function we consider is the sum of 05(~) and a sum of  teiTnS of the 

form ki/~i. Averages of  such furlclions, which we use in the minimization procedure, 

will clearly also be continuous and convex. Therelbre Assumption 1 holds for the PERT 

problems that we consider. 
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We now proceed to determine the form of the subdifferential of  a function ~b of  the 

kind defined in Lemma 1. We shall obtain an inclusion under very weak assumptions, 

and an equality when those assumptions are slightly strengthened. 

Propos i t ion  2. Let f ,  gi, and & be as in Lemma 1. Then f o r  each z C _~N one has 

a6(z) ~Q(z),  

. . . .  r * - * ' ,  where x* E c g f [ g ( z ) ]  where Q (  z ) is the set o f  all  points  q f  the fbrm (-~1 ~1 . . . . . .  ,,q, 

and f o r  each i. zi* C cggi( zi).  

Proof.  Let z ~ (~ ~ N  If Q ( z o )  is empty there is nothing to prove. Otherwise, select 

a point of  Q ( z  ~ and suppose that x* and zl*,...,,~,,~* ~enerate it according to the 

definition of  Q ( z ~  As x * c c ~ f [ g ( z ~  one has for each z ~ R", 

&( z ) = , f [g l  ( z t )  . . . . .  g , , ( z , , )  ] 

>i f [g l  (z~') . . . . .  g,,(z,,~ ] + Z x *  [g,(z,) - g , (z~ 1. 
i=l  

But for each i, :~~ >~ 0 as previously observed, and 

g,(z,)-  g,(?)> {z,*,z,- z?). 

Hence 

~ ( z )  > ,b(z  ~  + (( .v~zi . . . . . .  ~,, z,, ) , :  - z~ 

which proves the assertion. [] 

Note that no gi(z~ ) ) can be +:xD in the above proof, since otherwise f [ g ( z ~  would 

be +~c  and its subdifferential (which would be empty)  could not contain x*. 

One might worry that the set Q ( z )  considered in Proposition 2 could be nonconvex, 

or could be much smaller than & b ( z ) .  We shall show that this is not so; in fact 

Q ( z )  is always convex, and under some additional assumptions it is identical to the 

subdifferential. The following lemma shows that a set of the form of Q ( z )  is convex. 

L e m m a 3 .  Let X be a convex set in _~!' and f o r i =  1 . . . . .  n let Si be a com,ex set in 

R'". Then the set 

C = { ( . v l s l  . . . . . .  r,,s,,) ] x ~ X. si C-- Si ( i =  t . . . . .  ,~)} 

is com'ex in LR 'v, where N = ~'i'=l hi. 

Proof.  Let x and x' be elements of X and si and .s' I be elements of S, for i = 1 . . . . .  n. 

Let A C (0, 1), and consider the point 
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Let v = ( [ - A)x  + Ax:; evidently y E X. Now fix an index i between I and n. If Yi = 0 

then both xi and x~ are zero, so zi = 0 = yisi. Otherwise, we have 

! --  / 
Z i  = y i [ (  ] - -  A). ,viyt- ls i  + ,)t_Vi~ i Si],  

and the quantity in square brackets belongs to 5, by convexity. Therefore z is of the 

form ( y l w i  . . . . .  ) '~U' , , ) ,  where for each i wi ~ Si. and so z r C. [] 

The next proposition shows that under some additional regularity assumptions, Q ( z )  

is in fact the subdifferential of & at z (note that the inclusion in one direction was 

established in Proposition 2; here we prove the opposite inclusion). 

Proposi t ion 4. Let /', gi. and & be as in Lemma 2. Suppose z = (zl . . . . .  z , )  is a 

point  o f  !~ N such that f o r  each i, zi c intdomgi, and that g( z ) E i n t d o m f .  Then 

&/5( z ) C Q( z ), where Q(  z ) is the set defined in Proposition 3. 

Proof. We first prove that the directional derivative &'(=" . ) minorizes l~t=). Choose 

some w = ( w ] , . . . , w , , )  E R N, and temporarily fix i. The condition zi ~ in tdomgi  

implies that g, is locally Lipschitzian at z~, that 3gi(z,.I is compact, and that gl(zi; " ) = 

I.~,,:,~. Therefore there is some w 7 ~ 8g,(z,) such that g l ( z i ; I v ' , )  = (W*,wi) .  So. for 

some Alnction r i ( t )  = o ( t ) .  one has 

g,(z, + tw:t = g , ( ~ , )  + r (w? .  w~) + r , ( t ) .  

and for small t the left side is finite. Accordingly. we can write 

g( z + .~ ' )  = g{ z / + t ( ( . . , ; . . , , )  . . . .  (w,~;. ,,,,,) ) + , - ( t ) ,  

where r ( t )  = (rj  ( t )  . . . . .  r , , ( t)  ). 

Now f is locally Lipschitzian at g ( z  because g(z ) ff int dora f ,  so for some function 

s ( t )  = of t )  and all small t we have 

f[g(z + tw)] = ./'I g(z) + t( (w~, wj} ..... (w,'~, w,,)) ] + s(t). 

An argument similar to that just made l\~rg shows that for some point x* E cT f [g ( z ) ]  

and some function f t . ( t )  one has 

][g(z) + t~(,,,t.,,',) ..... (.,7;. w,,))] 

= flg( = )1 + t(x*. ( (w[, ,,,~) ..... (,,.,'~, w,,))) + r.:(t), 

and r f ( t )  = o( t ) .  By combining these expressions we then obtain 

tl 

</,(z + tw) = ~( = ) + t ~ . ( x 7  ,.?...',.5 + o( t ) .  
i=t 

This immediately implies that 

4 / ( z ;  ~-,') "* * w) = ( ( .x  I w I . . . . .  x~* ~,-:~'* ) ,  , 
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and the expression in parentheses on the right side is an element of  Q(z ) .  It follows 
tbat qS ' (z ; .  ) ~< 1~(:). 

It follows from what we have just proved that la*~(:), which is the closure of & ' ( z ;  " ), 

also ininorizes 1~(:~, and hence that O&(z) C cl Q(z ) .  But since Of[g(z)]  and all of 

the sets Ogi(z,) are compact, Q ( z )  is in fact closed, so O&(z) C Q(z ) .  [] 

Proposition 4 is included for completeness; the most important result for computation 
is Proposition 2. In the (maximization) linear programming problem to be solved for 

the critical path, the objective will be of  the form ~'/=i g i(Zi)xi '  and the constraints 
will be network constraints (equations expressing the node-arc incidence conditions, 
with nonnegative variables xi). The optimal objective value will be f [ g ( z ) ]  (that is, 

f = I~-),  and any optimal solution (xl . . . . . .  ~,,) will be a subgradient of  f at g(z ) .  
The subdifferentials c~gi('~i) may well actually be derivatives, depending upon the form 
in which the parameters zi enter ihe probability distributions. 

Appendix E Constrained optimization vs. projection 

This appendix addresses the issue of why we prefer to operate with a method that 
incorporates constraints into the subproblems solved at each iteration, rather than deal- 
ing with them after the fact by projection, as is often done in methods of stochastic 
approximation. An anonymous referee has suggested that our distaste for projection in 
stochastic approximation is unjustified, since each method (our proposal, and stochas- 
tic approximation with projection) has to solve a quadratic programming problem at 
each iteration. Our view, however, is based not on the fact that quadratic prograimning 

problems have to be solved, but on the very different outcomes that those problems 
can produce in the two methods. The point is that projection onto the feasible set can 
substantially retard the progress of stochastic approximation, and that this retardation 

can combine with the natural slowness of  small gradient-step methods in a disastrous 
way. The following example in R 2 illustrates this phenomenon. 

Suppose we wish to minimize the function f ( x )  := (z. ,~, x) on the nonnegative orthant 

'/~ e).  Note that Ilu*ll 1, IR~_, where for fixed e E (0, 1) we define c* = ([1 - e 2 ]  , - ,  = 

and that the unique minimizer is the origin. We shall start from xl := (0, 1), using a 
gradient step followed by projection. To imitate the stepsize technique generally used in 
stochastic approximation, we take a step size of  n - I  at the nih step. Accordingly, if we 
denote the Euclidean projection of z E N 2 on R 2 by z+, and if T,, := ~ = l  k-l, then 
we have 

x,,+i = [ x , , - n - l f ' ( x ) / ] l f ' ( x ) l l ] + = [ x , , - n - l c * ] - _ = ( O , l - e T , , ) ,  (F. I )  

provided that eT,, < I. As soon as eT,, ~> I tlae problem is solved. Thus, for this problem 
the iteration ( E l )  is actually finitely convergent. We shall estimate the number of  steps 
required, namely N(e)  := inf{n I eT,, >~ I }. 

The elementary inequality 
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11 s / '• I I ( 2 n ) -  , k - I  ~< x - I d x ~ <  5 + k -  - ' 
k=2 I k=2 

obtained by bounding the graph of  x - '  on [1 ,n ]  by, respectively, piecewise constant 

and piecewise linear functions, shows that 

I - I  T , , - � 8 8  ~< 4 + l n n ~ < T ' , + ~ - ( 2 n )  

It follows that to have eT,, ~> I one must have e ( I  + I n n )  >7 1: that is, n ~> exp(e  - 1 -  1). 

If  for concreteness we take e = 0.01, then we lind that N(e)  >. e 99, a number that is 

greater than 9.8 • 1042. Therefore our finitely convergent algorithm (F. 1) requires nearly 

1043 steps, each consisting of a gradient step followed by a projection. It should be clear 

that such a computation is impracticable even with the fastest equipment available. 

If instead we apply a version of the bundle algorithm to this problem, we slmll obtain 

x,~+l by the iteration 

.x,,+, -- arg min { @*, x) + (2t)  - ' e lx  - x,, rl: I .,- }. 

since the linearity of f means that our piecewise linear approximating function will be 

f itself. There will then be no null steps, so that if x,, is of the form (0, wn) with 

wn ) 0 then we have x,,+l = ( 0 , [ w , , -  te]~). Hence if we start at Xl = (0 ,1 )  with 

e = 0.01, then if t ~> 100 we solve the problem in one step, whereas if t < 100 then 

we need i l 0 0 t - ~ l  steps. In ['act, an adaptive technique such as is used in the methods 

of [22] or [36] will quickly adjust t upward when it finds that no null steps are taken. 

Therefore, not many steps will be required in any case. 

This example used a very simple function to make the exposition easy. However, it 

should be clear that the underlying situation involved here (a gradient nearly, but not 

quite, normal to the boundary of the feasible set at an iterate .%) can be expected to 

hold in general when one is near a constrained optimizer. Therefore the phenomenon 

is by no means special, but rather illustrales a fundamental disadvantage of combining 

small gradient steps with prqiection. 
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