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Abstract

In this paper we propose a method for optimizing convex performance functions in stochas-
tic systems. These functions can include expected performance in static systems and steady-state
performance in discrete-event dynamic systems; they may be nonsmooth. The method is closely re-
lated to retrospective simulation optimization; it appears to overcome some limitations of stochastic
approximation. which is often applied to such problems. We explain the method and give com-
putational results for two classes of problems: tandem production lines with up to 50 machines,
and stochastic PERT (Program Evaluation and Review Technique) problems with up to 70 nodes
and 110 arcs.
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1. Introduction

In this paper we propose a method for optimizing convex, possibly nonsmooth, per-
formance functions in certain stochastic systems. The criterion to be optimized can be an
expected value in a static system. or a steady-state performance function in a dynamic
system, to which average performance along a sample path of the system will converge
with probability one. An example of a steady-state performance function is the fong-run
throughput of a production line. We consider systems for which such functions exist
and in addition obey certain restrictions that will be explained below.

It is well known that for many stochastic systems such performance functions cannot
be expressed analytically. Therefore, people use Monte Carlo simulation to evaluate
them. When it is necessary also to optimize performance with respect to some set of
parameters, then the function values obtained by simulation must generally be supple-
mented by (approximate) gradient evaluations [ 13,24,25]. Several methods for obtain-
ing approximations to gradients in dvnamic systems are commonly used: these inciude
for example infinitesimal perturbation analysis (JPA) [11,18,19,40], and methods using
likelihood ratios (LR) or score functions, for a treatment of which see [12,13,35].

Given a method for producing approximate gradients. people needing to optimize
performance functions have often used some variant of the method of stochastic approx-
imation [32] to locate an optimizer. More recently. the method of single-run optimization
(SRO) was proposed in [27] and studied in [44] and [45] as an attempt to improve
the efficiency of stochastic approximation; in this method, instead of making one or
more simulation runs to obtain gradients, and then making a gradient step in the param-
eter space, one makes gradient steps at intervals during a single simulation run, using
approximate gradients obtained from IPA. The key point here is that the simulation does
not have to be restarted, with a new warmup period, after each step.

However, both the classical stochastic approximation method and the SRO variant
have certain drawbacks. For one thing. inequality constraints — even linear inequalities
- present severe difficulties since the underlying gradient descent method must then
be modified in some ad hoc manner so that the sequence of parameter values remains
feasible; typically this is done by projecting the new point obtained from the iteration
into the feasible set in some manner. This difficulty does not appear with linear equation
constraints because one can reduce such a problem to an unconstrained problem in fewer
variables by an appropriate affine transformation.

In addition, if the function being optimized is nondifferentiable, then the stochastic
approximation technique reduces to a variant of subgradient optimization [3,15]. That
method is known not only to be slow, but also to suffer {rom other drawbacks, such as
the lack of a good stopping criterion and the difficulty in enforcing feasibility already
mentioned above. This concern about nondifferentiability is not just theoretical; Suri and
Fu [43] observed nondifferentiability of stcady-state throughput in tandem production
lines, and results ot Shapiro and Wardi [39] show that steady-state functions in discrete
event dynamic systems can be nondifferentiable when the sample performance functions
are convex and the event time distributions contain atoms.
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For nondifferentiable, or even discontinuous. objective functions several authors have
presented and analyzed methods of the stochastic quasigradient (SQG) class; see for
example [4] and references therecin. These methods can be thought of as pushing the
philosophy of SRO to an extreme in that they obtain a “quasigradient” estimate, often
from a single sample realization, move in the parameter space using that estimate,
obtain another estimate, make another move, and so on. It is possible to obtain the
quasigradients by using function values only, or by other means that avoid the necessity
for techniques like IPA or LR.

To our knowledge there is not much documented numerical experience in applying
SQG methods to realistic problems, though a code has been made available [6], but
there are indications that the technique can be slow (sce for example the small illustrative
numerical computation given in [4]). In any case, the two other drawbacks mentioned
above - difficulty in enforcing feasibility, and the lack of a good stopping criterion —
also apply to SQG methods.

The method we propose, which in its pure form we call sample-path optimization,
appears to avoid these two difficulties. It exploits the fact that the function we wish to
optimize is the limit, along almost every sample path, of a sequence of approximating
functions (outputs of simulation runs of increasing iengths, all using the same random
number stream(s)). The basic idea is simply to go out far enough along the sample
path to have a good estimate of the limit function, and then to optimize the resulting
deterministic function by the most efficient methods available, taking the result as an
estimate of an optimizer of the limit function. This is closely related to the method of
retrospective optimization proposed by Healy and Schruben [14], but it differs in that
we do not suggest making multiple runs for the purpose of averaging or constructing a
distribution; rather, we use a single sample point and a relatively long run.

This conceptual method is analyzed in [33], which also contains additional references
to the literature. The algorithm is shown there o converge with probability one under
two hypotheses: first. that the sequence of approximating functions epiconverges to the
limit function; second, that the limit function almost surely has a nonempty, compact set
of minimizers. It is further shown there that the epiconvergence property holds under
certain assumptions that are convenient for application in practice. We explain these
assumptions further in Subsection 2.1 below.

Our objective in this paper is to show that variants of this method can be applied
successfully to large, hard problems in which the objective functions may be nonsmooth.
To accomplish this we used a version of the bundle method, with some adaptations that
we explain later. We also adapted the basic sample-path optimization idea by retaining
certain information when increasing the simulation run length. Although not theoretically
supported, this procedure conserved information that in some cases was very costly.

This implementation of sample-path optimization has, in our view, at least two advan-
tages as compared to more conventional methods. First, it deals directly with the issue of
nondifferentiability, and in the process it develops an effective stopping criterion in the
form of the e-subgradient that is evaluated and tested as part of the algorithm. Second,
it has no difficulty with linear constraints of any kind (inequality and/or equalily),
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because these can simply be incorporated into the quadratic programming problem that
determines the step in the parameter space.

We proposed this approach for the tandem manufacturing line problem in [31],
but with little detail except for a specification of the algorithm and a report of some
computational results. In this paper. by contrast, we attempt to give a careful treatment
of several issues that were not discussed in [31] because of limited space. We also
give much more extensive computational results, and we point out some areas that need
further research. Related methods were described in [7,8,16,17] with computational
results for solving stochastic linear programs with recourse.

The remainder of this paper is organized in four main sections followed by six
appendices containing additional detail, operational or theoretical, supporting the main
body of the paper. References conclude the paper. Of the main sections, Section 2
describes the method that we suggest, including some of the details of its implementation,
while Sections 3 and 4 contain our numerical results.

In Section 3 we give examples of optimization of tandem manufacturing lines, with
respect to machine cycle times, for lines with up to 50 machines. The cycle times were
required to satisfy various linear constraints, including binding inequality constraints.
We do not know of any reports in the published literature covering optimization of lines
of this size, with or without constraints.

In Section 4 we present results for optimization of stochastic PERT problems with
up to 70 nodes and 110 arcs, with respect to parameters appearing in the probability
distributions of the activity lengths. Again. we do not know of any published numerical
work in whichs stochastic networks of this size have been successfully optimized.

Section 5 briefly summarizes the work presented, and comments on issues that need
further research.

2. Modified sample-path optimization

In this section we describe the algorithm that we suggest, as well as some implementa-
tion issues. In Subsection 2.1 we describe the underlying algorithm and some expedient
modifications that we made to it for better performance on the problems presented in
Sections 3 and 4. We explain in Subsection 2.2 the bundle-type algorithm that we used
for the computations. We show there how we extended the method’s basic stopping
criterion to take account of linear constraints whose presence was not reflected in the
subgradient estimates obtained from the simulations. We also give more detail about one
of the modifications just mentioned.

2.1. Sample-path optimization and its applicability
This subsection explains the algorithm that we employed for the stochastic optimiza-

tion calculations presented in Sections 3 and 4. As explained earlier, the underlying
method is simply to optimize the deterministic function defined by a simulation run



E.L. Plambeck et al./Marhematical Programming 75 (1996) 137-176 141

having fixed length and using a single sample path (implemented by the method of
common random numbers).

An abstract form of our problem is the following: suppose we are given an extended-
real-valued stochastic process { S,(x) | n > 1}, depending on a parameter x € R¥. For
nz 1 and x € X the §,(x) are defined on a common probability space (¥, F, P), and
we denote a sample path of the process by {S,(¢.x) | n = 1} for x € X. The §,(x)
could, for example, represent averages derived from simulation runs of length n; we are
interested in what happens as n — oc.

This setup covers both cases with which we are concerned in this paper. In the static
case, we repetitively simulate a single event (the realization of a PERT network and the
subsequent longest-path calculation) and average the results; under weak assumptions
the strong law of large numbers tells us that these averages converge almost surely to
the expected value in which we are interested. In the dynamic case, we simulate the
operation of a manufacturing line for periods of increasing length, and assume that
the system satisfies conditions sufficient for the resulting sample average throughput to
converge almost surely to a steady-state throughput.

The pure form of sample-path optimization would fix a large n and a sample point
¢ and optimize the deterministic function §,(¢. - ). As we point out below, we made
some expedient modifications to this method in our actual implementation. However,
it is of interest to ask what the convergence properties of the basic method are. That
question is dealt with elsewhere [33], where it is shown that under two assumptions
the method converges almost surely. This result holds both for exact minimization of S,
and for e-minimization.

The two assumptions just mentioned, expressed in the present notation, are first
that with probability one the S,(-) are lower semicontinuous proper functions that
epiconverge to a (possibly random) function S, ( - ), and second that with probability
one Soc(-) is lower semicontinuous and proper, and for some positive € the level
set {x | Seo(x) < (infS.) + €9} is nonempty and compact. For a good elementary
treatment of epiconvergence see [21], and for more detail see [1].

The first of the above assumptions (epiconvergence) is rarely given explicitly. We
give here two assumptions that are more convenient for practical application, and outline
the result [33, Proposition 2.5], showing that they imply epiconvergence.

The assumptions deal with random functions Y, defined on a relatively open convex
subset A of R¥. In our applications A will be an open convex subset of the nonnegative
orthant RX. For the tandem production lines this subset is just the interior of RX,
whereas for the PERT networks it is the open set G discussed in Appendix E.

Assumption 1. For each n, ¥, is with probability one a finite convex function on A.

Assumption 2. There is a countable dense subset ® of A such that for each x € 8,
with probability one the sequence {¥,(x)} converges to a finite limit Yo (x).
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Now suppose that D is a nonempty closed subset of A. Proposition 2.5 of [33] shows
that under Assumptions 1 and 2, with probability one the following hold:

(1) The limit Y5 (x) exists for each x € A (not only for x € 9).

(2) Y, is a finite convex function on A.

(3) If for 1 < n < oc we define functions X, on R* to be ¥, on D and +oc off D, then
the X, are lower semicontinuous and proper. and as n — o the X, epiconverge to
Xoc.

In this paper our sample-path functions S, play the role of the X, in the above
result, since they are restrictions of the ¥, to a closed subset D of A. In our work D
is a polyhedral convex set, whose definition includes the linear equation and inequality
constraints imposed on the variables. For the PERT problems these constraints included
explicit positive lower bounds on all variables. For the tandem production lines the
definition of D may include implicit positive lower bounds on the cycle times, small
enough to be inactive at the optimizer. if these are needed to produce a closed set.

Assumption | is the property of strong stochastic convexiry introduced by Shanthiku-
mar and Yao [38]. Assumption 2 always holds. in the case of the PERT problems of
Section 4, because the strong law of large numbers applies. It holds in the case of the
tandem production lines of Section 3 if there is a limiting distribution (steady state). We
do not go into any detail here about conditions for existence of a steady state in such
lines; see, for example, [30] or [ 10]. However, we shall discuss the other assumption
in the context of our problem types.

In Appendix E we provide analysis to show that Assumption 1 (strong stochastic
convexity) holds for the PERT problems analyzed in Scction 4. We also show there how
to determine the exact form of the subdifferential that is needed for the computational
work.

The situation is somewhat more complicated for the tandem production lines treated
in Section 3. The objective in these problems is o maximize the steady-state throughput,
the mean amount of production per unit time by the last machine in the line. Recall
that tandem production lines can be either continuous or discrete: in the continuous case
(e.g. chemical production), the product flowing through the system is a continuous fluid
as opposed to separate workpieces in the discrete case (e.g. automobile assembly). We
shall refer to these as CT and DT lines respectively.

Shanthikumar and Yao [37, Section IV.B] proved that in a given sample path of a
DT line with manufacturing blocking, the departure time D, of the nth unit of product
from the system is a convex function of parameters in the distributions of the external
interarrival times and the machine service times, provided that these times themselves
are convex functions of those parameters. Related results are in [20]. This proof was
extended to lines with unreliable machines by Fu [5] (Theorem 5.2 for manufacturing
blocking, and Theorem 5.4 for communication blocking). Fu’s results are stated in
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terms of flow rates (the reciprocals of cycle times); however, his technique of proof
1S to establish convexity of the departure time as a function of cycle times and then to
use a version of the theorem on convexity of composite functions [34, Theorem 5.1]
to prove that the departure time is also convex as a function of flow rates. The result
we need here is the convexity with respect to cycle times: this establishes Assumption
1 for DT lines.

However, for the computations of Section 3 we did not use DT simulations, but
approximations to these by CT simulations. Studies of such approximations, and of the
errors introduced by using them, appear in [5,41-43]. For example, Suri and Fu [43]
concluded that for fairly small lines (up to 6 machines), the throughput values obtained
from a CT approximation were very close to those of the DT line being approximated
(relative errors ranging from 0.0% to —2.1%). and for an extensive study of 132 15-
machine lines the relative error of throughput was under 4% in 90% of the cases studied.
Further, the CT simulations had a substantial time advantage over DT simulations: in a
third of the 132 cases, the ratio of the DT simulation time to the CT simulation time
was at least 10, whereas in 6 of the cases the ratio was more than 60.

In view of these findings, since we wished to optimize lines of large size ~ for which
we thought the time advantage of the CT simulation would probably be even larger than
for the lines studied in [43] - we decided to approximate the DT lines by CT lines. To
establish the convexity of departure times in such lines, we can use another result of Fu
[5]. He begins with a DT line with communication blocking, and then derives from it a
sequence of DT lines with communication blocking, constructed so that in the mth such
line the size of a unit of product is 27" times that in the original line. The ith buffer in
the mth line holds 2" times as many products as does the ith buffer in the original line
(that is, the total product volume is the same in both buffers). The machine failure and
repair distributions are the same.

Let us choose one of the machines and, for a fixed nonnegative integer g, denote
the earliest time at which ¢ units of volume (that is, g products in the original line, or
2" g products in the mth line) have departed that machine by D,,, where m may be any
nonnegative integer. The original line corresponds to the choice m = 0. Fu proves in
Theorem 5.6 of [5] that limy,_, D,, = D¢y, where Dcr is the earliest time at which ¢
units of volume have departed the chosen machine in a CT line having the same buffer
sizes, mean volumes to failure, mean times to repair, and flow rates. If' we define a
vector ¢ € int R* by letting ¢; be the processing time that the ith machine requires to
complete one volumetric unit of product (that is, one unit of product in the CT line,
or 2" units in the mth DT line), then we can write D, = D, (¢) for 0 < in < oo, and
Detr = Det(c): these are then functions defined on int R*. As stated in the discussion
above, Fu proves in Theorem 5.4 of [5] that for 0 < m < oc the functions D,,(c) are
convex. As the pointwise limit of convex functions is convex, we conclude that Dcr(c¢)
is also convex. Accordingly, Assumption 1 applies to the CT line models, with cycle
times as variables, that we used in our work.

It is important to note that the property of strong stochastic convexity depends on the
choice of machine failure model. It is argued in [42] that a natural failure model, for
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CT lines that are approximations to DT lines, is one where the quantity produced by a
machine since the last failure determines its next failure (as opposed to failures’ being
determined by the time of operation of the machine since the last failure). The failure
model used in our CT line simulation is therefore based on the quantity produced by
each machine.

In our computations we modified the basic sample-path optimization method by occa-
sionally increasing the simulation run length n. while carrying over certain information
(cutting planes: see Subsection 2.2 below) from the shorter simulation runs. The effect
of this practice was to introduce additional constraints on the decision variables. We did
this in the interest of efficient use of information, since in large problems the compu-
tation of these cutting planes is extremely expensive. In cases where these additional
constraints proved to be too restrictive we used a heuristic procedure for relaxing them.
This procedure is described in Subsection 2.2.3.

In this section we have explained the conceptual method of sample-path optimization
and have exhibited assumptions under which the method has been shown to converge
with probability onec. We have also noted that in our computations we employed expe-
dients to improve the speed of computation, which amounted to alterations of the basic
method. These expedients consisted of (1) using CT approximations to the underlying
DT lines being modeled in Section 3, and (2) retaining some “old™ cutling planes after
increasing the length of a simulation run. Our actual computations should therefore be
regarded as results of a variant of the basic conceptual method.

2.2. The bundle/trust-region method

As our objective functions S, were in general nonsmooth, we chose to use a nons-
mooth convex minimization algorithm of the bundle class: specifically, the bundle/trust-
region (BTR) method of Schramm and Zowe [36.51]. A very similar algorithm is
described and justified in [22]. In the first part of this section we give a brief descrip-
tion of the method: then we provide three subsections dealing with, respectively, the
stopping criterion, modifications to take account of additional linear constraints, and the
carryover of old cutting planes when increasing the length of a simulation run.

The basic idea of the algorithm is to use subgradients of the objective function to
construct a cutting-plane approximation, which is then regularized by adding a quadratic
function in order to control the proximity of the next iterate to the current one. This
results in a quadratic programming problem of the form

min{v 4+ 207 Hd|]* | v > (. d) —a. i<B}, (n

where the v/ are subgradients and B is the set of indices included in the current bundle.
The regularization parameter ¢ controls the size of the step ¢ from the current iterate, say
Xy, to the next iterate x,.;. A somewhat simplified description of the procedure is that
one applies standard stepsize tests to the candidate step. resulting either in acceptance
of Lhat step (a serious step) or rejection (a null step); in either case a new subgradient
and function value are computed. This enlarges the bundie to be used for the next
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calculation, in which a different value of + may also be used. To avoid uncontrolled
increase of the bundle size, there is provision for periodic restarts with a smaller bundle.
A pseudocode summary of the algorithm is in Appendix A.

Note that since the step x,.; — x, is determined by (1), one can easily incorporate
additional linear inequality or equality constraints on x,,, by simply adjoining them to
the other constraints of (1). We think that this is an important advantage of using a
technique (such as the bundle method) that employs constraints in compuling a step,
rather than modifying an unconstrained method. such as stochastic approximation, by
projecting iterates onto the feasible set. We discuss this advantage further in Appendix F.

2.2.1. Stopping criterion

The stopping criterion for this method is the generation of a y-subgradient x7 of the
objective function f at the current iterate x,, with [[x}|| <y, where vy is a preset positive
tolerance. To say that x*; is a y-subgradient of f at x, means that for each x € RY we
have

f("‘) 2 f(xn) + <,X;,X - X”> - %Y.

If x} were exactly zero then we should have a y-minimizer of f. but here that is not the
case. Therefore we comment briefly on why this criterion is a reasonable one to use.

Suppose that [ is a closed convex function, and assume further that its level sets are
compact; this is a regularity assumption on f, without which one can perturb f by an
arbitrarily small amount (o produce a function having no minimizer. This assumption is
equivalent to requiring that the origin be in the interior of dom ™, the effective domain
of the conjugate function. For each nonnegative € let X, be the set of all x for which
there exists x* € 3. f(x) with ||x*]] € e. Clearly Xq is the sct of minimizers of f. and
our stopping criterion amounts to requiring that the current iterate x, lie in X, for our
preselected positive y. In our numerical results in Sections 3 and 4, we refer to points of
Xy as y-solutions. Also, it is clear thal the sets X, are nested, and that their intersection
over all positive € is Xp.

Our regularity condition ensures that O € intdom f*, so let 8 be a positive number
such that the closed Euclidean ball 8B about the origin with radius S lies in the interior
of dom f*. f* is then continuous on that ball; let its minimum and maximum there be
w1 and M respectively. Then the indicator /g5 of the ball majorizes f* — M, so we have

Bl - Il =lgg <(fF~M)"=f+M.

It follows that for each x, f(x) 2 Bllx|| — M.
Now let y < B. A point x} is a y-subgradient of f at a point x exactly when for
each z we have f(z) 2 f(x) + (x].2 — x) — y; this is the same as saying that

FOO + F7(5) = (1,x) <y (2)
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Suppose that actually x € X, that is. we have in addition [|x}|| < y. Then using (2)
we find that

y = () + (5 = (x50
2 (Blxl| = M)+ —yllxil=(B=wx|| — (M- ).

It follows that X, is contained in the ball about the origin of radius (3 — )"y +
(M — w)]. In particular, the X, are compact scts for all sufficiently small .

We now claim that for any preassigned positive €, there exists a positive d such that
whenever y < § we have e[ X,. Xy] < €, where for two subsets /™ and 4 of RY we
define the excess of I~ with respect to 4 to be

el 1, 4] =supinf [ly — §]|.

yel dc4

Note that if e[ 17, 4] is small, then each point of /" is close to some point of 4, but not
necessarily vice versa.

Indecd, if the above claim were not true we could find a positive € and a sequence
{¥s} of positive numbers converging to zero, with a sequence of points {x,} such
that for each n, x, € X,, and e[x,. Xy] 2 €. The X, are ncsted and compact, so a
subsequence of the {x,} converges to some xg, and by our remarks above this xo must
belong to Xp. But this contradicts the assumption that e[ x,, Xo] = € for every n.

In this sense, the bundle method with the above stopping criterion is a priori conver-
gent. However, it is not generally feasible (o determine such a 8 explicitly for a given e.
In practice, one just sets the tolerance y at some number thought to be reasonable and
computes a y-solution, sometimes checking by repeating the computation with a smaller
value of . This is what we did in the computations of Sections 3 and 4.

2.2.2. Additional linear constraints

We next describe the modifications that have to be made to a bundlie method when
additional linear constraints arc adjoined to the problem. We consider the problem
of minimizing a closed proper convex function f, and to avoid complications in the
convergence analysis of the bundle method we supposc that the effective domain of
f includes an open set G large enough to contain all of the points generated in the
course of the computation. As we pointed out in Subsection 2.1 above, this assumption
holds for the problems we considered. We shall minimize f subject to the additional
constraints Ax < a. where A is m x i and ¢ € R": these constraints define the set F of
Subsection 2.1, and we have F C G. Let h = f + Ir, where /r is the convex indicator
of F (zero on F and +o0 elsewhere); then our problem is to minimize A.

Solution of the quadratic programming problem (1) under the additional constraints
A(x,+d) € ayields primal solutions ¢ and d, and dual solutions (Lagrange multipliers)
A and w, satisfying the first-order necessary optimality conditions:
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A=Y Ay HpA=0. A0, w20, Y A=,

eB &R (3)
Z Al = 7 d) +0) =0, (u,a—A(x,+d))=0.
i€
Now define
st = Z AT+ pA, o= Z A + (. a — Axy).
icB icB

and recall that in methods of the bundle class «; is the “linearization error” defined
by a@; = f(x,) — f(¥) — (¥/.x, — v). Under the assumptions that x, € F and that f
is convex we have o > 0. We shall show that s* is a ¢-subgradient of A at x,, and
therefore that an appropriate stopping criterion to use is that both s* and o be small.
This is the criterion we used for the computational work of Sections 3 and 4.

We have to show that for each z € RV, h(z) = h(x,) + {5*,2 — x,) — 0. This is
clearly true whenever z ¢ F, so assume z € F. As y' € df(v) we have for each i € B

h(z)y=flz2) = fl) + 00 —y)y=h(x) + (02 —x) —ai (4)

in which we used the definition of «; and the fact that x, € F. Multiplying (4) by A;
and summing over all [ € B yields

H(2) 2 h(x) + (52 = x) = ) A = (. Az = x,))

ieB

= hix) + (5", 2 —x,) — 0,
where the last line follows from the fact that
(o Az —x)) = (. Az — @) + {p.a — Ax,) < {u,a — Ax,).

Therefore s* € d,h(x,), as required.

Notc that if the set of constraints among Ax < « that are active at v, contains the
set active at x, + d. then whenever u; > 0 we have [A(x, +d) —a]; =0 from (3)
and therefore by assumption [Ax, — a]; = 0. In this case o reduces to the convex
combination ¢« := ZiEB Aiee; ordinarily used in the bundle method. This happens in
particular when the constraints Ax < « represent linear equalities. In the general case,
T 2.

2.2.3. Carrvover of curting-plane information

This subsection discusses a modification that we made to the sample-path optimiza-
tion algorithm to conserve information previeusly computed. Recall that the bundle
constraints shown in (1) are of the form ¢ > (37.d) — a;, where a; = f(x,) — f{w) —
{yf,xy — yi); here f is the objective function. x, is the current iterate and y; is the point
at which the bundle subgradient y was taken. As f is assumed to be convex, we see
that the “linearization error’” «; should be nonnegative. Much of the theory behind the
bundle method relies on this nonnegativity.
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For a system satisfying strong stochastic convexity { Assumption 1 above) this non-
negativity should hold when we carry out the sample-path optimization procedure, since
for fixed ¢ and n, S, (4, x) is a deterministic convex function. We ensure that we use
the same sample point ¢ by operating the simulation with common random numbers,
and the IPA algorithm [5,42] used for the continuous tandem production line problems
in Section 3 provides an exact gradient for the sample function. Therefore the bundle
algorithm will not produce a negative lincarization error.

However, the use of a fixed 7 is not necessarily efficient. To shorten the computation
time we would like to begin with a short simulation run and then increase the simulation
effort to provide more accurate information in the later stages of the computation. A
negative linearization error frequently occurs immediately after such an increase in
simulation effort due to the change in the sample function being observed. We now
describe the expedient that we employed to continue the computation in such a case;
in the description we use the notation fug lor the objective function corresponding to
the previous (shorter) simulation run. and [, for that corresponding to the current
(longer) run.

To recover from a negative linearization error one could certainly discard the bundle
elements corresponding to foq. However, doing so would waste much of the effort
already expended to produce the current cutting plane model of the objective function.
An alternate heuristic procedure was suggested to us by A. Ruszczyniski: namely, instead
of discarding a bundle element. lower the corresponding cutting plane by adding a
correcting value to the linearization error «; in (1).

Such a correcting value evidently has to be at least as large as |o;
index of the constraint in which the negative linearization error occurred. In fact, if the
negative linearization error occurs directly after a serious step the correction should be
strictly larger than ||, for the following reason. The stopping criterion for the method
involves the creation of a small e-subgradient of f with a small €, where the value €
is a convex combination of the «; using Lagrange multipliers of (1) (which will be
nonnegative and will sum to 1). After a serious step is taken, all a; corresponding to
indices j of constraints active in the last quadratic programming solution will be equal.
Thus, if a ncgative a; is found after a serious step and if a correction of |a;| is added,
these values become zero. This, in turn, makes it appear that an e-subgradient with
€ = 0 has becn found. If this e-subgradient happens to be small, premature termination
follows. Even if the e-subgradient is not sufficiently small, the zero value of € forces
the algorithm remain at the current point by generating a step d of zero.

Therefore, for the problems in Sections 3 and 4, it one or more negative linearization
errors occur after a serious step we add a correcting value of 2|min{a; | i € B}| to
all , corresponding to fo4. In such a case the function value of the current iterate x,
has been estimated via fpew; hence, negative linearization errors do not occur in bundle

, where [ is the

elements corresponding to frew-

On the other hand, when a negative linearization error occurs directly after a null step
the function value at the current iteratc x, has been estimated via foq4, and the new
bundle element responsiblie for the negative linearization error at x, corresponds 10 frew.
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In such a case we re-estimate the function value at x, by frew and add the correcting
value foew (X)) — foua(x,) to all & in the current bundle.

In our computational results in Sections 3 and 4, we refer to solutions calculated on
the basis of both old and new cutting planes as approximate y-solutions.

This subsection has explained how we modified the underlying method to conserve
computational effort by carrying over some of the bundle information already computed.
With this, the description of our implementation of the BTR method is complete. The
next section begins the description of our numerical results.

3. Numerical results: tandem manufacturing lines

This section presents the results of applying the algorithm described in Section 2
to the optimization of tandem manuflacturing lines containing unreliable machines. The
optimization is with respect to the machine cycle times, which are required to satisfy
various linear constraints including, in some cases, binding inequality constraints. In
Subsection 3.1 we explain the structure and functioning of the lines. As part of our
numerical experimentation was to compare our proposed method with an existing method
(SRO), we describe that competing method in Appendix B. Finally, in Subsection 3.2
we present numerical results, both for comparison of our method with SRO and for
solution of larger problems that SRO could not handle.

3.1. Description of the tandem production line problem

This subsection describes the manufacturing optimization problem that we first ad-
dressed in [31]. In a tandem production linc processing machines are arranged in series.
The product, whether discrete or continuous, arrives from an external source and starts
its processing at the first machine. After being processed, it goes to the second machine,
and so on, in order, until it is processed by the last machine, after which it departs
from the system. Machines may have different processing rates. In a DT line, the time
it takes a machine to process one unit of product is called the cycle time. In a CT line
the natural description for processing rate of a machine is the flow rate. which is the
maximum amount of product that a machine can process in unit time. It is clear that
for a continuous machine with the same processing rate as a discrete machine, the flow
rate of the former must be the reciprocal of the cycle time of the latter. Since, in our
manufacturing problems, the decision variables to be optimized (and which appear in
some of the constraints) are the cycle times of machines in a DT line, we will typically
use the term “cycle time” in the problem specifications below. However, since we used
CT lines in the simulations, it should be understood that any cycle time shown represents
the reciprocal of the flow rate of the corresponding machine in the CT line simulation.

Between each pair of machines in a tandem line is a buffer of a specified size. While
a machine is processing it may fail, and once failed, take some time to be repatred; both
these occurrences are characterized by specified random variables. If a buffer gets full



150 E.L. Plambeck et al./Mathematical Programming 75 (1996) 137-176

(due to failure, or just slow speed, of a downstream machine) then upstream machines
cannot process product at their normal rate. In a DT tine upstream machines must
stop processing until space is available in the next buffer, while in a CT line upstream
machines may either stop processing or else just be forced to process at a rate less
than their flow rate, specifically the rate of the bottleneck machine downstream which
is constricting the flow. Similarly, if a buffer is empty, then downstream machines have
to stop processing or slow down. All these characteristics result in complex dynamics
of a tandem production line, which makes it difficult to analyze these lines and predict
their performance. The main performance measure for a tandem line is its throughput.
which is the amount of production completed by the last machine in unit time. Since the
throughput is random, typically one is concerned with steady-state throughput, and that
will be the performance measure for our problems as well. Specifically, our goal will be
to adjust the cycle times (subject to certain constraints) to maximize the steady-state
throughput.

A typical assumption used in determining the steady-state throughput of such lines
is that an unlimited supply of raw material is available to the first machine, and the
last machine has unlimited space for output of its production. We will also use this
assumption in our simulations. We further assume that for each machine in the line,
the volume of product processed to failure. and the time required for repair after a
failure, are exponentially distributed random variables (the exponential distribution is
convenient. but in no way necessary here). Under these assumptions. analytic expressions
for steady-state throughput of two-machine CT lines are available in [9]. Also. analytic
expressions for steady-state throughput for two- and three-machine DT lines have been
derived under various assumptions (sce the extensive bibliography in [42]). However,
no such results exist for either DT or CT lines of the tength considered here. Therefore
they must be treated by computer simulation models. A detailed description of our
simulation algorithm is in [42].

Suri and Fu [43] demonstrated that throughput in a discrete or a continuous tandem
line can be nondifferentiable as a function of cycle times at points where two or more
machines’ cycle times are equal, and in studying these lines, we have found empirically
that optimizers often have equal cycle times. Therefore, nondifferentiability appears to
be a common feature in this class of problems.

3.2, Test examples and computational results

In this subsection we present the results of computational experiments that we per-
formed using bundle-based stochastic optimization (BSO) and single run optimization
(SRO). The objective is to minimize the reciprocal of steady-state throughput as a
function of cycle times for the continuous tandem production line. The simulation used
to compute objective function and gradient estimates is described in detail in [5.42].
We applied both SRO and BSO to optimize a 50-machine line. a 15-machine line, and
two 2-machine continuous tandem lines, all subject to linear equality constraints. The
time-consuming job for both algorithms is the computation of function and gradient
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estimates via simulation. Therefore, we compared the solutions obtained using BSO and
SRO with equal simulation budgets. The random number streams for the simulation
were consistent for BSO and SRO. Appendix B gives the parameter settings used for
the SRO method in the cases reported in this section. In addition, we used BSO to
optimize the 15-machine problem and S0-machine problem subject to additional linear
inequality constraints, In these cases we did not not fix the simulation budget. Instead
the algorithm terminated with a y-solution.

The specifications for the 2-machine tandem lines appear in Table |. We minimized
the reciprocal of throughput with respect to cycle times. subject to the constraint that
the sum of cycle times is constant. Observe that the optimal solution to Case | is a
nonsmooth homogeneous point (that is, a point at which two or more cycle times are
equal).

Cases | and 2 of the 2-machine CT line problem were solved by BSO and SRO
from two different initial points, denoted “a” and “b.” The random number streams
for the simulation differed in the “a” and “b” cases. Both methods were restricted to
a total simulation budget of 1,000,000 units of simulated product volume. The BSO
method used 500 units of simulation warmup volume and 99,500 units of run volume
per function and gradient evaluation.

For the 2-machine problem an analytic optimal solution is available [9]. Therefore,
we checked the accuracy of our results by calculating the Euclidean distance of the
computed minimizer from the optimal solution. These values are labeled “Error” in
Table 2. We also evaluated the reciprocal of throughput at the initial points and at the
BSO and SRO solution points. These objective values are also shown in Table 2.

Since analytic solutions are not available for problems with more than two machines,
we also verified all solutions by checking that the reduced gradient (that is, an objective

Table 1
Specifications for 2-machine, CT line problems

Mean volume Mean time Buffer Optimal
Case to failure to repair capacity cycle times
l 100 100 10.0 10.0 4 0.50000 0.50000
2 60 119 20 12 3 0.49707 0.50293

Table 2
Results for 2-machine CT line problems

Jnitial values BSO solution SRO solution
Cycle  Objective Objective Norm of Objective Norm of
Case times  value value v gradient  Error value 2 aradient  Error

la 0208 097202 068956 20E—1 75E—! 14E-15 068958 20E-1 75E—1 6.7E-5
Ib 0901 106928 068963 20E-1 75E-1 18E-9 0.68966 2.0E-1 7.5E—1 9.8E-5
2a 0208 082035 053741 83E-3 70E-1 18E-4 0353750 36E-2 7.0E—~1 82E—4
26 090.1 093441 033741 77E-3 70E-1 [7E-4 053741 59E-4 7.0E-] 7.1E-6
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gradient reduced by an appropriate linear combination of the constraint gradients) was
close to zero. For this purpose. we generated an IPA gradient estimate at each solution
using a simulation warmup volume of 1,000,000 and a run volume of 10,000,000 and
calculated an approximate reduced gradient by:

mAin 1/ (x) — A"A| o = n}in{v [ 1< f'(x) —A"A <l

where f/(x) is the gradient estimate, A is the constraint coefficient matrix, and 1 is a
vector with each component equal 10 1. A small optimal value of » should correspond,
in a reasonably well conditioned problem with a differentiable objective function, to a
near-optimal solution x.

However, in a nonsmooth problem one would not necessarily expect such a reduced
gradient to be smail, because one might find large subgradients close to, or even at, the
minimizer. We see this illustrated in the nonsmooth Case 1, where » is not small even
though the error in the BSO solution is of the order of 1073, On the other hand, in the
(barely) smooth Case 2, v is fairly small at the computed solution.

The results shown in Table 2 indicate that BSO is competitive with the SRO method
for small, equality-constrained CT line problems. We expected the gradient-based SRO
method to have some difficulty in converging to the homogeneous optimal point in
Case | because of nonsmoothness, but it successtully solved the problem. Apparently
the Robbins-Monro sequence {a,}, described in Appendix B, damped the gradient
values sufficiently.

We also applied BSO and SRO to optimize a 15-machine line subject to six linear
equality constraints on the cycle times, and a 50-machine line subject to five linear
equality constraints. The I53-machine problem specified in Table 3 is motivated by
machining system research at Ford Motor Company [49] and was also considered in
[31]. Note that in Table 3 “Buffer capacity™ refers to the buffer preceding the machine.
The system characteristics for the 50-machine line are similar, with mean operating
volumes to failure ranging between 80 and 120, mean times to repair between 4 and 10,
and buffer capacities all equal to 10. A detailed description of the 50-machine CT line
in Case 4 is in Appendix C.

In Case 3. the 15-machine CT line problem. the cycle times (¢y.....cy5) are subject
to the following constraints:

cl+cr+c3=0966, c44+c5=06, c¢+cg7+cyg=0.933,

co+cio=0.6, ¢ +cip+c3=1.008, cu+c5=0.6.

Table 3
Specifications for Case 3. 15-machine CT line

Machine 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

Mean volume to failure 100 90 100 90 90 100 90 90 90 90 120 100 90 90 90
Mean time to repair 100 45 60 45 45 50 54 54 45 54 60 80 18 45 45
Buffer capacity 10 10 10 10 t0 10 10 10 10 10 10 10 10 10
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In Case 4, the 50-machine CT line probiem, the cycle times (¢,...,csp) are subject to
the following constraints:

10 20

30
Zc,, =743, > ¢, =409, Y ¢, =624,

n=1 n=I1 n=21

40 50
de=571 > e =517

n=31 n=41

The linear equality constraints in Cases 3 and 4 represent the total work to be done
by machines of a given capability. We need to allocate the specific amount of work to
be done by each individual machine in order to maximize throughput.

We allowed a total computer simulation budget of 1.000,000 units of run volume
for solving Case 3 and 10,000,000 units for Case 4. Each problem was solved by the
BSO method and by the SRO method from two different initial points, denoted “a”
and “b.” The BSO method used 5,000 units of simulation warmup and 35,000 units of
run volume per function and gradient evaluation for the 15-machine problem, and for
the 50-machine problem, 100,000 units of warmup volume and 100,000 units of run
volume.

We computed approximate reduced gradient values v to check the accuracy of the
BSO and SRO results. These values appear in Table 4. As in Cases | and 2 above, the
values » were calculated from an IPA gradient estimate generated by simulation warmup
1,000,000 and run volume 10,000,000. We also evaluated the Euclidean distance of each
computed minimizer from an “optimal” BSO y-solution with small tolerance y and
large simulation warmup and run volume. These values are labeled “Error” in Table 4.
For Case 3 we used warmup volume 50,000 and run volume 350,000 per function and
gradient evaluation to compute the BSO vy-solution with tolerance y = 0.0001. This
point is labeled “Optimal” cycle times’ in Table 5. For Case 4 we used warmup volume
1,000,000 and run volume 1,000, 000 per function and gradient evaluation to compute
the BSO y-solution with tolerance y = 0.001. This point is specified in Appendix C.
The objective values at these y-solutions are labeled “Optimal” in Table 4. All objective
values presented in this section are estimated using a simulation with warmup volume
1,000,000 and run volume 10.000,000.

In all cases the value of the approximate reduced gradient » is small relative to the
norm of the gradient, indicating that the solution nearly satisfies an optimality condition.
Furthermore, the BSO method consistently found a solution with smaller error than did
the SRO method. These results indicate that BSO is at least competitive with SRO for
large CT line problems with linear equality constraints.

We also used our bundle-based method to optimize the 15-machine and 50-machine
problems subject to additional linear inequality constraints. Because of the necessity for
projection or other ad hoc techniques, we did not apply the SRO method to the inequality
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Table 4
Results for Case 3 (15 machines) and Case 4 (50 machines)

BSO solution SRO solution

Initial “Optimal™

objective objective  Objective Norm of Objective Norm of
Case value value value Error v gradient  value Error v gradient
3a 09224  0.6097 06110 26E-2 S1E-2 23E-1 06104 46E-2 3.7E-2 23E-I
3b 0.6512 0.6097 0.6105 1.5E—-2 37E-2 22E-1 06104 2.0E-2 38E-2 23E-I
da 1.1922  1.0509 1.0516  22E—1 37E-2 24E-1 1.0607 94E—I 3.8E-2 2.0E—I
4h 12243 1.0509 1.0514  S2E—1 S54E-2 25E-1 1.0645 1.3E0 29E-2 1.8E-I
constrained problems. The added constraints on the 15-machine problem were:

2033, 52031, ¢ 2040, ¢+ =07, cp5 2035, (5)

and

¢; =2 0.05, i=1,....15.
The added constraints on the 50-machine problem were:

c1 =085, 132067, 3 2066, o+ cwy+ o+ e+ esn = 330, (6)
and

cir 2035, ¢ 2041, ¢ +cs0 2099, ;2005 i=1....,50

These constraints were designed to perturb the solution slightly from the observed
optimal solutions for Cases 3 and 4.

To optimize the inequality constrained 15-machine CT line, we initiated the BSO
algorithm from a feasible point with objective value 0.9224. Using a simulation warmup
of 5,000 units and a run volume of 35.000 units per function and gradient evaluation,
we observed convergence to a y-selution with tolerance y = 0.01 in a total simulation
volume of 520,000 units. At this solution the value of the objective function was 0.6256.
In order to verify this solution we continued with the simulation warmup and run volume
increased by a factor of 10 to 50,000 and 350,000 units per function and gradient
evaluation. We observed convergence to an approximate y-solution with tolerance y =
0.001 in an additional simulation volume of 4,400,000 units. At this point, denoted
““Optimal™ cycle times #” in Table 5, the value of the objective function is 0.6242, and
the constraints shown in (3) are active, while all others are inactive. The Euclidean
distance between the y-solution with tolerance ¥ = 0.01 and the approximate y-solution
with tolerance y = 0.001 is 0.042.

To optimize the inequality constrained SO-machine CT line we initiated the BSO
algorithm from a feasible point with objective value 1.2217. Using a simulation warmup
of 100,000 units and a run volume of 100,000 units per function and gradient evaluation,
we observed convergence to a y-solution with tolerance ¥ = 0.05 in a total simulation
volume of 1,600,000 units. At this point the objective function value is 1.0679. In
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Table §
Case 3, |5-machine CT line, approximate optimal cycle time solutions

Machine | 2 3 4 5 6 7 8 9 101 1213 14 15
“Optimal”
cycle times 322322 322 300 300 310 311 311 300 300 327 327 353 301 299
“Optimal”

cycle times = 330 330 306 .290 310 400 .233 300 .30! 299 327 327 355 250 .350

* Inequality constrained case.

order to verify this solution we continued with the simulation warmup and run volume
increased by a factor of 10 to 1,000,000 and 1,000,000 units per function and gradient
evaluation. We observed convergence to an approximate y-solution with tolerance y =
0.005 in an additional simulation volume of 52,000,000 units. At this point, specified
in Appendix C, the objective function value is 1.0537, and the constraints in (6) are
active, while all others are inactive. The Euclidean distance between the y-solution with
tolerance ¥ = 0.05 and the approximate y-solution with tolerance y = 0.005 is 0.705.

4. Numerical results: stochastic PERT problems

In this section we report the results of applying our algorithm to stochastic PERT
(Program Evaluation and Review Technique) problems. We describe the problems in
Subsection 4.1 and report the numerical results in Subsection 4.2. Appendix E justifies
the method that we used to compute the subgradient estimates.

4.1. The stochastic PERT optimization problem

The PERT technique, advanced in 1959 [26], is used to estimate the expected duration
for a project defined as a set of activities which consume time and resources and are
subject to temporal precedence relationships. In practice, most activities can be finished
in shorter or longer time periods by increasing or decreasing the resources such as
funding, labor, or machinery available to them. Typically, reducing the duration of an
activity entails an additional cost for resources. We are concerned with the trade-off
between completion time and cost for a project with random variable activity lengths.

This type of problem has been addressed before. In [48] Wallace examines various
methods for bounding the expected completion time and cost performance function for a
stochastic PERT network from below. An algorithm is presented in [50] to minimize a
linear combination of expected completion time and cost when each activity length has
a deterministic component based on resource investment and a discrete random variable
component that is independent of resource investment. This method is based on the L-
shaped decomposition method by Van Slyke and Wets [47]. In [50] Wollmer suggests
that “sampling may be a viable alternative” when the random variable distributions
of activity times are not discrete. However, although the idea of using Monte Carlo
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simulation to analyze stochastic PERT networks was proposed as carly as 1963 [46], o
our knowledge no computational experiments using Monte Carlo simulation to optimize
expected time and cost performance functions have been published until now.

We apply bundle-based stochastic optimization to find optimal parameter settings
for stochastic PERT problems in which activity length distribution parameters may be
perturbed at some cost. These parameters are subject to linear constraints representing
limits on resource availability and on activity duration. We consider problems of two
types: the first has uniformly distributed activity Iengths, and the problem is to minimize
expected completion time and cost with respect to the means in the uniform probability
distributions. The choice of the uniform distribution is motivated by problems in which
the expected value of an activity length may be reduced at some cost, but the variance
is fixed. In the second type of problem, each activity length has a triangular probability
distribution characterized by the parameters «. b. and ¢ which represent the minimum,
maximum and mode, respectively. The triangular distribution is often used in place of a
beta distribution [28]. partly because it requires less computer time for random variable
generation. We optimize a cost function in the second type of problem with respect to
a common {actor x in the distribution parameters ( which thus became ax, bx, and cx).
This setup is motivated by problems in which both the mean and variance of activity
length may be reduced at some cost.

4.2. Numerical results: stochastic PERT

This subsection presents numerical results for four stochastic PERT problems. In these
problems we took the objective (to be minimized) to be the sum of two components:
(1) the expected project completion time, and (2) a cost function that was a sum of
terms of the form k,z;”', where the z; were parameters in the underlying distributions.
This choice of objective form expresses a tradeoff of increased cost against decreased
project length.

To evaluate the cost function and its subgradient. we repeatedly simulated a set of
activity lengths using a combined multiplicative lincar congruential random number gen-
erator [23], then solved the resulting longest-path network problem using the Bellman-
Ford algorithm [29, Section 1.3] with an obvious modification to find longest instead of
shortest paths. This calculation provided the completion time and a subgradient. Mean
subgradient and completion time values were then combined with the corresponding
cost components to provide objective values and subgradients for the bundle algorithm.

We first considered two PERT problems, T1 and Ul, characterized by an activity-on-
arc network with 7 nodes and 11 arcs. The incidence matrix of this network was:
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Table 6
Triangular distribution parameters and objective cost coefficients for problem T1

Activity | 2 3 4 5 6 7 8 9 10 1}
;i 10.0 2.0 4.0 12.0 30 10.1 73 49 L1.1 35 4.9
Ci 11.1 22 4.9 124 35 10.3 79 5.1 113 3.6 1
b 12.3 30 5.2 13.0 4.1 10.5 82 5.5 11.9 38 5.5
k; 0.6 1.0 0.4 0.8 .4 0.2 1.6 [.8 1.2 0.6 0.4
-1 -1 =1 -1 0 0 0 0 0 0 0 }
+1 0 0 0 -1 0 0 0 0 0 0
0 +I 0 0 0 -1 =1 0 0 0 0
0 0 +1 0 0 0 +1 + 0 -1 0
0 0 0+l 0 0 0 -1 0 0 -1
0 0 0 0 +1 +1 0 0 -1 0 0
| O 0 0 0 0 0 0 0 +1 41 +1 |

In problem TI the activity (arc) lengths have triangular distributions with minimum,
maximum, and mode equal to a;x;. bix;. and ¢;x; respectively. The decision variables
are the factors x;, and these were required to satisfy the following additional linear
constraints:

xo+x721.8, x3208, x>=06, x;,205, i=1,...,1

The objective function to be minimized is the sum of expected project completion time
and Z,]zll k,.\'f'. The parameter values. a;, b; and ¢;, and the objective cost coefficients,
k;, are given in Table 6.

To solve T1 we initiated the BSO algorithm from the pointx; = 1,i=1,..., 1, which
has an objective value of 36.1039. We used 5.000 network solutions per function and
subgradient calculation to achieve convergence to a y-solution with tolerance y = 0.01.
To validate this solution we continued the BSO algorithm with the number of network
solutions per function and subgradient evaluation increased by a factor of 5 to 25,000,
and observed convergence to an approximate y-solution with tolerance y = 0.001. The
v-solutions for ¥ = 0.01 and y = 0.001, the corresponding objective function values,
and the total number of network solutions required are shown i Table 7. In order to
obtain increased accuracy, the objective function values at the initial point (given above)
and at the computed solutions (given in Table 7) were estimated using 50,000 network
solutions.

Problem Ul has the same network configuration as T1 with 7 nodes and I1 arcs,
but the activity (arc) length distribution in Ul is uniform. Our objective is of the
same form as before, except that the mean activity lengths w;, i = 1,...,11 replace
the factors x;. The costs k; are specified in Table 8, which also shows the spreads
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Table 7
Results for 7-node. | l-arc, triangular distribution problem TI

Tolerance Netlwork Objective

b solutions value Solution

0.010 360.000 27.1949 0500 1338 2534 0512 0.864 0500
1217 1.255 0600 0.676 1.668

0.001 1,335,000 27.1944 0500 1307 2546 0510 0.861 0501
1.227 1.265 0.600 0.666 1.675

(lengths of supports) of the uniform distributions for activity lengths. The variables u;,
= 1,..., 1] are subject to the following constraints:

U Fus =9 w22 i=1.... 1.

We initiated the BSO algorithm from the point u; =5, i = 1,...,11, which has
objective value 25.6. We used 5,000 network solutions per function and subgradient
estimation to achieve convergence 1o a y-solution with tolerance y = 0.01. To validate
this solution we continued the BSO algorithm with the number of network solutions
increased by a factor of 5 1o 25.000. and observed convergence to an approximate
y-solution with tolerance y = 0.001. The y-solutions for y = 0.01 and y = 0.00],
the corresponding objective function values, and the total number of network solutions
required are contained in Table 9. Note that all objective function values presented in
this section were estimated using 50,000 network solutions.

We also applied BSO to problems T2 and U2 characterized by an activity-on-arc
network with 70 nodes and 110 arcs. This network is specified in Appendix D. In
problem T2 the activity lengths have triangular distributions. As for the previous problem
with triangular distributions, the decision variables are factors x; in the minimum (a;x;),
maximum (b;x;} and mode (¢;x;) of the activity length distribution. We chose the values

Table 8
Spreads of uniform activity distributions and objective cost coefficients for problem Ul

Activity ] 2 3 4 3 6 7 b 9 10 11
Spread 0.2 0.3 0.6 0.7 0.1 0.2 0.4 0.6 0.1 04 0.5
k; 30 5.0 4.0 6.0 1.0 7.0 2.0 5.0 9.0 6.0 3.0
Table 9

Results for 7-node, 1 |-arc. uniform distribution problem Ul

Tolerance Network Objective

¥ solutions value Solution

0.01 125,000 24134 5.023 3411 8775 4527 2929 4.592
S313 4473 4472 3432 7714

0.001 850.000 24,133 5052 3416 8812 4487 2908 4613

5504 4513 4.487 3460 7749
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of a;, ¢; and b; randomly from [2.0,2.2], [2.2,2.4] and [2.4.2.6], respectively. The
objective function 1s the sum of expected project completion time and ZL‘,O k,xfl: here
the k; were chosen [rom the interval [0, 3]. Parameter values a;, b;, ¢;, and costs k; are
specified in Appendix D. The decision variables are required to satisfy the following

constraints:
x26 +X27 2 2.0, x3p g 2 190 x3g + x50+ xpg € 3.
xsg+xe + 000 €3, 206, i=1,..., 110.

In problem U2 each activity length has a uniform distribution with spread, s;, in the
interval [0, 1]. As for the previous problem with uniform distributions, the decision
variables u; are the mean activity lengths. The objective function is the sum of the
expected project completion time and 211:1]0 k,-,ui_[. with k; in the interval [1, 10]. Pa-
rameter values s; and costs &; are specified in Appendix D. The decision variables are

subject to the following constraints:
M6+ 27 229, pan+ pas 219, uso + uss = 6, pss + ue < 20,
M1 25, ue25, pg=5, por 206, ua =12, pao =3,
Mog = 6,  pos =20, w22, i=1,....110.

To solve T2 we initiated the BSO algorithm from the point x, = 1, i=1,...,110
with objective value 200.3. using 1,000 network solutions per function and subgradient
evaluation. In a total of 51,000 network solutions we observed convergence to a y-
solution with tolerance y = 0.5. At this solution the value of the objective function was
119.7. In order to verify this solution we continued with the number of network solutions
increased by a factor of 5 to 5,000 per function and subgradient evaluation. Afler an
additional 390,000 network solutions we observed convergence to an approximate y-
solution with tolerance vy = 0.05 and objective value 119.0. The Euclidean distance
between the 0.5-solution and the 0.05-solution, which appears in Appendix D, was 7.8.
The following constraints were active at both solutions:

x2 206, x7; 206, xg3=0.0,
Xag + X50 +xgg <3, xsg + Xg1 + 10 < 3.

To solve U2 we initiated the BSO algorithm from a feasible point with objective
value 252.0, using 5,000 network solutions per function and subgradient evaluation.
We observed convergence to a y-solution with tolerance y = 0.5 in a total of 195,000
network solutions. At this solution the value of the objective function is 144.3, In order
to verify this solution we continued with the number of network solutions increased by a
factor of 5 to 25,000 per function and subgradieni evaluation. We observed convergence
10 an approximate y-solution with tolerance y = 0.05 in an additional 850,000 network
solutions. At the ¥ = 0.05 solution the value of the objective function is 142.8. The
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Euclidean distance between the 0.5-solution and the 0.05-solution, which appears in
Appendix D, is 15.1. The following constraints arc active at both solutions:

My =5, pe=5, ug =5 ue 23

fae = 2. pgo = 2, pos =6, pes 2 260

5. Conclusion

This paper has proposed a method. related to retrospective optimization, for optimizing
performance functions in certain stochastic systems, with respect to parameters appearing
in the underiying probability distributions of the systems. These performance functions
may be nonsmooth, and the optimization may be made subject to linear constraints of
both equality and inequality type. The essential requirement for applying this method is
that the function to be minimized be a limit of functions that are convex, with respect
to the parameters, along almost every sample path of the system. We have explained
in Sections 2, 3, and 4 respectively the mathematical foundations of the method and
the results of its application to continuous tandem production lines (Section 3) and to
stochastic PERT problems (Section 4). In these numerical studics the method appeared
to give good results on problems that by current standards would be considered very
difficult to solve.

Appendix A. Summary of the bundle-based stochastic optimization algorithm

This appendix contains a pseudocode summary of the Bundle-Based Stochastic Op-
timization algorithm used to solve the continuous tandem production line problems
in Section 3 and stochastic PERT problems in Section 4. The algorithm is derived
from bundle/trust-region code written by Helga Schramm. For further information see
[36,51].

Step 0: INITIALIZATION
Given an initial feasible point x € R" and parameters:
kmax = 3 (maximum number of bundle elements for the quadratic program)
y >0 (tolerance used in stopping criterion)
Snin (rough approximation of function minimum used to scale
the quadratic program)
comment We use kng = 200 in our experiments. In the CT-line problems of Section 3,
Jfmin takes the value of the largest ratio of “mean time to repair” to “mean volume
to failure” for a machine in the line. In the stochastic PERT problems of Section 4
we use fuin =0.)
estimate f(x) and y{ € df(x) via simulation
(use consistent random number stream)
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initialize k — 0, 1 — 1, ap ) «— 0. o — 0, 57 «— ¥,
Tmax = max{ 100 f(x) = fmin). 1 }s
I — min{ Fmax» max{ (1()0"\’?‘1)_'(]((") - fmin)- H.\’T”_I }}

Step 1: BUNDLE UPDATE
add a;. and y,, to the bundle: k — k + 1
reset (QP) scale variables: 1) «— 0, 7, «— fiax

Step 2: QUADRATIC PROGRAM

min{v+ 2O d|]* | A(x+d) <a, v {ONd)—a i=1.....k} (QP)

comment In the quadratic programming problem (QP) the ¥/ are subgradients, a; are
cutting plane linearization errors at x, and & is the number of elements in the
current bundle.

solve (QP) for primal solutions © and d, and for dual solutions A and u corresponding
to the cutting plane constraints v = (v*,d) —a; and the additional linear constraints
A(x +d) < a, respectively

compute s = Z,i, Ay + pA and oy = Zle Aoy + (. a — Ax)

if [[ls;] <y and o < v
stop (x is approximate y-solution)

if the simulation computational budget is exhausted
stop (x is approximate solution)

else go to

Step 3: DESCENT TEST.
Step 3: DESCENT TEST
comment To shorten the total computation time, we may choose to begin with a short
simulation run and then increase the simulation effort in the later stages of the
computation, when s and o are sufficiently small. This may cause one or more
negative linearization errors. When the simulation effort is increased set n — k.
estimate f(x 4 d) and y., € df(x +d) via simulation.
(use consistent random number stream)
if f(x+d)— f(x)<0.1p
fp —t
if (yi ,,d)>02o0rt, —1<0.1
go to Step 4a: SERIOUS STEP (after a serious step the model will provide
a different search direction or t is near its upper bound)
if in the last iteration of Step 3, ¢ was increased without a serious step but d
was unchanged
go to Step 4a: SERIOUS STEP.
else (attempt to increase the search step size in the quadratic program)
if 1, = Tmax
t — min{ 5¢, fma }
else t — min{7 +0.5(1, — t;), max {5¢, 1, + 0.25(¢, — 1)) }}
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go to Step 2: QUADRATIC PROGRAM
if [flx+d)— F(x)=20.1¢]
(the curting plane model of f is nor adequate or t is roo large)
fy — 1.
ifr,=0
if f(x)+ (v ,.d)— flx+d) < max{oy. v}
go to Step 4b: NULL STEP
if [fx+d) = fFQO]< Isioyll + o
go to Step 4b: NULL STEP
else
t—t+0.1(r,— 1)
go to Step 2: QUADRATIC PROGRAM
else [1; > 0]
(in the last iteration of step 3, T was increased without a serious step)
t—t;+0.50, — )
go to Step 2: QUADRATIC PROGRAM.

Step 4a: SERIOUS STEP

if f(x+d)— f(x) <0.7¢ or this is the third consccutive serious step
(withour a null step or increase in t in Step 4a)
t—min{ 5, fmax }

X — x +d (accept candidate x + d)

fori=1, ..,k
a; — (a;i+ f(x+d) - f(x) — (y!.dy)

) — O (update the linearization errors)

if o, <0
(negative linearization error caused by an increase in simulation effort in Step 3)
A —2min{a;] i€ l....,n—1}
fori=1..... n—1
@ — a; + A

go to Step 5: BUNDLE RESET

Step 4b: NULL STEP
if this is the (N 4 1)st consecutive null step
(without a serious step or decrease in t in Step 4b)
t«— 0.5¢
apyr — f(x) = f(x +d) +{v;,,.d) (update the linearization error)
if a1 <0
(negative linearization error caused by an increase in simulation effort in Step 3)
re-estimate f(x) and y;,, € f(x) via simulation
A f is the increase in the estimate of f(x) due to the increase in simulation effort
in Step 3 (ayy ) < 0 implies 4f > 0)
fori=1,. . k+1
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Qi — ~+ Af
ry — 0,k —k+1
go to Step 5: BUNDLE RESET

Step 5: BUNDLE RESET
if k > kmax (reset the bundle)
j<0
for i = 1...k (retain cutting planes that provide a good approximation to f at x
or that correspond to an active constraint v 2 (y¥.d) — a; in the last
solution of (QP))
if A, >00ra; =0
JeJt+ L A=A e —a
if j < kmax
ke—j
if j 2 kmax (still too many cutting planes)
ap = Yy M 3= L AT
ifa,>0forali=1....,]
l—J
else | — argmax{i | a; =0, i < j}
ay —ay, y; — v k2

go to Step 1: BUNDLE UPDATE

Appendix B. Single run optimization (SRQ)

This appendix describes single run optimization (SRO), a competitive stochastic
approximation method that we implemented for comparison purposes. The fundamental
concept of SRO is to apply a single run gradient estimator to a stochastic system in
order to get sensitivity information while the system is evolving. The gradient estimate
is used to improve the parameter settings while the system continues to evolve. By
repeatedly producing a gradient estimate and updating the parameter settings the system
may be optimized during a single experiment. SRO converges rapidly in comparison
to other conventional simulation optimization algorithms because the simulation does
not have to be restarted, with a new warmup period, after cach gradient step. However,
one disadvantage is that transient phenomena are introduced at each iteration. Another

Table B.1
SRO settings for CT line problems in Section 3.2

Case ap Tterations Run volume per iteration
i l 1.000 1,000
2 1 1,000 1,000
3 I 100 10.000
4 10 100 100.000
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disadvantage is that SRO, like other stochastic approximation methods, requires some
ad hoc method, such as projection, to deal with linear inequality constraints. Empirical
studies of single run optimization algorithms can be found in [25,44,45].

The SRO algorithm we use combines an adaptation of the stochastic approximation
method of [32] with infinitesimal perturbation analysis (IPA) gradient estimates. Es-
sentially, the simulation model of the CT line is optimized by iteratively estimating the
gradient of throughput with respect to cycle times and then updating the cycle time val-
ues based on the gradient estimate, without restarting the simulation. The IPA gradient
estimation algorithm is restarted after cach change in the cycle times. For a complete
discussion of the IPA algorithm and the CT line simulation model see [5,42].

The sequence of cycle times {c;} is generated by

Ciol = ¢ — aige{ci).

where a; = i “'ag and g.( ) is the IPA estimate of the gradient of the reciprocal
of throughput, projected onto the feasible region. We terminate the SRO algorithm
after a fixed simulation computational budget. and take the final set of cycle times in
the sequence as Lhe approximate optimizer. To achieve correct convergence, the SRO
method requires tuning of the scale factor ¢y and the run volume per iteration (cycle
time update). The values of ap, number of iterations, and run volume per iteration used
to solve the problems in Section 3.2 appear in Table B.1. Cases 1 and 2 are 2-machine
CT line problems for which the total simulation budget is 1,000,000 volumetric units.
Cases 3 and 4 are 15-machine and 50-machine line problems with simulation budgets
of 1,000,000 and 10,000,000 volumetric units, respectively.

Appendix C. Specification and solution for the 50-machine CT line

This appendix provides a detailed description and approximate solutions for the 50-
machine continuous tandem line problems considered in Section 3.2

For each machine in the CT line Table C.1 specifies the following parameters: the
machine number m. the mean volume to failure MVF, the mean time to repair MTR,
and the buffer capacity BC. Note that buffer capacity refers to the buffer preceding
the machine. Table C.1 also contains an approximate minimizer of the reciprocal of
throughput for the 50-machine CT line subject to the following cycle time constraints:

10 20 20
Z ¢, =7.43, Z ¢y = 4.09. Z ¢y =6.24,
n=1 n=11 n=21

40 50

Zc,,=5.71, Zc,,zs.n,

n=31 n=4]

This approximate minimizer, denoted by CT in the table, is a BSO 7y-solution with
tolerance y = 0.001 calculated with simulation warmup 1,000,000 and run volume
1,000,000 per function and subgradient estimation.
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Table C.1
Parameters and approximate optimal cycle time solution for 50-machine CT line
m MVF MTR BC CcT CcT* m MVF MTR BC CT CT*
| 116.65 4.82 0.808  0.850 26 102.58 567 10 0.605 0.609
2 101.44 8.79 10 0.747 0.753 27 98.44 9385 10 0.614  0.59
3 101.86  7.02 10 0.747 0.750 28 109.22 5.89 10 0.630  0.624
4 112.07 691 10 0.746  0.752 29 117.36 8.27 10 0.623 0.625
5 112.42 9.69 10 0.727 0.722 30 9646  8.55 10 0.622 0.633
6 116.08 9.11 10 0.729 0724 3l 11098  6.80 10 0.538 0.660
7 97.69 9.75 10 0.729 0715 32 118.29 5.12 10 0.535 0.601
8 95.06 7.25 10 0730  0.723 33 90.25  6.39 10 0.528 0.393
9 115.51 6.59 10 0733 0722 34 103.57 6.87 10 0.537 0.443
10 99.05 5.29 10 0.734 0719 35 88.05 8.15 10 0532 0.378
Il 111.69 9.18 10 0.245 0.353 36 113.83 5.77 10 0.616 0.633
12 101.34 9.82 10 0242  0.320 37 84.58  4.06 10 0.637 0.622
13 115.08 5.16 10 0286  0.355 38 87.14 655 10 0.628 0.651
14 98.38 9.22 10 0.290  0.357 39 11394 427 10 0.628 0.663
15 82.09 451 10 0.419 0463 40 118.64  9.38 10 0.529 0.665
16 101.59 5.71 10 0435 0.470 41 89.88 522 10 0.371 0.483
17 86.58 7.87 10 0.430 0316 42 108.54  6.36 ] 0.492 0.492
18 105.86 4.15 10 0.566 0421 43 101.22 9.33 10 0.365 0.327
19 104.92 5.49 10 0.575 0413 44 9523 4.60 10 0611 0.262
20 81.22 4.19 10 0.601 0.622 45 96.02 475 10 0.649 0.504
21 96.88 4.94 10 0.668 0.670 46 103.29 7.48 10 0.482 0.695
22 95.89 4.27 10 0.668 0.668 47 11463 491 10 0674 0372
23 99.93 8.3 10 0.606  0.602 48 98.60 434 10 0.449  0.696
24 87.48 9.83 10 0603  0.605 49 87.42 8.47 10 0.373 0.678
25 100.32 6.45 10 0.602 0607 50 93.68  6.51 10 0.706 0.661

+[nequality constrained case.

The final column of Table C.1, labeled CT*, is an approximate minimizer for the
problem subject to additional linear inequality constraints:

c1 2 0.85, ¢ 2067, ¢33 2066, cig+ca+ eyt can +csg 2 3.30,

¢y 2035, ¢4 2041, ¢ +c502099, ¢; >0.05 i=1,...,50.

This point is an approximate BSO vy-solution with tolerance y = 0.005 calculated
with initial simulation warmup 100,000 and run volume 100,000, and with increased
simulation warmup 1,000,000 and run volume 1,000,000 in the later stages of the
computation, as described in Section 3.2.

Appendix D. Structure and solutions for stochastic PERT problems T2 and U2

This appendix contains a detailed description and approximate optimal solutions for
the stochastic PERT problems T2 and U2 in Section 4.2.

The problems T2 and U2 are characterized by an activity-on-arc network with 70
nodes and 110 arcs. The network topology, which is the same for both, is specified in
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Table D.1. Note that node | and node 70 are the distinguished nodes Start and Finish,

respectively.
In problem T2 the activity (arc) lengths have triangular distributions. The decision
variables x;,i = 1,....110 are factors in the minimum (a;x;). maximum (b;x;), and

mode (c;x;) of these triangular activity length distributions. The objective function is
the sum of expected completion time and Z}:']O kix7'. The parameters a;, by, ¢;, and
costs k; appear in Tables D.2 and D.3, which also contain the approximate y-solution
with tolerance y = 0.05 found by bundle-bascd stochastic optimization. The value of the
objective function at this point is 119.0. Note that all objective values presented in this
appendix were estimated using 50,000 network solutions.

In problem U2 each activity (arc) length has a uniform distribution with spread s;.
The decision variables u;,i = 1,...,110 are the mean activity lengths. The objective
function is the sum of expected completion time and Z,':]lo k,-,u,"'. The parameters &; and
s; appear in Table D.4, which also contains the approximate y-solution with tolerance
v = 0.05 found by bundle-based stochastic optimization. The value of the objective

function at this point is 142.8.

Table D.1
Network structure for stochastic PERT problems T2 and U2
Origin ~ Terminal Origin  Terminal Origin  Terminal Origin  Terminal
Arc  node node Arc  node node Arc node node Arc  node node
1 I 2 29 19 23 57 39 26 84 58 59
2 1 30 30 18 22 58 26 27 85 26 28
3 | 29 3] 22 57 39 38 40 86 56 60
4 2 3 32 12 13 60 40 41 87 58 60
5 3 4 i3 12 24 61 43 51 88 59 61
6 3 5 34 23 27 62 36 42 &9 60 61
7 4 6 35 24 27 63 36 44 90 52 53
8 4 10 36 25 24 64 36 45 91 53 41
9 10 5 37 25 26 65 45 47 92 53 54
10 10 4 38 12 25 66 45 46 93 54 35
I 3 {1 39 12 39 67 46 48 94 35 56
12 2 12 40 8 39 68 46 49 95 56 62
13 2 8 41 29 39 69 44 49 96 55 63
14 3 9 42 29 37 7 42 50 97 41 28
15 9 13 43 30 33 71 38 52 98 54 65
16 1l 13 44 31 37 72 52 67 99 65 66
17 6 13 45 30 31 73 51 67 100 64 66
18 6 19 46 31 32 74 50 49 101 4] 69
19 6 7 47 32 34 75 49 64 102 69 68
20 5 7 48 34 38 76 67 64 103 52 68
21 5 16 49 32 35 77 48 66 104 66 70
22 16 17 50 35 36 78 20 57 10s 68 70
23 7 15 51 33 34 79 28 21 106 63 70
24 15 18 52 36 34 80 27 56 107 62 70
25 19 17 53 35 43 81 21 58 108 61 70
26 17 21 54 43 52 32 21 39 109 68 70
27 18 20 RN 37 38 83 57 38 1o 57 62

=
=
.
—
e

56 39 40
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Table D.2
Triangular distribution parameters. objective cost coefficients and approximate optimal solution for problem
T2 (Arcs 1-56)

Arc Cost Parameters Soln. Arc Cost Parameters Soln.
i k; a; ¢ b; X i k; ; ¢ b; Xi
I 2.071 2.003 2.262 2.597 1.239 29 0.241 2,190  2.391 2.509 3.292
2 0.295 2.072 2218 2414 0.600 30 0.504  2.199 2270 2460 1.177
3 0218 2.090 2.317 2.54] 1.832 31 2.579 2.056 2.243 2.396 2.721
4 0.947 2,047 2.351 2.598 0.926 32 1.182 2.071 2.250 2491 7.978
5 2.577 2.024 2.208 2.445 1.699 33 0.276 2.127 2.281 2.566 1.093
6 1.582 2.196 2.382 2513 4.980 34 0.496 2.137 2.233 2415 4.630
7 2613 2.041 2.202 2.433 2.724 35 2.895 2.154 2.362 2.499 3511
3 2.472 2.038 2.3806 2415 2.136 36 1.350 2.153 2.227 2.425 1.162
9 0.722 2.142 2.228 2.538 1.491 37 0.633 2.042 2.203 2.561 3.234
10 2.361 2.049 2.375 2.416 3847 38 1.458 2.061 2.339 2410 4.742
11 0.965 2.053 2319 2414 3.843 39 0.702 2.189 2.305 2.587 3.463
12 1.037 2.192 2.276 2.486 2679 40 1.214 2,190 2350 2572 3.343
13 0.994 2.154 2212 2.502 2884 41 0735 2.187 2.228 2.486 5.480
14 0.844 2,187 2274 2.590 3972 42 1.106 2.151 2272 2.511 5.659
15 1.979 2.174 2.353 2424 5892 43 2492 2182 2.264 2530 4341
16 2611 2.065 2219 2.464 6.301 44 23547 2079 2.374 2.405 6.506
17 2.457 2.091 2.289 2492 5.749 45 0.039 2.173 2.223 2.490 0.600
18 0416 2.020 2.352 2.543 2366 46 0.804  2.00] 2.231 2.405 1.090
19 2.043 2.013 2334 2459 2977 47 0.931 2044 2294 2564 5.141
20 1.173 2.053 2.335 2.542 1.962 48 0.34] 2.051 2.298 2.465 0912
21 2.404 2120 2.358 2.528 4.658 49 2250 2.023 2226 2.481 1.879
22 0.778 2.096 2344 2544 2735 50 2.135 2.043 2.299 2.498 1.238
23 1.850 2.193 2.388 2.570 1.893 51 0.881 2,134 2379 2422 2.600
24 2459 2.053 2216 2512 2.233 52 1.235 2.127 2232 2553 2,380
25 1.874 2097 2315 2.497 5.995 53 1.308 2,151 2.302 2.497 2,111
26 1.239 2.016 27231 2.412 2932 54 2476 2.007 2341 2472 3.060
27 0.409 2.136 2,226 2.457 1,104 S5 0.053 2.043 2.291 2.529 0.763
28 2313 2.029 2.379 2.549 3.653 56 2.098 2.150 2263 2.585 3.466

Appendix E. Convexity properties of PERT problems

This appendix shows that the PERT problems analyzed in Section 4.1 satisfy As-
sumption 1 (strong stochastic convexity) and explains how to compute subgradients of
the expected-value objective functions.

The underlying problem is defined by an acyclic directed network with nonnegative
(random) arc lengths, in which we try (o find the longest path between two distinguished
nodes, Finish and Start. This is the dual (activity-on-arc) form of the PERT problem;
the arc lengths represent times required to perform various activities, and the length of
the longest path is, by duality, also the shortest time in which one can complete all
activities while observing the required precedence relations. For additional detail see,
e.g. [2, Section 8.3], and for terms and results from convex analysis see [34].

Suppose we denote by A the set of flows in the network that are feasible for our
problem (that is, that result in sending one unit of flow from Finish to Start while
conserving flow at all other nodes), and the arc lengths by g :=(g....,8,). Then the
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Table D3
Triangular distribution parameters. objective cost coeflicients and approximate optimal solution for problem
T2 (Ares S7-110)

Arc Cost Parameters Soln. Arc Cost Parameters Soln.
i k; aj e bi kY i ki dj ¢ bj Xi
57 0712 2042 2.278 2418 4.320 84 2.175 2056 2248 2559 2.701
58 2.958 2.144 2.263 2.567 1.266 85 1.528 2172 2273 2532 3.757
59 1.308 2.078 2.329 2.492 2.529 86 1.299  2.081 2243 2.572 2.229
60  2.096 2.145 2.249 2477 2.387 87 2,133 2,060 2255 2.529 1.623
6l 0.896 2071 2.361 2.521 0.693 88 0205 2159 2211 2.596 0.600
62 1.135 2.196 2.321 2484 41612 89 2950 2038 2268  2.505 1.783
63 2.538 2022 2.347 2463 6.846 90 0988 2200 2236 2518 1.376
64 0207 2.028 2356 2566 1.767 91 1.481 2.085 2203 2552 2.879
65 1455 2,168 2400 2440 9303 92 2.588 2.048 2250 244 2.779
66 0.296 2.143 2.387 2.466 2.170 93 1.571 2,109 2278 2500 2215
67 2,126 2135 2211 2.567 5.984 94 2805 2130 2315 2535 3131
68 059 2142 2272 2526 6909 95 1916  2.009 2219 245] 2.724
69 2177  2.193 2338 2.488 6.202 96 269 2124 2.291 2.578 6.667
70 1.081 2.104 2.383 2465 4506 97 2,166 2167 2303 2441 2.268
71 0.038 2.157 2.331 2499 0.600 98 0309 2185 2352  2.566 4.303
72 1.662 2.027 2291 2.541 6.953 99  0.198 2.161 2306  2.552 3.571
73 1.780 2.137 2250 2539 9.084 100 0335 2053 2294 2410 1.423
74 0.845 2177 2.338 2.466 3.948 101 2.088 2.044 2342 2573 1.042
75 0.212 2134 2378 2523 1.656 102 2884 2195 2296 2474 4.891
76 0.652 2.108 2378 2.468 3.709 103 0256 2094 2287 2560 5215
77 2.353 2,133 2286 2440 6.199 104 1267  2.135 2292 2421 2.307
78 2840 2112 2.351 2.493 2.828 105 2844 2005 2332 2590 11.633
79 2.271 2.093 2.208 2420 2136 106 0102 2.001 2247 2403 1.395
80 0.802  2.048 2293 2567 1.798 107 2586  2.180 2226 2587 2.543
81 1.327  2.015 2.324 2.405 1.557 108 2,112 2,195 2.347  2.563 1.198
82 2.705 2.116 2313 2475 4200 109 2258 2.121 2354 2435 4.374
83 2,034  2.145 2,389  2.571 1.864 110 2.086 2122 2289 2534 3.798

length of the longest path is /3-(g) (the support function of N, evaluated at g). and this
is a closed convex function of g. In our problems g will be an n-dimensional random
variable, and we wish to compute the expectation of /13-(g).

We now suppose that cach g may depend continuously on a vector of parameters
zi € R, and we let

ZZ(ZI,....ZIJ)ERNa glz)y=(gilz)....., &n(zy) ).

where N =37 n;. Therefore we can write the length of the longest path as a composite
function of z:

P(z) =1 (g(z)).

We wish to investigate various propertics of ¢ (such as convexity) and to develop a
formula for its subdifferential in terms of other quantities already introduced.

Note for future reference that /3, is nondecreasing in the vector g: that is, if gz
then 15,(g') > I3:(g). because any feasible flow in A/ will be nonnegative. Therefore,
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Table D.4
Uniform distribution spreads. objective cost coefficients and approximate optimal solution for problem U2

Arc Cost Spread  Soln. Arc  Cost Spread  Soln. Arc  Cost Spread  Soln.

/ ki 5 i i ki 5i i ! ki Si A
1 6902 0017 5.000 38 2499 0294 7.646 75 4859 0303 7.871
2 4452 0986 3133 39 3910 0.2623 10.691 76 2519 0.051 12.569
3 0983  0.361 5827 40 0.154 0712 3.000 77 2340 0946 14.175
4 7.695  0.070 4320 41 8.012  0.601 19.122 78 4571 0934 7913
5 0.728 0451 2000 42 1.816  0.642 10.170 79 4046 0950 5816
6 7.334 0703 14,552 43 2594 0481 8.120 80 6551  0.859 5.720
7 3158 0234 5.108 44 3419 0718 9.239 81 2450 0935 4613
8 1317 0989 5000 45 6.168  0.964 3.860 82  9.156 0432 12.130
9 8591  0.121 7.705 46 0.563  0.852 2.000 83 3687 0756 4.892
10 2347 0226 10.501 47 8.196  0.265 12.676 84 6921 0.557 7.378
11 5272 0981 10.936 48 2767  0.558 3.269 85 8306 0.909 18.945
12 6.618 0.565 9374 49 6246 0483 4.656 86 30619 0.650 16.524
13 8711 0207 16.994 50 2148 0485 3.586 87 8490  0.395 7.733
14 4618 0.167 9.022 sl 4,129 0.080 10.282 88 0566  0.025 2408
15 8.240 0.189 12.068 52 3631 0.062 4.538 89  0.131  0.864 2.000
16 4348  0.077 9935 53 1362 0.682 6.316 90 9330 0450 5.092
17 2408 0708 13.678 54 2421 0.285 8.447 91 2681 0003 11.089
18 4815 0.688 7972 S5 7710 0.144 8.723 92 9975 0024 5416
19 7869  0.244 15038 56 9.433  0.747 11.337 93 3,105 0219 3.149
20 7.085  0.082 7.500 57 0.803  0.949 9.503 94 7818 02820 6.000
21 3215 0264 7513 58 5.659 0544 7.246 95 1136 0258 26.000
22 4709  0.070 9.221 59 1.679 0994 10.873 96  7.336 0327 20.409
23 3455 0961 4.687 60 6.182 0301 8.639 97 7501 0.115 9.019
24 5301 0428 5792 6l 8.598 0.278 9.944 98  6.061 0405 15.278
25 3313 0971 15993 62 4.636 0979 10.215 99 7117 0216 16.342
26 7.575 0509 19.249 63 3941 0355 15263 100 8.048 0489 9.202
27 2815 0933 9753 64 0.416  0.456 4853 10t 2936 0.672 14.368
28 5.148 0949 14860 65 0921 0.635 10230 102 2436 0.108 13.391
29 6.596  0.868 9.342 66 7.570  0.830 17.593 103 4116 0.636 17.279
30 4540  0.122 6424 67 1.655  0.684 12.543 104 6430 07067 7.131
31 8.702  0.325 11518 68 4312 0076 13999 105 4359 0.756 17.626
32 0.95%  0.320 10.373 69 9.650  0.769 21064 106 3071 0484 15.196
33 8.189  0.454 8765 70 8905  0.496 13886 107 8.254 0.033 4.002
34 5775 0458 8.746 71 4501 0765 3607 108 3914 0362 3.437
35 1.385  0.098 3529 72 8.881  0.126 20327 109 0177 0216 5.010
36 3911 0715 16745 73 2111 0212 13.668 110 3.130  0.646 13.956
37 6.809  0.067 13.033 74 6.884  0.806 12.306

if g > 0 then also I3, (g) = 0. Also. we have dom /3, = R” since the network is acyclic
and the number of arcs is finite. Therefore ¢ = I3, o g is finite for each z such that
g(z) 20.

The first result is a simple extension of {34, Theorem 3.1].

Lemma 1. Let f be a convex function from (—>c,+oc]" fo (—oc,+oc] that is
nondecreasing with respect to the partial arder induced on R" by R”, and such that if
any component of x; is +o0 then f(x) = +oc. Let g1..... g, be proper convex functions
on R, and for 7 € RY define g(z) = (g1(z1).....g.(2y)) and let ¢ := fog Then ¢
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is convex. Further, if we suppose that the g; are continuous and real-valued, thar f is
lower semicontinuous, and that there is a point £ € R" with g() € dom f, then ¢ is
closed and proper.

Proof. Let ;' and z* be points of R" and A € (0. 1). Then

AL =z +A2°] = fle((1 =Dzt + A
< FIC = Nglzh) + gz ]
<=Mz + A7),

where the first inequality holds because for cach i.
gl (1 =Mz + A7 < (1= Dgish +agtz?)

by the convexity of g;, and because of the nondecreasing property of f. Noting that ¢
cannot take —oc because f cannot, we see that ¢ is convex by [34, Theorem 4.1].

With the additional assumptions we see that ¢p( ) < +a¢, so that ¢ is not everywhere
+2¢. We already noted that it cannot take — . so it is proper. It will therefore be closed
if it is lower semicontinuous, and this property follows immediately from continuity of
g and lower semicontinuity of f. [

A very simple calculation using the nondecreasing property shows that for any f
satisfying the conditions of Lemma 1. we have imdf C R,

To apply Lemma [ to the PERT problems of Section 4, note that for the case of
uniform distributions, a random number « € [0,1] will generate an arc length /; =
i+ 5i(u —.5); therefore the function g;( ;) is just g, plus a constant. This is certainly
continuous and convex; it will be positive if we place appropriate lower bounds on the
;. For the case of triangular distributions. the parameter is x; and the resulting density
function has support in [a;x;, byx;]. with mode ¢;x;. A random number ¥ € [0, 1]
generates an arc length

_f xilai+Hule = a) (b — ay) Y ifuel0,(c—a)/(h—a)]
ol - {01 wu_)(bf—c,-)(b,v~a,»)}”3'] ifuwe[(ci—a)/(hi—ap),1].

In this case g;(x;) is lincar in x;, and this function is also continuous and convex; it is
positive whenever x; > 0. We have already noted that /3, is closed, proper, convex, and
componentwise nondecreasing.

Lemma | now shows that for any fixed « € [0.1] the composite function ¢ =13, 0g
will be closed proper convex as a function of the decision variables x or x. We already
noted that there is an open set G, of the form {u | w; > B;} or {x | x; > 0} on which
g(z) = 0, where here z may be cither u, or x;. Therefore ¢ is continuous and convex
on G. The cost function we consider is the sum ol @(z) and a sum of terms of the
form k;/z;. Averages of such functions. which we use in the minimization procedure,
will clearly also be continuous and convex. Therefore Assumption | holds for the PERT
problems that we consider.
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We now proceed to determine the form of the subdifferential of a function ¢ of the
kind defined in Lemma 1. We shall obtain an inclusion under very weak assumplions,
and an equality when those assumptions are slightly strengthened.

Proposition 2. Let f, g, and ¢ be as in Lemma 1. Then for each 7 € RY one has

ap(z) D Q(z),

where Q(z) is the set of all points of the form (xTz}', ... . x5z;), where x* € 0f[g(z)]

and for each i, 7* € dgi(z).

Proof. Let z° € RY. If Q(zp) is empty there is nothing to prove. Otherwise, select
a point of Q(z% and suppose that x* and e z, generate it according to the
definition of Q(z°%). As x* € df[g(z")] one has for cach z € R",

¢(Z)=f[81(2|) ~~~~~ an(zn)]

"

> fle(@), GO+ xlgilz) — sz,

i=1
But for each i, x; = 0 as previously observed, and

*

0
g(z) —g(z0)y 2 (& u — ).
Hence
B(2) 2 (") + ((x}zf Fetyz =29
) =z (*- \'\]*']"""\n*‘n A VA
which proves the assertion. [
Note that no g;(z?) can be 4o in the above proof, since otherwise f[g(z°%)] would
be +>¢ and its subdifferential (which would be empty) could not contain x*.
One might worry that the set Q(z) considered in Proposition 2 could be nonconvex,
or could be much smaller than d¢(z). We shall show that this is not so; in fact

Q(z) is always convex, and under some additional assumptions it is identical to the
subdifferential. The following lemma shows that a set of the form of Q(z) is convex.

Lemma 3. Let X be a conmvex ser in R" and fori=1,.... n let S; be a convex set in
R". Then the ser

C={(us.....008) | xeX. s;€8 (i=l.....n)}

is convex in RY, where N =31 n,.

Proof. Let x and x' be elements of X and s; and 5] be elements of S; for i=1,....n.
Let A € (0, 1), and consider the point

2= (1= D15, X8, + A s s
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Let v = (1 — A)x+ Ax'; evidently vy € X. Now fix an index { between | and a. If y; =0
then both x; and x} are zero, so z; = 0 = v;5;. Otherwise, we have

= vil (0= Dxy s+ Ay,

i

and the quantity in square brackets belongs to S; by convexity. Therefore 7 is of the
form (vywy..... Yoy, ). where foreach iw; € §;.andsoz € C. [

The next proposition shows that under some additional regularity assumptions, Q(z)
is in fact the subdifferential of ¢ at - (note that the inclusion in one direction was
established in Proposition 2; here we prove the opposite inclusion).

Proposition 4. Ler f. g and ¢ be as in Lemma 2. Suppose 7 = (21,....2,) IS @
point of BRY such thar for each i, z; € intdomg, and that g(z) € intdom f. Then
ddb(z) C Q(z), where Q(z) is the set defined in Proposition 3.

Proof. We first prove that the directional derivative @' (z; -) minorizes IQ*(:), Choose
some w = (w),...,w,) € RY, and temporarily fix i. The condition z; € intdomg;
implies that g; is locally Lipschitzian at g, that dg;(z;) is compact, and that g/(z; ) =

-+ Therefore there is some w; € dgi(z) such that g/(ziw,) = (wj,w;). So. for

some function r;(t) = o(t), one has
gilz +1wy) = g2 + (] wy) + (0,

and for small r the left side is finite. Accordingly, we can write
glz+1w) =g(z) +1({wi ). .. (wiow,)) +r(n,

where r(r) = (r;(t),....r(1)).
Now f is locally Lipschitzian at g( ) because g(z) € intdom f. so for some function
s{t) =o(t) and all small + we have

FLe(z 4 )] = flg(2) + t({wi ), (wgow)) ] + (7).

An argument similar to that just made for ¢ shows that for some point x* € df[g(z) |
and some function r;(t) one has

STg(z) +e(efowd o nl oy, )) ]
= flela)] 4+ X ({w/owp)oo .. (W)Y + re(r),
and rs(t) = o(r). By combining these expressions we then obtain
bz +tw)=¢(z) + IZ(\,* wiLwy) + o(1).
i=1
This immediately implies that

G (zyw) = ((xTwio o x0why, w),
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and the expression in parentheses on the right side is an element of Q(z). It follows
that ¢’ (z; - ) < I,

It follows from what we have just proved that 77, ., which is the closure of ¢'(z; - ),
also minorizes 15(:), and hence that d¢(z) C clQ(z). But since df[g(z)] and all of
the sets dg;(z;) are compact, Q(z) is in fact closed, so dp(z) C Q(z). O

Proposition 4 is included for completeness; the most important result for computation
is Proposition 2. In the (maximization) linear programming problem to be solved for
the critical path, the objective will be of the form . g(z)x;, and the constraints
will be network constraints (equations expressing the node-arc incidence conditions,
with nonnegative variables x;). The optimal objective value will be f[g(z)] (that is,
f =13, and any optimal solution (xj.....: x,) will be a subgradient of f at g(z).
The subdifferentials dg;(z;) may well actually be derivatives, depending upon the form
in which the parameters z; enter the probability distributions.

Appendix F. Constrained optimization vs. projection

This appendix addresses the issue of why we prefer to operate with a method that
incorporates constraints into the subproblems solved at each iteration, rather than deal-
ing with them after the fact by projection, as is often done in methods of stochastic
approximation. An anonymous referee has suggested that our distaste for projection in
stochastic approximation is unjustified, since each method (our proposal, and stochas-
tic approximation with projection) has to solve a quadratic programming problem at
each iteration. Our view, however, is based not on the fact that quadratic programming
problems have to be solved. but on the very different outcomes that those problems
can produce in the two methods. The point is that projection onto the feasible set can
substantially retard the progress of stochastic approximation, and that this retardation
can combine with the natural slowness of small gradient-step methods in a disastrous
way. The following example in R? illustrates this phenomenon.

Suppose we wish to minimize the function f(x) := (v, x) on the nonnegative orthant
R2. where for fixed € € (0,1) we define v* = ([1 — €212 €). Note that |ju*]| = 1,
and that the unique minimizer is the origin. We shall start from x), := (0, 1), using a
gradient step followed by projection. To imitate the stepsize technique generally used in
stochastic approximation, we take a step size of n~" at the nth step. Accordingly, if we

denote the Euclidean projection of z € R* on R% by z.. and if T, := > _;_, k7', then
we have
Xpet = [0 =07 O/ (O =[x = n™ 0], = (0.1 = €T)), (E.1)

provided that €7, < 1. As soon as €T, > | the problem is solved. Thus, for this problem
the iteration (F.1) is actualiy finitely convergent. We shall estimate the number of steps
required, namely N(e) := inf{n | €T, = 1}

The elementary inequality
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n
k< /.x—‘ dr< i+ k-
¥ k=2

Erad
i
%]

obtained by bounding the graph of x~' on [1.n] by. respectively, piecewise constant
and piecewise linear functions, shows that

Tn—%<%+|n’l<Tn+§-(2n)_',

It follows that to have €7, = 1 one must have €(1+Inn) > 1: thatis. n > exp(e‘1 —1).
If for concretencss we take € = (.01, then we find that N(e) > ¢, a number that is
greater than 9.8 x 10*2, Therefore our finitely convergent algorithm (F.1) requires nearly
10** steps, each consisting of a gradient step followed by a projection. It should be clear
that such a computation is impracticable even with the fastest equipment available.

If instead we apply a version of the bundle algorithm to this problem, we shall obtain
X,+1 by the iteration

7

Xy = argmin{(¢*, x) + (20 Y - .\',,H3 | x € R},

since the linearity of f means that our piecewise linear approximating function will be
f itself. There will then be no null steps. so that if x, is of the form (0,w,) with
w, = 0 then we have x,., = (0,[w, — re],). Hence if we start at x; = (0, 1) with
€ = 0.01, then if r > 100 we solve the problem in one step, whereas if r < 100 then
we need [100r71] steps. In fact. an adaptive technique such as is used in the methods
of {22] or (36] will quickly adjust 7 upward when 1t finds that no null steps are taken.
Therefore, not many steps will be required in any case.

This example used a very simple function to make the exposition ecasy. However, it
should be clear that the underlying situation involved here (a gradient nearly, but not
quite, normal to the boundary of the feasible set at an iterate x,) can be expected to
hold in general when one is near a constrained optimizer. Therefore the phenomenon
is by no means special, but rather illustrates a fundamental disadvantage of combining
small gradient steps with projection.
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