
Mathematical Programming 73 (1996) 129-174

Shortest paths algorithms: Theory and experimental
evaluation

Boris V. Cherkassky a,l, Andrew V. Goldberg b,2, Tomasz Radzik c'3
a Ce~ltral hTstitute for Economics and Mathematics, Krasikova St. 32. 117418, Moscow, Russia

h Computer Science Department, Stanford University. Stanford, CA 94305, USA
c Department q[" Computer Science, King's College London, London, WC2R 2LS. UK

Received August 1993; revised manuscript received May 1995

Abstract

We conduct an extensive computational study of shortest paths algorithms, including some very
recent algorithms. We also suggest new algorithms motivated by the experimental results and
prove interesting theoretical results suggested by the experimental data. Our computational study
is based on several natural problem classes which identify strengths and weaknesses of various
algorithms. These problem classes and algorithm implementations form an environment for testing
the performance of shortest paths algorithms. The interaction between the experimental evaluation
of algorithm behavior and the theoretical analysis of algorithm performance plays an important
role in our research.

Kevwords." Graph algorithms Network optimization; Shortest paths: Theory and experimental evaluation of
algorithms

1This work was done while Boris V. Cherkassky was visiting Stanford University Computer Science
Depamnent and supported by the NSF and Powell Foundation grants mentioned below.

2 Andrew V. Goldberg's current address: NEC Research Institute, 4 Independence Way, Princeton, NJ 08540.
Andrew V. Goldberg was supported in part by ONR Young Investigator Award N00014-9l-.I-1855, NSF
Presidential Young Investigator Grant CCR-8858097 with matching funds from AT&T, DEC, and 3M. and a
grant fi'om Powe[l Foundation. Corresponding author.

3 This work was done while Tomasz Radzik was a Postdoctoral Fellow at SORIE, Cornell University. and
supported by the National Science Foundation, the Air Force Office of Scientific Research, and the Office of
Naval Research. through NSF grant DMS-8920550, and by the Packard Fellowship of l~va Tardos.

0025-5610 @ 1996--The Mathematical Programming Society, Inc. All rights reserved
SSDI 0025-56 1 0 (9 5) 0002 1-6

130 B. W Cherkasskv el al. /Mathematical Programming 73 (1996) 129-174

1. Iniroduction

The shortest paths problem is one of the most fundamental network optimization
problems. This problem comes up in praclice and arises as a subproblem in many
network optimization algorithms. Algorithms for this problem have been studied for a
long time. See e.g. [2 ,5 , 6, 8, 10, 23.25, 27]. However, advances in the theory of shortest
paths algorithms are still being made. See e.g. [l, 12, 13, 17]. A good description of the
classical algorithnls and their implementations appears in [14].

On a network with negative-length arcs the best currently known time bound of O(nm)

is achicved by the Belhnan-Ford-Moore algorithm [2, 10, 25]. Here n and m denote the
number of nodes and arcs in the network, respectively. With the additional assumption
that arc lengths are integers bounded below by N ~ -2 , the O(v/rim log N) bound

117] improves the Bellman-Ford-Moore bound unless N is very large. If all arc lengths
are nonnegative, implementations of Dijkstra's algorithm [8] achieve better bounds. An
implementation of 111] runs in O (m + n l o g n) time. An improved time bound of O (m +
iz log~t/log Iogn) [12] can be obtained in a random access machine computation model
that allows certain word operations. Under the assumption that arc lengths are integers
in lhe interval [() C], C >~ 2, the implementation of [1] runs in O(m + n v ~ g C)
time.

As hardware becomes more powerful and more sophisticated algorithms need a short-
est path subroutine, efficient shortest paths algorithms are of growing importance. This
is the case for other network optimization problems as well, motivating broad com-
putalional investigation of available algorithms. In particular, a massive study of ttow
and matching algorithms was done for the First DIMACS Algorithm Implementation

Challenge [20].
In this paper we study practical performance of several shortest paths algorithms,

including established methods [2, 8, 10, 15, 23, 25-27], recently proposed algorithms [I ,
18], and new algorithms. The development of the new algorithms was based on the
experinmntal feedback. We give theoretical explanation of the observed behavior of the
alg{}rithms and prove complexity bounds on the new algorithms. Our study includes more
algorithms than previous studies [5, 7, 14. 15, 19, 24] and the collection of problems used
in our study is much richer. Because of this, our conchisions <are often different from
those of the previous studies.

We also prove an interesting restllt suggested by the experimental data. This result,

summarized in Theorem 17, shows that some algorithms, for exalnple the Belhnan-
Ford-Moore algorithm, are poten t ia l - im ,ar ian t , i.e., behave in exactly the same way on
two networks one of which is obtained from the other one by replacing the lengths
by the reduced costs with respect of a potential function. This result has several inter-
esting implications. Note, for instance, that any feasible shortest paths problem has an
equivalent with nonnegative arc lengths. If the problem with nonnegative arc lengths
is computationally simpler than the general problem, as is commonly believed, then
the lheorem suggests that a potential-invariant algorithm cannot be superior to all other
algoritluns on problems with nonnegative arc lengths.

B. V Cherkassky et al./Mathematical Programming 73 (1996) 129-174 131

An important part of our work is the development of several natural shortest paths
problem generators and their use to create families of problems. Of special interest to us

are the families that give insight into the relative algorithm performance, robustness, and
dependence of the performance on the network Structure and the arc cost distribution,

The collection of algorithms we test is larger than that of any previous study we
are aware of, and the set of test problems is much richer. We show that the algorithm
performance varies significantly more than previously believed and that some algorithms
previously considered robust may fail dramatically. For example, we exhibit a family
of problems that are hard for all established algorithms, although a recent algorithm of
[181 solves these problems quickly (see Section 7).

Our work greatly improves the theoretical understanding of the shortest paths algo-

rithm performance in practice. In particular we identify several problem features that
make problems hard or easy for the algorithms we study. The interaction between theo-

retical and experimental aspects of our work helps to produce more efficient codes and
to identify important theoretical properties of the algorithms.

Although our research does not produce a single best code for the shortest paths
problem, two codes we developed are very competitive in their domains, networks with
nonnegative and mixed arc lengths, respectively. One of the codes is an implementation
of Dijkstra's algorithm using a double bucket data structure of Denardo and Fox [5].
Anodaer code, which implements a recent algorithm of Goldberg and Radzik [18],
matches the O(nm) bound of the Bellman-Ford-Moore algorithm and also achieves the
optimal O(m + n) time bound on acyclic networks.

Our codes, generators, and generator inputs tbrm a testing environment tor shortest
paths algorithms. A new code can be compared against the existing ones to determine its

relative perlbrmance. The environment can be augmented as interesting codes, problem
generators, and problem families are developed. Our codes, generators, and generator
inputs are available through a mail server.

The shortest paths environment can be used in several ways. Practitioners looking for
an efficient code for an application can test our codes on their problems and select one
that performs well. The number of codes which need to be compared can be narrowed
down using the results of the current paper. Researchers evaluating a new shortest paths
code can run the code on the problem families we suggest and compare its performance

with the performance of our codes. The environment can also be used in teaching
algorithms to demonstrate importance of proper algorithms and data structures.

This paper is organized as follows. Section 2 introduces definitions and notation.
Section 3 reviews the labeling method for the shortest path problem. Section 4 describes
the algorithms that we study and proves complexity bounds on the new algorithms.
Section 5 describes our experimental setup and Sections 6-9 give the main experimental
results. Section 10 gives additional experimental data for implementations of Dijkstra's
algoritbm. Section 11 gives a theoretical result motivated by our experiments. A summary
of our experimental results and discussion of individual algorithm performance appears
in Section 12. We make concluding remarks in Section 13.

132 B. ~'~ Cherka.vsl, 3, et al./Mathematical Programming 73 (1996) 129-174

2. Definitions and notation

The input to the single-source shortest paths problem is (G, s, g), where G = (V E)

is a directed graph, f: : E + R is a length function, and s E V is the source node. The

goal is to lind shortest paths from s to all other nodes of G or to find a negative length

cycle in G. We say that the problem is feasible, if G does not have a negative length

cycle. We assume, without loss of generality, that all nodes are reachable from s in G.

We denote [V[by n, IE] by m, and the biggest absolute value of an arc length by C.

A potential function is a function on nodes with values in R U {oc}. Given a potential

function d, we define the reduced cost fimction ~j : E ---, R U {oc} by

f j (r , w) = f'(L', w) + d (c) - d (w) .

We say that an arc a is a&nissible if f a (a) ~ 0, and denote the set of admissible arcs

by E,t. The admissible graph is defined by G,j = (V, E,I). Note that if d (c) < ~ and

d (w) = yc, the arc (r , w) is admissible. If d(c') = d (w) = oo, we define g,,l(u,w) =

C(c, w).
A shortest paths tree of G is a spanning tree rooted at s such that for any c ~_ V, the

reversal of the c to s path in the tree is a shortest path from s to c.

3. The labeling method

In this section we briefly outline the general labeling method for solving the shortest

paths problem. (See e.g. [4, 14, 29] for more detail.) Most shortest paths algorithms,

and all those which we study in this paper, are based on the labeling method.

For every node u, the method maintains its potential d (c) , parent ~ (v) , and status

S(r) c: {unreached, labeled, scanned}. The potential of a node u is also called the

distance label of t~', because it is equal to the current estimate of the shortest-path

distance liom s to c. Initially for every node c', d (u) = oc, rr(c) = nil, and S(u) =

um-eached. Tile method starts by setting d (s) = 0 and S(s) = labeled, and applies the

SCAN operation to labeled nodes until none exists, in which case the method terminates.

The SCAN operation applies to a labeled node t'. The operation is described in Fig. 1.

Note that if r is labeled, then d(u) < ~ and d (v) + [':(c', w) is finite. After a SCAN

procedure SCAN (/~) ;

for all (u, w) ~ E do
if d(c,) + f(c, w) < d(w) then

d (w) +-- d (u) + g (u , w) ;

S(w) ~ labeled;

rr(w) ~ c;

S(l ') ~-- scanned;

end.

Fig. 1. The SCAN operation.

B.V. Cherkassky et al./Mathematical Programming 73 (1996) 129-174 133

Name Brief description
(strategy for selecting nodes to be scanned next)

ACC

BF

BFP

DIKB

D I K B M

D I K B A

D I K B D

D I K F

D I K H

DIKR

G O R

GORI
PAPE

S T A C K

T H R E S H

T W O _Q

Topological order selection for acyclic graphs
FIFO order selection (Bellman-Ford-Moore algorithm)
BF with parent-checking heuristic
Minimum label selection (Dijkstra's algorithm) using buckets
Minimum label selection using buckets and the overflow bag
Minimum label selection using approximate buckets
Minimum label selection using double buckets
Minimum label selection using Fibonacci heaps
Minimum label selection using k-ary heaps
Minimum label selection using R-heaps
Topological order selection tot general graphs
GOR with scans during topological sort
Selection using a double-ended queue (Pape-Levit algorithm)
LIFO order selection
Threshold selection
Two queue selection (Pallottino's algorithm)

Fig. 2. Summary of implementations.

operation, some unreached and scanned nodes may become labeled.

The method terminates if and only if G does not have negative length cycles. If the

method terminates, the parent pointers define a correct shortest paths tree and, for any

c E V. d(c ') is the shortest path distance from s to c,. The labeling method can be easily

modified so that if G has negative cycles, the method finds such a cycle and terminates.

4. Labeling algorithms

Different strategies for selecting labeled nodes to be scanned next lead to different

algorithms. In this section we discuss some of these strategies and describe the algorithms

we have implemented and experimented with. Fig. 2 gives a quick summary of these

algorithms.

The importance of a good ordering of the SCAN operations is illustrated in Fig. 3.

Here we compare the FIFO ordering used in the BF code and the LIFO ordering used

in the STACK code on two Grid-SSquare problems (see Section 6) of modest size. The

performance of" STACK is usually extremely poor compared to BF, although the codes

differ by only two statements. As we shall see later, BF performs much worse than some

other codes on this problem. Note that STACK has an exponential worst-case running

time (see e.g. [28]) .

I node / cs II I STACK I
16385 0.39 44.29
49 52 t92 1986.90
65537 3.53 544.34

196608 23.19 4613.02

Fig. 3. Relative performance of FIFO and LIFO selection rules. A table entry gives the running time in
seconds (bold) and the number of scans per node.

134 B. V Chcrkasskv et al./Mathematical Programming 73 (1996) 129-174

4.1. Bellman-Ford-Moore algorithm

The Be l lman-Ford -Moore algorithm, due to Bellman [2] , Ford [10], and Moore

[25], maintains the set of labeled nodes in a FIFO queue. The next node to be scanned

is removed fiom the head of the queue; a node that becomes labeled is added to the tail

of the queue. Our code BF implements this algorithm.

We define a pass over the queue inductively. Initialization, during which the source s

is added to the queue, is pass 0. For i > (I, pass i consists of processing nodes which

were added to the queue during pass i - 1.

Performance of the Be l lman-Ford -Moore algorithm is as follows.

Theorem 1. (i) Each pass takes O(m) time. (i i) The nttmber of passes is bounded by

the depth o[a shortest paths tree. (i i i) The algorithm runs in O(nm) time in the worst

casc.

Although the O(mn) worst case bound is the best bound known for shortest paths

algorithms, in practice the Be l lman-Ford-Moore algorithm is often slower than other

methods. We introduce the following pa~z~nt-checking heuristic that usually improves

performance of the algorithm. Suppose we have just removed a node u from the queue

and the parent of c, u = r r (t ') , is in the queue. Note that d (u) was last updated when u

was scanned and d (u) was set to d (t t) -4-{(1/, t:). After that d (u) decreased causing u

to be again added to the queue, and implying that d(u) + g(u, l_,) < d(t.,). Intuitively,

it is wasteful to scan c at this point because we know that d (u) will decrease. The BFP

algorithm is a variant of BF that scans a node only if its parent is not in the queue. One

can easily prove the bounds of Theorem 1 for this algorithm.

The parent-checking idea can be extended. For example, one can check all proper

ancestors of a node in the current tree. This is computationally expensive, however. An

alternative is to periodically clean up the queue, leaving in it only the nodes with no

labeled proper ancestor in the tree. This approach can be used to obtain an algorithm

that is usually better than BFP. In Section 4.5 we describe an even better algorithm

motivated by this idea.

Fig. 4 shows lhe performance of BF and BFP on a problem from Grid-SSquare family

(see Section 6). On this problem, BF does about twice as many scans as BFP and runs

about twice as slowly. Fig. 5 shows the performance on problems from Rand-Len family

nodes/arcs

I6385 0.39 0.21
49152 II.92 5.05

65537 3.53 1.96
196608 23.19 9.66

Fig. 4 Relative performance of BF and BFP on
Grid-SSquare problems.

IZ, Uj II BFI BFPI
[1, I] 1.46 1.50

1.00 1.00
[0, 10000J 25.28 23.15

19.04 16.75

Fig. 5. Relative performance of BF and BFP
on Rand-Len problems with 131 072 nodes and
524288 arcs. First column shows the range of the
arc lengths.

B. V Cherkassky et al. /Mathematical Pro,~,ramming 73 (1996) 129-174 135

(see Section 8). In the first problem all arcs have unit length and both BF and BFP do

one scan per node. (In this case FIFO order strategy reduces to the breadth-first search.)

Because of the additional work of checking the parents, BFP is slightly slower. In the

second problem the range of arc lengths is relatively large. On this problem BFP does

slightly fewer scans per node and runs slightly faster.

In practice, BIzP seems never to make more scans than BF and is never significantly

slower. In the vast majority of cases, BFP is faster than BE and the two codes differ by

only one "if" statement. We use the BFP code in our main experiments.

4.2. D(jkstra's algorithm

Dijkstra's algorithm [8] selects a labeled node with the minimum potential as the
next node to be scanned.

Theorem 2. If the length function is notmegative, Dijkstra's algorithm scans each node

e.ract-ly once.

Remark 3. It is easy to show that if negative arc lengths are allowed, the number of

scans may be exponential.

We first assume that arc lengths are nonnegative, and treat the other case at the end

of this section. Also, when discussing below about R-heap and bucket-based implemen-

tations of Dijkstra's algorithm, we assume that the length function is integral.

The worst-case complexity of Dijkstra's algorithm on networks with nonnegative arc

lengths depends on the way of finding the labeled node with the smallest distance

label. The naive implementation that examines all labeled nodes to find the minimum

runs in O (n :) time [8]. The implementation using k-ary heaps (see e.g. [4]) runs

in O (m l o g n) time (for a constant k). The implementation using the priority queue

of Van Erode Boas et al. [3] runs in O (m l o g l o g C) time. The implementation using

Fibonacci heaps [1 1] runs in O(m + n logn) time. The implementation using one-level

R-Ineaps [1] runs in O(m + n log C) time and the one using two-level R-heaps together
with Fibonacci heaps, in O(m + n I,/i~g C) time. We evaluated implementations that use

k-ary heaps with k set to 3 (DIKIt), Fibonacci heaps (DIKF), and one-level R-heaps

(DIKR). The R-heap data structure is based on buckets and thus similar Io bucket-based
implementations discussed below.

We also implemented the naive O(n 2) algorithm (DIKQ). This implementation, how-

ever, performs poorly unless the average number of labeled nodes during the computation

is small. For example, on two problems from Grid-SWide family (see Section 6), DIKQ

is orders of magnitude slower than D1KH, which itself is relatively slow on this problem.
(See Fig. 6.) Because of the poor performance, we do not include DIKQ in our" tests.

Another way to implement Dijkstra's algorithm is by using the bucket data structure,

as proposed by Dial [6]. This implementation maintains an array of buckets, with the ith

bucket containing all nodes c with d(z:) = i. When distance label of a node changes, the

136 B. ~/~ Cherkassky et al./Matlwmatical Programming 73 (I 996) 129-174

nodes/arcs II o,K. I ~
16385 0.20 5.15
49152 1.00 1.00
32769 0.50 22.11
98304 l.O0 1.00
65537 1.29 122.22

196608 1.00 1.00

Fig. 6. Relative performance of DIKH and DIKQ on Grid-SWide problem.

node is removed fl'om a bucket corresponding to its old distance label (i f the label was

finite) and inserted into the bucket corresponding to the new one. The implementation

maintains an index L. Initially, L = 0, and L has the property that all buckets i < L

are empty. The next node to be scanned is removed from bucket L or, if this bucket

is empty, L is incremented. The following theorem follows easily from the observation

that bucket deletions and insertions take linear time and at most nC buckets need to be

examined by the algorithm.

Theorem 4. [6] / f the length function is nonnegative, Dial's implementation o{ Dijk-

stra's algorithm runs in O(m + nC) time.

Although the algorithm, as stated, needs nC buckets, an observation that only C + l

consecutive buckets can be occupied at any given time allows the use of C + 1 buckets.

Our code DIKB follows Dial ' s implementation. We maintain nodes in a bucket in the

FIFO order. Our implementation places a limit of 300000 on the maximum arc length

(which determines the number of buckets).

Next we introduce two simple ways to reduce the memory requirement of Dial 's

implementation. In the overflow bag implementation, the number of buckets is set to

B < C + 1. At the ith stage of the algorithm, the buckets contain nodes with distance

labels in the range [Bi, Bi + B - 1]. The labeled nodes with distance label Bi 4- B and

above are maintained in a special set (the bag) . Initially i = 0 and Bi = 0. When the

value of L reaches B~ + B, the value of i is incremented and Bi is set to the minimum

distance label of a node in the bag. Then the bag is scanned, nodes with distance labels

in ihe range [Bi, Bi + B - 1] are moved into appropriate buckets, and the next stage

begins. The t ime-memory tradeoff of this implementation is as follows.

Theorem 5. If the length function is nonnegative, the ovelflow bag implementation of
Dijkstra's algorithm runs in O(m + n ((C / B) + B)) time.

Proof. Under this implementation, each node is scanned at most once, for the total of

O(m + n) time. The time for removing and inserting nodes from the buckets and the

bag can be charged to the scanning of nodes. There are at most n passes through the

buckets for a total of O(nB) work. It remains to account for the work of examining

nodes in the bag at the end of each stage of the algorithm. Note that if a node is added

to the bag for the first time during stage i, then its distance label is at most Bi + B + C,

B. g Cherkassky et al./Mathematical Programming 73 (1996) 129-174 137

SO the node can be in the bag for O(C/B) stages. Thus the work involved in examining
the bag is O(nC/B) . []

Choosing B = ~ yields an O (m + n v ~) time bound. Our code DIKBM implements
this algorithm. We set B = rain (50 000, C/3).

In the approxinmte bucket implementation, a bucket i contains nodes with distance

labels in the range [iA, (i + 1)A -- 1], where A is a fixed parameter. Nodes in the bucket

are processed in the FIFO order. This implementation needs VC/A] + 1 buckets. The

time-memory tradeoff for this implementation is as follows.

Theorem 6. [[the length function is notmegative, the approximate bucket implementa-
tion runs ill O(mA + n(A + C/2x)) time.

Proof. Each node can be scanned more than once since the buckets are approximate.

However, a node cannot be scanned more than A times. Thus the total work involved in

scanning nodes is O (A (m + n)). The only work that cannot be charged to the scans is

that of going through the buckets in search of a nonempty one. This work adds up to
O (~ (C / A) 1, []

Our code DIKBA implements this algorithm. We set A = rC/2Xl].

The ideas of the above two algorithms can be combined to obtain the double bucket
implementation of Dijkstra's algorithm; this implementation is due to Denardo and Fox

[5]. This implementation has two kinds of buckets, high-level and low-level. The number

of low-level buckets is A. A high-level bucket i contains the set of nodes with distance

labels in the range [iA, (i + 1)A -- 1] except for the nonempty high-level bucket with

the smallest index L. A node v with distance label in the range [LA, (L + I)A -- 1]

is in the low-level bucket d (v) - LA. After all low-level buckets are exmnined and the

nodes in these buckets are scanned, L increases. If the corresponding high-level bucket

is not empty, its nodes are moved to the corresponding low-level buckets and the next
stage begins.

The number of high-level buckets needed by this implementation is F(C + 1) /A] .

The running time of the implementation is as follows.

Theorem 7 ([5]). / f the length function is nonnegative, the double bucket implemen-
tation runs in O(m + n(A 4- C/A)) time.

Proof. Each node is scanned at most once. The number of high-level buckets that the
algorithm processes is O(nC/h) . The number of times a low-level bucket is examined
is at most n. []

For the best theoretical bound, the value of A should be | Our code DIKBD

implements this algorithm. We set z~ to the biggest power of two that is less than v@-.

13g B. V. Cherkasskv et aL /Mathentatical Pro:,,ramming 73 (1996) I29-174

We also keep track of the first and the last non-empty bucket at each level, and use this

information to skip empty buckets.

The double bucket implementation can be generalized to the k-level bucket imple-

mentation [5] in the following way. We consider only the case when the number of

buckets at every level is the same and equal to p = ICJ/kl. The levels are numbered

I:rom 0 to k - I and the buckets at each level are numbered from 0 to p - 1. Con-

sider level i. Associated with this level are the base distance Bi and the index of the

active bucket ai. Associated with bucket ./, 0 _< j <_ p - 1, at level i is the interval

[B i + . j p i B, + (/ q - 1)pi _ 1]. The base distances and the indices of the active buckets

m-e such that Bk I = 0 mod pt' and Bi- i = B, q- alp i. If the distance label of a node t:

is in the interval associated with bucket ,j on level i, for some ai < j < p, then t,' is in

this bucket. If the distance label is in the interval associated with the active bucket and

i > 0. then the node is at a lower level. I1: the distance label is greater than B i + p iq i _ 1,

then the node is at a higher level. For each level we maintain the total number of nodes

at this level. Next we describe how to move a node into the appropriate bucket when

its distance decreases and how to find a node with the smallest distance.

"If the distance of a node decreases, we tirst try to relocate this node within the same

level. If it drops into the active bucket, then we lind the appropriate bucket at the lower

level. We repeat this until we reach the lowest level or the first level such that the node

does not drop into the active bucket. If bucket a0 at the lowest level (level 0) is not

empty, it contains all nodes with the smallest distance label. If this bucket is empty,

we find the lowest nonempty level, then we find the first nonempty bucket at this level.

make it the active bucket, and distribute the nodes from this bucket to lower levels.

The k-level bucket implementation requires O (k C I/k) buckets and has the following

time-memory tradeoff.

Theorem 8 ([5]). / f the length .~unction is nonnegative, the k-level bucket implemen-

tation ttttls itl O(nt + n(k -b C l,/k)) time.

Proot: Consider a node L' whose distance label is decreased. If the level of the node

does not chan,m the node can be moved into the new bucket in O(1) time. If the node

moves to a lower level, the appropriate level and bucket can be found in O(i ' - i ')

time, where i / and i" are the old level and the new level, respectively. Since there are

O(m) decreases of distance labels and each node may move only from a higher to a

lower level, the total time spent on these operations is O(m + nk) .

To find a node with the smallest distance, we first find the lowest nonempty level in

O(k) tiine, using the int'onnation about the number of nodes at each level. The first

nonempty bucket is found in O(p) time. Then we have to distribute the nodes from

this bucket to lower levels. The total time of this computation, throughout the whole

algorithm, is O (n k) , since each time a node is inspected, it is moved to the lower level.

We have to lind the smallest distance node at most n times, so the total work involved

is O (n (k + p)) .
Thus the running time of the k-level implementation is O(m + n (k + C I lk)) . []

B.V. Cherkassky et al./Mathematical Programming 73 (1996) /29-174 139

For k = [logC 1 (so p = 2) we obtain an O(m + n l o g C) time bound and a

data structure similar to R~beaps. Setting k = r21ogC/loglogC] yields an O(m +

n log C/log log C) time bound and a data structure similar to two-level R-heaps.

We conclude this section with a discussion of implementations of Dijkstra 's algorithm

when arc lengths can be negative. A "strict" implementation of the algorithm selects a

labeled node with the smallest distance label at every step. This is what our code DIKH

does.

An alternative is to maintain the value t of the biggest dislance label of a node scanned

so far, and to select a labeled node with the distance label of t or less if such a node

exists and a labeled node with the smallest distance label otherwise. This strategy is

more natural for bucket and R-heap implementations and we use it in the corresponding

codes. If the nodes el igible for scanning are maintained in FIFO manner, one can

show polynomial- t ime bounds for this variant of Dijkstra 's algorithm on networks with

arbitrary arc lengths.

4.3. Incremental-graph algorithms

In this section we describe two algorithms. The first one was developed independently

by Pape [27] and Levit [23]. The second algorithm was proposed by Pallottino [26] .

He also introduced the incremental-graph fiamework that unified these two algorithms.

Our implementations of the above algorithms are called PAPE, and TWO_Q, respectively.

An algorithm in the restricted scan framework maintains a set W of nodes and scans

only labeled nodes in W. The set W is monotone: once a node is added to W, it remains

in there. It' there are labeled nodes but no labeled node is in W, some of the labeled

nodes must be added to W. Nodes may also be added to W even if W already contains

labeled nodes. Note that if the labeled nodes in W are processed in the FIFO order, then

a simple modification of the analysis of the Be l lman-Ford-Moore algorithm shows that

in O(mn) time, either the algorithm terminates or W grows. This leads to an O(n2m)

time bound.

Pape-Levit and Pallot t ino's algorithms define W as the set of nodes which have been

scanned at least once; when no labeled node is in W, a labeled node is added to W.

More precisely, these algorithms maintain the set of labeled nodes as two subsets, Sl

and $2, lhe first containing labeled nodes which have been scanned at least once and the

second containing those which have never been scanned (SI C_ W and $2 C_ V - W).

The next node to be scanned is selected from Si unless Si is empty, in which case the

node is selected from $2 (i.e., this node is added to W). We call SI the high-priorit3.,

set and $2 the low-priori o, set.
The Pape-Levi t algorithm maintains Si as a LIFO stack and $2 as a FIFO queue.

(This algorithm is usually implemented using the dequeue data structure, which is a

queue Ihat allows insertions at either end. See e.g. [14,26] .) Initially the stack is empty

and the queue contains s. The next node to be scanned is removed from the top of the

stack if it is not empty and from the head of the queue otherwise. A node that becomes

labeled is pushed to the top of the stack if the node has been scanned previously, or

140 B.~< Cherkassky et al./Mathematical Programming 73 (1996) 129-174

added to the tail of the queue otherwise. The algorithm terminates when both the stack

and the queue are empty. This algorithm has exponential worst-case time bound.

Theorem 9. [21,28] The Pape-Levit algorithm runs in @(n2") time in the worst case.

Pallot t ino 's algorithm maintains Si and $2 using FIFO queues, Qi and Q2. The next

node to be scanned is removed from the head of Qi if the queue is not empty and from

the head of Q2 otherwise. A node that becomes labeled is added to the tail of QI if it

has been scanned previously, or to the tail of Q2 otherwise. The algorithm terminates

when both queues are empty. As the above discussion of the restricted scan algorithms

suggests, the worst-case running time of TWO_Q is polynomial.

The o rem 10. [26] Pallottino's algorithm runs in O(n2m) time in the worst case.

Observe that in a restricted scan algorithm when there are no labeled nodes in W,

then the current tree restricted to W is a shortest paths tree in the subgraph of the input

graph induced by W and the reduced cost function is nonnegative on arcs connecting

nodes in W. Both Pape-Levi t and Pallott ino's algorithms increase W only when there

are no labeled nodes in W, in which case exactly one labeled node u is added to W.

By the next time when there are no labeled nodes in W (i.e., by the next time $1 is

empty) a shortest paths tree in the subgraph induced by W U {t;} is computed. Hence

the "incremental-graph algorithms" term.

4.4. The threshold algorithm

Glover et al. [15] suggest the lol lowing method, which combines the ideas lying

behind the Be l lman-Ford-Moore , Dijkstra 's, and incremental-graph algoritbans. (See

also [14, 1611.) The method partitions the set of labeled nodes into two subsets, NOW

and NEXT, which are maintained as FIFO queues. At the beginning of each iteration

of the algorithm, NOW is empty. The method also maintains a threshold parameter t

which is set to a weighted average of the minimum and average distance labels of the

nodes in NEXT. During an iteration, the algorithm transfers nodes u with d(~:) <, t

from NEXT to NOW and scans nodes in NOW. Nodes that become labeled during the

iteration are added to NEXT. The algorithm terminates when NEXT is empty at the

end of an iteration. Our code THRESH implements the threshold algorithm suggested in

115] with parameter values MINWT = 45 and WTCNG = 25.

The running time of THRESH is as follows.

Theo rem 11. [16] I f the lengthJi~nction is nonnegative, THRESH runs in O(nm) time.

Note that the threshold parameter t is not necessarily monotone in our implementation.

If t is updated only when at the beginning of an iteration the distance label of every node

in NEXT is greater than t, then t becomes monotone. This version of the algorithm falls

into the restricted scan framework discussed in the previous section and runs in O(n2m)

B. ~ Cherkassky el al./Mathematical Programming 73 (1996) 129-174 141

time on networks with arbitrary arc lengths [14]. However, the version of THRESH that

we implemented is that of [15], and we are not aware of any polynomial-time bound
tk~r this version in the arbitrary length case.

4.5. The topological ordering algorithms

A generalization of the parent-checking idea discussed in Section 4.1 is as follows.

Suppose both L, and w are labeled and there is a path from l,, to w in the admissible

graph containing a negative reduced cost arc. Then it is better to scan t, before w, since

we know that d (w) is greater than the true distance from s to w. A recent algorithm of

Goldberg and Radzik [18] is based on this idea. To simplify the algorithm description,
we tirst assume that G has no cycles of length zero or less, and therefore for any d, the
admissible graph Ga is acyclic.

The Goldberg-Radzik algorithm maintains the set of labeled nodes in two sets, A

and B. Each labeled node is in exactly one set. Initially A = ~ and B = {s}. At the

beginning of each pass, the algorithm uses the set B to compute the set A of nodes to

be scanned during the pass, and resets B to the empty set. A is a linearly ordered set.

During the pass, elements are removed according to the ordering of A and scanned. The

newly created labeled nodes are added to B. A pass ends when A becomes empty. The
algorithm terminates when B is empty at the end of a pass.

The algorithm computes A from B as follows.

(I) For every c' C B that has no outgoing arc with negative reduced cost, delete u

from B and mark it as scanned.

(2) Let A be the set of nodes reachable from B in G#. Mark all nodes in A as
labeled.

(3) Apply topological sort to order A so that for every pair of nodes lJ and w in A

such that (c, w) C G,~, c' precedes w and therefore v will be scanned before w.

The algorithm achieves the same bound as the Bellman-Ford-Moore algorithm.

Theorem 12. [18] The Goldberg-Radzik algorithm runs in O(nm) time.

Now suppose G has cycles of zero or negative length. In this case Gd need not be
acyclic. If, however, Ga has a negative length cycle, we can terminate the computation.

If Gj has zero length cycles, we can contract such cycles and continue the computation.
This can be easily done while maintaining the O(nm) time bound. (See e.g. [17] .)

Our code GOR is an implementation of the Goldberg-Radzik algorithm with one sim-

plification. The implementation uses depth-first search to compute topological ordering
of the admissible graph (see e.g. [4]) . Instead of contracting zero length cycles, we

simply ignore the back arcs discovered during the depth-first search. The resulting topo-

logical order is in the admissible graph minus the ignored arcs. This change does not
affect the algorithm correctness or the above running time bound.

WE also implement the following modification, GOR1, of GOR. Recall that we use

depth-first search to compute the topological ordering. When an arc (u, w) is examined

142 B.V. ('herka,vsky et al./Mathematical Prr~,~ramming 73 (1996) 129-174

by the depth-iirst search, this arc is first scanned in the shortest-path sense, i.e., if

d (c) + f(c, w) < d (w) , d (w) is set to d(c) + f(c , w) and 7T(W) is set to c. Note that
this changes the admissible graph and may add a new vertex I(1 set A. It means that A
cannot be known before the topological sort begins and is only constructed during the

sort (that is, Steps (2) and (3) in the computation of k from B are combined). The

fcHIowing theorem gives a theoretical justification for this modification.

Theorem 13. GOR1 runs in O(nm) time. On an acvclic twtwork, GOR1 tet'minates in

oHe pass and there/btv runs i t 1 0 (m + n) time.

Proofl The proof of the first claim is similar to that of Theorem 12. To prove the

second claim, we show that the first depth-lirst search topologically orders the nodes

i'cachable flom the source with respect to the input graph. Recall that at the beginning

of the computation all nodes except for the source have infinite distance labels. Note

also that an easy inductive al'gument shows that nodes processed by the depth-first

search have finite distance labels. Thus when an arc (v ,w) is first examined while

processing z'. d (c) is finite and d(w) is either finite or infinite. Finite d (w) means

thai node w has been aheady processed. If d (w) is inlinite, then d (w) will be updated

and fu{ c, w) will become zero. Thus (c, w) will become admissible and the search will

start processing w. Therefore the depth-first search of the admissible graph will examine

the m~des in exactly the same order as the depth-first search of the whole input graph,

alld the resulting order will be topological with respect to the input graph. The standard
results Ior shortest paths in acyclic graphs imply that after the end of the first pass, the
algoritlam terminates. []

Remark 14. When cotinting the number of scans done by GOP. and GOR1, we count

both the shortest paths SCAN operations and processing of nodes done by the depth-first
searchers.

5. Experimental setup

Our experiments were conducted on SUN Sparc-10 workstation model 41 with a
4 0 M H Z processor running SUN Unix version 4.1.3. The workstation had 160 Meg.

memory. Our codes were written in C and compiled with the SUN cc compiler version

1.0 using the 04 optimization option.

We peliormed the machine calibration experiment designed by the organizers of the
First DIMACS International Algorithm Implementation Challenge [20]. Fig. 7 shows

the average running times of the test programs compiled with different optimization
levels.

Our hnplementations use the adjacency list representation of the input graph. We

experimented with several folklore low-level representations of the graph and found

that the one described in detail by Gallo and Pallottino [14] is the most efficient. Our

B.V. Cherkassky et al./Mathematical P "ogrammir g 73 (1996) I29-174 143

TEST I TEST 2
optimization average running lime average running time

~evel real aseF system real user system
w/o optm. 1.2 1.2 0.0 11.1 10.8 0. I

-O I 1.05 1.0 0.0 9.3 9.15 0. I
-02 1,0 0.95 0.0 9. I 8.9 O. 1
-03 0.9 0.9 0.0 83 8.05 0. I
-04 0.9 0.9 0.0 8.2 8.0 0.1

Fig. 7. Average running times (in seconds) of the test programs.

implementations of the traditional algorithms (BF, PAPE, T~O_Q, TIIREStt) are also

very similar to those described in [14]. We attempted to make our implementations of

different algorithms uniform to make the running time comparisons more meaningful.

We also tried to make the implementations efficient.

The codes compared in our main experiments are BIvP, GOR, GOR1, D1KH, DIKBD,

PAPE, TWO_Q, and TIIRESH. We do not include all the Dijkstra's algorithm implemen-

talions because they often perform very similarly. We chose DIKH because it is the most

widely known version of Dijkstra's algorithm and DIKBD because it is the best overall

implementation of Dijkstra's algorithm in our tests. We also compare DIKH, DIKBD,

DIKR. DIKB, DIKBM, and DIKBA on a subset of the problems that shows strengths and

weaknesses of these codes.

Fig. 8 summarizes problem families used in our study. These families are described

in detailed in the corresponding sections. Networks in the first four families are grids.

These problems are designed to test how algorithms perform on natural problems with

simple structure and how their performance depends on the grid shape. Grid-PHard and

Grid-NHard networks are designed to be hard for algorithms which take advantage of

network structure these problems have nonnegative and mixed arc lengths, respectively.

Rand-4 and Rand-1:4 networks consist of a hamiltonian cycle and additional randomly

generated arcs. Rand-4 networks are sparse and Rand-l :4 networks are dense. We use

Rand-Len networks to test how the algorithm performance changes when the network

structure is fixed but the cost range changes. We use Rand-P networks to test how the

G e n e r a t o r Class n a m e Brief descr ipt ion
SPGRID Grid-SSquare

Grid-SSquare-S
Grid-SWide
Grid-SLong
Grid-PHard
Grid-NHard

SPRAND Rand-4
Rand- 1:4
Rand-Len
Rand-P

SPACYC Acyc-Pos
Acyc-Neg
Acyc-P2N

Square grids
Square grids with artificial source
Wide grids
Long grids
Hard problems with nonnegative arc lengths
Hard problems with mixed arc lengths

Random hamiltonian graphs with density 4
Randmn hamiltonian graphs with density 25%
Random hamiltonian graphs with variable arc length range
Random hamiltonian graphs with potential transformations

Acyclic graphs with nonnegative arc lengths
Acyclic graphs with negative arc lengths
Acyclic graphs with vari,~ble fraction of negative arcs

Fig. 8. Smnmary of problem classes.

144 B. ki Cherkassky et al, ~Mathematical Programming 73 (1996) 129-174

algorithm performance changes when a potential transformation is applied to a problem

with nonnegative arc lengths (creating negative-length arcs). We use Acyc-Pos, Acyc-

Neg, and Acyc-P2N networks to test algorithm performance on acyclic graphs.

When tabulating results of our experiments, we give the running time in seconds (in

bold) and the number of scan operations per node (below). The running time is the

user CPU time and excludes the input and output times. To obtain a data point for a

shortest paths code, we make five runs of the code on problems produced with the same

generator parameters except for the pseudorandom generator seed. The data we tabulate

is the average over the five runs.

We would like to note that usually individual running times are within 15% of the

average. In ahnost all cases the slowest and the fastest times for the same data point are

within a factor of two; there are two kinds of exceptions to this statement. The first one

is lk~r small problems where the running times are below 0.1 second and the relative

tinting error is large. The second exception is for DIKH code on Acyc-P2N problem

family with parameter f = 40%, where the slowest run takes about fl-wee times as much

as the fastest run (393.55 vs. 128.55 seconds). We do not think that a larger number

of runs for each data point will in any way change our conclusions about the relative

performance of the algorithms we study.

We place a 20 minute limit on the user CPU time of each computation on a problem

inslance. This leaves over 15 minutes for the shortest paths computation (excluding

input and output) . Since all problems in our tests are solvable in well under a minute

by the code that is fastest for this problem, the codes that exceed the limit on a problem

are losing to the fastest code by over an order of magnitude. I f a code exceeds the

CPU limit or requires too much memory to run, we put "DNF" (did not finish) in the

corresponding table entry.

We also plot the data in addition to tabulating it. Our plots use regular or logarithmic

scales, as appropriate for a particular problem family. To avoid crowding the plots, when

two algorithms perform very similarly, we plot only one of them.

6. S i m p l e S P G R I D p r o b l e m s

First we experiment with rectangular grid networks produced by our SPGRID gen-

erator. These networks are very natural and come up in applications; see [9]. Nodes

of these networks correspond to points on the plane with integer coordinates [x , y] ,

I E x ~< X, 0 <~ y ~< Y - 1. These points are connected "forward" by ,arcs of the form

([x , y] , [x + l , y]) , 1 < ~ x < X , 1 < ~ y < . Y

" u p " by arcs of the form

([x , y] , [x , y + l (m o d Y)]) , 1 ~<x~<X, l < ~ y ~ Y

and "down" by arcs of the form

B. V Cherkassky et al./Mathematical Programming 73 (1996) 129-174 145

([x , y] , [x , y - 1 (m o d Y)]) , i ~<x~<X, 1 ~<y~<Y

Thus a layer, a set of nodes [x, y] with x fixed and 1 ~< y ~< Y, is a doubly connected

cycle. There is also an additional source node connected to all nodes in the first layer,
i.e., the nodes with coordinates [1, y] , 1 ~ y ~< Y. For the rectangular grid experiments,
arc lengths are selected uniformly at random from the interval [0, 10000].

6.1. Square grids"

Fig. 9 presents results of experiments on Grid-SSquare family of square grids. For
this family X = Y.

100

.~10

r
G

�9 =- 1
>.
.=_
~ta

~)~

0.01

BFP o / / / / ~
G O R I
DIKH --~

D I K B D /
TFIRES H - *'- J . . - ""

PAPE - ~, ~ .-'"""

. .e- ..,.. , .a

I . . - ' l e ; ,

. . - - .. ' j - it"

-22- " "

40'96 16384 65536 262'144 1048576
number of nodes (logscale)

nodes/arcs

4097
12288
16385
49152
65537

196608
262145
786432

1048577
3145728

BFP I G O R I GORI

0.02 0.02 0.03
2.74 2.26 4.82

0.21 0.08 0.21
5.05 2.29 5.25
1.96 0.37 1.52
9.66 2.28 7.41

24.07 2.02 7.40
19.68 2.29 8.11

231.33 7.18 42.50
41.78 2.30 I 1.25

DIKH] D1KBD [P A P E] T W O - Q] T H R E S H [

0.03 0.02 0.01 0.01 0.01
1.00 1,00 1.25 1.25 1.05
0.17 0.10 0.03 0.04 0.05
1.00 1.00 1.26 1.26 1.05
0.70 0.50 0.22 0.24 0.28
1.00 1.00 1.27 1.27 1.13
3.22 2.03 1.70 1.53 1.44
1.00 1.00 t .27 1.27 1.16

16.28 8.90 4.33 4.48 7.02
1.00 1.00 1.27 1.27 1.19

Fig. 9. Grid-SSquare t'amily data.

[46 B. ~ Cherkas.d,y et al./Mathematical Pro:~,ramming 73 (1996) 129-174

The best performance on this family is achieved by PAPE and TWO_Q. The perfor-

nlance of GOR, DIKBD, and THRESII is also good. These codes lose to the best codes

by less than a factor of 3. Somewhat slower is DIKH; it loses to the fastest codes by

about a factor of four on tile largest problem size.

The worst performance on this family is that of BFP. The second-worst code is GOR1.

On the largest problem size, it is an order of magnitude slower than the fastest codes

but an order of magnitude faster than the slowest code.

R e m a r k 15. Our experiments show that the numbers of scans done by PAPE and TWO_Q

on the same problem instances in the Grid-SSquare family are e x a c t h , the same. This is

also tile case for the Grid-SWide and Grid-SLong families of the next section. Closer

examination of the distribution of tile input graphs reveals that PAPE and TWO_Q on

such problems are indeed very likely to perform the same number of scans.

When designing or implementing algorithms that use a shortest paths subroutine, it is

often convenient to assume that all nodes of the network are reachable from the source.

One way to assure this property is to introduce an artificial source and connect it to the

original source by a zero length arc and to the other nodes of the graph by very long

arcs. This is exactly how we obtain the Grid-SSquare-S family fi'om the Grid-SSquare

family.

Fig. 10 shows the results of the Grid-SSquare-S experiment. Note that the Grid-

SSquare-S graphs have about 1/3 more arcs than those in the previous experiment.

Since the problem structure is similar, one would expect a slight increase in the running

times on problems with the same number of nodes. However, the only code that meets

this expectation is GOR1. Performance of all other codes suffers, but while PAPE and

TWO_Q have a drastic change, other codes experience a relatively modest one.

Tile best codes in the first experiment are the worst by a wide margin in the second

experiment. In particular, PAPE is the only code that ran over time limit on the second

largest problem size. In the second experiment, TWO_Q performs much better than PAPE

but much worse than the other codes.

Tile performance of BFP decreases by roughly a factor of two, and the code remains

uncompetitive with the best codes on this family.

The performance of DIKH decreases by' a factor that slowly grows with the problem

size. This factor is about 2 for the smaller problem sizes and over 3 for the largest size.

The performance of GOR and THRESH decreases by about a factor of 3. For the

smaller problem sizes, THRESH is the fastest code m this experiment, but it loses to

DIKBD on larger problems. Slightly slower than THRESH is GOR.

For larger problems, DIKBD iS the fastest code in this experiment. Its performance

decreases only by a factor of about 1.5 on the largest problem size. On smaller problems

the performance decreases by a factor of 4.

B.V. Cherkassky et al./Mathematical Programming 73 (1996) 129-174 147

100

,G"

~ 10

0.1

0.01

PAPE -o---- ,-'*
TWO_Q -2 / "'"""

BFP / ,-
DIKH / /-"
GORI / / ,""

DIKBD ~ ,,-"'" ~, - "

............. ..-- ~-" ." *~--~ . . - " .--

i--ii

-"2-"

40'96 16384 65;36 262'144 1048576
number of nodes (Iogscale)

.odes/~rc~ II BFP I ~O~ I GO~l I ~ , K . I D,K~D [P ' ~ I =~VO-Q I T""~s' ' I
4098 0,03 0.04 0.04 0.07

16385 4.78 4.51 4.73 1.00
[6386 0.32 0.24 0.23 0.34
65537 9,19 4.57 5.19 1.00
65538 3.04 1.17 1.38 1.85

262145 17.43 459 6.48 1.00
262146 40.01 5.06 7.43 10.29

1048577 34.12 4.62 7.53 1.00
1048578 351.96 20 .39 36.74 53.86
4194305 70.97 462 9.46 1 00

0.08
1.00
0.23
1.00
0.83
100
3.09
1.00

12.78
1.00

0.75 0.24 0.03
153.32 38.14 2.24

8.31 2.01 0.16
326.03 71.31 2.29
203.40 22.62 0.96

1664.52 166.50 2.30
DNF 309.16 4.55

489.18 2.27
DNF DNF 19.46

2.26

Fig. 10. Grid-SSquare-S family data.

6.2. Wide and long grids

Next we examine how the per formance depends on the shape o f the grid. We study

two problem families, Gr id -SWide and Gr id-SLong. The grids in the first family have

X = 16, i.e., the length o f these grids is fixed and the width grows with the problem size.

The grids in the second family have Y = 16 and their length grows with the problem

size.

The wide grids are easy for all a lgori thms, as one can see in Fig. 11. The fastest

codes for this p rob lem family are PAPE and TWO_Q, and all other codes except DIKH

are within a factor o f 2 f rom the fastest codes. Even the slowest code, DIKH, loses by

less than an order o f magnitude.

148 B. V Cherkassl~w et a l . /Mathemat ical Programn it ,e 73 (I 996) 129-174

10

.k
I

.E

~ h

7-

0.01

DIKH *
GOR /

DIKBD -~
GOR ~-
BFP "-

PAPE

1 " , - " " 5 ") , r

2--';:::""

, , , z , ,

8192 16384 32768 65536 131072 262144 524288

nodes/arcs

8193
24576
16385
49152
32769
98304
65537

I96608
I31073
393216
262145
786432
524289

1572864

number of nodes (logscale)

D I K B D

0.05
1.00
0.10
1.00
0.26
1.00
0.59
1.00
1.45
1.00

3.53
1.00
7.94
1.00

BFP GOR I OORI [D,KIt

0.03 0.04 0.05 0.08
1 42 2.2 l 3.03 1.00
0.05 0.09 0.13 0.20
1.43 223 3.02 1.00
0.19 0.24 0.31 0.50
1.43 2.22 3.05 1.00
0.43 0.53 0.72 1.29
1.44 2.22 3.01 1.00
1.21 1.25 1,76 3.58
1.43 2.23 3.03 1.00
2.97 3.06 4.64 9.76
1.44 2.25 2.97 1.00
6.00 6.15 7.31 23.68
1.44 2.25 3.04 1.00

.APE I 'O_Q I I
0.02 0.02 0.02
1.24 i ,24 1.02
0.05 0.05 0.07
1.24 i ,24 1.01
0,14 0.13 0.19
1.24 1,24 1.02
0.30 0.30 0,47
1,24 1,24 1.02
0,87 0.88 1.23
1.24 1.24 1,0 I

2.31 2.40 3.61
1.25 1.25 1.01
4.50 4.68 8.16
1.25 1.25 1.01

Fig. 11. Grid-SWide family data.

The s i tua t ion changes on long grids, as can be seen in Fig. 12. The mos t affected code

is BFP, wh ich is very good on wide grids but very bad on long grids, where it is the

s lowes t code by a wide margin . The p e r f o r m a n c e o f DIKH is also affected s igni f icant ly ;

its p e r f o r m a n c e improves , especia l ly on big p rob lems .

O the r codes are less affected: the i r r u n n i n g t imes change by less than a factor of

4. The p e r f o r m a n c e o f GOR, DIKBD, PAPE, TWO_Q, and THRESH improves , whi le the

p e r f o r m a n c e of GORI degrades . The best codes for the wide grids, PAPE and TWO_Q,

remain the best for the long grids.

B, l< Cherkassky et aL/Mathematical Programming 73 (1996) 129-174 149

1000

I O0

.=

~ I

.=

0.I

0.01

BFP o
GORI /
DIKH ~

G O R /
THRESH " J

PAPE ~- - / ~ ,

. -- i....~.~:=:~ " . . - -
. f ' " . G - " .a.a ~a "_ ira'" " "

J r . - "
. - -

l e -

81'92 16384 32768 65536 131 '072 262 '144 524'288
number of nodes (logscale)

nodes/arcs B F P ooR I ~ o ~ , I D~K. I D,KB,. I PAPE I TWO-Q I THRES" I
8193

24576
16385
49152
32769
98304
65537

196608
131073
393216
262145
786432
524289

1572864

0.28
19.84

1.26
36.04
5.07

70,51
20.89

154.44
120,33
318.07
689.46
666.76

DN~

0.03
2.26
0.07
2.27
0.18
2.27
0.33
2.27
0.67
2.27
1.52
2.27
3.03
2.27

0.11 0.05 0.05 0.02 0.02 0.03
7.41 1.00 1.00 1.25 1.25 1.39
0.29 0.10 0.10 0.03 0.04 0.07
9.09 1.00 1.00 1.26 1.26 1.40
0.82 0.23 0.22 0.10 030 0.14
9.88 1.00 1.00 126 1.26 1.46
1.78 0.48 0.45 0.22 0.23 0.31

10.57 1.00 1.00 1.26 1.26 1.47
4.12 0.97 0.92 0.45 0.45 0.62

I 1.65 1.00 1.00 1.26 1.26 1.50
9.92 1.93 1.82 0.94 0.96 1.38

12.42 1.00 1.00 1.26 1.26 1.50
18.25 3.85 3.68 1.73 1.82 2.48
12.24 1.00 1.00 i .26 1.26 1,49

Fig. 12. Grid-SLong family data.

7. H a r d e r S P G R I D p r o b l e m s

The S P G R I D generator can also produce networks with structure that is very different

from the s imple grids described in the previous section. As in the case o f s imple grids,

the ne tworks considered in this section consist o f layers and the source connected to the

nodes o f the first layer. Each layer is a s imple cycle plus a col lect ion of arcs connect ing

randomly selected pairs of nodes on the cycle. The length o f the arcs inside a layer is

small and nonnegative. There are arcs from one layer to the next one, as in s imple grids,

150 B. V. Cherkassky et al, /Mathematical Pro,k, ramming 73 (19961 129-174

1000

I00

g,
"E

I

0. I

. . - ' 7 �9

• , ,

. / �9 .
+

/

}r

PAPE 0
BFP

THRESH ..o
TWO_Q

GOR
GOR 1 ,
DIKH -',-'-

DIKBD

o i l

. . o
.p_" . * _ .

. . a , - 2 - . -

, h - " . ' - . . - " . . . - "

. - . - o - " - -

+ �9

o "

81'92 16384 32768 65536 131'072 262'144
number of nodes (Iogscale)

nodes/arcs m:p.- I I I 1 I I O_Q I I
8193

63808
16385

129344
32769

260416
65537

522560
131073

1O46848
262145

2095424

13.68
390.13

67.46
799.87
309.98

I612.36
DNF

DNF

DNF

0.54
16.90

1.22
17.98
2.39

17.87
4.71

17.84
9.54

17.98
1 8 . 8 2
17.82

0.33 0.21
11.66 1.00
0.81 0.42

12.52 1.00
1.88 0.85

13.07 1.00
4.20 1.7 l

14.01 I O0
9.21 3.48

14.73 1.00
19.25 6.86
15.12 1.00

0.12 348.05
1.00 14988.77
0.26 589.40
1.00 12694.03
0.52 DNF
1.00
1.05 DNF
1 0 0
2.11 DNF
I 00
4.23 DNF
1.00

34.88 2.07
ll08.89 57.55

68.66 5.83
1145.92 79.25
149.19 25.73

1190.10 178.42
295.65 298.97

1190.76 803.15
584.69 DNF

1t99.97
DNF DNF

Fig. 13. Grid-PHard fanlily data.

bi, lt in addi t ion , there are genera l ly arcs f rom lower to h ighe r n u m b e r e d layers. For the

G r i d - P H a r d p r o b l e m s the in te r - l ayer arcs have nonnega t ive length , and for G r i d - N H a r d

p rob lems , nonpos i t i v e length . The length of these arcs is se lected un i fo rmly at r a n d o m

from a wide range of integers. Addi t iona l ly , in the G r i d - P H a r d p r o b l e m s the l eng th 0t'

an arc f rom layer xi to layer x 2 is mul t ip l ied by (x 2 - x l) 2

The G r i d - P H a r d and Gr id-NHai 'd ne tworks are s igni f icant ly more compl ica ted than

s imple grids. For exmnple , these ne tworks are non-p lanar . A more re levant d i f fe rence is

a complex layer s t ruc ture o f these ne tworks , which has the p roper ty tha t a pa th be tween

two nodes wi th many arcs is l ikely to have shor te r length than a path wi th fewer arcs.

This makes it diff icul t to direct the compu ta t i on based on local i n fo rma t ion , so some

B. ~,,: Cherk(zssky et al./M~them~tical Progr~tmming 73 (I 996) 129-174 151

1000 "

~oo

�9

8

~-IO-
.E
Ob

c

P_

I . , '
::e

, I]
7".-

- . . . -

. - .r --

o'"

PAPE o
DIKBD --~-- -

THRESH .o.
BFP -"

TWO_Q
GOR

GORI

. . - " ..r

81'92 16;84 32+68 65;36 131'072 261144
numbei of nodcs (logscale)

nodes/,:lrcs II I I I I ~ T" s't I
8193 12.59 0.55 0.33 38.56 359.73 34.88 29.26

63808 392.09 17.88 11.66 876.92 16092.24 1143.77 912.61
16385 68.86 1.36 0.82 186.71 633.44 71.75 161.48

129344 803.31 19.89 12.52 1850.02 13846.24 1187.05 1854.19
32769 317.84 2.99 1.90 888.04 DNF 153.64 741.89

260416 1619.02 20.66 13.07 3844,69 1231.74 3859,87
65537 DNF 6.45 4.28 DNF DNF 305.02 DNF

522560 21.30 14.01 1231.16
131073 DNF 14.05 9.28 DNF DNF 609.94 DNF

1046848 22.58 14.73 1239.82
262145 DNF 29.38 19.34 DNF DNF DNF DNF

2095424 23.47 15.12

Fig. 14. Grid-NHard family data, DIKH exceeded tile tilne limit on ;ill problems.

a lgor i thms may be forced to perform many re-scans.

The computat iona l results on the Grid-PHard fami ly appear in Fig. 13. Only four

codes , GOR, GOR1, D1KH, and DIKBD, so lve all problems in this fami ly wi th in the t ime

limit.

Ti le fastest c o d e for this exper iment is DIKBD, with DIKI-I c lo se behind, los ing by

less tllan a factor o f 2. The running t ime o f these two codes s e e m s to be c l o s e to l inear

in the number o f nodes in Grid-PHard problems�9 The running t ime o f GOR and TWO_Q

also seerns to be c l o s e to linear, but wi th b igger constant factors. W h i l e GOR is about

five t imes s l o w e r than the Dijkstra's codes , TWO_Q is two orders o f magni tude slower�9

The running t ime o f GORI s e e m s to grow a little faster than that o f GOR. The latter

t52 B. ~;~ Cherkassky et at./Mathematical P~wgramming 73 (1996) t29-174

code is a little slower on small problems but catches up on the biggest problems in our

test. Both TIIRESt{ and BI=P exhibit clearly superlinear rates of growth and exceed the

time limit on the bigger problems.

In this lest PAPE has the worst performance. In the set time, it is able to solve

problems of the two smallest sizes only, losing to the best code by three orders of

magnitude.

Fig. 14 gives results of the Grid-NHard experiment. On this problem family, GORI

and GOR are by far the best codes.

R e m a r k 16, On all instances we tried, the number of scans done by GOR1 on Grid-

NHard instances and the corresponding Grid-PHard ones are exactly the same. This code

seems to be always able to figure out that the underlying problem structure is similar.

The minor running time differences are mostly due to timing variations.

Although the performance of BFP. PAPE, and Tw'O_Q codes is not exactly the same

in this experiment as in the previous one, it is quite similar. Much worse performance

is exhibited by THRESII, DIKBD, and DtKIf. The latter code is the worst, exceeding the

time limit on all lest problems.

One should note similar behavior of DIKBD and TIIRESH on Grid-NHard problems.

Moreover. their behavior is analogous to BI-:P, that is, DIY-d3D and THRESH differ from

BFI-, by, roughly the same factor for all problem sizes. (See the note at the end of

Section 4.2 for information about how our implementations of Dijkstra 's algorithm deal

with negative arc lengths.)

8. Experiments with SPRAND families

In this section we study performance of the codes on graphs produced by the SPRAND

generator. All graphs we consider are constructed by creating a hamiltonian cycle and

then adding arcs with distinct random end points. In our experiments we set the length

of the arcs on the cycle to 1 and pick the lengths of other arcs uniformly at random fi-om

a certain interval. For all problem families except Rand-Len, this interval is [0, 10000].

Note that if we were to pick the cycle arcs len,,ths~ in the same ways as the other arc

lengths, the resulting graphs would be essentially random. We found, however, that the

resulting problems were easy for all the codes. Setting the cycle arc lengths to I makes

the problems more interesting and the experiments more insightful.

8.1. Sparse and dense networks

The graphs in Rand-4 family have m = 4n. These are sparse graphs. As one can see

in Fig. 15, the Dijkstra 's codes are the best on these problems, with DIKBD clearly

the fastest code and DIKH slower by a factor of about 2 for the smaller problems and

B. ~< Cherkass]o, el at./Mathematical Programming 73 (1996) 129-] 74 153

1 0 0 �9

.2

~10 .

29

eo

=n I
.~.

0.1

nodes/arcs

TWO_Q o
BFP~i.-.:..--~

GOR1 ~ . . Z ' ~ : - I ~ ~
DIKH ~ - - ~ " ~ ' ~ / - -

DIKBD -."-- -

.~.C7-5. ; . ' . - . . ~ - '

81'92 16384 32768 65536 131'072 262144 524'288 1048576
number of nodes (logscale)

II BFP I ooR I OoRI I D,K. I ,,KBD I PAPE I TWO_Q I I
8192 0.32 0.34 0.26 0.15 0.05 0.32 0.35 0.20

32768 12.23 i4.58 I0.92 1.00 1,00 16.32 15.90 6.31
16384 1.16 1.09 0.91 0.39 0.14 1.22 1.40 0.79
65536 13.45 16.19 I 1.72 1.00 1.00 20.14 18.83 7.22
32768 3.41 2.99 2.56 0.98 0.40 3.56 3.98 2.40

131072 13.73 16.47 12,00 1.00 1.00 20.08 1938 7.22
65536 9.37 8.03 7.09 2,47 0.97 10.60 11.39 7.12

262144 15.51 18.21 13,29 1.00 1.00 25.16 23.38 8.56
131072 23.20 19.04 15.91 5.87 2.23 25.45 28.06 17.45
524288 16.75 19.48 14.15 1.00 1.00 27.31 26.07 9. I6
262144 51.39 42.74 33,81 13.15 4.79 54,73 61.36 40.43

1048576 17.61 20.76 14.62 1.00 1.00 27.80 26.95 10.02
524288 109.36 89.36 71.58 29.28 10,11 118.04 134.44 86.66

2097152 18.19 21.02 15.02 1.00 1.00 28.91 2841 10.09
1048576 235.63 194.31 143.54 63.27 21.09 257.31 302.76 186.23
4194304 19.12 22,40 15.18 1.00 1.00 31.23 3070 10.56

Fig. 15. Rand-4 family data.

a f ac to r o f abou t 3 l b r t he b i g g e r p r o b l e m s . O t h e r c o d e s are n o t i c e a b l y s lower , w i th

TWO_Q and PAPE b e i n g the s l owes t .

Ti le g r a p h s in R a n d - l : 4 f ami ly have m = n2/4. T h e s e are d e n s e g raphs . As o n e can

see in F ig . 16, t he re is l i t t le d i f f e r e n c e in re la t ive p e r f o r m a n c e o f the c o d e s , e x c e p t

DIKH i m p r o v e s re la t ive to DIKBD and b e c o m e s the fas tes t c o d e , a l t h o u g h DIKBD iS

o n l y s l i gh t l y s lower .

154 B.V. Cherkassl,~' et al./Mathematical ProA, ramming 73 (1996) 129-174

I0

u
:,z,

~J

m

m

~). I
"2'

().01

TWO Q 0
GOR

GOR1 --G
BFP

DIKH

o
a

i

512 1024 2048 4096
number {~f nodes (logscale)

512 0.09
65536 532

1024 0.46
262144 510

2048 1.97
1048576 4.65

4096 8.37
4194304 4.65

0.13 0.12
791 6.22
0.70 0.59
791 6.2I
3.07 2.71
7.23 6.01

13.45 11.41
7.24 5.87

0.02 0.02
11)0 I O0
0.11 0.12
1.0O 1.00
0.48 0.49
1.00 1,00
1.95 2.02
1,00 1.00

0.15 0.16 0.08
9.03 8,70 4.26
0.76 0.79 0.46
9.11 8.88 4.78
3.39 3.53 1.94
8.43 8,33 4.45

16.18 16.51 9.21
9.12 8.92 4.99

Fig. 16. Rat, d- 1:4 family data.

8.2. D e p e n d e n c y on arc lengths

All p r o b l e m s in the R a n d - L e n family are the same except for the interval f rom wh ich

the arc l eng ths are selected. The arc length is lixed to l for the first p rob l em in the

family and se lected f rom an interval [0, U] for the o ther p rob lems . See Fig. 17. No te

that because the l eng ths o f the arcs on the cycle are sot to 1, the s t ructure o f the shor tes t

paths tree changes as U increases . For b igger values of U, the cycle arcs are m o r e l ikely

to be in the tree and the tree is l ike ly to be taller.

On the unit l ength p rob lems , BFP, DIKH, DIKBD, PAPE, TWO_Q, and TI-IRESl] m a k e

one scan per node. T he r u n n i n g t imes o f BFP, PAPE, and TWO_Q are the fastest (and

a h n o s t the s a m e) . O the r codes that pe r fo rm well are GOR, DIKH, DIKBD, and THRESH.

These codes lose to the fastest codes by less than a factor of 2. The wors t code, GORI ,

loses by abou t a factor o f 5.

B.V. Cherkassky et al./Mathematical Programming 73 (1996) 129-174 155

45

40

35

,.30
:n

g25
g

.E20 ==
e

15

I0

/'//
TWO_Q o

THRESI4 ~ ~ , / ...,"

""'" ft.;;;"A

/9" . ." .,. ~ .

/;.- ..y

I 10 1 O0 10000 1000000
bound on arc lengths

IL, UI II BFP I GO~ I GO~II ~,~H I D ~ D I ~ A ~ I TWO-Q I T ~ S . I
[1. I] 1.50 2.31 6.43 2.71 1.77 1.45 1.49 2.16

1.00 1.6 t 4.48 1.00 1.00 1.00 1.00 1.00
[0, 10] 4.12 5.22 7.97 3.88 2.07 3.39 3.50 2.30

2.67 4.36 5.94 1.00 1.00 2.85 2.84 1.01
[0, 100[9.03 9.71 10.16 4.66 2.18 8.29 8.99 4.24

6.15 8.93 8.21 1.00 1,00 8.07 8.05 1.78
[O, 100001 23.17 19 .01 15.67 5.80 2.23 24.99 27.97 17.12

16.75 19 .48 14.15 1.00 1.00 27.31 26.07 9.16
I o, 1000000] 35.09 26.27 11.99 6.23 2.23 41.76 43.64 27.25

26.77 2 7 . 9 6 12.26 1.00 1.00 47.60 41.89 16.03

Fig. 17. Rand-Len family data. All problems have 131 072 nodes and 524288 arcs.

As the length range expands, the a lgor i thms become slower. DIKBD shows very little

dependence on the arc length range and is the fastest except for the unit length case.

Thc per formance o f GOR1 and DIKH is also affected very little. Other codes, however,

are s ignif icant ly affected; their per formance decreases by over an order o f magni tude

for the [0, I 0000001 length range (compared to the unit length case) .

8.3. Node potentials

The problems in the Rand-P family are the same except tile length funct ion [is

modi l ied by assigning to each node t, a potential p(c') chosen uni formly at random

I)-om the interval [0, P] and replac ing g by the reduced cost function gl,, see Fig. 18.

156 B. V C h e r k a s s k v e t a l , / M a t h e m a t i c a l P r v g r a m m i n g 73 (1 9 9 6) 1 2 9 - 1 7 4

140 -

120

100

7.80

~_6t}

411

20

DIKH ~ -
THRESH

DIKBD .o
TWO_Q .~

PAPE
BFP .*-

GOR *
GOR I

/
/ ~ " . .O . t~

/ ,," . . . - -

/ . / " o ' " "

. 2 _ ~ ~ :2 : :2: :__: ~(_ _-.: r ~:;.r 2 : : : _ : : : . : _ _::_ _:: : 7 7 2 _ : 2

;7 ; ,2 - 21 !):i i ii;:::ii;:i
C3 t3

o ~ooo 5doo ,o;oo lOO'OOO moo0oo 5oo6ooo
bound on node potentials

I P II '~)" I ooR I ~-~oRi I o ,K. I D , ~ D I P,,~E 1 TwO_Q I T .R~- - I
O 23.18 19.04 15.68 5.82 2.24 25.00 27.98 17.17

16.75 19.48 t4.15 I O0 1.00 27.31 26.07 9.16
IO00 23.18 18.35 15.67 8.36 2.48 25.00 27.96 15.80

16.75 18.89 14,15 1.28 1.28 27,31 26.07 7.77
5000 23.18 18.62 15.68 15.96 4.95 25.02 27.97 16.45

16.75 19.21 14.15 2.99 2.99 27.31 26.07 8.00
10000 23.18 18.83 15.67 26.33 8.57 24.99 27.97 17.45

16.75 19.42 14, I5 5.55 5.55 27.31 26.07 8.49
100000 23.18 19.33 15.66 95.49 33.23 24.99 27.97 44.33

16.75 19.76 14.15 23.72 22.85 27.31 26.07 20.86
100(3{)00 23.2I 19.43 15.68 137.67 44.42 25.05 28.02 56.53

16.75 19.78 14.15 33,80 30.44 27.31 26.07 26.77
5000000 23.18 19.211 15.65 147.31 46.32 25.01 28.00 58.88

16.75 19.53 14.15 35.93 31.40 27.31 26.07 27.88

Fig. 18. Rand-P family data. All problems have 131 072 nodes and 524288 arcs.

(F o r P = 0, t h e p r o b l e m s a re t he s a m e as t h e 131 0 7 2 n o d e p r o b l e m s o f t h e R a n d - 4

f a m i l y .) W h i l e g is n o n n e g a t i v e , g~, c an t ake on n e g a t i v e v a l u e s . H o w e v e r , fo r s m a l l P ,

t he e x p e c t e d f r a c t i o n o f n e g a t i v e l e n g t h a rcs is s m a l l .

N o t e tha t BFP, G O R I , PAPE, a n d T W O _ Q m a k e t he s a m e n u m b e r o f s c a n s r e g a r d l e s s

o f file p o t e n t i a l s . T h i s o b s e r v a t i o n is j u s t i f i e d by T h e o r e m 17.

B.V. Cherkassky et al./Mathematical Programming 73 (1996) 129-174

9. Experiments with SPACYC families

157

In this section we study performance of the codes on acyclic networks. The shortest

paths problem on an acyclic graph can be solved in linear time (see e.g. [4]) and the

experiments of this section include a linear time algorithm for acyclic graphs, ACC.

Experiments with acyclic graphs are interesting for several reasons. Shortest paths

problems in acyclic graphs come tip in applications, such as PERT network analysis

(see e.g. [22]) . Furthermore, some networks that come up in applications have large

acyclic subgraphs (e.g. electric networks) and an algorithm that behaves poorly on

acyclic networks is likely to behave poorly on networks with large acyclic subgraphs.

Acyclic networks are also easy to use in certain experiments because negative length

cycles are not a problem for these networks.

The networks used in the experiments of this section are produced by the SPACYC

generator in the following way. The nodes are numbered from I to n, and there is a path

of arcs (i, i + 1), 1 ~< i < n. These arcs are called the path arcs. Additional arcs are
generated by picking two distinct nodes at random and creating an arc from the lower

to the higher numbered node. The lengths of the additional arcs are selected uniformly
at random from the interval [L, U].

9. I. Positive arc length

For the Acyc-Pos family, the length of the path arcs is set to 1 and the other arc
lengths are selected tu the interval [0, 10000]. The unit length of the path arcs

makes these problems more difficult for some of the codes. Fig. 19 shows how the

codes perform on this problem family.

The fastest codes for this family are DIKBD and ACC. These codes perform similarly,

but the former is a little faster on bigger problems, in spite of the fact that ACC is

especially designed for acyclic graphs. These two algorithms make the same number

of scans; the additional overhead of ACC is a topological sort of the graph and the

additional overhead of DIKBD is in maintaining the bucket data structure. It turns out

that lhe latter overhead is smaller than the former for large Acyc-Pos problems. The
performance of GOR1 is only slightly worse than that of ACC; DIKH also performs well,

losing to DIKBD by about a factor of two.

The other codes are an order of magnitude slower than the fastest ones. Worst per-

formers are GOR, PAPE, and TWO_Q.

9.2. Negative arc len, gth

For the Acyc-Neg family, the path arc length is set to -1 and the other arc lengths

are selected uniformly at random from the interval [- 1 0 0 0 0 , 0] . We would like to note

that Acyc-Neg problems are very natural. For exarnple, to solve a problem of finding

a longest path in an acyclic graph, one negates arc lengths and looks for a shortest
path. In applications such as PERT, lengths we nonnegative, and the resulting problems

158 B. ~(Cherkasskv e r aL /Mathematical Programmi;ig 73 (1996) 129-174

~10

C~

"o

= I

=

.=_

O. I

GOR 0
TWO_Q

BFP o
THRESH •

DIKH
ACC ,

DIKBD - ~

_.C5" x

/ . / 5 .

~r% , ~ , ' . ' x ,-" ~';.."

. / 5 . ; . . : . ; ~ "'. ~- . . , / .

,r"

81'92 16384 32768 65536 131'072
number of nodes (Iogscale)

nodeslarcs II a ~ I ~ I ~o~ I Go . l I ~ , ~ . I ~ ' ~ I ~A,>~ I ~ O - Q I T ~ S ~ I
8192 0.13 0.64 0.80 0.14 0.26 0.13 0.63 0.72 0,35

131072 1.00 880 12.51 2.00 1.00 1,00 11.87 11.63 5.15
16384 0.33 1.93 2.49 0.39 0,66 0.33 1.87 2.23 1,10

262144 1,00 9.76 14.52 2.00 1.00 1.00 13,92 13.50 5.78
32768 0.90 5.97 6.95 1.12 1.64 0.89 5.51 6.52 3.19

524288 1.00 10.09 14.55 2.00 1.00 1.00 14.33 14,22 5.89
65536 2.65 18.58 23.66 2.99 4.11 2.40 18.38 19.72 9.84

1048576 1.00 11.36 17.23 2.00 1.00 1.00 15,47 15.17 6,60
131072 6.54 42.86 54.96 7.24 9.67 5.38 46.43 48.66 23.39

2097152 1.00 11.44 16.78 2.00 1.00 1.00 16.29 15.87 6.53

Fig. 19. Acyc-Pos family data,

are similar to the Acyc-Neg problems. Fig. 20 shows how the codes perform on this
problmn family.

In this experiment, ACC and GORI pertorm similarly to the previous experiment, and
GOR performs better than in the previous experiment, matching GOR1.

All other codes perfoml worse by a very wide margin. Within the time limit, BFP
finishes on three smallest problem sizes, TItRESH, DIKI3D, and TWO_Q o n two, D1KH
and PAPE only on one.

9.3. Variable fraction qf negative arcs

The previous experinaents with acyclic graphs show that performance of many algo-

B. V Cherkassky el al. /Mathematical Progrt mining 73 (1996) 129-174

1000

159

I00

g1

"E
=

I

0.1

.-" .-" PAPE o
..-"" .o ..'" TWO_Q

/" -"• .'" THRESH "'~
~ ."" . " . '" D1KBD

Y ,," BFP " - -

GOR ,,
er'Z . . '" ACC ' "
•

/

gl:

. . -

. - - , . .-

. . . -

81'92 16384 32+68 65;36 131'072
number of nodes (Iogscale)

8192 0.13 24.12 0.18 0.17 1047.35 54.60 185 .55 154.47 66.83
131072 1.00 466.95 2.00 2.00 9037.71 964 .79 6188.81 4590.70 1453.33
16384 0.33 123 .98 0.42 0.42 DNF 266,25 DNF 8 2 3 . 4 1 325.61

262144 1.00 887.44 2.()() 2.00 1841.51 9699.84 2797.25
32768 0.97 618.04 1.17 1.15 DNF DNF DNF DNF DNF

524288 1.00 1724.82 2.00 2.00
65536 2.87 DNF 3.41 3.28 DNF DNF DNF DNF DNF

I (148576 1.00 2.00 2.00
131072 7,44 DNF 8.65 8.51 DNF DNF DNF DNF DNF

2097152 1.00 2.00 2.00

Fig. 20. Acyc-Neg family data.

r i thms changes dramat ical ly if arc lengths in an acyclic graph are negated. We study

this phenomenon further by varying the fiaction of negative length arcs.

For the A c y c - P 2 N family, the problem size is fixed and all arc lengths are selected

uni formly at random from the interval [L, U] , where the values o f L and U determine

the expected fi'action f of negative length arcs. Note that unl ike the previous exper iments

with acyclic networks, the path arc lengths are random in this experiment.

Fig. 21 summarizes tile resulls. As expected fi:om theory and the previous experi-

ments, the per formance o f ACC and GORI shows ahnost no dependence on f . Also as

expected, the implementa t ions ol' Di jkst ra ' s a lgor i thms perform poorly when the fraction

o f negative length arcs is large.

161) B. I/. Cherkasskv et al./Mathematical P v,qr~ n n t g 73 (1996) 129-174

1000:

~'00 �84

O

EIO

~ 8

.E

TWO_Q

TI IRESH

. Ct

DI KI"I ~ ,T

,; /"
D I K B D ~, ," ~-

///f/; BFP -" ,-"

o o R J i/" GORI --o / ' " / / ; /
/ / , , / / ,

/ ? ~,"

/ ..

/ ,,:i" f
/ S /

" s . ~ _ . , r : - ~ / . e - . e - r ~ t~ " : a l

1'0 2'0 3'0 4'0 5'0 6'0 180
percentage of negative arcs

1 I 'cm' II .,,c~ I ~o~ I I ')~" I D,KBD [PAPE I TWO-Q l T"R~SH I
l) 0.35 0.35

1.00 1 66
I 0 0.35 0.44

1.00 2.21
2{) 0.36 1.03

1.00 6.78
30 11.37 3.88

1.00 28.65
40 0.38 23.62

1.00 179.75
5{) 0.37 135.64

I00 1056.25
6(/ 0.40 285.63

1.00 2149.88
100 0.38 313.34

100 2349.75

0.56
2.61
0.60
3.{}1
1.01
6.29
1.86

12.49
3.50

22.81
4.99

30.81
5.29

33.52
0.43
2.0{)

0.38 0.45 02t2 0.39 0.41 0.30
2.00 1.00 1.00 1.83 1.83 I 01
0.39 0.51 0.32 0.49 0.50 0.32
2.00 1.14 1.14 2.64 2.64 1,29
0.39 2.07 1.05 1.25 1.36 1.05
2.00 6.58 7.28 10.92 10.53 7.06
0.41 17.13 5.71 5.78 6.28 5.30
2.00 63.54 41.3 [69.27 59.79 40.28
0.42 257.13 44.78 66.90 59.80 42.87
2.00 978.74 325.84 940.89 641.19 339.58
0.43 DNF 337.62 874.90 742.54 355.35
2 00 2450.04 12088.96 9510.17 2862.66
0.43 DNF 843.39 DNF DNF 754.70
2.00 5634.02 5918.05
0.43 DNF 11178.63 DNF DNF 939.29
2.00 6975.15 7114.46

Fig. 21. Acyc-P2N hamily data.

P e r f o r m a n c e o f PAPE and TWO_Q in this test is s imilar . T h e p e r f o r m a n c e d e g r a d e s

d r a m a t i c a l l y as the f r ac t ion o f nega t ive l e n g t h arcs increases . P e r f o r m a n c e o f BFP and

Tla~RESH a l so s i gn i f i c an t l y d e g r a d e s , a l t h o u g h no t as d rama t i ca l ly .

P e r f o m l a n c e o f GOR d e g r a d e s s o m e w h a t unti l the f r ac t ion o f n e g a t i v e l e n g t h arcs

b e c o m e s very large, at w h i c h p o i n t the p e r f o r m a n c e i m p r o v e s .

B.V. Cherkassky et al./Mathematical Programming 73 (1996) 129-174 161

I0

E
P_

0.!

DIKF o
DIKH J .,-""
DIKR ..6 ~ ...-" ..~.-

DI KBD f /" '" .~--~ .z ;~

. / .if" ;;:; -

,~'Y .x) "

. . :S '" • - "

�9 .to

x . - "

81'92 16384 32768 65536 131 '072 262 '144 524'288
number of nodes (logscale)

nodes/arc, II DIK. I D KF I I,.KR [D.KB I D.KBM I I D KBD I
8 t93 0.08 0.14 0.09 0.05

24576 1.00 1.00 1.00 1.00
16385 0.20 0.35 0.22 0.08
49152 1.00 1.00 1.00 1.00
32769 0.50 0.87 0.50 0.22
98304 1.00 1.00 1.00 1.00
65537 1.29 2.17 1.13 0.53

196608 1.00 1.00 1.00 1.00
131073 3.58 5.41 2.73 1.32
393216 1.00 1.00 1.00 1.00
262145 9.76 13.95 6.80 3.27
786432 1.00 1.00 1.00 1.00
524289 23.68 33.32 15.83 7.57

1572864 1.00 1.00 1.00 1.00

0.05
1.00
0.11
1.00
0.27
1.00
0.62
1.00
1.52
1.00

3.91
1.00
9.24
1.00

0.03 0.05
I 0 0 ! 00
0.07 0.10
1.00 1.00
0.22 0.26
1 0 0 1.00
0.53 0.59
1 0 0 1.00

1.30 1.45
1.00 1.00

3.16 3.53
1.00 1.00
7.03 7.94
1.00 1.00

Fig. 22. Performance of Di.jkstra's implementations on Grid-SWide problems.

10. E x p e r i m e n t s w i th v a r i a t i o n s o f D i j k s t r a ' s a l g o r i t h m

The above exper iments involve two implementa t ions o f Di jks t ra ' s a lgori thm, the "clas-

sical" k-m'y heap implementa t ion D1KH and our double bucket implementa t ion DIKBD.

In this section we compare these implementa t ions with several other implementa t ions on

problem families Gr id-SWide , Gr id -SLong , Gr id-SSquare-S, Grid-PHard, and Rand-Len.

The p rob lem famil ies are chosen to emphas ize differences in the codes ' performance.

The addit ional implementa t ions we evaluate are the R-heap implementa t ion DIKR, the

162 B.V. Cherkassky et aL /Mathematical Pro,wamming 73 (1996) 129-174

10

i

m

.E

=

E

(I.1

DIKB -+-~ , . . . --"" '" '""
DIKBM

DIKF o-'"
DIKR --'" .-' •

DIKBA ,-'" ,."" .""
DIKBD *- - ,,'" .= ,.-" ,.

/./.5/'__ .-"'" ," -"
/ / / . . " .,x" "

. " • / . " I-" . - r

o " " j " "~r

;"" .. 7. ,-" . ""
�9 ..w

.,o:" . "

81'92 16384 32768 65536 13{072 262144 524'288
numberofnodes (Iogscale)

nodes/arcs

8193
24576
16385
49152
32769
98304
65537

196608
131073
393216
262145
786432
524289

1572864

D I K I 1 I D I K F I D I K P ,

0.05
1.00
O.lO
l O0
0.23
1.00
0.48
I O0
0.97
1.00
1.93
1.00
3.85
l,O0

I I I o, D I
0.33 0.06
1.00 1.00
0.63 0.13
1.00 1.00
1.30 0.28
1 O0 1.00
2.62 0.58
1.00 1.00
5.45 1.17
1.00 i .00

10.52 2.33
1.00 1.00

21.03 4.68
1.00 1.00

0.09 0.08 0.37
1 O0 1 O0 I O0
I).19 0.17 0.73
I O0 I O0 1.00
0.42 0.37 1.47
1.00 1.00 1.00
0.90 0.75 2.95
1.00 1.00 1.00
1.80 1.49 6.06
I A)O 1.00 1,00

3.65 2.98 11,99
1 .()0 1.00 1.00
7.48 5,96 23.67
1.00 1.00 1.00

0.05
1.00
0.10
1.00
0.22
1.00
0.45
1.00
0.92
1.00

1.82
1.00
3.68
1.00

Fig. 23. Performance of DijksmKs implemenlations on Grid-SLong problems.

F ibonacc i heap i m p l e m e n t a t i o n DIKF, Dia l ' s i m p l emen ta t i on DIKB, the overf low bag

i m p l e m e n t a t i o n DIKBM, and the app rox ima te bucket i m p l e m e n t a t i o n DIKBA.

Fig. 22 p resen t s data ['or the G r i d - S W i d e family. Here DIKBA pe r fo rms best , w i th

DIKB, D1KBD, and DIKBM c lose beh ind . Note that DIKBA makes only one scan per

node on these p rob lems . The heap i m p l e m e n t a t i o n s DIKR and DIKH are s o m e w h a t

s lower than the bucket i m p l e m e n t a t i o n s , with DIKR is a l i t t le faster than DIKII except

for tile sma l l e r p rob l em sizes. T he s lowest code in this test is D1KF.

Fig. 23 p resen t s data for the G r i d - S L o n g family. On this family, DIKIq and DIKBD

B, V Cherkassky et al./Mathematical Programming 73 (1996) 12 9-174 163

I00

�9
v

o r~

o
E I

e

0.1

DIKBM ~ . ~
D~Kll /
DIKR - a / . . . ""

DIKBA /

. / / " f . - ' f .

. / " E r . - ~

/ / . - . . . -

4(;96 16384 65536 262'144 1048576
number of nodes Ilogscale)

~odes/a, cs H D i m [DIKF I D'K~ I ~ '~" '~ ' I O I ~ A t ~ I
4098 0.07 0.07 0.05 0.15 0.03 0.08

16385 1.00 1.00 1.00 l.O0 1.82 1.00
16386 0.34 0.37 0.24 0.41 0.13 0.23
65537 1.00 1.00 1.00 1.00 1.75 1.00
65538 1.85 2.00 1.13 1.95 0.65 0.83

262145 1.00 1.00 1.00 1.00 1.72 1.00
262146 10.29 9.51 4.87 17.03 2.92 3.09

1048577 1.00 1.00 1.00 1.00 1.70 1.00
1048578 53,86 45.60 21 .62 129.90 12.88 12.78
4194305 1.00 1.00 1.00 1.00 1.70 1.00

Fig. 24. Performance of Di.jkstra's implementations on Grid-SSquare-S problems. On thcse problems. DIKB
requires Too really buckets and does not run.

are the fastest codes. The third-fastest code is DIKBA, with DIKR close behind it and

not far behind the fastest codes. Only sl ightly s lower than DIKR is DIKF. The remaining

two codes, D1KB and DIKBM, are significantly slower.

Fig. 24 presents data for the Gr id-SSquare-S family. Here DIKBA performs best and

D1KBD is somewhat worse on smaller problems but catches up with DIKBA on the larger

problems. The code DIKR is somewhat slower; DIKF and DIKH are significantly s lower

than the fastest codes, and DIKBM is s lower than DIKH.

Fig. 25 presents data for the Gr id-PHard family. Here D,tKR performs best, with DIKBD

a very close second. Another code that does very well on these problems is DIKBM.

The per formance o f DIKtt and DIKF is reasonably good, and these codes perform very

similarly. The worst code, DIKBA, loses to tile best by about a factor o f 3.

164 B. !~ Cherkassky et al./Mathematical Programnzing 73 (I 996) 129-174

I0 �84

~ta
o

r

=

0.1

DIKBA o
DIKH 1 / * ...--'"

D1KBM -~'- "- ~ /.-'" .~

/ . ' •

/ S ' " . " ' "

,,'" k2" . / . - ' •

~:"

81'92 16384 32768 65;36 131'072 262'144
number of nodes (logscale)

8193
63808
16385

129344
32769

260416
65537

522560
131073

1046848
262145

2095424

0.21 0.20 0.13 0.14 0.37 0.12
1.00 l O0 1.00 1.00 6.50 I O0
0.42 0.42 0,25 0.28 0.74 0.26
1.00 1.00 1.00 1.00 6.42 1.00
0.85 0.88 0.52 0.58 1.53 0.52
1.00 1.00 1.00 1.00 6.54 1.00
1.71 1.75 1.04 1.17 3.04 1.05
1.00 1 00 I O0 1.00 6.47 1.00
3.48 3.57 2.08 2.30 6.12 2.11
1,00 1.00 1.00 1.00 6.51 1.00

6.86 7.13 4.16 4.59 12.21 4.23
1.00 l O0 l O0 I O0 6.47 1.00

Fig. 25. Performance of Dijkstra's implementations on Gdd-PHard problems. On these problems, DIKB requires
too many buckets and does not run.

Fig. 26 p resen t s da ta for the R a n d - L e n family. On p rob l ems wi th smal l lengths , DIKB,

DIKBA, and DIKBD are the fastest codes and on p r o b l e m s wi th big lengths , DIKBM is

the fastest. However , the d i f fe rence a m o n g all these codes is smal l , except tha t DIKB

exceeds its l imit on the n u m b e r of bucke t and does not run on the p r o b l e m s wi th the

b igges t arc l eng th range. S o m e w h a t s lower than the fastest codes is DIKH. The code

DIKF is the s lowest except on the p r o b l e m wi th the b igges t arc lengths , whe re it is the

second slowest .

B.V. Cherkassky et al./Mathematical Programming 73 (1996) 129-174 165

6 �84

4
E

3 �84

2 -

DIKF o
DIKH
DIKR --~
DIKB

DIKBD , , , , , / '"
DIKBM

/ , - / / "

. / / / ""
/ ,

. ' ~ : : : : ' Q a

. ~ L ~ . a

_. _ - . - - " ... •

~e

i lo oo loo ooo
bound on arc lengths

I I, l] 2.71 4.01 2.16 1.61 2.14 1.62 1.77
1.00 1.00 1.00 1.00 1.00 1.00 1.00

[0, 101 3.88 4.34 2.51 1.91 2.14 1.91 2.07
1.00 1.00 1.00 1.00 1.00 1.00 1.00

I 0, 1001 4.66 5.45 2.67 2.18 2.03 2.20 2.18
1.00 1.00 1.00 1.00 1.00 1.00 1.00

[0, 10000] 5.80 6.07 2.48 2.44 2.07 2.30 2.23
1.00 1.00 1.00 1.00 1.00 1.00 1.00

10, 1000000] 6.23 5.35 2.33 DNF 1.73 2.27 2.23
1.00 1.00 1.00 1.00 1.05 1.00

Fig. 26. Performance of Dijkstra's implementations on Rand-Len problems. All problems have 131072 nodes
and 524288 arcs. For the largest length interval. DIKB requires too many buckets and does not run.

11. A theo re t i c a l r esu l t

Our exper imental data mot ivated an interesting theoretical discovery which we de-

scribe in this section. We say that two instances o f the shortest path p rob lem are

e q u i v a l e n t if the under ly ing networks, including their representations, are identical and

the two length functions, g' and g", satisfy t~ = g" for some potential funct ion d. (I f

networks are given in the adjacency list representations, identical representat ions have

the cor responding nodes and arcs appearing in the same order.) A labeling shortest

paths a lgor i thm is p o t e n t i a l - i n v a r i a n t i f it performs the same sequence o f node scans on

two equiva len t p rob lem instances, Fig. 18 shows that GOR, DIKH, DIKBD, and THRESH

algor i thms are not potent ial- invariant and suggests that the other a lgor i thms in the figure

166 B. ~< Cherkasskv et al./Mathematical I'rogramming 73 (l 996) 129-174

are potential-invariant.

Theorem 17. Algorithms BF, BFP, GOR I, PAPE, and Tvv'O_Q are potential-invariant.

The proof of this theorem is straightforward from the following lemma. The lemma

follows from the fact that replacing arc lengths by reduced costs with respect to a

potential function does not change the difference in lengths of two paths between the

same pair of nodes.

L e m m a 18. [/" on any fixed represetttation of a graph the behavior Of a labeling algo-

rithm depends only oli the relative lengths o f pat/zs.fi'om the source node to other nodes,

thaH the algorithm i,s" potential-invariant.

Note that GOR is not potential-invariant because, for example, during the first depth-
first search an arc may or may not belong to the admissible graph depending on its

input length.
Theorem 17 is powerful and useful. For example, it shows that no heuristic for comput-

ing a "'good" initial potential function can improve performance of a potential-invariant

algorithm such as BF. Note that any feasible shortest paths problem has an equivalent one

with nonnegative arc lengths. If the problem with nonnegative arc lengths is computa-
tionally simpler than the general problem, the theorem suggests that a potential-invariant

algorithm cannot be supe,ior to all other algorithms on problems with nonnegative arc

Iengtlns.

12. Summary of experimental results

In this section we summarize and discuss performance of the algorithms we study.

For each problem class, we give two scores to each implementation. Recall that the

classes are parameterized (by network size, length function range, etc.). The first score

is for performance on the problems with the smallest parameter value, and the second
score is for the problems with the largest parameter value. Scores are integers from 0 to

5 c()mputed as follows. Let t be tile running time of the fastest algorithm for the given

class and parameter value and let T be tile time of the algorithm we are evaluating. We
compute g = 5 - Iog4(T/t) and round g to 0 if g is negative and to the nearest integer

otherwise. Thus the fastest algorithm gets 5 points, and other algorithms lose a point

for each factor of 4 in their running time. If an algorithm did not terminate within the

CPU limit, it gets 0 points.
Fig. 27 gives the scores for BFP, GOR, GORI, DIKIt, DIKBD, PAPE, TWO_Q, and

TllRESH. Note that some experiments involve other codes, which may determine t in

our score computation. Fo," example, the ACC code is the best for small problems in

Acyc-Pos family: see Fig. 19.
Fig. 28 gives the scores for implementations of Dijkstra's algorithms in our additional

B.V. Cherkasskw et al./Mathematical Programming 73 (1996) 129- 174 167

Problem class BFP GOR GORI D1KH DIKBD PAPE TWO_Q THRESH

Grid-SSquare 5 5 4 4 5 5 5 5
2 5 3 4 4 5 5 5

Gfid-SSquare-S 5 5 5 4 4 3 4 5
3 5 4 4 5 0 0 5

Grid-SWide 5 5 4 4 4 5 5 5
5 5 5 4 5 5 5 5

Grid-SLong 3 5 4 4 4 5 5 5
0 5 3 4 4 5 5 5

Grid-PHard 2 4 4 5 5 0 1 3
0 4 4 5 5 0 0 0

Grid-NHard 2 5 5 0 2 0 2 2
0 5 5 0 0 0 0 0

Rand-4 4 4 4 4 5 4 4 4
3 3 4 4 5 3 3 3

Rand-l:4 4 4 4 5 5 4 4 4
4 4 4 5 5 3 3 4

Rand-Len 5 5 4 5 5 5 5 5
3 3 4 4 5 3 3 3

Rand-P 3 3 4 5 5 3 3 4
5 5 5 3 4 5 5 4

Acyc-Pos 4 4 5 4 5 4 4 4
4 3 5 5 5 3 3 4

Acye-Neg 1 5 5 0 1 0 0 I
0 5 5 0 0 0 0 0

Acyc-P2N 5 5 5 5 5 5 5 5
0 5 5 0 0 0 0 0

Fig. 27. Performance scores for the main experimenls. The upper score is for the smallest parameter value,
lhc lower score fl~r the largest value.

exper iments . Again , the value of t used to compu te the scores is de te rmined by the

fastest o f all the a lgor i thms we evaluated, including those not l isted in the figure. We

give a score o f 0 to the DIKB implementa t ion when it requires too many buckets to run.

Next we discuss pe r fo rmance o f individual a lgori thms.

12. l. B e l l m a n - F o r d - M o o r e algori thm

I11 this sect ion we discuss the BlzP code. This discussion also appl ies to BF.

Theorem 1 sugges ts that the number o f passes of BFP depends on the depth of the

shortest paths tree. The wide and long grid exper iments (Figs. l l and 12) show how

much the tree depth affects the per lo rmance . For the wide grids, the tree is l ikely to be

very shallow, whi le for the long grids with n + 1 nodes the tree depth must be at least

n /16 . The pe r fo rmance d i f ference is as the theory suggests: BFP is asymptot ica l ly much

faster on the wide grids than on the long ones.

The number of node scans is usually a good measure of pe r fo rmance o f BF and BFP.

168 B. V Cherkassky et al./Mathematical Programming 73 (1996) 129-174

Problem class DIKH DIKF DIKR DIKB DIKBM DIKBA DIKBD
Grid-SSquare-S 4 4 5 0 4 5 4

4 4 5 0 4 5 5

Glid-SWide 4 4 ,4 4 4 5 4
4 4 4 5 4 5 5

Grid-SLong 4 4 4 3 3 4 4
4 4 4 3 3 4 4

Grid-PHard 5 5 5 5 5 4 5
5 5 5 5 5 4 5

Rand-Len 5 4 5 5 5 5 5
4 4 5 0 5 5 5

Fig. 28. Perfl~rmance scores of Dijkstra's algo,ithm implemenlalions. The upper score is for the smallest
parameter vahie, the lower score--for lhe largest value.

The number of scans depends on both the number of passes over the queue (related to

the shortest paths tree depth) and on the average number of nodes scanned during a

pass. Our parent-checking heuristic tries to reduce the latter parameter.

On problems with unit arc lengths, BF behaves like breadth-first search and does one

scan per node reachable from the source, and BFP behaves in exactly the same way but

is slightly slower because of the parent checks (which always come out negative). See

Fig. 5. The number of scans does not depend on the number of passes; if the number

of passes is large, the average number of nodes in the queue is small.

The Belhnan-Ford-Moore algorithm works well on networks with small shortest paths

tree depth. This algorithm also works well on networks with highly "metric" arc lengths,

such as small nonnegative lengths. (See Section 12.3 for a discussion of "metric" length

functions.) In general, however, the algorithm does not perform very well relative to

the best codes. It performs especially poorly on Grid-SLong, Grid-PHard, Grid-NHard,

and Acyc-Neg problem families. We note that GOR never loses to BFP by more than a

factor of 2 in our experiments and performs reasonably where BFP does poorly.

12.2. D(jkstra's algori thm

First we discuss relative performance of the implementations of Dijkstra's algorithm

on networks with nonnegative length functions (Figs. 23-26) . On these networks, all

imt~len~entations we consider except for DIKBA do one scan per node reachable from

the source. The difference in the running time of these implementations is due to the

different work involved in selecting a labeled node with the minimum distance label.

Note that on dense graphs this work is small compared to the work involved in the node

scans, so the code performance is nearly identical. (Compare DIKH and DIKBD on the

Rand-1:4 family.)

The k-ary heap implementation, DIKIt, is the second-worst on Grid-SWide, Grid-

SSquare-S, and Rand-Len problems. This is because the heap operations are relatively

expensive unless the number of elements on the heap is small. The number of elements

on the heap is large on Grid-SWide and Grid-SSquare-S problems and small on Grid-

B. V Cherkass~' et al. /Mathematical Programming 73 (1996) 129-174 169

SLong problems. On the latter problems, the implementation works very well, being
just a little slower than the fastest code. The implementation performs reasonably on
Grid-PHard problems.

The R-heap implementation, D1KR, is usually better than the DIKH implementation ex-
cept on GRID-SLONG family. This implementation is the best on Grid-PHard problems.
The implementation, however, is noticeably worse than the best ones on Grid-SWide
and Grid-SSquare-S problems.

The Fibonacci heap code, D~V, is usually slower than the DIKH code and is always
slower than DIKR in our tests.

The potential for large memory requirements is one of the problems of the bucket im-
plementation DIKB. Because of this, the implementation does not run on Grid-SSquare-S
problems, Grid-PHard problems, and the Rand-Len problems with the biggest length
range. Another problem of this implementation is that it may examine a large number

of empty buckets. This is the case, for example, on Grid-SLong problems, where DIg~
is the slowest code. The code worked reasonably well on Grid-SWide and Grid-PHard
families, and on those Rand-Len problems on which it ran.

The drawback of the overflow bag implementation, DIKBM, is that the bag size can
be large and the bag may be examined many times. This happens on Grid-SSquare-S
problems where all nodes (except lor the source) are placed in the bag at the beginning
of the computation and relatively few are removed at each stage. This also happens on

Grid-SLong problems where the graph has long paths. The implementation performs
poorly on these problems. The implementation works very well on Rand-Len problems,
and reasonably well on Grid-SWide and Grid@Hard problems.

The D~KBA implementation works very well on all the problem families except Grid-
PHard. Unlike DIKB, this implementation has to look at fewer buckets. On the negative
side, nodes may be scanned more than once, but on most of our problem classes the
number of scans per node is small. Grid-PHard problems have many arcs of small
length and DIKBA makes about 6.5 scans per node on these problems. As a result,
D1KBA performed poorly on this family.

The DIKBD IS the best or nearly the best code on all problems except Grid-SSquare-S
problems of small sizes, where it is slower than DIKBA. But even on these problems
DIKBD loses by less than a factor of 3. This code works well because if a high-level
bucket is empty, the code skips it, and if the bucket is full, the code deals with it in a
way Ihat is in general more efficient compared to DIKBA. The reason for the relatively
poor performance of DIKBD on small Grid-SSquare-S problems is Ihat the value of

C is very large only because of the artificial arcs, and the choice of A made by the
implementation is much larger than it should be ideally. As a result, on small problems
the work involved in examining empty buckets dominates.

The DIKBD code is the best overall implementation of Dijkstra's algorithm in our
study. If the length function is nonnegative, DIKBD performs well. It is fastest or nearly
fastest on the Grid-PHard, Rand-4, Rand-1:4, Rand-Len, Acyc-Pos families and the large
Grid-SSquare-S problems. On other problems with nonnegative arc lengths, DIKBD is
always within a factor of 4 from the fastest code.

I70 B. I~ Cherkasskv et al./Mathematical ProL, ramming 73 (t996) 129-174

Oil problems with many negative arcs DIKBD may be extremely slow (see the results

for Glid-NHard and Acyc-Neg problems). However, if the fraction of negative arcs is

small, DIKBD may work well, as Rand-P and Acyc-P2N experiments show.
Although bucket-based implementations of Dijkstra's algorithm usually work only

with integral lengths, the approximate bucket algorithm works with real-valued lengths

as well. If the lengths are nonnegative and lhe fraction of relatively short arcs is small,

dfis algorithm is likely to perform very well.

In practice, a good bound on the maximum arc length is often available. Some other

characteristics of the length function, such as the minimum arc length and the fractions

of big and small length arcs, may also be known. This information can be used to

select better values for the parameters in the bucket-based implementations of Dijkstra's

algorithm and improve performance of ihese implementations.

12.3. The incremental-graph algori thms

The performance of tile incremental-graph codes PAPE and TWO_Q is mixed: excellent

on some problem families and ierrible on others.
These codes perform extremely well on simple grid problems without the artificial

source, where they average at about 1 to 1.5 scans per node. Since in these codes the

overhead of selecting the next node to be scanned is very small, it is hard to beat these

algorithms by more than 33% on such a family.
For unit arc length networks in the Rand-Len experiments both incremental-graph

algorithms, and also the threshold algorithm, make one scan per node. In general, these

algorithms make at most one scan per node on networks with arc unit length. One can

show this using the fact that the low priority set is maintained as a FIFO queue and

checking tile high priority set is irrelevant in this case. (The high priority set in PAPE
and T~rO_Q is always empty. If the high priority set NOW in TIIRESH becomes empty,

it acquires all nodes from the low priority set NEXT.) Thus on networks with unit arc

length these algorithms work essentially in the same way as BF.

On the other hand, the incremental-graph codes perform poorly on Grid-SSquare-
S. Grid-PHard. Grid-NHard, Rand-4. Rand-l:4, and acyclic graph problems. The poor
performance of the codes on the Grid-SSquare-S family is due to the fact that all nodes

become labeled during the scan of the artificial source, which is the first scan performed

by lhe algorithms. As a result, on this family (and any other problem with an m'tificial

source), PAPE works like STACK and TWO_Q works like BF. Since STACK and BF

work poorly oil Grid-SSquare-S problems, so do PAPE and TWO_Q.
In general, PAPE and TWO_Q seem to perform poorly on graphs with highly "non-

metric" length functions, i.e., length functions with many violations of the triangle

inequality. For example, on Acyc-Pos graphs, a violation of the triangle inequality is

possible since a sum of two random numbers can be less then the third number picked

from the same nonnegative distribution. For Acyc-Neg graphs this violation is much more
likely, however, because the distribution is nonpositive, and the algorithms perform much
worse. Intuitively, if ,~(u. ~') + g.(l', w) < g(u, w) and an incremental-graph algorithm

B.V. Cherkassl,y et al./Mathematical Programming 73 (1996) 129-174 171

places u and w into the high-priority set before u, adding c to this set is likely to cause

the algorithm to recompute the distance label values of w and its successors in the

current shortest path tree. If the number of violations of the triangle inequality is large,

the number of scans per node is likely to be high. Although we are unable to prove
formally that non-metric length /'unctions are bad for PAPE and TWO_Q, this seems to

be the case.

We would like to note that when PAPE and TWO_Q perform well, they seem to do a

similar number of scans per node and their running times are close, with PAPE usually

slighlly faster because of a simpler low-level implementation. When the codes perform

poorly, TWO_Q is significantly faster than PAPE.

12.4. Th.e threshold algorithm

The performance of THRESH is also mixed. This code performed well on the simple

grid networks and the unit length networks. However, the code performed poorly on

Grid-PHard, Grid-NHard, Rand-4, Rand-l:4, and acyclic graph problems.
We would like to note that since THRESI1 exainines the NEXT list at every iteration

but does not, in general, scan all the nodes on NEXT, the running time of THRESH is

not necessarily proportional to the nmnber of scans. The threshold parameter, however,

is computed in such a way that the algorithm tends to scan a constant fraction of the

nodes on NEXT at each iteration, so often the number of scans is a good measure of
the algorithm performance.

In a sense, THRESH is a compromise between the Bellman-Ford-Moore algorithm

(which scans all labeled nodes at each iteration) and Dijkstra's algorithm (which scans a

labeled node with the minimum distance label). Although THRESrt compares favorably

with the former algorithm, never losing to BFP by more than a factor of 2 except for the
Acyc-Neg and Acyc-P2N families in our tests, it does not look as good when compared

with DIKBD. While THRESH is never faster than DIKBD by more than a factor of 3,

the latter code is orders of magnitude faster on problem families such as Grid-PHard,
Rand-4, and Rand-1:4.

We did not attempt to improve the performance of THRESH by adjusting its parain-
eters, and it may be possible to improve the overall performance of the algorithm by

fine-tuning. It is unlikely, however, that this will make the algorithm competitive on the
problems where it performs poorly in our tests.

12.5. The topological ordering algorithms

The topological ordering algorithms GOR and GOR1 are the most robust algorithms

in our study. These are the only algorithms, for example, that solved all Grid-NHard
problems within the time limit.

An examination of Figs. 9-21 shows that GOR never loses to BFP, PAPE, or TWO_Q

by more than a factor of 3 while it often wins by orders of magnitude. The performance

Of GOR is good on all SPGRID families we consider except the Grid-PHard family. The

172 B.~I Cherkassky et al. ~Mathematical Programming 73 (1996) 129-174

code also works very well on the Acyc-Neg family: it can be shown that GOR does at

most two scans per node on an acyclic network with nonpositive length function.
Although GOR never loses by two orders of magnitude or more in our tests, it is

slower than the fastest codes by about an order of magnitude for some problem sizes

on the Rand-4, Rand-1:4, Rand-Len, Acyc-Neg, and Acyc-P2N families

On acyclic networks, GORI works well and Theorem 13 proves that this must be the

case. The code is also the best on Grid-NHard problems and it performs reasonably

well on Grid-SSquare-S and Grid-SWide problems. The code performs poorly on Grid-

SSquare, Grid-SLong, Rand-4, and Rand-l:4 families, where it loses by an order of

magnitude for some problem sizes.

13. Concluding remarks

Our study does not produce a single best code for all classes of shortest paths

problems. We can, however, suggest two algorithms, one for networks with negative

arcs and one for networks withoul negative arcs. These algorithms may not be the best

on a particular problem class, but their running time is likely to be of the same order

o1' magnitude as that of the fastest algorithm and often will be much closer.
For problems with nonnegative arc lengths, Dijkstra's algorithm is robust and an

appropriate implementation of this algorithm is usually quite competitive. In our tests,

the double bucket implementation, DIKBD, is the best overall. This implementation also
seems to work reasonably well if the network has a small number of negative length

a r c s .

The folklore is that multi-level bucket implementations do not work well in practice.

However, [5] is the only study we found that includes a multi-level bucket imple-

mentation. In this study, the two-level bucket implementation was uniformly worse
than implementations of Pape-Levit and Bellman-Ford-Moore algorithms, although not

much worse. This study, however, was done on restricted classes of graphs and small

(by modern standards) problem sizes. In view of these facts, the results of [5] do not

contradict our results.
For problems with many negative length arcs, GOR and GOR1 appear to be good

choices. The GOR1 code also works well on graphs that have large node-induced acyclic

subgraphs.
In practice, problems often have a very specific structure, and algorithms that can

take advantage of this structure may perform very well. For example, practical problems

are often quite "metric" and incremental-graph algorithms may work well on these
problems. Our experiments suggest, however, that extra care is needed if one decides

to use these algorithms because small changes (such as addition of an artificial source)

may drastically decrease perlbrmance of these algorithms. Our experiments give strong

evidence that TWO_Q is more robust than PAPE and is a safer choice in practice.
The relatively good performance of the R-heap and the double-bucket implementa-

tions compared to the k-ary heap and bucket implementations, respectively, show that

B, ~(Cherkassky et al./Mathematical Programming 73 (1996) 129-174 173

sophisticated data structures may be worth implement ing. R-heaps are very promis ing

for other algori thms using the priori ty queue data structure, such as the min imum-cos t

spanning tree algorithms. On the other hand, the relatively poor performance of the Fi-

bonacci heap implementa t ion compared to the k-ary heap implementa t ion shows that a

sophisticated data structure with a better theoretical worst-case bound is not necessarily

better in practice.

We compared several heap and bucket based implementa t ions of Dijkstra 's algorithm.

We did not, however, at tempt a detailed study of efficiency and a count of e lementary op-

erations of the under ly ing data structures. Such a study may give a better unders tanding

of these data structures and give ideas for performance- improving modifications.

We evaluated the classical algori thms and the new algori thms that we considered to

be mosl interest ing and promising. We also implemented a scaling algori thm of [17] .

Performance of our implementa t ion was not especially good, but a better implementa-

tion may be possible. A careful experimental study of several other methods, such as

variations of the threshold algori thm [14, 16], may produce interesting results as well.

We experimented with networks without negative cycles. An interest ing quest ion is

which algori thms are best at detect ing a negative cycle if there is one.

Acknowledgements

We would like to thank Robert Kennedy for comments on a draft of this paper.

References

[I I R.K. Ahuja, K. Mehlhorn, J.B. Orlin and R.E. Tarjan, "Faster algorithms for the shortest path problem",
J. Assoc. Comput. Math. 37 (2) (1990) 213-223.

2 R.E. Bellman. "On a routing problem", Quart. Appl. Math. 16 (1958) 87-90.
3 E van Erode Boas. R. Kaas and E. Zijlstra, "Design and implementation of an efficient priority queue",

Math. Syst. Theotw I0 (1977) 99-127.
4 T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms (MIT Press, Cambridge, MA,

1990).
5 E.V. Denardo and B.L. Fox, "Shortest-route methods: I. Reaching, pruning, and buckets", Operations

Research 27 (1979) 161-186.
6 R.B. Dial, "Algorithm 360: Shortest path tbrest with topological ordering", Comm. ACM 12 (1969)

632-633.
7 RB. DiaI, E Glover, D. Kamey and D. Klingman, "A computational analysis of alternative algorithms

and labeling techniques for finding shortest path trees", Networks 9 (1979) 215-248.
8 E.W. Dijkstra, "A note on two problems in connection with graphs", Numer. Math. I (1959) 269-271.
9 R.E. Erickson, C.L. Monma and A.E Veinott Jr., "Send-and-split method for minimum-concave-cost

network flows", Math. ~/'Oper. Res. 12 (1979) 634-664,
10l L.R. Ford Jr. and D.R. Fulkerson, Flows in Nem'orks (Princeton Univ. Press, Princeton, NJ, 1962).
1 I [M.L. Fredman and R.E. Tarjan. "Fibonacci heaps and their uses in improved network optimization

algorithms", ,L Assoc. Comput. Mach. 34 (1987) 596-615.
121 M.L. Fredman and D.E. Willard, "'Trans-dichotomous algorithms for minimum spanning trees and

shortest paths", Z Comp. and Syst. Sci. 48 (1994) 533-551.
13] H.N. Gabow and R.E. Tarjan, "'Faster scaling algorithms for network problems", SlAM J. Comput.

(1989) 1013-1036.

174 B. ~'~ Cherka.~sky et al./Mathematical Programming 73 (1996) 129-17"4

I 141 G. Gallo and S. Pallottino, "'Shortes! paths algorithms", Apmals (~f Oper. Res, 13 (1988) 3-79.
[15 [E Glover. R. Glover and D. Klingman. "Computational study of an improved shortest path algoritlun",

Networks 14 (1984) 25-37,
116l E GIover, D. KIingman and N. Phillips, "A new polynomially bounded shorlest paths algoritlun", Oper.

Res, 33 (1985) 65-73.
I 17 [A.V. Goldbcrg, "Scaling aIgorithlns for the ,~hovicst paths problem", in: Proceedings 4th ACM-SIAM

Sympo.sium oil Discrete Algorithms (1993) 222-231.
8 I A.V. Goldberg and T. Radzik, "'A heuristic improvement of the Bellman-Ford algorithm", Applied Math.

Let. 6 (1993) 3 6.
1191 M.S, Hung and J.J. Divoky, "'A computational study of efficient shortest path algorithms", Comput.

Oper. Rcs. 15 (1988) 567-576.
[20] D.S. Johnson aml C.C. McGeoch, eds.. Network Flows aped Matching: First DIMACS Implementation

ChallepLk, e (AMS, 1993).
[21] A. Kershenbaum. "'A note on finding shortest palhs trees", Nem'orks I l (1981) 390.
122J E L. La~ler, Comhimm~rial Optimizat#m: Network~ attd Matroids (HoIt, Reinhart, and Winston. New

Ynrk. 1976).
[23 [B.Ju. Levil and B.N. Livshits, Nelenei;Lve Setevye TranSl)ortnye Za&zchi (Transport, Moscow, t972), in

Russian.
[24 [J E Mondou, T,G. Crainic and S, Nguyen, ~'Shol-lest path algorithms: A computational study with the C

pr~gramming hmgnagc", Comput. Oper. Res. 18 (1991) 767-786.
[251 E.R M~ore, "The shorlest path through a maze", in: Proceeditzgs of the h~t. Syrup. on the Theory of

5'~titchm~ (Harvard University Press. 1959) 285 292.
[26] S. Pallottino, "Shortest-path methods: Complexity, interrelations and new propositions", Networks 14

(1984) 257-267.
[27] U. Pape, "hnplementation and efficiency of Moore algorithms for the shortest root problem", Math.

Pro.~,,. 7 (Iq74) 212 222.
128] D. Shier and C. Witzgall. "Properties of labeling methods for determinimg shortest paths trees", J. Res.

NaIL Bur. Stat:d. 86 (1981) 317-330.
]29] R.E. Trojan, Data Structures amt Network Algorithms (Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1983).

