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Abstract 

We conduct an extensive computational study of shortest paths algorithms, including some very 
recent algorithms. We also suggest new algorithms motivated by the experimental results and 
prove interesting theoretical results suggested by the experimental data. Our computational study 
is based on several natural problem classes which identify strengths and weaknesses of various 
algorithms. These problem classes and algorithm implementations form an environment for testing 
the performance of shortest paths algorithms. The interaction between the experimental evaluation 
of algorithm behavior and the theoretical analysis of algorithm performance plays an important 
role in our research. 
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1. Iniroduction 

The shortest paths problem is one of the most fundamental network optimization 
problems. This problem comes up in praclice and arises as a subproblem in many 
network optimization algorithms. Algorithms for this problem have been studied for a 
long time. See e.g. [2 ,5 ,  6, 8, 10, 23.25, 27]. However, advances in the theory of shortest 
paths algorithms are still being made. See e.g. [ l, 12, 13, 17]. A good description of the 
classical algorithnls and their implementations appears in [14]. 

On a network with negative-length arcs the best currently known time bound of O(nm) 

is achicved by the Belhnan-Ford-Moore algorithm [2, 10, 25]. Here n and m denote the 
number of nodes and arcs in the network, respectively. With the additional assumption 
that arc lengths are integers bounded below by N ~ -2 ,  the O( v/rim log N) bound 

117] improves the Bellman-Ford-Moore bound unless N is very large. If all arc lengths 
are nonnegative, implementations of Dijkstra's algorithm [8] achieve better bounds. An 
implementation of 111] runs in O ( m + n l o g n )  time. An improved time bound of O ( m +  
iz log~t/log Iogn) [ 12] can be obtained in a random access machine computation model 
that allows certain word operations. Under the assumption that arc lengths are integers 
in lhe interval [() . . . . .  C], C >~ 2, the implementation of [1] runs in O(m + n v ~ g C )  
time. 

As hardware becomes more powerful and more sophisticated algorithms need a short- 
est path subroutine, efficient shortest paths algorithms are of growing importance. This 
is the case for other network optimization problems as well, motivating broad com- 
putalional investigation of available algorithms. In particular, a massive study of ttow 
and matching algorithms was done for the First DIMACS Algorithm Implementation 

Challenge [ 20]. 
In this paper we study practical performance of several shortest paths algorithms, 

including established methods [2, 8, 10, 15, 23, 25-27], recently proposed algorithms [I ,  
18], and new algorithms. The development of the new algorithms was based on the 
experinmntal feedback. We give theoretical explanation of the observed behavior of the 
alg{}rithms and prove complexity bounds on the new algorithms. Our study includes more 
algorithms than previous studies [ 5, 7, 14. 15, 19, 24] and the collection of problems used 
in our study is much richer. Because of this, our conchisions <are often different from 
those of the previous studies. 

We also prove an interesting restllt suggested by the experimental data. This result, 

summarized in Theorem 17, shows that some algorithms, for exalnple the Belhnan- 
Ford-Moore algorithm, are poten t ia l - im ,ar ian t ,  i.e., behave in exactly the same way on 
two networks one of which is obtained from the other one by replacing the lengths 
by the reduced costs with respect of a potential function. This result has several inter- 
esting implications. Note, for instance, that any feasible shortest paths problem has an 
equivalent with nonnegative arc lengths. If the problem with nonnegative arc lengths 
is computationally simpler than the general problem, as is commonly believed, then 
the lheorem suggests that a potential-invariant algorithm cannot be superior to all other 
algoritluns on problems with nonnegative arc lengths. 
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An important part of our work is the development of several natural shortest paths 
problem generators and their use to create families of problems. Of special interest to us 

are the families that give insight into the relative algorithm performance, robustness, and 
dependence of the performance on the network Structure and the arc cost distribution, 

The collection of algorithms we test is larger than that of any previous study we 
are aware of, and the set of test problems is much richer. We show that the algorithm 
performance varies significantly more than previously believed and that some algorithms 
previously considered robust may fail dramatically. For example, we exhibit a family 
of problems that are hard for all established algorithms, although a recent algorithm of 
[181 solves these problems quickly (see Section 7). 

Our work greatly improves the theoretical understanding of the shortest paths algo- 

rithm performance in practice. In particular we identify several problem features that 
make problems hard or easy for the algorithms we study. The interaction between theo- 

retical and experimental aspects of our work helps to produce more efficient codes and 
to identify important theoretical properties of the algorithms. 

Although our research does not produce a single best code for the shortest paths 
problem, two codes we developed are very competitive in their domains, networks with 
nonnegative and mixed arc lengths, respectively. One of the codes is an implementation 
of Dijkstra's algorithm using a double bucket data structure of Denardo and Fox [5]. 
Anodaer code, which implements a recent algorithm of Goldberg and Radzik [18], 
matches the O(nm) bound of the Bellman-Ford-Moore algorithm and also achieves the 
optimal O(m + n) time bound on acyclic networks. 

Our codes, generators, and generator inputs tbrm a testing environment tor shortest 
paths algorithms. A new code can be compared against the existing ones to determine its 

relative perlbrmance. The environment can be augmented as interesting codes, problem 
generators, and problem families are developed. Our codes, generators, and generator 
inputs are available through a mail server. 

The shortest paths environment can be used in several ways. Practitioners looking for 
an efficient code for an application can test our codes on their problems and select one 
that performs well. The number of codes which need to be compared can be narrowed 
down using the results of the current paper. Researchers evaluating a new shortest paths 
code can run the code on the problem families we suggest and compare its performance 

with the performance of our codes. The environment can also be used in teaching 
algorithms to demonstrate importance of proper algorithms and data structures. 

This paper is organized as follows. Section 2 introduces definitions and notation. 
Section 3 reviews the labeling method for the shortest path problem. Section 4 describes 
the algorithms that we study and proves complexity bounds on the new algorithms. 
Section 5 describes our experimental setup and Sections 6-9 give the main experimental 
results. Section 10 gives additional experimental data for implementations of Dijkstra's 
algoritbm. Section 11 gives a theoretical result motivated by our experiments. A summary 
of our experimental results and discussion of individual algorithm performance appears 
in Section 12. We make concluding remarks in Section 13. 
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2. Definitions and notation 

The input to the single-source shortest paths problem is (G, s, g), where G = ( V E )  

is a directed graph, f: : E + R is a length function, and s E V is the source node. The 

goal is to lind shortest paths from s to all other nodes of G or to find a negative length 

cycle in G. We say that the problem is feasible, if G does not have a negative length 

cycle. We assume, without loss of generality, that all nodes are reachable from s in G. 

We denote [V[ by n, IE] by m, and the biggest absolute value of an arc length by C. 

A potential function is a function on nodes with values in R U {oc}. Given a potential 

function d, we define the reduced cost fimction ~j : E ---, R U {oc} by 

f j ( r ,  w) = f'(L', w) + d ( c )  - d ( w ) .  

We say that an arc a is a&nissible if f a (a )  ~ 0, and denote the set of admissible arcs 

by E,t. The admissible graph is defined by G,j = (V, E,I). Note that if d ( c )  < ~ and 

d ( w )  = yc, the arc ( r , w )  is admissible. If d(c') = d ( w )  = oo, we define g,,l(u,w) = 

C(c, w). 
A shortest paths tree of G is a spanning tree rooted at s such that for any c ~_ V, the 

reversal of the c to s path in the tree is a shortest path from s to c. 

3. The labeling method 

In this section we briefly outline the general labeling method for solving the shortest 

paths problem. (See e.g. [4, 14, 29] for more detail.) Most shortest paths algorithms, 

and all those which we study in this paper, are based on the labeling method. 

For every node u, the method maintains its potential d ( c ) ,  parent ~ ( v ) ,  and status 

S( r )  c: {unreached, labeled, scanned}. The potential of a node u is also called the 

distance label of t~', because it is equal to the current estimate of the shortest-path 

distance liom s to c. Initially for every node c', d (u)  = oc, rr(c)  = nil, and S(u) = 

um-eached. Tile method starts by setting d ( s )  = 0 and S(s )  = labeled, and applies the 

SCAN operation to labeled nodes until none exists, in which case the method terminates. 

The SCAN operation applies to a labeled node t'. The operation is described in Fig. 1. 

Note that if r is labeled, then d(u)  < ~ and d ( v )  + [':(c', w) is finite. After a SCAN 

procedure SCAN (/~ ) ; 

for all (u, w) ~ E do 
if d(c,) + f(c,  w) < d(w) then 

d ( w )  +-- d (u )  + g ( u , w ) ;  

S(w)  ~ labeled; 

rr(w) ~ c; 

S(l ')  ~-- scanned; 

end. 

Fig. 1. The SCAN operation. 
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Name Brief description 
(strategy for selecting nodes to be scanned next) 

ACC 

BF 

BFP 

DIKB 

D I K B M  

D I K B A  

D I K B D  

D I K F  

D I K H  

DIKR 

G O R  

GORI 
PAPE 

S T A C K  

T H R E S H  

T W O  _Q 

Topological order selection for acyclic graphs 
FIFO order selection (Bellman-Ford-Moore algorithm) 
BF with parent-checking heuristic 
Minimum label selection (Dijkstra's algorithm) using buckets 
Minimum label selection using buckets and the overflow bag 
Minimum label selection using approximate buckets 
Minimum label selection using double buckets 
Minimum label selection using Fibonacci heaps 
Minimum label selection using k-ary heaps 
Minimum label selection using R-heaps 
Topological order selection tot general graphs 
GOR with scans during topological sort 
Selection using a double-ended queue (Pape-Levit algorithm) 
LIFO order selection 
Threshold selection 
Two queue selection (Pallottino's algorithm) 

Fig. 2. Summary of implementations. 

operation, some unreached and scanned nodes may become labeled. 

The method terminates if and only if G does not have negative length cycles. If the 

method terminates, the parent pointers define a correct shortest paths tree and, for any 

c E V. d(c ' )  is the shortest path distance from s to c,. The labeling method can be easily 

modified so that if  G has negative cycles, the method finds such a cycle and terminates. 

4. Labeling algorithms 

Different strategies for selecting labeled nodes to be scanned next lead to different 

algorithms. In this section we discuss some of these strategies and describe the algorithms 

we have implemented and experimented with. Fig. 2 gives a quick summary of these 

algorithms. 

The importance of a good ordering of the SCAN operations is illustrated in Fig. 3. 

Here we compare the FIFO ordering used in the BF code and the LIFO ordering used 

in the STACK code on two Grid-SSquare problems (see Section 6) of modest size. The 

performance of" STACK is usually extremely poor compared to BF, although the codes 

differ by only two statements. As we shall see later, BF performs much worse than some 

other codes on this problem. Note that STACK has an exponential worst-case running 

time (see e.g. [28] ) .  

I node / cs II I STACK I 
16385 0.39 44.29 
49 52  t92 1986.90 
65537 3.53 544.34 

196608 23.19 4613.02 

Fig. 3. Relative performance of FIFO and LIFO selection rules. A table entry gives the running time in 
seconds (bold) and the number of scans per node. 
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4.1. Bellman-Ford-Moore algorithm 

The Be l lman-Ford -Moore  algorithm, due to Bellman [2] ,  Ford [10],  and Moore 

[25],  maintains the set of  labeled nodes in a FIFO queue. The next node to be scanned 

is removed fiom the head of  the queue; a node that becomes labeled is added to the tail 

of the queue. Our code BF implements this algorithm. 

We define a pass over the queue inductively. Initialization, during which the source s 

is added to the queue, is pass 0. For i > (I, pass i consists of processing nodes which 

were added to the queue during pass i - 1. 

Performance of the Be l lman-Ford -Moore  algorithm is as follows. 

Theorem 1. ( i )  Each pass takes O( m ) time. ( i i)  The nttmber of passes is bounded by 

the depth o[a shortest paths tree. ( i i i )  The algorithm runs in O(nm) time in the worst 

casc. 

Although the O(mn)  worst case bound is the best bound known for shortest paths 

algorithms, in practice the Be l lman-Ford-Moore  algorithm is often slower than other 

methods. We introduce the following pa~z~nt-checking heuristic that usually improves 

performance of the algorithm. Suppose we have just removed a node u from the queue 

and the parent of c, u = r r ( t ' ) ,  is in the queue. Note that d (u )  was last updated when u 

was scanned and d ( u )  was set to d ( t t )  -4-{(1/, t:). After that d ( u )  decreased causing u 

to be again added to the queue, and implying that d(u) + g(u, l_,) < d(t.,). Intuitively, 

it is wasteful to scan c at this point because we know that d (u )  will decrease. The BFP 

algorithm is a variant of  BF that scans a node only if its parent is not in the queue. One 

can easily prove the bounds of Theorem 1 for this algorithm. 

The parent-checking idea can be extended. For example, one can check all proper 

ancestors of a node in the current tree. This is computationally expensive, however. An 

alternative is to periodically clean up the queue, leaving in it only the nodes with no 

labeled proper ancestor in the tree. This approach can be used to obtain an algorithm 

that is usually better than BFP. In Section 4.5 we describe an even better algorithm 

motivated by this idea. 

Fig. 4 shows lhe performance of BF and BFP on a problem from Grid-SSquare family 

(see Section 6).  On this problem, BF does about twice as many scans as BFP and runs 

about twice as slowly. Fig. 5 shows the performance on problems from Rand-Len family 

nodes/arcs 

I6385 0.39 0.21 
49152 II.92 5.05 

65537 3.53 1.96 
196608 23.19 9.66 

Fig. 4 Relative performance of BF and BFP on 
Grid-SSquare problems. 

IZ, Uj II BFI BFPI 
[1, I] 1.46 1.50 

1.00 1.00 
[0, 10000J 25.28 23.15 

19.04 16.75 

Fig. 5. Relative performance of BF and BFP 
on Rand-Len problems with 131 072 nodes and 
524288 arcs. First column shows the range of the 
arc lengths. 
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(see Section 8). In the first problem all arcs have unit length and both BF and BFP do 

one scan per node. (In this case FIFO order strategy reduces to the breadth-first search.) 

Because of  the additional work of  checking the parents, BFP is slightly slower. In the 

second problem the range of  arc lengths is relatively large. On this problem BFP does 

slightly fewer scans per node and runs slightly faster. 

In practice, BIzP seems never to make more scans than BF and is never significantly 

slower. In the vast majority of cases, BFP is faster than BE and the two codes differ by 

only one "if" statement. We use the BFP code in our main experiments. 

4.2. D(jkstra's algorithm 

Dijkstra's algorithm [8] selects a labeled node with the minimum potential as the 
next node to be scanned. 

Theorem 2. If  the length function is notmegative, Dijkstra's algorithm scans each node 

e.ract-ly once. 

Remark  3. It is easy to show that if negative arc lengths are allowed, the number of  

scans may be exponential. 

We first assume that arc lengths are nonnegative, and treat the other case at the end 

of this section. Also, when discussing below about R-heap and bucket-based implemen- 

tations of Dijkstra's algorithm, we assume that the length function is integral. 

The worst-case complexity of  Dijkstra's algorithm on networks with nonnegative arc 

lengths depends on the way of finding the labeled node with the smallest distance 

label. The naive implementation that examines all labeled nodes to find the minimum 

runs in O ( n : )  time [8].  The implementation using k-ary heaps (see e.g. [4] )  runs 

in O ( m l o g n )  time (for a constant k). The implementation using the priority queue 

of  Van Erode Boas et al. [3] runs in O ( m l o g l o g C )  time. The implementation using 

Fibonacci heaps [ 1 1 ] runs in O(m + n logn) time. The implementation using one-level 

R-Ineaps [1] runs in O(m + n log C) time and the one using two-level R-heaps together 
with Fibonacci heaps, in O(m + n I,/i~g C) time. We evaluated implementations that use 

k-ary heaps with k set to 3 (DIKIt), Fibonacci heaps (DIKF), and one-level R-heaps 

(DIKR). The R-heap data structure is based on buckets and thus similar Io bucket-based 
implementations discussed below. 

We also implemented the naive O(n 2) algorithm (DIKQ). This implementation, how- 

ever, performs poorly unless the average number of labeled nodes during the computation 

is small. For example, on two problems from Grid-SWide family (see Section 6), DIKQ 

is orders of magnitude slower than D1KH, which itself is relatively slow on this problem. 
(See Fig. 6.) Because of the poor performance, we do not include DIKQ in our" tests. 

Another way to implement Dijkstra's algorithm is by using the bucket data structure, 

as proposed by Dial [6].  This implementation maintains an array of buckets, with the ith 

bucket containing all nodes c with d(z:) = i. When distance label of  a node changes, the 
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nodes/arcs II o,K. I ~ 
16385 0.20 5.15 
49152 1.00 1.00 
32769 0.50 22.11 
98304 l.O0 1.00 
65537 1.29 122.22 

196608 1.00 1.00 

Fig. 6. Relative performance of DIKH and DIKQ on Grid-SWide problem. 

node is removed fl'om a bucket corresponding to its old distance label ( i f  the label was 

finite) and inserted into the bucket corresponding to the new one. The implementation 

maintains an index L. Initially, L = 0, and L has the property that all buckets i < L 

are empty. The next node to be scanned is removed from bucket L or, if this bucket 

is empty, L is incremented. The following theorem follows easily from the observation 

that bucket deletions and insertions take linear time and at most nC buckets need to be 

examined by the algorithm. 

Theorem 4. [6] / f  the length function is nonnegative, Dial's implementation o{ Dijk- 

stra's algorithm runs in O(m + nC) time. 

Although the algorithm, as stated, needs nC buckets, an observation that only C + l 

consecutive buckets can be occupied at any given time allows the use of  C + 1 buckets. 

Our code DIKB follows Dial ' s  implementation. We maintain nodes in a bucket in the 

FIFO order. Our implementation places a limit of 300000 on the maximum arc length 

(which determines the number of  buckets).  

Next we introduce two simple ways to reduce the memory requirement of  Dial 's  

implementation. In the overflow bag implementation, the number of  buckets is set to 

B < C + 1. At the ith stage of the algorithm, the buckets contain nodes with distance 

labels in the range [ Bi, Bi + B - 1 ]. The labeled nodes with distance label Bi 4- B and 

above are maintained in a special set (the bag) .  Initially i = 0 and Bi = 0. When the 

value of L reaches B~ + B, the value of i is incremented and Bi is set to the minimum 

distance label of a node in the bag. Then the bag is scanned, nodes with distance labels 

in ihe range [Bi, Bi + B - 1] are moved into appropriate buckets, and the next stage 

begins. The t ime-memory tradeoff of  this implementation is as follows. 

Theorem 5. If  the length function is nonnegative, the ovelflow bag implementation of  
Dijkstra's algorithm runs in O(m + n ( ( C / B )  + B))  time. 

Proof.  Under this implementation, each node is scanned at most once, for the total of 

O(m + n) time. The time for removing and inserting nodes from the buckets and the 

bag can be charged to the scanning of  nodes. There are at most n passes through the 

buckets for a total of  O(nB) work. It remains to account for the work of  examining 

nodes in the bag at the end of each stage of the algorithm. Note that if  a node is added 

to the bag for the first time during stage i, then its distance label is at most Bi + B + C, 
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SO the node can be in the bag for O(C/B)  stages. Thus the work involved in examining 
the bag is O(nC/B) .  [] 

Choosing B = ~ yields an O ( m + n v ~ )  time bound. Our code DIKBM implements 
this algorithm. We set B = rain (50 000, C/3 ). 

In the approxinmte bucket implementation, a bucket i contains nodes with distance 

labels in the range [iA, ( i +  1 )A -- 1 ], where A is a fixed parameter. Nodes in the bucket 

are processed in the FIFO order. This implementation needs VC/A] + 1 buckets. The 

time-memory tradeoff for this implementation is as follows. 

Theorem 6. [[ the length function is notmegative, the approximate bucket implementa- 
tion runs ill O(mA + n( A + C/2x ) ) time. 

Proof. Each node can be scanned more than once since the buckets are approximate. 

However, a node cannot be scanned more than A times. Thus the total work involved in 

scanning nodes is O ( A ( m  + n) ). The only work that cannot be charged to the scans is 

that of  going through the buckets in search of  a nonempty one. This work adds up to 
O ( ~ ( C / A )  1, [] 

Our code DIKBA implements this algorithm. We set A = rC/2Xl]. 

The ideas of the above two algorithms can be combined to obtain the double bucket 
implementation of  Dijkstra's algorithm; this implementation is due to Denardo and Fox 

[5]. This implementation has two kinds of  buckets, high-level and low-level. The number 

of low-level buckets is A. A high-level bucket i contains the set of nodes with distance 

labels in the range [iA, (i + 1)A -- 1] except for the nonempty high-level bucket with 

the smallest index L. A node v with distance label in the range [LA, (L + I )A -- 1] 

is in the low-level bucket d (v )  - LA. After all low-level buckets are exmnined and the 

nodes in these buckets are scanned, L increases. If the corresponding high-level bucket 

is not empty, its nodes are moved to the corresponding low-level buckets and the next 
stage begins. 

The number of  high-level buckets needed by this implementation is F(C + 1) /A] .  

The running time of  the implementation is as follows. 

Theorem 7 ( [5] ). / f  the length function is nonnegative, the double bucket implemen- 
tation runs in O(m + n( A 4- C/A ) ) time. 

Proof. Each node is scanned at most once. The number of  high-level buckets that the 
algorithm processes is O(nC/h) .  The number of  times a low-level bucket is examined 
is at most n. [] 

For the best theoretical bound, the value of  A should be |  Our code DIKBD 

implements this algorithm. We set z~ to the biggest power of  two that is less than v@-. 
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We also keep track of the first and the last non-empty bucket at each level, and use this 

information to skip empty buckets. 

The double bucket implementation can be generalized to the k-level bucket imple- 

mentation [5] in the following way. We consider only the case when the number of 

buckets at every level is the same and equal to p = ICJ/kl.  The levels are numbered 

I:rom 0 to k - I and the buckets at each level are numbered from 0 to p - 1. Con- 

sider level i. Associated with this level are the base distance Bi and the index of the 

active bucket ai. Associated with bucket ./, 0 _< j <_ p - 1, at level i is the interval 

[B i + . j p i  B, + ( / q -  1 )pi _ 1]. The base distances and the indices of the active buckets 

m-e such that Bk I = 0 mod pt' and Bi- i  = B, q- alp i. If the distance label of a node t: 

is in the interval associated with bucket ,j on level i, for some ai < j < p, then t,' is in 

this bucket. If the distance label is in the interval associated with the active bucket and 

i > 0. then the node is at a lower level. I1: the distance label is greater than B i + p  iq i _ 1, 

then the node is at a higher level. For each level we maintain the total number of nodes 

at this level. Next we describe how to move a node into the appropriate bucket when 

its distance decreases and how to find a node with the smallest distance. 

"If the distance of a node decreases, we tirst try to relocate this node within the same 

level. If it drops into the active bucket, then we lind the appropriate bucket at the lower 

level. We repeat this until we reach the lowest level or the first level such that the node 

does not drop into the active bucket. If bucket a0 at the lowest level (level 0) is not 

empty, it contains all nodes with the smallest distance label. If this bucket is empty, 

we find the lowest nonempty level, then we find the first nonempty bucket at this level. 

make it the active bucket, and distribute the nodes from this bucket to lower levels. 

The k-level bucket implementation requires O ( k C  I/k) buckets and has the following 

time-memory tradeoff. 

Theorem 8 ( [5 ] ). / f  the length .~unction is nonnegative, the k-level bucket implemen- 

tation ttttls itl O(nt  + n( k -b C l,/k) ) time. 

Proot: Consider a node L' whose distance label is decreased. If the level of the node 

does not chan,m the node can be moved into the new bucket in O( 1 ) time. If the node 

moves to a lower level, the appropriate level and bucket can be found in O(i '  - i ' )  

time, where i / and i" are the old level and the new level, respectively. Since there are 

O(m)  decreases of distance labels and each node may move only from a higher to a 

lower level, the total time spent on these operations is O(m + nk) .  

To find a node with the smallest distance, we first find the lowest nonempty level in 

O(k)  tiine, using the int'onnation about the number of nodes at each level. The first 

nonempty bucket is found in O(p )  time. Then we have to distribute the nodes from 

this bucket to lower levels. The total time of this computation, throughout the whole 

algorithm, is O ( n k ) ,  since each time a node is inspected, it is moved to the lower level. 

We have to lind the smallest distance node at most n times, so the total work involved 

is O ( n ( k  + p ) ) .  
Thus the running time of the k-level implementation is O(m + n ( k  + C I lk ) ) .  [] 
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For k = [ logC 1 (so p = 2) we obtain an O(m + n l o g C )  time bound and a 

data structure similar to R~beaps. Setting k = r21ogC/loglogC] yields an O(m + 

n log C/log log C) time bound and a data structure similar to two-level R-heaps. 

We conclude this section with a discussion of  implementations of  Dijkstra 's  algorithm 

when arc lengths can be negative. A "strict" implementation of the algorithm selects a 

labeled node with the smallest distance label at every step. This is what our code DIKH 

does. 

An alternative is to maintain the value t of the biggest dislance label of a node scanned 

so far, and to select a labeled node with the distance label of  t or less if such a node 

exists and a labeled node with the smallest distance label otherwise. This strategy is 

more natural for bucket and R-heap implementations and we use it in the corresponding 

codes. If the nodes el igible for scanning are maintained in FIFO manner, one can 

show polynomial- t ime bounds for this variant of  Dijkstra 's  algorithm on networks with 

arbitrary arc lengths. 

4.3. Incremental-graph algorithms 

In this section we describe two algorithms. The first one was developed independently 

by Pape [27] and Levit [23].  The second algorithm was proposed by Pallottino [26] .  

He also introduced the incremental-graph fiamework that unified these two algorithms. 

Our implementations of  the above algorithms are called PAPE, and TWO_Q, respectively. 

An algorithm in the restricted scan framework maintains a set W of nodes and scans 

only labeled nodes in W. The set W is monotone: once a node is added to W, it remains 

in there. It' there are labeled nodes but no labeled node is in W, some of the labeled 

nodes must be added to W. Nodes may also be added to W even if W already contains 

labeled nodes. Note that if the labeled nodes in W are processed in the FIFO order, then 

a simple modification of  the analysis of the Be l lman-Ford-Moore  algorithm shows that 

in O(mn)  time, either the algorithm terminates or W grows. This leads to an O(n2m) 

time bound. 

Pape-Levit  and Pallot t ino's  algorithms define W as the set of nodes which have been 

scanned at least once; when no labeled node is in W, a labeled node is added to W. 

More precisely, these algorithms maintain the set of labeled nodes as two subsets, Sl 

and $2, lhe first containing labeled nodes which have been scanned at least once and the 

second containing those which have never been scanned (SI C_ W and $2 C_ V - W). 

The next node to be scanned is selected from Si unless Si is empty, in which case the 

node is selected from $2 (i.e., this node is added to W). We call SI the high-priorit3., 

set and $2 the low-priori o, set. 
The Pape-Levi t  algorithm maintains Si as a LIFO stack and $2 as a FIFO queue. 

(This algorithm is usually implemented using the dequeue data structure, which is a 

queue Ihat allows insertions at either end. See e.g. [ 14,26] .) Initially the stack is empty 

and the queue contains s. The next node to be scanned is removed from the top of the 

stack if it is not empty and from the head of the queue otherwise. A node that becomes 

labeled is pushed to the top of the stack if the node has been scanned previously, or 
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added to the tail of the queue otherwise. The algorithm terminates when both the stack 

and the queue are empty. This algorithm has exponential worst-case time bound. 

Theorem 9. [21,28]  The Pape-Levit algorithm runs in @(n2") time in the worst case. 

Pallot t ino 's  algorithm maintains Si and $2 using FIFO queues, Qi and Q2. The next 

node to be scanned is removed from the head of Qi if the queue is not empty and from 

the head of  Q2 otherwise. A node that becomes labeled is added to the tail of QI if it 

has been scanned previously, or to the tail of Q2 otherwise. The algorithm terminates 

when both queues are empty. As the above discussion of the restricted scan algorithms 

suggests, the worst-case running time of  TWO_Q is polynomial.  

The o rem 10. [26] Pallottino's algorithm runs in O(n2m) time in the worst case. 

Observe that in a restricted scan algorithm when there are no labeled nodes in W, 

then the current tree restricted to W is a shortest paths tree in the subgraph of  the input 

graph induced by W and the reduced cost function is nonnegative on arcs connecting 

nodes in W. Both Pape-Levi t  and Pallott ino's algorithms increase W only when there 

are no labeled nodes in W, in which case exactly one labeled node u is added to W. 

By the next time when there are no labeled nodes in W (i.e., by the next time $1 is 

empty)  a shortest paths tree in the subgraph induced by W U {t;} is computed. Hence 

the "incremental-graph algorithms" term. 

4.4. The threshold algorithm 

Glover et al. [ 15] suggest the lol lowing method, which combines the ideas lying 

behind the Be l lman-Ford-Moore ,  Dijkstra 's,  and incremental-graph algoritbans. (See 

also [14, 1611.) The method partitions the set of  labeled nodes into two subsets, NOW 

and NEXT, which are maintained as FIFO queues. At the beginning of  each iteration 

of the algorithm, NOW is empty. The method also maintains a threshold parameter t 

which is set to a weighted average of  the minimum and average distance labels of the 

nodes in NEXT. During an iteration, the algorithm transfers nodes u with d(~:) <, t 

from NEXT to NOW and scans nodes in NOW. Nodes that become labeled during the 

iteration are added to NEXT. The algorithm terminates when NEXT is empty at the 

end of  an iteration. Our code THRESH implements the threshold algorithm suggested in 

115] with parameter values MINWT = 45 and WTCNG = 25. 

The running time of  THRESH is as follows. 

Theo rem 11. [16] I f  the lengthJi~nction is nonnegative, THRESH runs in O(nm)  time. 

Note that the threshold parameter t is not necessarily monotone in our implementation. 

If t is updated only when at the beginning of  an iteration the distance label of  every node 

in NEXT is greater than t, then t becomes monotone. This version of the algorithm falls 

into the restricted scan framework discussed in the previous section and runs in O(n2m) 
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time on networks with arbitrary arc lengths [ 14]. However, the version of  THRESH that 

we implemented is that of  [ 15], and we are not aware of any polynomial-time bound 
tk~r this version in the arbitrary length case. 

4.5. The topological ordering algorithms 

A generalization of  the parent-checking idea discussed in Section 4.1 is as follows. 

Suppose both L, and w are labeled and there is a path from l,, to w in the admissible 

graph containing a negative reduced cost arc. Then it is better to scan t, before w, since 

we know that d (w)  is greater than the true distance from s to w. A recent algorithm of 

Goldberg and Radzik [18] is based on this idea. To simplify the algorithm description, 
we tirst assume that G has no cycles of  length zero or less, and therefore for any d, the 
admissible graph Ga is acyclic. 

The Goldberg-Radzik algorithm maintains the set of  labeled nodes in two sets, A 

and B. Each labeled node is in exactly one set. Initially A = ~ and B = {s}. At the 

beginning of  each pass, the algorithm uses the set B to compute the set A of  nodes to 

be scanned during the pass, and resets B to the empty set. A is a linearly ordered set. 

During the pass, elements are removed according to the ordering of A and scanned. The 

newly created labeled nodes are added to B. A pass ends when A becomes empty. The 
algorithm terminates when B is empty at the end of  a pass. 

The algorithm computes A from B as follows. 

( I ) For every c' C B that has no outgoing arc with negative reduced cost, delete u 

from B and mark it as scanned. 

(2) Let A be the set of nodes reachable from B in G#. Mark all nodes in A as 
labeled. 

(3) Apply topological sort to order A so that for every pair of  nodes lJ and w in A 

such that (c, w) C G,~, c' precedes w and therefore v will be scanned before w. 

The algorithm achieves the same bound as the Bellman-Ford-Moore algorithm. 

Theorem 12. [18] The Goldberg-Radzik algorithm runs in O(nm)  time. 

Now suppose G has cycles of zero or negative length. In this case Gd need not be 
acyclic. If, however, Ga has a negative length cycle, we can terminate the computation. 

If Gj has zero length cycles, we can contract such cycles and continue the computation. 
This can be easily done while maintaining the O(nm) time bound. (See e.g. [ 17] .) 

Our code GOR is an implementation of  the Goldberg-Radzik algorithm with one sim- 

plification. The implementation uses depth-first search to compute topological ordering 
of the admissible graph (see e.g. [4 ] ) .  Instead of  contracting zero length cycles, we 

simply ignore the back arcs discovered during the depth-first search. The resulting topo- 

logical order is in the admissible graph minus the ignored arcs. This change does not 
affect the algorithm correctness or the above running time bound. 

WE also implement the following modification, GOR1, of GOR. Recall that we use 

depth-first search to compute the topological ordering. When an arc (u, w) is examined 
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by the depth-iirst search, this arc is first scanned in the shortest-path sense, i.e., if 

d (c )  + f(c,  w) < d ( w ) ,  d ( w )  is set to d(c)  + f(c ,  w) and 7T(W) is set to c. Note that 
this changes the admissible graph and may add a new vertex I(1 set A. It means that A 
cannot be known before the topological sort begins and is only constructed during the 

sort (that is, Steps (2) and (3) in the computation of k from B are combined). The 

fcHIowing theorem gives a theoretical justification for this modification. 

Theorem 13. GOR1 runs in O(nm) time. On an acvclic twtwork, GOR1 tet'minates in 

oHe pass and there/btv runs i t 1 0 ( m  + n) time. 

Proofl The proof of  the first claim is similar to that of  Theorem 12. To prove the 

second claim, we show that the first depth-lirst search topologically orders the nodes 

i'cachable flom the source with respect to the input graph. Recall that at the beginning 

of the computation all nodes except for the source have infinite distance labels. Note 

also that an easy inductive al'gument shows that nodes processed by the depth-first 

search have finite distance labels. Thus when an arc (v ,w) is first examined while 

processing z'. d ( c )  is finite and d(w)  is either finite or infinite. Finite d (w)  means 

thai node w has been aheady processed. If d ( w )  is inlinite, then d (w)  will be updated 

and fu{ c, w) will become zero. Thus (c, w) will become admissible and the search will 

start processing w. Therefore the depth-first search of the admissible graph will examine 

the m~des in exactly the same order as the depth-first search of the whole input graph, 

alld the resulting order will be topological with respect to the input graph. The standard 
results Ior shortest paths in acyclic graphs imply that after the end of  the first pass, the 
algoritlam terminates. [] 

Remark 14. When cotinting the number of scans done by GOP. and GOR1, we count 

both the shortest paths SCAN operations and processing of nodes done by the depth-first 
searchers. 

5. Experimental setup 

Our experiments were conducted on SUN Sparc-10 workstation model 41 with a 
4 0 M H Z  processor running SUN Unix version 4.1.3. The workstation had 160 Meg. 

memory. Our codes were written in C and compiled with the SUN cc compiler version 

1.0 using the 04 optimization option. 

We peliormed the machine calibration experiment designed by the organizers of  the 
First DIMACS International Algorithm Implementation Challenge [20].  Fig. 7 shows 

the average running times of  the test programs compiled with different optimization 
levels. 

Our hnplementations use the adjacency list representation of  the input graph. We 

experimented with several folklore low-level representations of the graph and found 

that the one described in detail by Gallo and Pallottino [ 14] is the most efficient. Our 
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TEST I TEST 2 
optimization average running lime average running time 

~evel real aseF system real user system 
w/o optm. 1.2 1.2 0.0 11.1 10.8 0. I 

-O I 1.05 1.0 0.0 9.3 9.15 0. I 
-02 1,0 0.95 0.0 9. I 8.9 O. 1 
-03 0.9 0.9 0.0 83 8.05 0. I 
-04 0.9 0.9 0.0 8.2 8.0 0.1 

Fig. 7. Average running times (in seconds) of the test programs. 

implementations of the traditional algorithms (BF, PAPE, T~O_Q, TIIREStt) are also 

very similar to those described in [ 14]. We attempted to make our implementations of 

different algorithms uniform to make the running time comparisons more meaningful. 

We also tried to make the implementations efficient. 

The codes compared in our main experiments are BIvP, GOR, GOR1, D1KH, DIKBD, 

PAPE, TWO_Q, and TIIRESH. We do not include all the Dijkstra's algorithm implemen- 

talions because they often perform very similarly. We chose DIKH because it is the most 

widely known version of Dijkstra's algorithm and DIKBD because it is the best overall 

implementation of Dijkstra's algorithm in our tests. We also compare DIKH, DIKBD, 

DIKR. DIKB, DIKBM, and DIKBA on a subset of the problems that shows strengths and 

weaknesses of these codes. 

Fig. 8 summarizes problem families used in our study. These families are described 

in detailed in the corresponding sections. Networks in the first four families are grids. 

These problems are designed to test how algorithms perform on natural problems with 

simple structure and how their performance depends on the grid shape. Grid-PHard and 

Grid-NHard networks are designed to be hard for algorithms which take advantage of 

network structure these problems have nonnegative and mixed arc lengths, respectively. 

Rand-4 and Rand-1:4 networks consist of a hamiltonian cycle and additional randomly 

generated arcs. Rand-4 networks are sparse and Rand-l :4 networks are dense. We use 

Rand-Len networks to test how the algorithm performance changes when the network 

structure is fixed but the cost range changes. We use Rand-P networks to test how the 

G e n e r a t o r  Class  n a m e  Brief  descr ipt ion 
SPGRID Grid-SSquare 

Grid-SSquare-S 
Grid-SWide 
Grid-SLong 
Grid-PHard 
Grid-NHard 

SPRAND Rand-4 
Rand- 1:4 
Rand-Len 
Rand-P 

SPACYC Acyc-Pos 
Acyc-Neg 
Acyc-P2N 

Square grids 
Square grids with artificial source 
Wide grids 
Long grids 
Hard problems with nonnegative arc lengths 
Hard problems with mixed arc lengths 

Random hamiltonian graphs with density 4 
Randmn hamiltonian graphs with density 25% 
Random hamiltonian graphs with variable arc length range 
Random hamiltonian graphs with potential transformations 

Acyclic graphs with nonnegative arc lengths 
Acyclic graphs with negative arc lengths 
Acyclic graphs with vari,~ble fraction of negative arcs 

Fig. 8. Smnmary of problem classes. 



144 B. ki Cherkassky et al, ~Mathematical Programming 73 (1996) 129-174 

algorithm performance changes when a potential transformation is applied to a problem 

with nonnegative arc lengths (creating negative-length arcs). We use Acyc-Pos, Acyc- 

Neg, and Acyc-P2N networks to test algorithm performance on acyclic graphs. 

When tabulating results of our experiments, we give the running time in seconds (in 

bold) and the number of scan operations per node (below).  The running time is the 

user CPU time and excludes the input and output times. To obtain a data point for a 

shortest paths code, we make five runs of the code on problems produced with the same 

generator parameters except for the pseudorandom generator seed. The data we tabulate 

is the average over the five runs. 

We would like to note that usually individual running times are within 15% of  the 

average. In ahnost all cases the slowest and the fastest times for the same data point are 

within a factor of two; there are two kinds of exceptions to this statement. The first one 

is lk~r small problems where the running times are below 0.1 second and the relative 

tinting error is large. The second exception is for DIKH code on Acyc-P2N problem 

family with parameter f = 40%, where the slowest run takes about fl-wee times as much 

as the fastest run (393.55 vs. 128.55 seconds).  We do not think that a larger number 

of  runs for each data point will in any way change our conclusions about the relative 

performance of the algorithms we study. 

We place a 20 minute limit on the user CPU time of each computation on a problem 

inslance. This leaves over 15 minutes for the shortest paths computation (excluding 

input and output) .  Since all problems in our tests are solvable in well under a minute 

by the code that is fastest for this problem, the codes that exceed the limit on a problem 

are losing to the fastest code by over an order of  magnitude. I f  a code exceeds the 

CPU limit or requires too much memory to run, we put "DNF" (did not finish) in the 

corresponding table entry. 

We also plot the data in addition to tabulating it. Our plots use regular or logarithmic 

scales, as appropriate for a particular problem family. To avoid crowding the plots, when 

two algorithms perform very similarly, we plot only one of them. 

6. S i m p l e  S P G R I D  p r o b l e m s  

First we experiment with rectangular grid networks produced by our SPGRID gen- 

erator. These networks are very natural and come up in applications; see [9].  Nodes 

of  these networks correspond to points on the plane with integer coordinates [ x , y ] ,  

I E x ~< X, 0 <~ y ~< Y - 1. These points are connected "forward" by ,arcs of the form 

( [ x , y ] , [ x + l , y ] ) ,  1 < ~ x < X ,  1 < ~ y < . Y  

" u p "  by arcs of  the form 

( [ x , y ] , [ x , y + l  ( m o d Y ) ] ) ,  1 ~<x~<X, l < ~ y ~ Y  

and "down" by arcs of the form 
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( [ x , y ] , [ x , y -  1 ( m o d Y ) ] ) ,  i ~<x~<X, 1 ~<y~<Y 

Thus a layer, a set of nodes [x, y] with x fixed and 1 ~< y ~< Y, is a doubly connected 

cycle. There is also an additional source node connected to all nodes in the first layer, 
i.e., the nodes with coordinates [ 1, y] ,  1 ~ y ~< Y. For the rectangular grid experiments, 
arc lengths are selected uniformly at random from the interval [0, 10000]. 

6.1. Square grids" 

Fig. 9 presents results of  experiments on Grid-SSquare family of square grids. For 
this family X = Y. 
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BFP I G O R  I GORI 

0.02 0.02 0.03 
2.74 2.26 4.82 

0.21 0.08 0.21 
5.05 2.29 5.25 
1.96 0.37 1.52 
9.66 2.28 7.41 

24.07 2.02 7.40 
19.68 2.29 8.11 

231.33 7.18 42.50 
41.78 2.30 I 1.25 

DIKH ] D1KBD [ P A P E  ] T W O - Q  ] T H R E S H  [ 

0.03 0.02 0.01 0.01 0.01 
1.00 1,00 1.25 1.25 1.05 
0.17 0.10 0.03 0.04 0.05 
1.00 1.00 1.26 1.26 1.05 
0.70 0.50 0.22 0.24 0.28 
1.00 1.00 1.27 1.27 1.13 
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Fig. 9. Grid-SSquare t'amily data. 
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The best performance on this family is achieved by PAPE and TWO_Q. The perfor- 

nlance of  GOR, DIKBD, and THRESII is also good. These codes lose to the best codes 

by less than a factor of 3. Somewhat slower is DIKH; it loses to the fastest codes by 

about a factor of four on tile largest problem size. 

The worst performance on this family is that of  BFP. The second-worst code is GOR1. 

On the largest problem size, it is an order of  magnitude slower than the fastest codes 

but an order of magnitude faster than the slowest code. 

R e m a r k  15. Our experiments show that the numbers of scans done by PAPE and TWO_Q 

on the same problem instances in the Grid-SSquare family are e x a c t h ,  the same. This is 

also tile case for the Grid-SWide and Grid-SLong families of  the next section. Closer 

examination of  the distribution of tile input graphs reveals that PAPE and TWO_Q on 

such problems are indeed very likely to perform the same number of  scans. 

When designing or implementing algorithms that use a shortest paths subroutine, it is 

often convenient to assume that all nodes of the network are reachable from the source. 

One way to assure this property is to introduce an artificial source and connect it to the 

original source by a zero length arc and to the other nodes of  the graph by very long 

arcs. This is exactly how we obtain the Grid-SSquare-S family fi'om the Grid-SSquare 

family. 

Fig. 10 shows the results of  the Grid-SSquare-S experiment. Note that the Grid- 

SSquare-S graphs have about 1/3 more arcs than those in the previous experiment. 

Since the problem structure is similar, one would expect a slight increase in the running 

times on problems with the same number of nodes. However, the only code that meets 

this expectation is GOR1. Performance of all other codes suffers, but while PAPE and 

TWO_Q have a drastic change, other codes experience a relatively modest one. 

Tile best codes in the first experiment are the worst by a wide margin in the second 

experiment. In particular, PAPE is the only code that ran over time limit on the second 

largest problem size. In the second experiment, TWO_Q performs much better than PAPE 

but much worse than the other codes. 

Tile performance of  BFP decreases by roughly a factor of  two, and the code remains 

uncompetitive with the best codes on this family. 

The performance of  DIKH decreases by' a factor that slowly grows with the problem 

size. This factor is about 2 for the smaller problem sizes and over 3 for the largest size. 

The performance of GOR and THRESH decreases by about a factor of  3. For the 

smaller problem sizes, THRESH is the fastest code m this experiment, but it loses to 

DIKBD on larger problems. Slightly slower than THRESH is GOR. 

For larger problems, DIKBD iS the fastest code in this experiment. Its performance 

decreases only by a factor of  about 1.5 on the largest problem size. On smaller problems 

the performance decreases by a factor of 4. 
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DNF 309.16 4.55 

489.18 2.27 
DNF DNF 19.46 

2.26 

Fig. 10. Grid-SSquare-S family data. 

6.2. Wide and long grids 

Next we examine  how the per formance  depends on the shape o f  the grid. We study 

two problem families,  Gr id -SWide  and Gr id-SLong.  The grids in the first family  have 

X = 16, i.e., the length o f  these grids is fixed and the width grows with the problem size. 

The grids in the second family have Y = 16 and their length grows with the problem 

size. 

The wide grids are easy for all a lgori thms,  as one can see in Fig. 11. The fastest 

codes for this p rob lem family are PAPE and TWO_Q, and all other  codes except  DIKH 

are within a factor o f  2 f rom the fastest codes. Even the slowest code, DIKH, loses by 

less than an order o f  magnitude.  
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Fig. 11. Grid-SWide family data. 

The  s i tua t ion  changes  on long  grids,  as can be seen in Fig. 12. The  mos t  affected code 

is BFP, wh ich  is very good  on wide  grids  but very bad on  long  grids,  where  it is the 

s lowes t  code  by a wide  margin .  The  p e r f o r m a n c e  o f  DIKH is also affected s igni f icant ly ;  

its p e r f o r m a n c e  improves ,  especia l ly  on big p rob lems .  

O the r  codes  are less affected:  the i r  r u n n i n g  t imes  change  by less than a factor  of  

4. The  p e r f o r m a n c e  o f  GOR, DIKBD, PAPE, TWO_Q, and THRESH improves ,  whi le  the 

p e r f o r m a n c e  of  GORI  degrades .  The  best  codes  for the wide  grids,  PAPE and  TWO_Q, 

remain  the  best  for the  long  grids.  
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number of nodes (logscale) 

nodes/arcs B F P  ooR I ~ o ~ ,  I D~K. I D,KB,. I PAPE I TWO-Q I THRES" I 
8193 

24576 
16385 
49152 
32769 
98304 
65537 

196608 
131073 
393216 
262145 
786432 
524289 

1572864 

0.28 
19.84 

1.26 
36.04 
5.07 

70,51 
20.89 

154.44 
120,33 
318.07 
689.46 
666.76 

DN~ 

0.03 
2.26 
0.07 
2.27 
0.18 
2.27 
0.33 
2.27 
0.67 
2.27 
1.52 
2.27 
3.03 
2.27 

0.11 0.05 0.05 0.02 0.02 0.03 
7.41 1.00 1.00 1.25 1.25 1.39 
0.29 0.10 0.10 0.03 0.04 0.07 
9.09 1.00 1.00 1.26 1.26 1.40 
0.82 0.23 0.22 0.10 030 0.14 
9.88 1.00 1.00 126 1.26 1.46 
1.78 0.48 0.45 0.22 0.23 0.31 

10.57 1.00 1.00 1.26 1.26 1.47 
4.12 0.97 0.92 0.45 0.45 0.62 

I 1.65 1.00 1.00 1.26 1.26 1.50 
9.92 1.93 1.82 0.94 0.96 1.38 

12.42 1.00 1.00 1.26 1.26 1.50 
18.25 3.85 3.68 1.73 1.82 2.48 
12.24 1.00 1.00 i .26 1.26 1,49 

Fig. 12. Grid-SLong family data. 

7.  H a r d e r  S P G R I D  p r o b l e m s  

The S P G R I D  generator  can also produce  networks with structure that is very different  

from the s imple  grids described in the previous section. As in the case o f  s imple  grids, 

the ne tworks  considered in this section consist  o f  layers and the source connected to the 

nodes o f  the first layer. Each layer is a s imple  cycle plus a col lect ion of  arcs connect ing  

randomly  selected pairs of  nodes on the cycle. The length o f  the arcs inside a layer is 

small and nonnegative.  There  are arcs from one layer to the next one, as in s imple  grids, 
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81'92 16384 32768 65536 131'072 262'144 
number of nodes (Iogscale) 

nodes/arcs m:p.- I I I 1 I I  O_Q I I 
8193 

63808 
16385 

129344 
32769 

260416 
65537 

522560 
131073 

1O46848 
262145 

2095424 

13.68 
390.13 

67.46 
799.87 
309.98 

I612.36 
DNF 

DNF 

DNF 

0.54 
16.90 

1.22 
17.98 
2.39 

17.87 
4.71 

17.84 
9.54 

17.98 
1 8 . 8 2  
17.82 

0.33 0.21 
11.66 1.00 
0.81 0.42 

12.52 1.00 
1.88 0.85 

13.07 1.00 
4.20 1.7 l 

14.01 I O0 
9.21 3.48 

14.73 1.00 
19.25 6.86 
15.12 1.00 

0.12 348.05 
1.00 14988.77 
0.26 589.40 
1.00 12694.03 
0.52 DNF 
1.00 
1.05 DNF 
1 0 0  
2.11 DNF 
I 00 
4.23 DNF 
1.00 

34.88 2.07 
ll08.89 57.55 

68.66 5.83 
1145.92 79.25 
149.19 25.73 

1190.10 178.42 
295.65 298.97 

1190.76 803.15 
584.69 DNF 

1t99.97 
DNF DNF 

Fig. 13. Grid-PHard fanlily data. 

bi, lt in addi t ion ,  there  are genera l ly  arcs f rom lower  to h ighe r  n u m b e r e d  layers.  For the 

G r i d - P H a r d  p r o b l e m s  the in te r - l ayer  arcs have nonnega t ive  length ,  and for G r i d - N H a r d  

p rob lems ,  nonpos i t i v e  length .  The  length  of  these arcs is se lected un i fo rmly  at r a n d o m  

from a wide  range  of  integers.  Addi t iona l ly ,  in the G r i d - P H a r d  p r o b l e m s  the l eng th  0t' 

an arc f rom layer xi to layer  x 2 is mul t ip l ied  by ( x 2  - x l ) 2  

The  G r i d - P H a r d  and Gr id-NHai 'd  ne tworks  are s igni f icant ly  more  compl ica ted  than 

s imple  grids.  For  exmnple ,  these  ne tworks  are non-p lanar .  A more  re levant  d i f fe rence  is 

a complex  layer  s t ruc ture  o f  these  ne tworks ,  which  has the p roper ty  tha t  a pa th  be tween  

two nodes  wi th  many  arcs is l ikely to have shor te r  length  than a path  wi th  fewer  arcs. 

This  makes  it diff icul t  to direct  the compu ta t i on  based on local  i n fo rma t ion ,  so some  
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81'92 16;84 32+68 65;36 131'072 261144 
numbei of nodcs (logscale) 

nodes/,:lrcs II I I I I  ~ T"  s't I 
8193 12.59 0.55 0.33 38.56 359.73 34.88 29.26 

63808 392.09 17.88 11.66 876.92 16092.24 1143.77 912.61 
16385 68.86 1.36 0.82 186.71 633.44 71.75 161.48 

129344 803.31 19.89 12.52 1850.02 13846.24 1187.05 1854.19 
32769 317.84 2.99 1.90 888.04 DNF 153.64 741.89 

260416 1619.02 20.66 13.07 3844,69 1231.74 3859,87 
65537 DNF 6.45 4.28 DNF DNF 305.02 DNF 

522560 21.30 14.01 1231.16 
131073 DNF 14.05 9.28 DNF DNF 609.94 DNF 

1046848 22.58 14.73 1239.82 
262145 DNF 29.38 19.34 DNF DNF DNF DNF 

2095424 23.47 15.12 

Fig. 14. Grid-NHard family data, DIKH exceeded tile tilne limit on ;ill problems. 

a lgor i thms  may  be forced to perform many re-scans.  

The  computat iona l  results  on the Grid-PHard fami ly  appear in Fig. 13. Only  four 

codes ,  GOR, GOR1, D1KH, and DIKBD, so lve  all problems  in this fami ly  wi th in  the t ime 

limit.  

Ti le  fastest c o d e  for this exper iment  is DIKBD, with DIKI-I c lo se  behind,  los ing  by 

less tllan a factor o f  2. The  running t ime o f  these  two  codes  s e e m s  to be c l o s e  to l inear 

in the number  o f  nodes  in Grid-PHard problems�9 The running t ime o f  GOR and TWO_Q 

also seerns to be c l o s e  to linear, but wi th  b igger  constant  factors. W h i l e  GOR is about 

five t imes  s l o w e r  than the Dijkstra's  codes ,  TWO_Q is two orders o f  magni tude  slower�9 

The  running t ime o f  GORI s e e m s  to grow a little faster than that o f  GOR. The  latter 
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code is a little slower on small problems but catches up on the biggest problems in our 

test. Both TIIRESt{ and BI=P exhibit clearly superlinear rates of  growth and exceed the 

time limit on the bigger problems. 

In this lest PAPE has the worst performance. In the set time, it is able to solve 

problems of  the two smallest sizes only, losing to the best code by three orders of  

magnitude. 

Fig. 14 gives results of  the Grid-NHard experiment. On this problem family, GORI 

and GOR are by far the best codes. 

R e m a r k  16, On all instances we tried, the number of scans done by GOR1 on Grid- 

NHard instances and the corresponding Grid-PHard ones are exactly the same. This code 

seems to be always able to figure out that the underlying problem structure is similar. 

The minor running time differences are mostly due to timing variations. 

Although the performance of BFP. PAPE, and Tw'O_Q codes is not exactly the same 

in this experiment as in the previous one, it is quite similar. Much worse performance 

is exhibited by THRESII, DIKBD, and DtKIf. The latter code is the worst, exceeding the 

time limit on all lest problems. 

One should note similar behavior of DIKBD and TIIRESH on Grid-NHard problems. 

Moreover. their behavior is analogous to BI-:P, that is, DIY-d3D and THRESH differ from 

BFI-, by, roughly the same factor for all problem sizes. (See the note at the end of  

Section 4.2 for information about how our implementations of  Dijkstra 's  algorithm deal 

with negative arc lengths.) 

8. Experiments with SPRAND families 

In this section we study performance of  the codes on graphs produced by the SPRAND 

generator. All  graphs we consider are constructed by creating a hamiltonian cycle and 

then adding arcs with distinct random end points. In our experiments we set the length 

of  the arcs on the cycle to 1 and pick the lengths of other arcs uniformly at random fi-om 

a certain interval. For all problem families except Rand-Len, this interval is [0, 10000].  

Note that if we were to pick the cycle arcs len,,ths~ in the same ways as the other arc 

lengths, the resulting graphs would be essentially random. We found, however, that the 

resulting problems were easy for all the codes. Setting the cycle arc lengths to I makes 

the problems more interesting and the experiments more insightful. 

8.1. Sparse and dense networks 

The graphs in Rand-4 family have m = 4n. These are sparse graphs. As one can see 

in Fig. 15, the Dijkstra 's  codes are the best on these problems, with DIKBD clearly 

the fastest code and DIKH slower by a factor of  about 2 for the smaller problems and 
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81'92 16384 32768 65536 131'072 262144 524'288 1048576 
number of nodes (logscale) 

II BFP I ooR I OoRI I D,K. I  ,,KBD I PAPE I TWO_Q I I 
8192 0.32 0.34 0.26 0.15 0.05 0.32 0.35 0.20 

32768 12.23 i4.58 I0.92 1.00 1,00 16.32 15.90 6.31 
16384 1.16 1.09 0.91 0.39 0.14 1.22 1.40 0.79 
65536 13.45 16.19 I 1.72 1.00 1.00 20.14 18.83 7.22 
32768 3.41 2.99 2.56 0.98 0.40 3.56 3.98 2.40 

131072 13.73 16.47 12,00 1.00 1.00 20.08 1938 7.22 
65536 9.37 8.03 7.09 2,47 0.97 10.60 11.39 7.12 

262144 15.51 18.21 13,29 1.00 1.00 25.16 23.38 8.56 
131072 23.20 19.04 15.91 5.87 2.23 25.45 28.06 17.45 
524288 16.75 19.48 14.15 1.00 1.00 27.31 26.07 9. I6 
262144 51.39 42.74 33,81 13.15 4.79 54,73 61.36 40.43 

1048576 17.61 20.76 14.62 1.00 1.00 27.80 26.95 10.02 
524288 109.36 89.36 71.58 29.28 10,11 118.04 134.44 86.66 

2097152 18.19 21.02 15.02 1.00 1.00 28.91 2841 10.09 
1048576 235.63 194.31 143.54 63.27 21.09 257.31 302.76 186.23 
4194304 19.12 22,40 15.18 1.00 1.00 31.23 3070 10.56 

Fig. 15. Rand-4 family data. 

a f ac to r  o f  abou t  3 l b r  t he  b i g g e r  p r o b l e m s .  O t h e r  c o d e s  are  n o t i c e a b l y  s lower ,  w i th  

TWO_Q and  PAPE b e i n g  the  s l owes t .  

Ti le  g r a p h s  in R a n d - l : 4  f ami ly  have  m = n2/4.  T h e s e  are  d e n s e  g raphs .  As  o n e  can  

see  in F ig .  16, t he re  is l i t t le  d i f f e r e n c e  in re la t ive  p e r f o r m a n c e  o f  the  c o d e s ,  e x c e p t  

DIKH i m p r o v e s  re la t ive  to DIKBD and  b e c o m e s  the  fas tes t  c o d e ,  a l t h o u g h  DIKBD iS 

o n l y  s l i gh t l y  s lower .  
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512 0.09 
65536 532 

1024 0.46 
262144 510 

2048 1.97 
1048576 4.65 

4096 8.37 
4194304 4.65 

0.13 0.12 
791 6.22 
0.70 0.59 
791 6.2I 
3.07 2.71 
7.23 6.01 

13.45 11.41 
7.24 5.87 

0.02 0.02 
11)0 I O0 
0.11 0.12 
1.0O 1.00 
0.48 0.49 
1.00 1,00 
1.95 2.02 
1,00 1.00 

0.15 0.16 0.08 
9.03 8,70 4.26 
0.76 0.79 0.46 
9.11 8.88 4.78 
3.39 3.53 1.94 
8.43 8,33 4.45 

16.18 16.51 9.21 
9.12 8.92 4.99 

Fig. 16. Rat, d- 1:4 family data. 

8.2. D e p e n d e n c y  on arc lengths  

All p r o b l e m s  in the  R a n d - L e n  family  are the same except  for the  interval  f rom wh ich  

the arc l eng ths  are selected.  The  arc length  is lixed to l for the  first p rob l em in the 

family and se lected f rom an interval  [0,  U] for the o ther  p rob lems .  See Fig. 17. No te  

that because  the l eng ths  o f  the  arcs on the cycle  are sot to 1, the s t ructure  o f  the shor tes t  

paths  tree changes  as U increases .  For b igger  values of  U, the cycle  arcs are m o r e  l ikely 

to be in the tree and the  tree is l ike ly  to be taller. 

On the unit  l ength  p rob lems ,  BFP, DIKH, DIKBD, PAPE, TWO_Q, and TI-IRESl] m a k e  

one  scan per  node.  T he  r u n n i n g  t imes  o f  BFP, PAPE, and TWO_Q are the fastest  ( and  

a h n o s t  the  s a m e ) .  O the r  codes  that pe r fo rm well  are GOR, DIKH, DIKBD, and THRESH. 

These  codes  lose to the  fastest  codes  by less than a factor  of  2. The  wors t  code,  GORI ,  

loses by abou t  a factor  o f  5. 
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I 10 1 O0 10000 1000000 
bound on arc lengths 

IL, UI II BFP I GO~ I GO~II  ~,~H I D ~ D  I ~ A ~  I TWO-Q I T ~ S .  I 
[ 1. I ] 1.50 2.31 6.43 2.71 1.77 1.45 1.49 2.16 

1.00 1.6 t 4.48 1.00 1.00 1.00 1.00 1.00 
[ 0, 10 ] 4.12 5.22 7.97 3.88 2.07 3.39 3.50 2.30 

2.67 4.36 5.94 1.00 1.00 2.85 2.84 1.01 
[0, 100[ 9.03 9.71 10.16 4.66 2.18 8.29 8.99 4.24 

6.15 8.93 8.21 1.00 1,00 8.07 8.05 1.78 
[ O, 100001 23.17 19 .01  15.67 5.80 2.23 24.99 27.97 17.12 

16.75 19 .48  14.15 1.00 1.00 27.31 26.07 9.16 
I o, 1000000 ] 35.09 26.27 11.99 6.23 2.23 41.76 43.64 27.25 

26.77 2 7 . 9 6  12.26 1.00 1.00 47.60 41.89 16.03 

Fig. 17. Rand-Len family data. All problems have 131 072 nodes and 524288 arcs. 

As the length range expands,  the a lgor i thms become slower. DIKBD shows very little 

dependence  on the arc length range and is the fastest except for the unit length case. 

Thc per formance  o f  GOR1 and DIKH is also affected very little. Other  codes,  however,  

are s ignif icant ly affected;  their  per formance  decreases by over  an order  o f  magni tude  

for the [0, I 0000001 length range (compared  to the unit length case) .  

8.3. Node potentials 

The problems in the Rand-P family are the same except  tile length funct ion [ is 

modi l ied  by assigning to each node t, a potential  p(c')  chosen uni formly at random 

I)-om the interval [0, P ]  and replac ing g by the reduced cost function gl,, see Fig. 18. 
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bound on node potentials 

I P II '~)" I ooR I ~-~oRi I o ,K.  I D , ~ D  I P,,~E 1 TwO_Q I T .R~- -  I 
O 23.18 19.04 15.68 5.82 2.24 25.00 27.98 17.17 

16.75 19.48 t4.15 I O0 1.00 27.31 26.07 9.16 
IO00 23.18 18.35 15.67 8.36 2.48 25.00 27.96 15.80 

16.75 18.89 14,15 1.28 1.28 27,31 26.07 7.77 
5000 23.18 18.62 15.68 15.96 4.95 25.02 27.97 16.45 

16.75 19.21 14.15 2.99 2.99 27.31 26.07 8.00 
10000 23.18 18.83 15.67 26.33 8.57 24.99 27.97 17.45 

16.75 19.42 14, I5 5.55 5.55 27.31 26.07 8.49 
100000 23.18 19.33 15.66 95.49 33.23 24.99 27.97 44.33 

16.75 19.76 14.15 23.72 22.85 27.31 26.07 20.86 
100(3{)00 23.2I 19.43 15.68 137.67 44.42 25.05 28.02 56.53 

16.75 19.78 14.15 33,80 30.44 27.31 26.07 26.77 
5000000 23.18 19.211 15.65 147.31 46.32 25.01 28.00 58.88 

16.75 19.53 14.15 35.93 31.40 27.31 26.07 27.88 

Fig. 18. Rand-P family data. All problems have 131 072 nodes and 524288 arcs. 

( F o r  P = 0, t h e  p r o b l e m s  a re  t he  s a m e  as t h e  131 0 7 2  n o d e  p r o b l e m s  o f  t h e  R a n d - 4  

f a m i l y . )  W h i l e  g is n o n n e g a t i v e ,  g~, c an  t ake  on  n e g a t i v e  v a l u e s .  H o w e v e r ,  fo r  s m a l l  P ,  

t he  e x p e c t e d  f r a c t i o n  o f  n e g a t i v e  l e n g t h  a rcs  is s m a l l .  

N o t e  tha t  BFP, G O R I ,  PAPE,  a n d  T W O _ Q  m a k e  t he  s a m e  n u m b e r  o f  s c a n s  r e g a r d l e s s  

o f  file p o t e n t i a l s .  T h i s  o b s e r v a t i o n  is j u s t i f i e d  by  T h e o r e m  17. 
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9. Experiments with SPACYC families 
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In this section we study performance of  the codes on acyclic networks. The shortest 

paths problem on an acyclic graph can be solved in linear time (see e.g. [4] )  and the 

experiments of  this section include a linear time algorithm for acyclic graphs, ACC. 

Experiments with acyclic graphs are interesting for several reasons. Shortest paths 

problems in acyclic graphs come tip in applications, such as PERT network analysis 

(see e.g. [22]) .  Furthermore, some networks that come up in applications have large 

acyclic subgraphs (e.g. electric networks) and an algorithm that behaves poorly on 

acyclic networks is likely to behave poorly on networks with large acyclic subgraphs. 

Acyclic networks are also easy to use in certain experiments because negative length 

cycles are not a problem for these networks. 

The networks used in the experiments of this section are produced by the SPACYC 

generator in the following way. The nodes are numbered from I to n, and there is a path 

of  arcs (i, i + 1), 1 ~< i < n. These arcs are called the path arcs. Additional arcs are 
generated by picking two distinct nodes at random and creating an arc from the lower 

to the higher numbered node. The lengths of  the additional arcs are selected uniformly 
at random from the interval [L, U]. 

9. I. Positive arc length 

For the Acyc-Pos family, the length of the path arcs is set to 1 and the other arc 
lengths are selected tu the interval [0, 10000].  The unit length of the path arcs 

makes these problems more difficult for some of  the codes. Fig. 19 shows how the 

codes perform on this problem family. 

The fastest codes for this family are DIKBD and ACC. These codes perform similarly, 

but the former is a little faster on bigger problems, in spite of the fact that ACC is 

especially designed for acyclic graphs. These two algorithms make the same number 

of  scans; the additional overhead of ACC is a topological sort of  the graph and the 

additional overhead of  DIKBD is in maintaining the bucket data structure. It turns out 

that lhe latter overhead is smaller than the former for large Acyc-Pos problems. The 
performance of  GOR1 is only slightly worse than that of  ACC; DIKH also performs well, 

losing to DIKBD by about a factor of two. 

The other codes are an order of magnitude slower than the fastest ones. Worst per- 

formers are GOR, PAPE, and TWO_Q. 

9.2. Negative arc len, gth 

For the Acyc-Neg family, the path arc length is set to -1  and the other arc lengths 

are selected uniformly at random from the interval [ - 1 0 0 0 0 , 0 ] .  We would like to note 

that Acyc-Neg problems are very natural. For exarnple, to solve a problem of finding 

a longest path in an acyclic graph, one negates arc lengths and looks for a shortest 
path. In applications such as PERT, lengths we nonnegative, and the resulting problems 
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81'92 16384 32768 65536 131'072 
number of  nodes (Iogscale) 

nodeslarcs II a ~  I ~ I ~o~ I Go . l  I ~ , ~ .  I ~ ' ~  I ~A,>~ I ~ O - Q  I T ~ S ~  I 
8192 0.13 0.64 0.80 0.14 0.26 0.13 0.63 0.72 0,35 

131072 1.00 880 12.51 2.00 1.00 1,00 11.87 11.63 5.15 
16384 0.33 1.93 2.49 0.39 0,66 0.33 1.87 2.23 1,10 

262144 1,00 9.76 14.52 2.00 1.00 1.00 13,92 13.50 5.78 
32768 0.90 5.97 6.95 1.12 1.64 0.89 5.51 6.52 3.19 

524288 1.00 10.09 14.55 2.00 1.00 1.00 14.33 14,22 5.89 
65536 2.65 18.58 23.66 2.99 4.11 2.40 18.38 19.72 9.84 

1048576 1.00 11.36 17.23 2.00 1.00 1.00 15,47 15.17 6,60 
131072 6.54 42.86 54.96 7.24 9.67 5.38 46.43 48.66 23.39 

2097152 1.00 11.44 16.78 2.00 1.00 1.00 16.29 15.87 6.53 

Fig. 19. Acyc-Pos family data, 

are similar to the Acyc-Neg problems. Fig. 20 shows how the codes perform on this 
problmn family. 

In this experiment, ACC and GORI pertorm similarly to the previous experiment, and 
GOR performs better than in the previous experiment, matching GOR1. 

All other codes perfoml worse by a very wide margin. Within the time limit, BFP 
finishes on three smallest problem sizes, TItRESH, DIKI3D, and TWO_Q o n  two, D1KH 
and PAPE only on one. 

9.3. Variable fraction qf negative arcs 

The previous experinaents with acyclic graphs show that performance of many algo- 
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81'92 16384 32+68 65;36 131'072 
number of nodes (Iogscale) 

8192 0.13 24.12 0.18 0.17 1047.35 54.60 185 .55  154.47 66.83 
131072 1.00 466.95 2.00 2.00 9037.71 964 .79  6188.81 4590.70 1453.33 
16384 0.33 123 .98  0.42 0.42 DNF 266,25 DNF 8 2 3 . 4 1  325.61 

262144 1.00 887.44 2.()() 2.00 1841.51 9699.84 2797.25 
32768 0.97 618.04 1.17 1.15 DNF DNF DNF DNF DNF 

524288 1.00 1724.82 2.00 2.00 
65536 2.87 DNF 3.41 3.28 DNF DNF DNF DNF DNF 

I (148576 1.00 2.00 2.00 
131072 7,44 DNF 8.65 8.51 DNF DNF DNF DNF DNF 

2097152 1.00 2.00 2.00 

Fig. 20. Acyc-Neg family data. 

r i thms changes dramat ical ly  if  arc lengths in an acyclic graph are negated. We study 

this phenomenon  further by varying the fiaction of  negative length arcs. 

For the A c y c - P 2 N  family,  the problem size is fixed and all arc lengths are selected 

uni formly  at random from the interval [L,  U] ,  where the values o f  L and U determine  

the expected fi'action f of  negative length arcs. Note  that unl ike the previous exper iments  

with acyclic networks,  the path arc lengths are random in this experiment.  

Fig. 21 summarizes  tile resulls. As expected fi:om theory and the previous experi-  

ments, the per formance  o f  ACC and GORI shows ahnost  no dependence  on f .  Also  as 

expected,  the implementa t ions  ol' Di jkst ra ' s  a lgor i thms perform poorly  when the fraction 

o f  negative length arcs is large. 
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percentage of negative arcs 

1 I 'cm' II .,,c~ I ~o~ I I ')~" I D,KBD [ PAPE I TWO-Q l T"R~SH I 
l) 0.35 0.35 

1.00 1 66 
I 0 0.35 0.44 

1.00 2.21 
2{) 0.36 1.03 

1.00 6.78 
30 11.37 3.88 

1.00 28.65 
40 0.38 23.62 

1.00 179.75 
5{) 0.37 135.64 

I00 1056.25 
6(/ 0.40 285.63 

1.00 2149.88 
100 0.38 313.34 

100 2349.75 

0.56 
2.61 
0.60 
3.{}1 
1.01 
6.29 
1.86 

12.49 
3.50 

22.81 
4.99 

30.81 
5.29 

33.52 
0.43 
2.0{) 

0.38 0.45 02t2 0.39 0.41 0.30 
2.00 1.00 1.00 1.83 1.83 I 01 
0.39 0.51 0.32 0.49 0.50 0.32 
2.00 1.14 1.14 2.64 2.64 1,29 
0.39 2.07 1.05 1.25 1.36 1.05 
2.00 6.58 7.28 10.92 10.53 7.06 
0.41 17.13 5.71 5.78 6.28 5.30 
2.00 63.54 41.3 [ 69.27 59.79 40.28 
0.42 257.13 44.78 66.90 59.80 42.87 
2.00 978.74 325.84 940.89 641.19 339.58 
0.43 DNF 337.62 874.90 742.54 355.35 
2 00 2450.04 12088.96 9510.17 2862.66 
0.43 DNF 843.39 DNF DNF 754.70 
2.00 5634.02 5918.05 
0.43 DNF 11178.63 DNF DNF 939.29 
2.00 6975.15 7114.46 

Fig. 21. Acyc-P2N hamily data. 

P e r f o r m a n c e  o f  PAPE and  TWO_Q in this  test  is s imilar .  T h e  p e r f o r m a n c e  d e g r a d e s  

d r a m a t i c a l l y  as the  f r ac t ion  o f  nega t ive  l e n g t h  arcs  increases .  P e r f o r m a n c e  o f  BFP and  

Tla~RESH a l so  s i gn i f i c an t l y  d e g r a d e s ,  a l t h o u g h  no t  as d rama t i ca l ly .  

P e r f o m l a n c e  o f  GOR d e g r a d e s  s o m e w h a t  unti l  the  f r ac t ion  o f  n e g a t i v e  l e n g t h  arcs  

b e c o m e s  very  large,  at w h i c h  p o i n t  the  p e r f o r m a n c e  i m p r o v e s .  
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number of nodes (logscale) 

nodes/arc, II DIK. I D KF I I,.KR [ D.KB I D.KBM I I D KBD I 
8 t93 0.08 0.14 0.09 0.05 

24576 1.00 1.00 1.00 1.00 
16385 0.20 0.35 0.22 0.08 
49152 1.00 1.00 1.00 1.00 
32769 0.50 0.87 0.50 0.22 
98304 1.00 1.00 1.00 1.00 
65537 1.29 2.17 1.13 0.53 

196608 1.00 1.00 1.00 1.00 
131073 3.58 5.41 2.73 1.32 
393216 1.00 1.00 1.00 1.00 
262145 9.76 13.95 6.80 3.27 
786432 1.00 1.00 1.00 1.00 
524289 23.68 33.32 15.83 7.57 

1572864 1.00 1.00 1.00 1.00 

0.05 
1.00 
0.11 
1.00 
0.27 
1.00 
0.62 
1.00 
1.52 
1.00 

3.91 
1.00 
9.24 
1.00 

0.03 0.05 
I 0 0  ! 00 
0.07 0.10 
1.00 1.00 
0.22 0.26 
1 0 0  1.00 
0.53 0.59 
1 0 0  1.00 

1.30 1.45 
1.00 1.00 

3.16 3.53 
1.00 1.00 
7.03 7.94 
1.00 1.00 

Fig. 22. Performance of Di.jkstra's implementations on Grid-SWide problems. 

10. E x p e r i m e n t s  w i th  v a r i a t i o n s  o f  D i j k s t r a ' s  a l g o r i t h m  

The above exper iments  involve two implementa t ions  o f  Di jks t ra ' s  a lgori thm, the "clas- 

sical" k-m'y heap implementa t ion  D1KH and our double  bucket implementa t ion  DIKBD. 

In this section we compare  these implementa t ions  with several other  implementa t ions  on 

problem families  Gr id-SWide ,  Gr id -SLong ,  Gr id-SSquare-S,  Grid-PHard,  and Rand-Len.  

The p rob lem famil ies  are chosen to emphas ize  differences in the codes '  performance.  

The addit ional  implementa t ions  we evaluate are the R-heap implementa t ion  DIKR, the 
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393216 
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0.05 
1.00 
O.lO 
l O0 
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1.00 
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I O0 
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1.00 
1.93 
1.00 
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1.30 0.28 
1 O0 1.00 
2.62 0.58 
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5.45 1.17 
1.00 i .00 

10.52 2.33 
1.00 1.00 

21.03 4.68 
1.00 1.00 
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1 O0 1 O0 I O0 
I).19 0.17 0.73 
I O0 I O0 1.00 
0.42 0.37 1.47 
1.00 1.00 1.00 
0.90 0.75 2.95 
1.00 1.00 1.00 
1.80 1.49 6.06 
I A)O 1.00 1,00 

3.65 2.98 11,99 
1 .()0 1.00 1.00 
7.48 5,96 23.67 
1.00 1.00 1.00 

0.05 
1.00 
0.10 
1.00 
0.22 
1.00 
0.45 
1.00 
0.92 
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1.00 
3.68 
1.00 

Fig. 23. Performance of DijksmKs implemenlations on Grid-SLong problems. 

F ibonacc i  heap  i m p l e m e n t a t i o n  DIKF, Dia l ' s  i m p l emen ta t i on  DIKB, the overf low bag  

i m p l e m e n t a t i o n  DIKBM, and the app rox ima te  bucket  i m p l e m e n t a t i o n  DIKBA. 

Fig. 22 p resen t s  data  ['or the G r i d - S W i d e  family. Here DIKBA pe r fo rms  best ,  w i th  

DIKB, D1KBD, and  DIKBM c lose  beh ind .  Note  that  DIKBA makes  only  one  scan per  

node  on  these  p rob lems .  The  heap  i m p l e m e n t a t i o n s  DIKR and DIKH are s o m e w h a t  

s lower  than the bucket  i m p l e m e n t a t i o n s ,  with  DIKR is a l i t t le faster  than DIKII except  

for tile sma l l e r  p rob l em  sizes. T he  s lowest  code in this  test is D1KF. 

Fig. 23 p resen t s  data  for the G r i d - S L o n g  family. On this  family, DIKIq and DIKBD 
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~odes/a,  cs H D i m  [ DIKF I D'K~ I ~ '~" '~ '  I O I ~ A  t ~  I 
4098 0.07 0.07 0.05 0.15 0.03 0.08 

16385 1.00 1.00 1.00 l.O0 1.82 1.00 
16386 0.34 0.37 0.24 0.41 0.13 0.23 
65537 1.00 1.00 1.00 1.00 1.75 1.00 
65538 1.85 2.00 1.13 1.95 0.65 0.83 

262145 1.00 1.00 1.00 1.00 1.72 1.00 
262146 10.29 9.51 4.87 17.03 2.92 3.09 

1048577 1.00 1.00 1.00 1.00 1.70 1.00 
1048578 53,86 45.60 21 .62  129.90 12.88 12.78 
4194305 1.00 1.00 1.00 1.00 1.70 1.00 

Fig. 24. Performance of Di.jkstra's implementations on Grid-SSquare-S problems. On thcse problems. DIKB 
requires Too really buckets and does not run. 

are the fastest codes. The third-fastest code is DIKBA, with DIKR close behind it and 

not far behind the fastest codes. Only sl ightly s lower  than DIKR is DIKF. The remaining 

two codes,  D1KB and DIKBM, are significantly slower. 

Fig. 24 presents data for the Gr id-SSquare-S  family. Here  DIKBA performs best and 

D1KBD is somewhat  worse  on smaller  problems but catches up with DIKBA on the larger 

problems.  The  code DIKR is somewhat  slower;  DIKF and DIKH are significantly s lower 

than the fastest codes,  and DIKBM is s lower than DIKH. 

Fig. 25 presents data for the Gr id-PHard  family. Here D,tKR performs best, with DIKBD 

a very close second. Another  code that does very well on these problems is DIKBM. 

The per formance  o f  DIKtt and DIKF is reasonably good,  and these codes perform very 

similarly. The  worst  code,  DIKBA, loses to tile best by about a factor o f  3. 
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1.00 l O0 1.00 1.00 6.50 I O0 
0.42 0.42 0,25 0.28 0.74 0.26 
1.00 1.00 1.00 1.00 6.42 1.00 
0.85 0.88 0.52 0.58 1.53 0.52 
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1.71 1.75 1.04 1.17 3.04 1.05 
1.00 1 00 I O0 1.00 6.47 1.00 
3.48 3.57 2.08 2.30 6.12 2.11 
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6.86 7.13 4.16 4.59 12.21 4.23 
1.00 l O0 l O0 I O0 6.47 1.00 

Fig. 25. Performance of Dijkstra's implementations on Gdd-PHard problems. On these problems, DIKB requires 
too many buckets and does not run. 

Fig. 26 p resen t s  da ta  for  the  R a n d - L e n  family. On p rob l ems  wi th  smal l  lengths ,  DIKB, 

DIKBA, and  DIKBD are the  fastest  codes  and on p r o b l e m s  wi th  big  lengths ,  DIKBM is 

the fastest.  However ,  the d i f fe rence  a m o n g  all these  codes  is smal l ,  except  tha t  DIKB 

exceeds  its l imit  on  the n u m b e r  of  bucke t  and does  not  run  on the  p r o b l e m s  wi th  the  

b igges t  arc l eng th  range.  S o m e w h a t  s lower  than the  fastest  codes  is DIKH. The  code  

DIKF is the s lowest  except  on  the p r o b l e m  wi th  the b igges t  arc lengths ,  whe re  it is the  

second  slowest .  
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I I, l ] 2.71 4.01 2.16 1.61 2.14 1.62 1.77 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 

[0, 101 3.88 4.34 2.51 1.91 2.14 1.91 2.07 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 

I 0, 1001 4.66 5.45 2.67 2.18 2.03 2.20 2.18 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 

[ 0, 10000] 5.80 6.07 2.48 2.44 2.07 2.30 2.23 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 

10, 1000000 ] 6.23 5.35 2.33 DNF 1.73 2.27 2.23 
1.00 1.00 1.00 1.00 1.05 1.00 

Fig. 26. Performance of Dijkstra's implementations on Rand-Len problems. All problems have 131072 nodes 
and 524288 arcs. For the largest length interval. DIKB requires too many buckets and does not run. 

11. A theo re t i c a l  r esu l t  

Our exper imental  data mot ivated an interesting theoretical discovery which we de- 

scribe in this section. We say that two instances o f  the shortest path p rob lem are 

e q u i v a l e n t  if  the under ly ing  networks,  including their representations,  are identical and 

the two length functions,  g' and g", satisfy t~ = g" for some potential  funct ion d. ( I f  

networks are given in the adjacency list representations,  identical representat ions have 

the cor responding  nodes and arcs appearing in the same order.) A labeling shortest  

paths a lgor i thm is p o t e n t i a l - i n v a r i a n t  i f  it performs the same sequence o f  node scans on 

two equiva len t  p rob lem instances,  Fig. 18 shows that GOR, DIKH, DIKBD, and THRESH 

algor i thms are not potent ial- invariant  and suggests  that the other  a lgor i thms in the figure 
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are potential-invariant. 

Theorem 17. Algorithms BF, BFP, GOR I, PAPE, and Tvv'O_Q are potential-invariant. 

The proof of  this theorem is straightforward from the following lemma. The lemma 

follows from the fact that replacing arc lengths by reduced costs with respect to a 

potential function does not change the difference in lengths of two paths between the 

same pair of nodes. 

L e m m a  18. [/" on any fixed represetttation of  a graph the behavior Of a labeling algo- 

rithm depends only oli the relative lengths o f  pat/zs.fi'om the source node to other nodes, 

thaH the algorithm i,s" potential-invariant. 

Note that GOR is not potential-invariant because, for example, during the first depth- 
first search an arc may or may not belong to the admissible graph depending on its 

input length. 
Theorem 17 is powerful and useful. For example, it shows that no heuristic for comput- 

ing a "'good" initial potential function can improve performance of a potential-invariant 

algorithm such as BF. Note that any feasible shortest paths problem has an equivalent one 

with nonnegative arc lengths. If the problem with nonnegative arc lengths is computa- 
tionally simpler than the general problem, the theorem suggests that a potential-invariant 

algorithm cannot be supe,ior to all other algorithms on problems with nonnegative arc 

Iengtlns. 

12. Summary of experimental results 

In this section we summarize and discuss performance of  the algorithms we study. 

For each problem class, we give two scores to each implementation. Recall that the 

classes are parameterized (by network size, length function range, etc.). The first score 

is for performance on the problems with the smallest parameter value, and the second 
score is for the problems with the largest parameter value. Scores are integers from 0 to 

5 c()mputed as follows. Let t be tile running time of the fastest algorithm for the given 

class and parameter value and let T be tile time of the algorithm we are evaluating. We 
compute g = 5 - Iog4(T/t) and round g to 0 if g is negative and to the nearest integer 

otherwise. Thus the fastest algorithm gets 5 points, and other algorithms lose a point 

for each factor of 4 in their running time. If an algorithm did not terminate within the 

CPU limit, it gets 0 points. 
Fig. 27 gives the scores for BFP, GOR, GORI, DIKIt, DIKBD, PAPE, TWO_Q, and 

TllRESH. Note that some experiments involve other codes, which may determine t in 

our score computation. Fo," example, the ACC code is the best for small problems in 

Acyc-Pos family: see Fig. 19. 
Fig. 28 gives the scores for implementations of Dijkstra's algorithms in our additional 
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Problem class BFP GOR GORI D1KH DIKBD PAPE TWO_Q THRESH 

Grid-SSquare 5 5 4 4 5 5 5 5 
2 5 3 4 4 5 5 5 

Gfid-SSquare-S 5 5 5 4 4 3 4 5 
3 5 4 4 5 0 0 5 

Grid-SWide 5 5 4 4 4 5 5 5 
5 5 5 4 5 5 5 5 

Grid-SLong 3 5 4 4 4 5 5 5 
0 5 3 4 4 5 5 5 

Grid-PHard 2 4 4 5 5 0 1 3 
0 4 4 5 5 0 0 0 

Grid-NHard 2 5 5 0 2 0 2 2 
0 5 5 0 0 0 0 0 

Rand-4 4 4 4 4 5 4 4 4 
3 3 4 4 5 3 3 3 

Rand-l:4 4 4 4 5 5 4 4 4 
4 4 4 5 5 3 3 4 

Rand-Len 5 5 4 5 5 5 5 5 
3 3 4 4 5 3 3 3 

Rand-P 3 3 4 5 5 3 3 4 
5 5 5 3 4 5 5 4 

Acyc-Pos 4 4 5 4 5 4 4 4 
4 3 5 5 5 3 3 4 

Acye-Neg 1 5 5 0 1 0 0 I 
0 5 5 0 0 0 0 0 

Acyc-P2N 5 5 5 5 5 5 5 5 
0 5 5 0 0 0 0 0 

Fig. 27. Performance scores for the main experimenls. The upper score is for the smallest parameter value, 
lhc lower score fl~r the largest value. 

exper iments .  Again ,  the value of  t used to compu te  the scores is de te rmined  by the 

fastest o f  all the a lgor i thms  we evaluated, including those not l isted in the figure. We 

give a score  o f  0 to the DIKB implementa t ion  when it requires too many buckets  to run. 

Next  we discuss  pe r fo rmance  o f  individual  a lgori thms.  

12. l. B e l l m a n - F o r d - M o o r e  algori thm 

I11 this sect ion we  discuss  the BlzP code.  This discussion also appl ies  to BF. 

Theorem 1 sugges ts  that the number  o f  passes of  BFP depends  on the depth  of  the 

shortest  paths  tree. The wide  and long grid exper iments  (Figs.  l l and 12) show how 

much the tree depth  affects the per lo rmance .  For the wide grids, the tree is l ikely to be 

very shallow, whi le  for the long grids with n + 1 nodes  the tree depth must  be at least 

n /16 .  The pe r fo rmance  d i f ference  is as the theory suggests:  BFP is asymptot ica l ly  much 

faster on the wide  grids than on the long ones.  

The number  of  node  scans is usually a good measure  of  pe r fo rmance  o f  BF and BFP. 
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Problem class DIKH DIKF DIKR DIKB DIKBM DIKBA DIKBD 
Grid-SSquare-S 4 4 5 0 4 5 4 

4 4 5 0 4 5 5 

Glid-SWide 4 4 ,4 4 4 5 4 
4 4 4 5 4 5 5 

Grid-SLong 4 4 4 3 3 4 4 
4 4 4 3 3 4 4 

Grid-PHard 5 5 5 5 5 4 5 
5 5 5 5 5 4 5 

Rand-Len 5 4 5 5 5 5 5 
4 4 5 0 5 5 5 

Fig. 28. Perfl~rmance scores of Dijkstra's algo,ithm implemenlalions. The upper score is for the smallest 
parameter vahie, the lower score--for lhe largest value. 

The number of scans depends on both the number of passes over the queue (related to 

the shortest paths tree depth) and on the average number of nodes scanned during a 

pass. Our parent-checking heuristic tries to reduce the latter parameter. 

On problems with unit arc lengths, BF behaves like breadth-first search and does one 

scan per node reachable from the source, and BFP behaves in exactly the same way but 

is slightly slower because of the parent checks (which always come out negative). See 

Fig. 5. The number of scans does not depend on the number of passes; if the number 

of passes is large, the average number of nodes in the queue is small. 

The Belhnan-Ford-Moore  algorithm works well on networks with small shortest paths 

tree depth. This algorithm also works well on networks with highly "metric" arc lengths, 

such as small nonnegative lengths. (See Section 12.3 for a discussion of "metric" length 

functions.) In general, however, the algorithm does not perform very well relative to 

the best codes. It performs especially poorly on Grid-SLong, Grid-PHard, Grid-NHard, 

and Acyc-Neg problem families. We note that GOR never loses to BFP by more than a 

factor of 2 in our experiments and performs reasonably where BFP does poorly. 

12.2. D(jkstra's  algori thm 

First we discuss relative performance of the implementations of Dijkstra's algorithm 

on networks with nonnegative length functions (Figs. 23-26) .  On these networks, all 

imt~len~entations we consider except for DIKBA do one scan per node reachable from 

the source. The difference in the running time of these implementations is due to the 

different work involved in selecting a labeled node with the minimum distance label. 

Note that on dense graphs this work is small compared to the work involved in the node 

scans, so the code performance is nearly identical. (Compare DIKH and DIKBD on the 

Rand-1:4 family.) 

The k-ary heap implementation, DIKIt, is the second-worst on Grid-SWide, Grid- 

SSquare-S, and Rand-Len problems. This is because the heap operations are relatively 

expensive unless the number of elements on the heap is small. The number of elements 

on the heap is large on Grid-SWide and Grid-SSquare-S problems and small on Grid- 
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SLong problems. On the latter problems, the implementation works very well, being 
just a little slower than the fastest code. The implementation performs reasonably on 
Grid-PHard problems. 

The R-heap implementation, D1KR, is usually better than the DIKH implementation ex- 
cept on GRID-SLONG family. This implementation is the best on Grid-PHard problems. 
The implementation, however, is noticeably worse than the best ones on Grid-SWide 
and Grid-SSquare-S problems. 

The Fibonacci heap code, D~V, is usually slower than the DIKH code and is always 
slower than DIKR in our tests. 

The potential for large memory requirements is one of the problems of the bucket im- 
plementation DIKB. Because of this, the implementation does not run on Grid-SSquare-S 
problems, Grid-PHard problems, and the Rand-Len problems with the biggest length 
range. Another problem of this implementation is that it may examine a large number 

of empty buckets. This is the case, for example, on Grid-SLong problems, where DIg~ 
is the slowest code. The code worked reasonably well on Grid-SWide and Grid-PHard 
families, and on those Rand-Len problems on which it ran. 

The drawback of the overflow bag implementation, DIKBM, is that the bag size can 
be large and the bag may be examined many times. This happens on Grid-SSquare-S 
problems where all nodes (except lor the source) are placed in the bag at the beginning 
of the computation and relatively few are removed at each stage. This also happens on 

Grid-SLong problems where the graph has long paths. The implementation performs 
poorly on these problems. The implementation works very well on Rand-Len problems, 
and reasonably well on Grid-SWide and Grid@Hard problems. 

The D~KBA implementation works very well on all the problem families except Grid- 
PHard. Unlike DIKB, this implementation has to look at fewer buckets. On the negative 
side, nodes may be scanned more than once, but on most of our problem classes the 
number of scans per node is small. Grid-PHard problems have many arcs of small 
length and DIKBA makes about 6.5 scans per node on these problems. As a result, 
D1KBA performed poorly on this family. 

The DIKBD IS the best or nearly the best code on all problems except Grid-SSquare-S 
problems of small sizes, where it is slower than DIKBA. But even on these problems 
DIKBD loses by less than a factor of 3. This code works well because if a high-level 
bucket is empty, the code skips it, and if the bucket is full, the code deals with it in a 
way Ihat is in general more efficient compared to DIKBA. The reason for the relatively 
poor performance of DIKBD on small Grid-SSquare-S problems is Ihat the value of 

C is very large only because of the artificial arcs, and the choice of A made by the 
implementation is much larger than it should be ideally. As a result, on small problems 
the work involved in examining empty buckets dominates. 

The DIKBD code is the best overall implementation of Dijkstra's algorithm in our 
study. If the length function is nonnegative, DIKBD performs well. It is fastest or nearly 
fastest on the Grid-PHard, Rand-4, Rand-1:4, Rand-Len, Acyc-Pos families and the large 
Grid-SSquare-S problems. On other problems with nonnegative arc lengths, DIKBD is 
always within a factor of 4 from the fastest code. 
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Oil problems with many negative arcs DIKBD may be extremely slow (see the results 

for Glid-NHard and Acyc-Neg problems). However, if the fraction of  negative arcs is 

small, DIKBD may work well, as Rand-P and Acyc-P2N experiments show. 
Although bucket-based implementations of Dijkstra's algorithm usually work only 

with integral lengths, the approximate bucket algorithm works with real-valued lengths 

as well. If the lengths are nonnegative and lhe fraction of relatively short arcs is small, 

dfis algorithm is likely to perform very well. 

In practice, a good bound on the maximum arc length is often available. Some other 

characteristics of the length function, such as the minimum arc length and the fractions 

of big and small length arcs, may also be known. This information can be used to 

select better values for the parameters in the bucket-based implementations of Dijkstra's 

algorithm and improve performance of ihese implementations. 

12.3. The incremental-graph algori thms 

The performance of  tile incremental-graph codes PAPE and TWO_Q is mixed: excellent 

on some problem families and ierrible on others. 
These codes perform extremely well on simple grid problems without the artificial 

source, where they average at about 1 to 1.5 scans per node. Since in these codes the 

overhead of selecting the next node to be scanned is very small, it is hard to beat these 

algorithms by more than 33% on such a family. 
For unit arc length networks in the Rand-Len experiments both incremental-graph 

algorithms, and also the threshold algorithm, make one scan per node. In general, these 

algorithms make at most one scan per node on networks with arc unit length. One can 

show this using the fact that the low priority set is maintained as a FIFO queue and 

checking tile high priority set is irrelevant in this case. (The high priority set in PAPE 
and T~rO_Q is always empty. If  the high priority set NOW in TIIRESH becomes empty, 

it acquires all nodes from the low priority set NEXT.) Thus on networks with unit arc 

length these algorithms work essentially in the same way as BF. 

On the other hand, the incremental-graph codes perform poorly on Grid-SSquare- 
S. Grid-PHard. Grid-NHard, Rand-4. Rand-l:4, and acyclic graph problems. The poor 
performance of  the codes on the Grid-SSquare-S family is due to the fact that all nodes 

become labeled during the scan of  the artificial source, which is the first scan performed 

by lhe algorithms. As a result, on this family (and any other problem with an m'tificial 

source), PAPE works like STACK and TWO_Q works like BF. Since STACK and BF 

work poorly oil Grid-SSquare-S problems, so do PAPE and TWO_Q. 
In general, PAPE and TWO_Q seem to perform poorly on graphs with highly "non- 

metric" length functions, i.e., length functions with many violations of the triangle 

inequality. For example, on Acyc-Pos graphs, a violation of  the triangle inequality is 

possible since a sum of two random numbers can be less then the third number picked 

from the same nonnegative distribution. For Acyc-Neg graphs this violation is much more 
likely, however, because the distribution is nonpositive, and the algorithms perform much 
worse. Intuitively, if ,~(u. ~') + g.(l', w) < g(u, w) and an incremental-graph algorithm 
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places u and w into the high-priority set before u, adding c to this set is likely to cause 

the algorithm to recompute the distance label values of w and its successors in the 

current shortest path tree. If  the number of  violations of the triangle inequality is large, 

the number of scans per node is likely to be high. Although we are unable to prove 
formally that non-metric length /'unctions are bad for PAPE and TWO_Q, this seems to 

be the case. 

We would like to note that when PAPE and TWO_Q perform well, they seem to do a 

similar number of scans per node and their running times are close, with PAPE usually 

slighlly faster because of a simpler low-level implementation. When the codes perform 

poorly, TWO_Q is significantly faster than PAPE. 

12.4. Th.e threshold algorithm 

The performance of  THRESH is also mixed. This code performed well on the simple 

grid networks and the unit length networks. However, the code performed poorly on 

Grid-PHard, Grid-NHard, Rand-4, Rand-l:4, and acyclic graph problems. 
We would like to note that since THRESI1 exainines the NEXT list at every iteration 

but does not, in general, scan all the nodes on NEXT, the running time of  THRESH is 

not necessarily proportional to the nmnber of  scans. The threshold parameter, however, 

is computed in such a way that the algorithm tends to scan a constant fraction of the 

nodes on NEXT at each iteration, so often the number of scans is a good measure of  
the algorithm performance. 

In a sense, THRESH is a compromise between the Bellman-Ford-Moore algorithm 

(which scans all labeled nodes at each iteration) and Dijkstra's algorithm (which scans a 

labeled node with the minimum distance label). Although THRESrt compares favorably 

with the former algorithm, never losing to BFP by more than a factor of 2 except for the 
Acyc-Neg and Acyc-P2N families in our tests, it does not look as good when compared 

with DIKBD. While THRESH is never faster than DIKBD by more than a factor of 3, 

the latter code is orders of  magnitude faster on problem families such as Grid-PHard, 
Rand-4, and Rand-1:4. 

We did not attempt to improve the performance of THRESH by adjusting its parain- 
eters, and it may be possible to improve the overall performance of the algorithm by 

fine-tuning. It is unlikely, however, that this will make the algorithm competitive on the 
problems where it performs poorly in our tests. 

12.5. The topological ordering algorithms 

The topological ordering algorithms GOR and GOR1 are the most robust algorithms 

in our study. These are the only algorithms, for example, that solved all Grid-NHard 
problems within the time limit. 

An examination of  Figs. 9-21 shows that GOR never loses to BFP, PAPE, or TWO_Q 

by more than a factor of  3 while it often wins by orders of magnitude. The performance 

Of GOR is good on all SPGRID families we consider except the Grid-PHard family. The 
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code also works very well on the Acyc-Neg family: it can be shown that GOR does at 

most two scans per node on an acyclic network with nonpositive length function. 
Although GOR never loses by two orders of magnitude or more in our tests, it is 

slower than the fastest codes by about an order of magnitude for some problem sizes 

on the Rand-4, Rand-1:4, Rand-Len, Acyc-Neg, and Acyc-P2N families 

On acyclic networks, GORI works well and Theorem 13 proves that this must be the 

case. The code is also the best on Grid-NHard problems and it performs reasonably 

well on Grid-SSquare-S and Grid-SWide problems. The code performs poorly on Grid- 

SSquare, Grid-SLong, Rand-4, and Rand-l:4 families, where it loses by an order of 

magnitude for some problem sizes. 

13. Concluding remarks 

Our study does not produce a single best code for all classes of shortest paths 

problems. We can, however, suggest two algorithms, one for networks with negative 

arcs and one for networks withoul negative arcs. These algorithms may not be the best 

on a particular problem class, but their running time is likely to be of the same order 

o1' magnitude as that of the fastest algorithm and often will be much closer. 
For problems with nonnegative arc lengths, Dijkstra's algorithm is robust and an 

appropriate implementation of this algorithm is usually quite competitive. In our tests, 

the double bucket implementation, DIKBD, is the best overall. This implementation also 
seems to work reasonably well if the network has a small number of negative length 

a r c s .  

The folklore is that multi-level bucket implementations do not work well in practice. 

However, [5] is the only study we found that includes a multi-level bucket imple- 

mentation. In this study, the two-level bucket implementation was uniformly worse 
than implementations of Pape-Levit and Bellman-Ford-Moore algorithms, although not 

much worse. This study, however, was done on restricted classes of graphs and small 

(by modern standards) problem sizes. In view of these facts, the results of [5] do not 

contradict our results. 
For problems with many negative length arcs, GOR and GOR1 appear to be good 

choices. The GOR1 code also works well on graphs that have large node-induced acyclic 

subgraphs. 
In practice, problems often have a very specific structure, and algorithms that can 

take advantage of this structure may perform very well. For example, practical problems 

are often quite "metric" and incremental-graph algorithms may work well on these 
problems. Our experiments suggest, however, that extra care is needed if one decides 

to use these algorithms because small changes (such as addition of an artificial source) 

may drastically decrease perlbrmance of these algorithms. Our experiments give strong 

evidence that TWO_Q is more robust than PAPE and is a safer choice in practice. 
The relatively good performance of the R-heap and the double-bucket implementa- 

tions compared to the k-ary heap and bucket implementations, respectively, show that 
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sophisticated data structures may be worth implement ing.  R-heaps are very promis ing  

for other algori thms using the priori ty queue data structure, such as the min imum-cos t  

spanning tree algorithms. On the other hand, the relatively poor performance of  the Fi- 

bonacci heap implementa t ion  compared to the k-ary heap implementa t ion  shows that a 

sophisticated data structure with a better theoretical worst-case bound is not necessarily 

better in practice. 

We compared several heap and bucket based implementa t ions  of  Dijkstra 's  algorithm. 

We did not, however, at tempt a detailed study of efficiency and a count  of e lementary op- 

erations of  the under ly ing  data structures. Such a study may give a better unders tanding 

of  these data structures and give ideas for performance- improving modifications.  

We evaluated the classical algori thms and the new algori thms that we considered to 

be mosl interest ing and promising.  We also implemented a scaling algori thm of  [17] .  

Performance of  our  implementa t ion  was not especially good, but a better implementa-  

tion may be possible. A careful experimental  study of  several other methods, such as 

variations of  the threshold algori thm [ 14, 16], may produce interesting results as well. 

We experimented with networks without negative cycles. An interest ing quest ion is 

which algori thms are best at detect ing a negative cycle if there is one. 
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