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1. Introduction

The shortest paths problem is one of the most fundamental network optimization
problems. This problem comes up in practice and arises as a subproblem in many
network optimization algorithms. Algorithms for this problem have been studied for a
long time. Sce e.g. [2.5,6.8,10,23.25,27]. However, advances in the theory of shortest
paths algorithins are still being made. See e.g. [1,12,13,17]. A good description of the
classical algorithms and their implementations appears in [14].

On a network with negative-length arcs the best currently known time bound of O(nm)
is achieved by the Bellman-Ford-Moore algorithm {2, 10,25]. Here n and m denote the
number of nodes and arcs in the network, respectively. With the additional assumption
that arc lengths are integers bounded below by —N < =2, the O(\/nmlog N) bound
[ 17] improves the Bellman-Ford-Moore bound unless N is very large. If all arc lengths
are nonnegative, implementations of Dijkstra’s algorithm [8] achieve better bounds. An
implementation of | 11] runs in O(m+nlogn) time. An improved time bound of O(in+
nlogn/loglogn) [12] can be obtained in a random access machine computation model
that allows certain word operations. Under the assumption that arc lengths are integers
in the interval [0....,C], C = 2, the implementation of [1] runs in O(m + nﬂ@f)
time.

As hardware becomes more powerful and more sophisticated algorithms need a short-
est path subroutine, efficient shortest paths algorithms are of growing importance. This
is the case for other network optimization problems as well, motivating broad com-
putational investigation of available algorithms. In particular, a massive study of flow
and matching algorithms was done for the First DIMACS Algorithm Implementation
Challenge {20].

In this paper we study practical performance of several shortest paths algorithms,
including established methods [2, 8, 10, 15,23,25-27], recently proposed algorithms [1,
18]. and new algorithrms. The development of the new algorithms was based on the
experimental feedback. We give theoretical explanation of the observed behavior of the
algorithms and prove complexity bounds on the new algorithms. Our study includes more
algorithms than previous studies [5.7. 14,15, 19,24] and the collection of problems used
in our study is much richer. Because of this. our conclusions are often different from
those of the previous studies.

We also prove an interesting result suggested by the experimental data. This result,
summarized in Theorem 17, shows that some algorithms, for example the Bellman-
Ford-Moore algorithm, are potential-invariant. i.e., behave in exactly the same way on
two networks one of which i1s obtained from the other one by replacing the lengths
by the reduced costs with respect of a potential function. This result has several inter-
esting implications. Note, for instance, that any feasible shortest paths problem has an
cquivalent with nonnegative arc lengths. If the problem with nonnegative arc lengths
is computationally simpler than the general problem, as is commonly believed, then
the theorem suggests that a potential-invariant algorithm cannot be superior to all other
algorithms on problems with nonnegative arc lengths.
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An important part of our work is the development of several natural shortest paths
problem generators and their use to create families of problems. Of special interest to us
are the families that give insight into the relative algorithm performance, robustness, and
dependence of the performance on the network structure and the arc cost distribution.

The collection of algorithms we test is larger than that of any previous study we
arc aware of, and the set of test problems is much richer. We show that the algorithm
performance varies significantly more than previously believed and that some algorithms
previously considered robust may fail dramatically. For example, we exhibit a family
of problems that are hard for all established algorithms, although a recent algorithm of
[ 18] solves these problems quickly (see Section 7).

Our work greatly improves the theoretical understanding of the shortest paths algo-
rithm performance in practice. In particular we identify several problem features that
make problems hard or easy for the algorithms we study. The interaction between theo-
retical and experimental aspects of our work helps to produce more efficient codes and
to identify important theoretical properties of the algorithms.

Although our research does not producc a single best code for the shortest paths
problem. two codes we developed are very competitive in their domains, networks with
nonnegative and mixed arc lengths, respectively. One of the codes is an implementation
of Dijkstra’s algorithm using a double bucket data structure of Denardo and Fox [5].
Another code, which implements a recent algorithm of Goldberg and Radzik [18],
malches the O(nm) bound of the Bellman-Ford-Moore algorithm and also achieves the
optimal O(m + 1) time bound on acyclic networks.

Our codes, generators, and gencrator inputs form a testing environment for shortest
paths algorithms. A new code can be compared against the existing ones to determine its
relative performance. The environment can be augmented as interesting codes, problem
generators, and problem families are developed. Our codes, generators, and generator
inputs are available through a mail server.

The shortest paths environment can be used in several ways. Practitioners looking for
an efficient code for an application can test our codes on their problems and select one
that performs well. The number of codes which need to be compared can be narrowed
down using the results of the current paper. Researchers evaluating a new shortest paths
code can run the code on the problem families we suggest and compare its performance
with the performance of our codes. The environment can also be used in teaching
algorithms to demonstrate importance of proper algorithms and data structures.

This paper is organized as follows. Section 2 introduces definitions and notation.
Section 3 reviews the labeling method for the shortest path problem. Section 4 describes
the algorithms that we study and proves complexity bounds on the new algorithms.
Section 5 describes our experimental setup and Sections 6-9 give the main experimental
results. Section 10 gives additional experimental data for implementations of Dijkstra’s
algorithm. Section 11 gives a theoretical result motivated by our experiments. A summary
of our experimental results and discussion of individual algorithm performance appears
in Section [2. We make concluding remarks in Section 13.
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2. Definitions and notation

The input to the single-source shortest paths problem is (G,s,#). where G = (K E)
is a directed graph, £ : E — R is a length function, and s € V is the source node. The
coal is to find shortest paths from s to all other nodes of G or to find a negative length
cycle in G. We say that the problem is feasible. if G does not have a negative length
cycle. We assume, without loss of generality, that all nodes are reachable from s in G.
We denote |V] by n, |E| by m, and the biggest absolute value of an arc length by C.

A potential function is a function on nodes with values in RU {oc}. Given a potential
function «, we define the reduced cost funcrion £, E — RU {oc} by

Faleow) =F#(eow) +de) — d{w).

We say that an arc a is admissible if £;(a) < 0, and denote the sct of admissible arcs
by E,. The admissible graph is defined by G, = (V E;). Note that if d(v) < oc and
d(w) = oc, the arc (¢, w) is admissible. If d(v) = d(w) = oo, we define ,(v,w) =
flrow).

A shortest paths tree of G is a spanning tree rooted at s such that for any ¢ € V. the
reversal of the ¢ to s path in the tree is a shortest path from s to v.

3. The labeling method

In this section we briefly outline the general labeling method for solving the shortest
paths problem. (See e.g. [4,14,29] for more detail.) Most shortest paths algorithms,
and all those which we study in this paper, are based on the labeling method.

For every node ¢, the method maintains its potential d(v), parent w(v), and status
S(v) € {unreached, labeled. scanned}. The potential of a node v is also cailed the
distance label of v, because it is equal to the current estimate of the shortest-path
distance from s to v. Initially for every node v, d(v) = oo, w(v) = nil, and S(v) =
unreached. The method starts by setting d(s) = 0 and S(s) = labeled, and applies the
SCAN operation to labeled nodes until none exists, in which case the method terminates.

The SCAN operation applies to a labeled node v. The operation is described in Fig. 1.
Note that if ¢ is labeled, then d(v) < oc and d(v) + £(v,w) is finite. After a SCAN

procedure SCAN(u);
for all (¢.w) € E do
if d(v) + #£(v,w) < d(w) then
d(w) —d(v) + (v, w);
S(w) « labeled;
m(w) «— v;
S(r) «— scanned;
end.

Fig. 1. The SCAN operation.
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Name Brief description
(strategy for selecting nodes to be scanned next)

ACC Topological order selection for acyclic graphs
BF FIFO order selection ( Bellman-Ford-Moore algorithm)
BFP BF with parent-checking heuristic
DIKB Minimum label selection (Dijkstra’s algorithm) using buckets
DIKBM Minimum label selection using buckets and the overflow bag
DIKBA Minimum label selection using approximate buckets
DIKBD Minimum label selection using double buckets
DIKF Minimum label selection using Fibonacci heaps
DIKH Minimum label selection using k-ary heaps
DIKR Minimum label selection using R-heaps
GOR Topological order selection for general graphs
GOR GOR with scans during topological sort
PAPE Selection using a double-ended queue (Pape-Levit algorithm)
STACK LIFO order selection
THRESH Threshold selection
TWO_Q Two queue selection (Pallottino’s algorithm)

Fig. 2. Summary of implementations.

operation, some unreached and scanned nodes may become labeled.

The method terminates if and only if G does not have negative length cycles. If the
method terminates, the parent pointers define a correct shortest paths tree and, for any
¢ € V. d(v) is the shortest path distance from s to . The labeling method can be easily
modified so that if G has negative cycles, the method finds such a cycle and terminates.

4. Labeling algorithms

Different strategies for selecting labeled nodes to be scanned next lead to different
algorithms. In this section we discuss some of these strategies and describe the algorithms
we have implemented and experimented with. Fig. 2 gives a quick summary of these
algorithms.

The importance of a good ordering of the SCAN operations is illustrated in Fig. 3.
Here we compare the FIFO ordering used in the BF code and the LIFO ordering used
in the STACK code on two Grid-SSquare problems (see Section 6) of modest size. The
performance of STACK is usually extremely poor compared to BF, although the codes
differ by only two statements. As we shall see later, BF performs much worse than some
other codes on this problem. Note that STACK has an exponential worst-case running
time (see e.g. [28]).

[ nodes/ares [ BF | STACK |

16385 0.39 44.29
49152 11.92 | 1986.90
65537 3.53 544.34
196608 || 23.19 | 4613.02

Fig. 3. Relative performance of FIFO and LIFO selection rules. A table entry gives the running time in
seconds (bold) and the number of scans per node.



34 B.V. Cherkassky et al./Mathematical Programming 73 (1996) 129-174

4.1. Bellman-Ford-Moore algorithm

The Bellman-Ford-Moore algorithm. due to Bellman [2], Ford [10], and Moore
[25], maintains the set of labeled nodes in a FIFO queue. The next node to be scanned
is removed from the head of the queue; a node that becomes labeled is added to the tail
of the queue. Our code BF implements this algorithm.

We detine a pass over the queue inductively. Initialization, during which the source §
is added to the queue, is pass 0. For i > 0. pass { consists of processing nodes which
were added to the queue during pass 1 — 1.

Performance of the Bellman-Ford-Moore algorithm is as follows.

Theorem 1. (i) Each pass takes O(m) time. (11) The number of passes is bounded by
the depth of a shortest paths tree. (iii) The algorithnt runs in O(nm) time in the worst
case.

Although the O(nm) worst case bound is the best bound known for shortest paths
algorithms, in practice the Bellman-Ford-Moore algorithm is often slower than other
methods. We introduce the following parent-checking heuristic that usually improves
performance of the algorithm. Suppose we have just removed a node v from the queue
and the parent of ¢, « = 7(r)., is in the queue. Note that d (') was last updated when u
was scanned and d(v) was set to (1) + £(u,v). After that d{u) decreased causing u
o be again added to the queue. and implying that d(u) + £(u.v) < d(v). Intuitively,
it is wasteful to scan ¢ at this point because we know that d(v) will decrease. The BFP
algorithm is a variant of BF that scans a node only if its parent is not in the queue. One
can easily prove the bounds of Theorem 1 for this algorithm.

The parent-checking idea can be extended. For example, one can check all proper
ancestors of a node in the current tree. This is computationally expensive, however. An
alternative is to periodically clean up the queue, leaving in it only the nodes with no
labeled proper ancestor in the tree. This approach can be used to obtain an algorithm
that is usually better than BFP. In Section 4.5 we describe an even better algorithm
motivated by this idea.

Fig. 4 shows the performance of BF and BFP on a problem from Grid-SSquare family
(see Section 6). On this problem, BF does about twice as many scans as BFP and runs
about twice as slowly. Fig. 5 shows the performance on problems from Rand-Len family

[ nodes/arcs || BF [ BFP | [ 1Lul[[ se| wmre

16385 0.39 | 0.21 [1,1] 1.46 1.50

49152 || 1192 | 5.05 1.00 1.00

65537 353 | 196 10, 10000} || 25.28 | 23.15

196608 || 23.19 | 9.66 19.04 | 16.75
Fig. 4. Relative performance of BF and BFP on Fig. 5. Relative performance of BF and BFP
Grid-SSquare problems. on Rand-Len problems with 131072 nodes and

524288 arcs. First columin shows the range of the
arc lengths.
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(see Scction 8). In the first problem all arcs have unit length and both BF and BFP do
one scan per node. (In this case FIFO order strategy reduces to the breadth-first search.)
Because of the additional work of checking the parents, BFP is slightly slower. In the
second problem the range of arc lengths is relatively large. On this problem BEP does
slightly fewer scans per node and runs slightly faster.

In practice, BFP seems never to make more scans than BF and is never significantly
slower. In the vast majority of cases, BFP is faster than BF and the two codes differ by

23

only one “if” statement. We use the BFP code in our main experiments.
4.2. Dijkstra's algorithm

Dijkstra’s algorithm [8] selects a labeled node with the minimum potential as the
next node to be scanned.

Theorem 2. If the length function is nonnegative, Dijkstra’s algorithm scans each node
exactly once.

Remark 3. It is easy to show that if negative arc lengths are allowed. the number of
scans may be exponential.

We first assume that arc lengths are nonnegative, and treat the other case at the end
of this section. Also, when discussing below about R-heap and bucket-based implemen-
tations of Dijkstra’s algorithm, we assume that the length function is integral.

The worst-case complexity of Dijkstra’s algorithm on networks with nonnegative arc
lengths depends on the way of finding the labeled node with the smallest distance
label. The naive implementation that examines all labeled nodes to find the minimum
runs in O(n?) time [8]. The implementation using k-ary heaps (see e.g. [4]) runs
in O(mlogn) time (for a constant k). The implementation using the priority queue
of Van Emde Boas et al. [3] runs in O(mloglogC) time. The implementation using
Fibonacci heaps [11] runs in O(m+ nlogn) time. The implementation using one-level
R-heaps [ |] runs in O(m+nlog C) time and the one using two-level R-heaps together
with Fibonacci heaps, in O(m + ny/Tog C) time. We evaluated implementations that use
k-ary heaps with k set to 3 (DIKH), Fibonacci heaps (DIKF), and one-level R-heaps
(DIKR). The R-heap data structure is based on buckets and thus similar to bucket-based
implementations discussed below.

We also implemented the naive O(n*) algorithm (DIKQ). This implementation, how-
cver, performs poorly unless the average number of labeled nodes during the computation
is small. For example, on two problems from Grid-SWide family (see Section 6), DIKQ
is orders of magnitude slower than DIKH, which itself is relatively slow on this problem.
(See Fig. 6.) Because of the poor performance, we do not include DIKQ in our tests.

Another way to implement Dijkstra’s algorithm is by using the bucket data structure,
as proposed by Dial [6]. This implementation maintains an array of buckets, with the ith
bucket containing all nodes v with d(r) = /. When distance label of a node changes, the
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[ nodes/arcs [[ DIKH | DIKQ |

16385 0.20 5.15
49152 1.00 1.00
32769 0.50 22.11
98304 1.00 1.00
65537 1.29 | 122.22
196608 1.00 1.00

Fig. 6. Relative performance of DIKH and DIKQ on Grid-SWide problem.

node is removed from a bucket corresponding to its old distance label (if the label was
finite) and inserted into the bucket corresponding to the new one. The implementation
maintains an index L. Initially, L = 0, and L has the property that all buckets { < L
are empty. The next node to be scanned is removed from bucket L or, if this bucket
is empty, L is incremented. The following theorem follows easily from the observation
that bucket deletions and insertions take linear time and at most #C buckets need to be
examined by the algorithm.

Theorem 4. [6] [f the length function is nonnegative, Dial's implementation of Dijk-
stra’s algorithm runs in O(m + nC) time.

Although the algorithm, as stated, needs #C buckets, an observation that only C + 1
consecutive buckets can be occupied at any given time allows the use of C 4 1 buckets.
Our code DIKB follows Dial’s implementation. We maintain nodes in a bucket in the
FIFO order. Our implementation places a limit of 300000 on the maximum arc length
(which determines the number of buckets).

Next we introduce two simple ways to reduce the memory requirement of Dial’s
implementation. In the overflow bag implementation, the number of buckets is set to
B < C + 1. At the ith stage of the algorithm, the buckets contain nodes with distance
labels in the range [ B:, B; + B — 1]. The labeled nodes with distance label B; + B and
above are maintained in a special set (the bag). Initially i = 0 and B; = 0. When the
value of L reaches B; + B, the value of i is incremented and B; is set to the minimum
distance label of a node in the bag. Then the bag is scanned, nodes with distance labels
in the range [B;,B; + B — 1] are moved into appropriate buckets, and the next stage
begins. The time-memory tradeoff of this implementation is as follows.

Theorem 5. [f the length function is nonnegative, the overflow bag implementation of
Dijkstra’s algorithm runs in O(m+ n((C/B) + B)) time.

Proof. Under this implementation, each node is scanned at most once, for the total of
O(m -+ n) time. The time for removing and inserting nodes from the buckets and the
bag can be charged to the scanning of nodes. There are at most n passes through the
buckets for a total of O(nB) work. It remains to account for the work of examining
nodes in the bag at the end of each stage of the algorithm. Note that if a node is added
to the bag for the first time during stage i, then its distance label is at most B; + B + C,
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so the node can be in the bag for O(C/B) stages. Thus the work involved in examining
the bag is O(nC/B). O

Choosing B = N yields an O(m+nv/C) time bound. Our code DIKBM implements
this algorithm. We set B = min(50000, C/3).

In the approximate bucket implementation, a bucket / contains nodes with distance
labels in the range [/A, (i4+1)A — 1], where A is a fixed parameter. Nodes in the bucket
are processed in the FIFO order. This implementation needs [C/A] + 1 buckets. The
time-memory tradeoff for this implementation is as follows.

Theorem 6. [f the length function is nonnegative, the approximate bucket implementa-
tion runs in O(mA + n(A + C/A)) time.

Proof. Each node can be scanned more than once since the buckets are approximate.
However, a node cannot be scanned more than A times. Thus the total work involved in
scanning nodes is O(A(m + n)). The only work that cannot be charged to the scans is
that of going through the buckets in search of a nonempty one. This work adds up to
Oo(n(C/Ay). O

Our code DIKBA implements this algorithm. We set A = [C/2'"].

The ideas of the above two algorithms can be combined to obtain the double bucket
implementation of Dijkstra’s algorithm; this implementation is due to Denardo and Fox
[ 5]. This implementation has two kinds of buckets, high-level and low-level. The number
of low-level buckets is A. A high-level bucket i contains the set of nodes with distance
labels in the range [iA, (i 4+ 1)A — 1] except for the nonempty high-level bucket with
the smallest index L. A node v with distance label in the range [LA, (L + 1)A — 1]
is in the low-level bucket d(v) - LA. After all low-level buckets are examined and the
nodes in these buckets are scanned, L increases. If the corresponding high-level bucket
is not empty, its nodes are moved to the corresponding low-level buckets and the next
stage begins.

The number of high-level buckets needed by this implementation is [(C + 1)/A].
The running time of the implementation is as follows.

Theorem 7 ([5]). If the length function is nonnegative, the double bucket implemen-
tation runs in O(m+ n(A + C/A)) time.

Proof. Each node is scanned at most once. The number of high-level buckets that the
algorithm processes is O(nC/A). The number of times a low-level bucket is examined
is at most 1. [J

For the best theoretical bound, the value of A should be ©(+/C). Our code DIKBD
implements this algorithm. We set A to the biggest power of two that is less than /C.
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We also keep track of the first and the last non-empty bucket at each level, and use this
information to skip empty buckets.

The double bucket implementation can be generalized to the k-level bucket imple-
mentation [ 5] in the following way. We consider only the case when the number of
buckets at every level is the same and equal to p = [C'/¥]. The levels are numbered
from 0 10 & — 1 and the buckets at each level are numbered from 0 to p — I. Con-
sider level /. Associated with this level are the base distance B; and the index of the
active bucker a;. Associated with bucket j, 0 < j < p — 1, at level { is the interval
[B;+ jp'. B, + (j+ 1)p' — 1]. The base distances and the indices of the active buckets
are such that By, = 0 mod p" and B;_| = B, + a;p'. If the distance label of a node v
1s in the interval associated with bucket j on level . for some a; < j < p, then v is in
this bucket. If the distance label is in the interval associated with the active bucket and
{ > O. then the node is at a lower level. If the distance label is greater than B+ p'™*' —1,
then the node is at a higher level. For each level we maintain the total number of nodes
at this level. Next we describe how to move a node into the appropriate bucket when
its distance decreases and how to find a node with the smallest distance.

1f the distance of a node decreases, we first try to relocate this node within the same
level. If it drops into the active bucket, then we find the appropriate bucket at the lower
level. We repeat this until we reach the lowest level or the first level such that the node
does not drop into the active bucket. If bucket ag at the lowest level (level 0) is not
empty. it contains all nodes with the smallest distance label. If this bucket is empty,
we find the lowest nonempty level, then we find the first nonempty bucket at this level.
make 1t the active bucket, and distribute the nodes from this bucket to lower levels.

The k-level bucket implementation requires O(kC'/*) buckets and has the following
time-memory tradeoff.

Theorem 8 ([5]). If the length function is nonnegative, the k-level bucket implemen-
tation runs in O(m + n(k + C"/k)) time.

Proof. Consider a node v whose distance label is decreased. If the level of the node
does not change, the node can be moved into the new bucket in O(1) time. If the node
moves to a lower level, the appropriate level and bucket can be found in O(i' — ")
time. where  and /' are the old level and the new level, respectively. Since there are
O(m) decreases of distance labels and each node may move only from a higher to a
lower level, the total time spent on these operations is O(m + nk).

To find a node with the smallest distance. we first find the lowest nonempty level in
O(k) time, using the information about the number of nodes at each level. The first
nonempty bucket is found in O(p) time. Then we have to distribute the nodes from
this bucket to lower levels. The total time of this computation, throughout the whole
algorithm, is O(nk). since each time a node is inspected, it is moved to the lower level.
We have to find the smallest distance node at most n times, so the total work involved
i1s O(n(k+ p)).

Thus the running time of the k-level implementation is O(m + n(k + C'/k)). O
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For k = JlogC] (so p = 2) we obtain an O(m + nlogC) time bound and a
data structure similar to R-heaps. Setting k = [2logC/loglogC] yields an O(m +
nlogC/loglogC) time bound and a data structure similar to two-level R-heaps.

We conclude this section with a discussion of implementations of Dijkstra’s algorithm
when arc lengths can be negative. A “strict” implementation of the algorithm selects a
labeled node with the smallest distance label at every step. This is what our code DIKH
does.

An alternative is to maintain the value ¢ of the biggest distance label of a node scanned
so far, and to select a labeled node with the distance label of t or less if such a node
exists and a labeled node with the smallest distance label otherwise. This strategy is
more natural for bucket and R-heap implementations and we use it in the corresponding
codes. If' the nodes eligible for scanning are maintained in FIFO manner, one can
show polynomial-time bounds for this variant of Dijkstra’s algorithm on networks with
arbitrary arc lengths.

4.3. Incremental-graph algorithms

In this section we describe two algorithms. The first one was developed independently
by Pape [27] and Levit [23]. The second algorithm was proposed by Pallottino [26].
He also introduced the incremental-graph framework that unified these two algorithms.
Our implementations of the above algorithms are called PAPE, and TWO_Q, respectively.

An algorithm in the restricted scan framework maintains a set W of nodes and scans
only labeled nodes in W. The set W is monotone: once a node is added to W, it remains
in there. If there arc labeled nodes but no labeled node is in W, some of the labeled
nodes must be added to W. Nodes may also be added to W even if W already contains
labeled nodes. Note that if the labeled nodes in W are processed in the FIFO order, then
a simple modification of the analysis of the Bellman-Ford-Moore algorithm shows that
in O(nmm) time, etther the algorithm terminates or W grows. This leads to an O(n?m)
time bound.

Pape-Levit and Pallottino’s algorithms define W as the set of nodes which have been
scanned at least once; when no labeled node i1s in W, a labeled node is added to W.
More precisely, these algorithms maintain the set of labeled nodes as two subsets, S
and Sy, the first containing labeled nodes which have been scanned at least once and the
second containing those which have never been scanned (S € Wand $; C V — W).
The next node to be scanned is selected rom §; unless S| is empty, in which case the
node is sclected from S; (i.e., this node is added to W). We call S, the high-priority
set and Sy the low-priority ser.

The Pape-Levit algorithm maintains S, as a LIFO stack and S as a FIFO queue.
{This algorithm is usually implemented using the dequeue data structure, which is a
queue that allows insertions at either end. See e.g. [14.26].) Initially the stack is empty
and the queue contains s. The next node to be scanned is removed from the top of the
stack if it is not empty and from the head of the queue otherwise. A node that becomes
labeled is pushed to the top of the stack if the node has been scanned previously, or
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added to the tail of the queue otherwise. The algorithm terminates when both the stack
and the queue are empty. This algorithm has exponential worst-case time bound.

Theorem 9. [21,28] The Pape-Levit algorithm runs in @ (n2") time in the worst case.

Pallottino’s algorithm maintains S and S» using FIFO queues, Q| and Q. The next
node 1o be scanned is removed from the head of Q) if the queue is not empty and from
the head of @, otherwise. A node that becomes labeled is added to the tail of Q) if it
has been scanned previously, or to the tail of @, otherwise. The algorithm terminates
when both queues are empty. As the above discussion of the restricted scan algorithms
suggests, the worst-case running time of TWO.Q is polynomial.

Theorem 10. [26] Pallottine’s algorithm runs in O(n*m) time in the worst case.

Observe that in a restricted scan algorithm when there are no labeled nodes in W,
then the current tree restricted to W is a shortest paths tree in the subgraph of the input
graph induced by W and the reduced cost function is nonnegative on arcs connecting
nodes in W. Both Pape-Levit and Pallottino’s algorithms increase W only when there
are no labeled nodes in W, in which case exactly one labeled node v is added to W.
By the next time when there are no labeled nodes in W (i.e., by the next time S} is
emply) a shortest paths tree in the subgraph induced by W U {v} is computed. Hence
the “incremental-graph algorithms” term.

4.4. The threshold algorithm

Glover et al. [I5] suggest the following method, which combines the ideas lying
behind the Bellman-Ford—Moore, Dijkstra’s, and incremental-graph algorithms. (See
also [14,16].) The method partitions the set of labeled nodes into two subsets, NOW
and NEXT, which are maintained as FIFO qucues. At the beginning of each iteration
of the algorithm, NOW is empty. The method also maintains a threshold parameter ¢
which is set to a weighted average of the minimum and average distance labels of the
nodes in NEXT. During an iteration, the algorithm transfers nodes ¢ with d{v) < ¢
from NEXT to NOW and scans nodes in NOW. Nodes that become labeled during the
iteration are added to NEXT. The algorithm terminates when NEXT is empty at the
end of an iteration. Our code THRESH implements the threshold algorithm suggested in
[ 15] with parameter values MINWT = 45 and WTCNG = 25.

The running time of THRESH is as follows.

Theorem 11. [16] If the length function is nonnegative, THRESH runs in O(nm) time.

Note that the threshold parameter ¢ is not necessarily monotone in our implementation.
If 1 is updated only when at the beginning of an iteration the distance label of every node
in NEXT is greater than f, then ¢ becomes monotone. This version of the algorithm falls
into the restricted scan framework discussed in the previous section and runs in O(n’m)
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time on networks with arbitrary arc lengths [ 14]. However, the version of THRESH that
we implemented is that of [15], and we are not aware of any polynomial-time bound
for this version in the arbitrary length case.

4.5. The topological ordering algorithms

A generalization of the parent-checking idea discussed in Section 4.1 is as follows,
Suppose both ¢ and w are labeled and there is a path from ¢ to w in the admissible
graph containing a negative reduced cost arc. Then it is better to scan v before w, since
we know that d(w) is greater than the true distance from s to w. A recent algorithm of
Goldberg and Radzik [18] is based on this idea. To simplify the algorithm description,
we first assume that G has no cycles of length zero or less, and therefore for any d, the
admissible graph G, is acyclic.

The Goldberg-Radzik algorithin maintains the set of labeled nodes in two sets, A
and B. Each labeled node is in exactly one set. Initially A =  and B = {s}. At the
beginning of each pass, the algorithm uses the set B to compute the set A of nodes to
be scanned during the pass, and resets B 1o the empty set. A is a linearly ordered set.
During the pass, elements are removed according to the ordering of A and scanned. The
newly created labeled nodes are added to B. A pass ends when A becomes empty. The
algorithm terminates when B is empty at the end of a pass.

The algorithm computes A from B as follows.

(1) For every v € B that has no outgoing arc with negative reduced cost, delete v

from B and mark il as scanned.

(2) Let A be the set of nodes reachable from B in G,. Mark all nodes in A as

labeled.

(3) Apply topological sort to order A so that for every pair of nodes ¢ and w in A

such that (¢, w) € Gy, v precedes w and therefore v will be scanned before w.

The algorithm achieves the same bound as the Beliman-Ford-Moore algorithm.

Theorem 12. (18] The Goldberg-Radzik algorithm runs in Q(nm) time.

Now suppose G has cycles of zero or negative length. In this case G, need not be
acyclic. If, however, G, has a negative length cycle, we can terminate the computation.
If G, has zero length cycles, we can contract such cycles and continue the computation.
This can be easily done while maintaining the O(nm) time bound. (See e.g. [17].)

Our code GOR is an implementation of the Goldberg-Radzik algorithm with one sim-
plitication. The implementation uses depth-first search to compute topological ardering
of the admissible graph (see e.g. [4]). Instead of contracting zero length cycles, we
simply ignore the back arcs discovered during the depth-first search. The resulting topo-
logical order is in the admissible graph minus the ignored arcs. This change does not
affect the algorithm correctness or the above running time bound.

We also implement the following modification, GOR1, of GOR. Recall that we use
depth-first search to compute the topological ordering. When an arc (v, w) is examined
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by the depth-first search, this arc is first scanned in the shortest-path sense, i.e., if
dley F (e, w) < dOw), diw) isset to d(e) + £(¢.w) and 7(w) is set to . Note that
this changes the admissible graph and may add a new vertex to set A. Tt means that A
cannot be known before the topological sort begins and is only constructed during the
sort {that is. Steps (2) and (3) in the computation of A from B are combined). The
following theorem gives a theoretical justification for this modification.

Theorem 13. GORI1 runs in O(nm) time. On an acvelic nenwork, GOR1 terminates in
one pass and therefore runs in O(m —+ n) time.

Proof. The proof of the first claim is similar to that of Theorem 12. To prove the
sccond claim. we show that the first depth-lirst search topologically orders the nodes
rcachable from the source with respect to the input graph. Recall that at the beginning
of the computation all nodes except for the source have infinite distance labels. Note
also that an easy inductive argument shows that nodes processed by the depth-first
search have finite distance labels. Thus when an arc (v.w) is first examined while
processing . d(¢) is finite and d(w) is cither finite or infinite. Finite d(w) means
that node w has been already processed. If d(w) is infinite, then d(w) will be updated
and £y, w) will become zero. Thus (¢, w) will become admissible and the search wili
start processing w. Therefore the depth-first scarch of the admissible graph will examine
the nodes in exactly the same order as the depth-first search of the whole input graph,
and the resulting order will be topological with respect to the input graph. The standard
results for shortest paths in acyclic graphs imply that after the end of the first pass, the
algorithm terminates. [

Remark 14. When counting the number of scans done by GOR and GORI, we count
hoth the shortest paths SCAN operations and processing of nodes done by the depth-first
searchers.

5. Experimental setup

Our experiments were conducted on SUN Sparc-10 workstation model 41 with a
40MHZ processor running SUN Unix version 4.1.3. The workstation had 160 Meg.
memory. Our codes were written in C and compiled with the SUN cc compiler version
1.0 using the 04 optimization option.

We performed the machine calibration experiment designed by the organizers of the
First DIMACS International Algorithim Implementation Challenge [20]. Fig. 7 shows
the average running times of the test programs compiled with different optimization
levels.

Our implementations use the adjacency list representation of the input graph. We
experimented with several folklore low-level representations of the graph and found
that the one described in detail by Gallo and Pallottino [ 14] is the most efficient. Our
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TEST | TEST 2
optimization average running time average running time
level real user system real user system
w/o optm, 1.2 1.2 0.0 11.1 10.8 Q.1
-O1 1.05 1.0 0.0 9.3 9.15 0.1
-02 1.0 0.95 0.0 9.1 8.9 0.1
-03 0.9 0.9 0.0 8.3 8.05 0.1
-04 0.9 0.9 0.0 8.2 8.0 0.1

Fig. 7. Average running times (in seconds) of the test programs.

implementations of the traditional algorithms (BF, PAPE, TWO_Q, THRESH) are also
very similar to those described in [14]. We attempted to make our implementations of
different algorithms uniform to make the running time comparisons more meaningtul.
We also tried to make the implementations efficient.

The codes compared in our main experiments are BIFP, GOR, GORI, DIKH, DIKBD,
PAPE, TWO_Q, and THRESH. We do not include all the Dijkstra’s algorithm implemen-
tations because they often perform very similarly. We chose DIKH because it is the most
widely known version of Dijkstra’s algorithm and DIKBD because it is the best overall
implementation of Dijkstra’s algorithm in our tests. We also compare DIKH, DIKBD,
DIKR. DIKB. DIKBM, and DIKBA on a subset of the problems that shows strengths and
weaknesses of these codes.

Fig. 8 summarizes problem families used in our study. These families are described
in detailed in the corresponding sections. Networks in the first four families are grids.
These problems are designed to test how algorithms perform on natural problems with
simple structure and how their performance depends on the grid shape. Grid-PHard and
Grid-NHard networks are designed to be hard for algorithms which take advantage of
network structure; these problems have nonnegative and mixed arc lengths, respectively.
Rand-4 and Rand-1:4 networks consist of a hamiltonian cycle and additional randomly
generated arcs. Rand-4 networks are sparse and Rand-1:4 networks are dense. We use
Rand-Len networks to test how the algorithm performance changes when the network
structure is fixed but the cost range changes. We use Rand-P networks to test how the

Generator  Class name Brief description
SPGRID Grid-SSquare Square grids
Grid-SSquare-S  Square grids with artificial source

Grid-SWide Wide grids

Grid-SLong Long grids

Grid-PHard Hard problems with nonnegative arc lengths

Grid-NHard Hard problems with mixed arc lengths
SPRAND Rand-4 Random hamiltonian graphs with density 4

Rand-1:4 Random hamiltonian graphs with density 25%

Rand-Len Random hamiltonian graphs with variable arc length range

Rand-P Random hamiltonian graphs with potential transformations
SPACYC Acyce-Pos Acyclic graphs with nonnegative arc lengths

Acyc-Neg Acyclic graphs with negative arc lengths

Acyc-P2N Acyclic graphs with variable fraction of negative arcs

Fig. 8. Summary of problem classes.
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algorithm performance changes when a potential transformation is applied to a problem
with nonnegative arc lengths (creating negative-length arcs). We use Acyc-Pos, Acyc-
Neg. and Acyc-P2N networks to test algorithm performance on acyclic graphs.

When tabulating results of our experiments, we give the running time in seconds (in
bold) and the number of scan operations per node (below). The running time is the
user CPU time and excludes the input and output times. To obtain a data point for a
shortest paths code, we make five runs of the code on problems produced with the same
generator parameters except for the pseudorandom generator seed. The data we tabulate
is the average over the five runs.

We would like to note that usually individual running times are within 15% of the
average. In almost all cases the slowest and the fastest times for the same data point are
within a factor of two; there are two kinds of exceptions to this statement. The first one
is for small problems where the running times are below 0.1 second and the relative
timing error is large. The second exception is for DIKH code on Acyc-P2N problem
family with parameter f = 40%, where the slowest run takes about three times as much
as the fastest run (393.55 vs. 128.55 scconds). We do not think that a larger number
of runs for each data point will in any way change our conclusions about the relative
performance of the algorithms we study.

We place a 20 minute limit on the user CPU time of each computation on a problem
instance. This Jeaves over 15 minutes for the shortest paths computation (excluding
input and output). Since all problems in our tests are solvable in well under a minute
by the code that is fastest for this problem, the codes that exceed the limit on a problem
are losing to the fastest code by over an order of magnitude. If a code exceeds the
CPU lLimit or requires too much memory to run, we put “DNF” (did not finish) in the
corresponding table entry.

We also plot the data in addition to tabulating it. Our plots use regular or logarithmic
scales, as appropriate for a particular problem family. To avoid crowding the plots, when
two algorithms perform very similarly, we plot only one of them.

6. Simple SPGRID problems

First we experiment with rectangular grid networks produced by our SPGRID gen-
erator. These networks are very natural and come up in applications; see [9]. Nodes
of these networks correspond to points on the plane with integer coordinates [x, v],
I <x <X, 0Ky <Y — 1. These points are connected “forward” by arcs of the form

([x.v]. [x+1,¥]), Il<x< X, I€yv<Y
“up” by arcs of the form
(lx.¥].[x.y+1 (mod ¥)]), l<xg<X, I€y<gX

and “down” by arcs of the form
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([x.¥].[x.y =1 (modVY)]), I<xg<X, 1€y<¥Y

Thus a layer, a set of nodes [x,y] with x fixed and 1 € y <7, is a doubly connected
cycle. There is also an additional source node connected to all nodes in the first layer,
i.c.. the nodes with coordinates [ 1, v], 1 < v < Y. For the rectangular grid experiments,
arc lengths are selected uniformly at random from the interval [0, 10000].

6.1. Square grids

Fig. 9 presents results of experiments on Grid-SSquare family of square grids. For
this family X =Y.

BFP ——
100 A GOR1 -
DIKH &
DIKBD - -
THRESH -+--
PAPE -x-- =
©
=10 ]
E
£ 1
5
£
0
£
.11
0014 =
4096 16384 65536 262144 1048576
number of nodes (logscale)
[ nodes/arcs | BFP | GOR | GORI | DIKH | DIKBD | PAPE | TWO-Q | THRESH |
4097 0.02 | 0.02 0.03 0.03 0.02 0.01 0.01 0.01
12288 274 | 226 4.82 1.00 1.00 1.25 1.25 1.05
16385 0.21 | 0.08 0.21 0.17 0.10 0.03 0.04 0.05
49152 5.05 | 2.29 5.25 1.00 1.00 1.26 1.26 1.05
65537 1.96 | 0.37 1.52 0.70 0.50 0.22 0.24 0.28
196608 9.66 | 2.28 7.41 1.00 1.00 1.27 127 113
262145 24,07 | 2.02 7.40 3.22 2.03 1.70 1.53 1.44
786432 19.68 | 2.29 8.11 1.00 1.00 1.27 1.27 1.16
1048577 || 231.33 | 7.18 | 42.50 | 16.28 8.90 4.33 4.48 7.02
3145728 4178 | 230 | 1125 1.00 1.00 1.27 1.27 1.19

Fig. 9. Grid-SSquare family data.
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The best performance on this family is achieved by PAPE and TWO_Q. The perfor-
mance of GOR, DIKBD, and THRESH is also good. These codes lose to the best codes
by less than a factor of 3. Somewhat slower 1s DIKH; it loses to the fastest codes by
about a factor of four on the largest problem size.

The worst performance on this family is that of BFP. The second-worst code is GOR1.
On the largest problem size, it is an order of magnitude slower than the fastest codes
but an order of magnitude faster than the slowest code.

Remark 15. Our experiments show that the numbers of scans done by PAPE and TWO_Q
on the same problem instances in the Grid-SSquare family are exactly the same. This is
also the case for the Grid-SWide and Grid-SLong families of the next section. Closer
examination of the distribution of the input graphs reveals that PAPE and TWO_Q on
such problems are indeed very likely to perform the same number of scans.

When designing or implementing algorithms that use a shortest paths subroutine, it is
often convenient to assume that all nodes of the network are reachable from the source.
One way to assure this property is to introduce an artificial source and connect it to the
original source by a zero length arc and to the other nodes of the graph by very long
arcs. This is exactly how we obtain the Grid-SSquare-S family from the Grid-SSquare
family.

Fig. 10 shows the results of the Grid-SSquare-S experiment. Note that the Grid-
SSquare-S graphs have about 1/3 more arcs than those in the previous experiment.
Since the problem structure is similar, one would expect a slight increase in the running
times on problems with the same number of nodes. However, the only code that meets
this expectation is GOR1. Performance of all other codes suffers, but while PAPE and
TWO.Q have a drastic change, other codes experience a relatively modest one.

The best codes in the first experiment are the worst by a wide margin in the second
experiment. In particular, PAPE is the only code that ran over time limit on the second
largest problem size. In the second experiment, TWO.Q performs much better than PAPE
but much worse than the other codes.

The performance of BFP decreases by roughly a factor of two, and the code remains
uncompetitive with the best codes on this family.

The performance of DIKH decreases by a factor that slowly grows with the problem
size. This factor is about 2 for the smaller problem sizes and over 3 for the largest size.

The performance of GOR and THRESH decreases by about a factor of 3. For the
smaller problem sizes, THRESH is the fastest code in this experiment, but it loses to
DIKBD on larger problems. Slightly slower than THRESH is GOR.

For larger problems, DIKBD is the fastest code in this experiment. Its performance
decreases only by a factor of about 1.5 on the largest problem size. On smaller problems
the performance decreases by a factor of 4.
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[nodes/arcs | BFP | GOR | GORI | DIKH | DIKBD | _ PAPE | TWO.Q | THRESH ]
4098 0.03 0.04 0.04 0.07 0.08 0.75 0.24 0.03
16385 4.78 4.51 473 1.00 1.00 153.32 38.14 2.24
16386 0.32 0.24 0.23 0.34 0.23 8.31 2.01 0.16
65537 9.19 4.57 5.19 1.00 1.00 326.03 7131 2.29
65538 3.04 1.17 1.38 1.85 0.83 203.40 22.62 0.96

262145 17.43 4.59 6.48 1.00 1.00 | 1664.52 166.50 230
262146 40.01 5.06 743 | 10.29 3.09 DNF | 309.16 4.55
1048577 3412 4.62 7.53 1.00 1.00 489.18 227
1048578 || 351.96 | 20.39 | 36.74 | 53.86 12,78 DNF DNF 19.46
4194305 70.97 4.62 9.46 1.00 1.00 226

6.2. Wide and

Fig. 10. Grid-SSquare-S family data.

long grids

147

Next we examine how the performance depends on the shape of the grid. We study
two problem families, Grid-SWide and Grid-SLong. The grids in the first family have
X = 16, i.c., the length of these grids is fixed and the width grows with the problem size.
The grids in the second family have ¥ = 16 and their length grows with the problem

size.

The wide grids are easy for all algorithms, as one can see in Fig. 11. The fastest
codes for this problem family are PAPE and TWO.Q, and all other codes except DIKH
are within a factor of 2 from the fastest codes. Even the slowest code, DIKH, loses by
less than an order of magnitude.
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The situation changes on long grids, as can be seen in Fig. 12. The most affected code
is BFP, which is very good on wide grids but very bad on long grids, where it is the
slowest code by a wide margin. The performance of DIKH is also affected significantly;
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DIKH
0] GORI1
DIKBD
GOR
BFP
= PAPE
e
()
!
)
=
ENE -
- '
w" ',.A/“
0.01 : : . : , , :
8197 16384 32768 65536 131072 262144 524288

number of nodes (logscale)

nodes/arcs [| BFP [ GOR [ GORI | DIKH | DIKBD | PAPE | TWO.Q | THRESH

8192 1| 0.03 | 0.04 0.05 0.08 0.05 0.02 0.02 0.02
24576 142 | 221 3.03 1.00 1.00 1.24 1.24 1.02
16385 || 0.05 | 0.09 0.13 0.20 0.10 0.05 0.05 0.07
49152 1.43 | 223 3.02 1.00 1.00 1.24 1.24 1.01
32769 || 0.19 | 0.24 0.31 0.50 0.26 0.14 0.13 0.19
98304 1.43 | 222 3.05 1.00 1.00 1.24 124 1.02
65537 || 0.43 | 0.53 0.72 1.29 0.59 0.30 0.30 0.47

196608 1.44 | 222 3.01 1.00 1.00 1.24 1.24 1.02
131073 1.21 | 1.25 176 3.58 1.45 0.87 0.88 1.23
393216 1.43 | 2.23 3.03 1.00 1.00 1.24 {24 1.01
262145 || 2.97 | 3.06 4.64 9.76 3.53 2.31 2.40 3.61
786432 144 | 225 297 1.00 1.00 1.25 1.25 1.01
524289 || 6.00 | 6.15 7.31 | 23.68 7.94 4.50 4.68 8.16
1572864 1.44 | 2.25 3.04 1.00 1.00 1.25 [.25 1.01

Fig. 1. Grid-SWide family data.

its performance improves, especially on big problems.

Other codes are less affected: their running times change by less than a factor of
4. The performance of GOR, DIKBD, PAPE, TWO_Q, and THRESH improves, while the
performance of GORI degrades. The best codes for the wide grids, PAPE and TWO_Q,

remain the best for the long grids.
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8192 16384 32768 65536 131072 262144 524288
number of nodes (logscale)
[Tnodes/arcs || BFP | GOR | GORI | DIKH | DIKBD | PAPE | TWOQ | THRESH |
8193 0.28 0.03 0.11 0.05 0.05 0.02 0.02 0.03
24576 19.84 2.26 7.41 1.00 1.00 1.25 1.25 1.39
16385 1.26 0.07 0.29 0.10 0.10 0.03 0.04 0.07
49152 36.04 227 9.09 1.00 1.00 1.26 1.26 1.40
32769 5.07 0.18 0.82 0.23 0.22 0.10 0.10 0.14
98304 70.51 227 9.88 1.00 1.00 1.26 1.26 1.46
65537 20.89 0.33 1.78 0.48 0.45 0.22 0.23 0.31
196608 154.44 227 10.57 1.00 1.00 1.26 1.26 1.47
131073 120.33 0.67 412 0.97 0.92 045 0.45 0.62
393216 318.07 2.27 11.65 1.00 1.00 1.26 1.26 1.50
262145 689.46 1.52 992 1.93 1.82 0.94 0.96 1.38
786432 666.76 227 12.42 1.00 1.00 1.26 1.26 1.50
524289 DNF 3.03 18.25 3.85 3.68 1.73 1.82 2.48
1572864 227 12.24 1.00 1.00 1.26 1.26 1.49

Fig. 12. Grid-Siong family data.

7. Harder SPGRID problems

The SPGRID generator can also produce networks with structure that is very different
from the simple grids described in the previous section. As in the case
the networks considered in this section consist of layers and the source connected to the
nodes of the first layer. Each layer is a simple cycle plus a collection of arcs connecting
randomly selected pairs of nodes on the cycle. The length of the arcs inside a layer is
small and nonnegative. There are arcs from one layer to the next one, as in simple grids,

of simple grids,
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[ nodes/ares ]| BFP | GOR | GORI | DIKI | DIKBD | PAPE | TWO-Q | THRESH |
8193 13.68 0.54 0.33 0.21 0.12 348.05 34.88 2.07
63’08 390.13 | 16.90 11.66 1.00 1.00 14988.77 1108.89 57.55
16385 67.46 1.22 0.81 0.42 0.26 589.40 68.66 5.83
129344 799.87 | 17.98 12.52 1.00 1.00 | 12694.03 | 114592 79.25
32769 309.98 2.39 1.88 0.85 0.52 DNF 149.19 25.73
260416 1612.36 | 17.87 12.07 1.00 1.00 1190.10 178.42
65537 DNF 4.71 4.20 1.71 1.05 DNF 295.65 298.97
522560 17.84 14.01 1.00 1.00 1190.76 803.15
131073 DNF 9.54 9.21 3.48 2.11 DNF 584.69 DNF
1046848 17.98 14.73 1.00 1.00 [199.97
262145 DNF | 18.82 19.25 6.86 4.23 DNF DNF DNF
2095424 17.82 15.12 1.00 1.00

Fig. 13. Grid-PHard family data.

but in addition, there are generally arcs from lower to higher numbered layers. For the
Grid-PHard problems the inter-layer arcs have nonnegative length, and for Grid-NHard
problems. nonpositive length. The length of these arcs is selected uniformly at random
from a wide range of integers. Additionally, in the Grid-PHard problems the length of
an arc from layer x; to layer x; is multiplicd by (x3 — x1)>.

The Grid-PHard and Grid-NHard networks are significantly more complicated than
simple grids. For example, these networks are non-planar. A more relevant difference is
a complex layer structure of these networks, which has the property that a path between
two nodes with many arcs is likely to have shorter length than a path with fewer arcs.
This makes it difficult to direct the computation based on local information, so some
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[ nodes/arcs || BFP | GOR | GORl | DIKBD | PAPE | TWO.Q | THRESH |
8193 12.59 0.55 0.33 38.56 359.73 34.88 29.26
63808 392.09 17.88 11.66 87692 16092.24 | 1143.77 912.61
16385 68.86 1.36 0.82 186.71 633.44 71.758 161.48
129344 803.31 19.89 12.52 1850.02 13846.24 | 1187.05 1854.19
32769 317.84 2.99 1.90 888.04 DNF 153.64 741.89
260416 1619.02 | 20.66 13.07 | 3844.69 1231.74 3859.87
65537 DNF 6.45 4.28 DNF DNF 305.02 DNF
522560 21.30 14.01 1231.16
131073 DNF | 14.05 9.28 DNF DNF 609.94 DNF
1046848 22.58 1473 1239.82
262145 DNF | 29.38 19.34 DNF DNF DNF DNF
2095424 23.47 1512

Fig. 14. Grid-NHard family data. DIKH exceeded the time limit on all problems.

algorithms may be forced to perform many re-scans.

The computational results on the Grid-PHard family appear in Fig. 13. Only four
codes, GOR. GORI, DIKH, and DIKBD, solve all problems in this family within the time
limit.

The fastest code for this experiment is DIKBD, with DIKH close behind, losing by
less than a factor of 2. The running time of these two codes seems to be close to linear
in the number of nodes in Grid-PHard problems. The running time of GOR and TWO_Q
also seems to be close to linear, but with bigger constant factors. While GOR is about
five times slower than the Dijkstra’s codes, TWO.Q is two orders of magnitude slower.

The running time of GORI seems to grow a little faster than that of GOR. The latter
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code is a little slower on small problems but catches up on the biggest problems in our
test. Both THRESH and BEFP exhibit clearly superlinear rates of growth and exceed the
time limit on the bigger problems.

In this test PAPE has the worst performance. In the set time, it is able to solve
problems of the two smallest sizes only, losing to the best code by three orders of
magnitude.

Fig. 14 gives results of the Grid-NHard experiment. On this problem family, GORI
and GOR are by far the best codes.

Remark 16. On all instances we tried. the number of scans done by GOR1 on Grid-
NHard instances and the corresponding Grid-PHard ones are exactly the same. This code
secems 1o be always able to figurc out that the underlying problem structure is similar.
The minor running time differences are mostly due to timing variations.

Although the performance of BFP. PAPE. and TwWO_Q codes is not exactly the same
in this experiment as in the previous one, it is quite similar. Much worse performance
is exhibited by THRESH. DIKBD, and DIKH. The latter code is the worst, exceeding the
time limit on all test problems.

One should note similar behavior of DIKBD and THRESH on Grid-NHard problems.
Moreover. their behavior is analogous to BFP, that is, DIKBD and THRESH differ from
BFP by roughly the same factor for all problem sizes. (See the note at the end of
Section 4.2 for information about how our implementations of Dijkstra’s algorithm deal
with negative arc lengths.)

8. Experiments with SPRAND families

In this section we study performance of the codes on graphs produced by the SPRAND
generator, All graphs we consider are constructed by creating a hamiltonian cycle and
then adding arcs with distinct random end points. In our experiments we set the length
of the arcs on the cycle to | and pick the lengths of other arcs uniformly at random {rom
a certain interval. For all problem families except Rand-Len, this interval is [0, 10000].

Note that if we were to pick the cycle arcs lengths in the same ways as the other arc
lengths, the resulting graphs would be essentially random. We found, however, that the
resulting problems were easy for all the codes. Setting the cycle arc lengths to 1 makes
the problems more interesting and the experiments more insightful.

8.1. Sparse and dense networks

The graphs in Rand-4 family have m = 4n. These are sparse graphs. As one can see
in Fig. 15, the Dijkstra’s codes are the best on these problems, with DIKBD clearly
the fastest code and DIKH slower by a factor of about 2 for the smaller problems and
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TWO_Q ———
BFP -----
100 4 GOR -&-
GOR1 =
DIKH -&--
DIKBD -»--

>
.

runping time in secs (logscale)

0.1 )
.
8192 16384 32768 65536 131072 262144 524288 1048576
number of nodes (logscale)
[ nodes/arcs || BFP | GOR | GORI | DIKH | DIKBD | PAPE | TWO.Q | THRESH |

8192 0.32 0.34 0.26 0.15 Q.08 0.32 0.35 0.20
32768 12.23 14.58 10.92 1.00 1.00 16.32 15.90 6.3
16384 1.16 1.09 0.91 0.39 0.14 1.22 1.40 0.79
65536 13.45 16.19 11.72 1.00 1.00 20.14 18.83 7.22
32768 341 2.99 2.56 0.98 0.40 3.56 3.98 2.40
131072 13.73 16.47 12.00 1.00 1.00 20.08 19.38 7.22
65536 9.37 8.03 7.09 247 0.97 10.60 11.39 7.12
262144 15.51 18.21 [3.29 1.00 1.00 25.16 2338 8.56
131072 23.20 19.04 15.91 5.87 2.23 2545 28.06 17.45
524288 16.75 19.48 14.15 1.00 1.00 27.31 26.07 9.16
262144 51.39 42,74 33.81 13.15 4.79 54.73 61.36 40,43
1048576 17.61 20.76 14.62 1.00 1.00 2780 26.95 10.02
524288 109.36 89.36 71.58 | 29.28 10.11 118.04 134.44 86.66
2097152 18.19 21.02 15.02 1.00 1.00 28.91 2841 10.09
1048576 235.63 | 194.31 | 143.54 | 63.27 21.09 | 257.31 302.76 186.23
L 4194304 19.12 22.40 1518 1.00 1.00 31.23 30.70 10.56

Fig. 15. Rand-4 family data.

a factor of about 3 for the bigger problems. Other codes are noticeably slower, with
TWO_Q and PAPE being the slowest.

The graphs in Rand-1:4 family have m = n®/4. These are dense graphs. As one can
see in Fig. 16, there is little difference in relative performance of the codes, except
DIKH improves relative to DIKBD and becomes the fastest code, although DIKBD is
only slightly slower.
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ecs (logscal

glimeins
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0.01

512 1024 2048 4096
number of nodes (logscale)

nodes/ares || BFP | GOR | GORI [ DIKH | DIKBD [ PAPE | TWO.Q [ THRESH

S12 40 0.09 0.13 0.12 0.02 0.02 0.15 0.16 0.08
635536 || 532 791 6.22 1.00 1.00 9.03 8.70 4.26
1024 || 0.46 0.70 0.59 0.11 0.12 0.76 0.79 0.46
262144 || 510 791 6.21 1.00 1.00 9.11 8.88 478
2048 1.97 3.07 2.71 0.48 0.49 3.39 3.53 1.94
1048576 || 4.65 7.23 6.01 1.00 1.00 8.43 8.33 4.45
4096 || 8.37 | 1345 | 1141 1.95 202 | 16.18 16.51 9.21
4194304 || 4.65 724 5.87 1.00 1.00 9.12 8.92 4.99

Fig. 16. Rand-1:4 family data.
8.2. Dependency on arc lengths

All problems in the Rand-Len family are the same except for the interval from which
the arc lengths are selected. The arc length is lixed to 1 for the first problem in the
family and selected from an interval [0, U] for the other problems. See Fig. [7. Note
that because the lengths of the arcs on the cycle are set to 1, the structure of the shortest
paths tree changes as U increases. For bigger values of U, the cycle arcs are more likely
to be in the tree and the tree is likely to be taller.

On the unit length problems, BFP, DIKH, DIKBD, PAPE. TWO_Q, and THRESH make
one scan per node. The running times of BFP. PAPE. and TWO_Q are the fastest (and
almost the same). Other codes that perform well are GOR, DIKH, DIKBD, and THRESH.
These codes lose to the fastest codes by less than a factor of 2. The worst code, GORI,
loses by about a factor of 5.
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45
01 two_Q ——
PAPE -
25 BFP -a-- .
o THRESH -x
GOR ~=--
i GORI1 -x--
30 DIKH -
2 DIKBD -+ x
= K A
‘0257 ks
o0 ’
£20 .
= s
1]
= X
15 - e
10
5 o -
I 10 100 10000 1000000
hound on arc lengths
| [L,U] ]| 8FP | GOR [ GORI | DIKH | DIKBD | PAPE | TWOQ [ THRESH |
f1,1] 1.50 231 6.43 2.71 1.77 145 1.49 2.16
1.00 1.61 4.48 1.00 1.00 1.00 1.00 1.00
10,10] 4.12 522 7.97 3.88 2.07 3.39 3.50 2.30
2.67 4.36 5.94 1.00 1.00 2.85 2.84 1.01
[0, 100] 9403 9.71 10.16 4.66 2.18 8.29 8.99 4.24
6.15 8.93 821 1.00 1.00 8.07 8.05 [.78
10, 10000] 2317 | 19.01 15.67 5.80 2.23 | 2499 27.97 17.12
16.73 19.48 14,15 1.00 1.00 | 27.31 26.07 9.16
| &, 1000000 35.09 | 26.27 11.99 6.23 2.23 | 41.76 43.64 27.25
26.77 | 27.96 12.26 1.00 1.00 | 47.60 41.89 16.03

Fig. 17. Rand-Len family data. All problems have 131072 nodes and 524 288 arcs.

As the length range expands, the algorithms become slower. DIKBD shows very little
dependence on the arc length range and is the fastest except for the unit length case.
The performance of GOR1 and DIKH is also affected very little. Other codes, however,
arc significantly affected; their performance decreases by over an order of magnitude

for the [0, 1000000] length range (compared to the unit fength case).

8.3. Node potentials

The problems in the Rand-P family are the same except the length function £ is
modified by assigning to each node ¢ a potential p(v) chosen uniformly at random
from the interval [0, P] and replacing £ by the reduced cost function £,. see Fig. 18.
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140
, DIKH —~—
1204 THRESH
DIKBD -a--
TWO_Q
| PAPE -a--
40 BFP v -
3 GOR o -
= GORI ~+
280
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£
s604 “
S e
40 4
20 l
0 —— T T T T T T
0 1000 5000 10000 100000 1000000 5000000
bound on node potentials
P ]| Brr | GOR | GORl | DIKH | DIKBD | PAPE | TWO.Q | THRESH ]
0 23.18 | 19.04 15.68 5.82 2.24 | 25.00 27.98 17.17
16.75 19.48 14.15 1.00 1.00 | 27.31 26.07 9.16
1000 23.18 | 18.35 15.67 8.36 248 | 25.00 27.96 15.80
16.75 18.89 14.15 1.28 1.28 | 27.31 26.07 737
5000 23.18 | 18.62 15.68 15.96 495 | 2502 27.97 1645
16.75 1921 14,15 299 299 | 27.31 26.07 8.00
10000 23.18 | 18.83 15.67 26.33 8.57 | 24.99 27.97 17.45
16.75 19.42 14,15 5.55 555 | 27.31 26.07 8.49
100000 23.18 | 19.33 15.66 95.49 33.23 | 2499 27.97 4433
16.75 19.76 14.15 23.72 22.85 | 27.31 26.07 20.86
1000000 23.21 19.43 15.68 | 137.67 4442 | 2505 28.02 56.53
16.75 19.78 14.15 33.80 3044 | 27.3) 26.07 26.77
5000000 23.18 19.20 15.65 147.31 46.32 | 25.01 28.00 58.88
16.75 19.53 14.15 3593 3140 | 27.31 26.07 27.88

Fig. 18. Rand-P family data. All problers have 131072 nodes and 524288 arcs.

(For P = 0, the problems are the same as the 131072 node problems of the Rand-4
family.) While £ is nonnegative, £, can take on negative values. However, for small P,
the expected fraction of negative length arcs is small.

Note that BEP, GORI, PAPE, and TWO_Q make the same number of scans regardless
of the potentials. This observation is justified by Theorem 17.
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9. Experiments with SPACYC families

In this section we study performance of the codes on acyclic networks. The shortest
paths problem on an acyclic graph can be solved in linear time (see e.g. [4]) and the
cxperiments of this section include a linear time algorithm for acyclic graphs, ACC.

Experiments with acyclic graphs are interesting for several reasons. Shortest paths
problems in acyclic graphs come up in applications, such as PERT network analysis
(sec e.g. [22]). Furthermore, some networks that come up in applications have large
acyclic subgraphs (e.g. electric networks) and an algorithm that behaves poorly on
acyclic networks is likely to behave poorly on networks with large acyclic subgraphs.
Acyclic networks are also easy to use in certain experiments because negative length
cycles are not a problem for these networks.

The networks used in the experiments of this section are produced by the SPACYC
generator in the following way. The nodes are numbered from 1 to n, and there is a path
of arcs (i,i+ 1), 1 £ i < n. These arcs are called the path arcs. Additional arcs are
generated by picking two distinct nodes at random and creating an arc from the lower
to the higher numbered node. The lengths of the additional arcs are selected uniformly
at random from the interval (L, U].

9.1. Positive arc length

For the Acyc-Pos family, the length of the path arcs is set to 1 and the other arc
lengths are selected from the interval [0,10000]. The unit length of the path arcs
makes these problems more difficult for some of the codes. Fig. 19 shows how the
codes perform on this problem family.

The fastest codes for this family are DIKBD and ACC. These codes perform similarly,
but the former is a little faster on bigger problems, in spite of the fact that ACC is
especially designed for acyclic graphs. These two algorithms make the same number
of scans; the additional overhead of ACC is a topological sort of the graph and the
additional overhead of DIKBD is in maintaining the bucket data structure. It turns out
that the latter overhead is smaller than the former for large Acyc-Pos problems. The
performance of GORI1 is only slightly worse than that of ACC; DIKH also performs well,
losing to DIKBD by about a factor of two.

The other codes are an order of magnitude slower than the fastest ones. Worst per-
formers are GOR, PAPE, and TWO_Q.

9.2. Negative arc length

For the Acyc-Neg family, the path arc length is set to —1 and the other arc lengths
are selected uniformly at random from the interval [ —10000,0]. We would like to note
that Acyc-Neg problems are very natural. For example, to solve a problem of finding
a longest path in an acyclic graph, one negates arc lengths and looks for a shortest
path. In applications such as PERT, lengths are nonnegative, and the resulting problems
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(logscale

running time in secs

0.1

8192 16384 32768 65536 131072
number of nodes (logscale)

[ nodes/arcs || acc | BFP | GOR | GOR| | DIKH | DIKBD | PAPE | TWO.Q | THRESH

8192 0.13 0.64 0.80 0.14 0.26 0.13 0.63 0.72 0.35
131072 1.00 8.80 | 12.51 2.00 1.00 1.00 | 11.87 11.63 S.15
16384 || 033 1.93 2.49 0.39 0.66 0.33 1.87 2.23 1.10
262144 1.00 976 | 14.52 2.00 1.00 1.00 | 1392 13.50 5.78
327638 || 0.90 5.97 6.95 1.12 1.64 0.89 5.51 6.52 3.19
524288 1.00 10.09 | 14.55 2.00 1.00 1.00 | 1433 1422 5.89
65536 || 2.65 | 18.58 | 23.66 2.99 4.11 240 | 1838 19.72 9.84
1048576 1.00 11.36 { 17.23 2.00 1.00 1.00 | 1547 15.17 6.60
131072 6.54 | 42.86 | 54.96 7.24 9.67 538 | 4643 48.66 23.39
2097152 1.00 | 11.44 | 16.78 2.00 1.00 1.00 | 16.29 15.87 6.53
Fig. 19. Acyc-Pos family data.

are similar to the Acyc-Neg problems. Fig. 20 shows how the codes perform on this
problem family.

In this experiment, ACC and GORI perform similarly to the previous experiment, and
GOR performs better than in the previous experiment, matching GORI.

All other codes perform worse by a very wide margin. Within the time limit, BFP
finishes on three smallest problem sizes, THRESH, DIKBD, and TWO._Q on two, DIKH
and PAPE only on one.

9.3. Variable fraction of negative arcs

The previous experiments with acyclic graphs show that performance of many algo-
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8192 16384 32768 65536 131072
number of nodes (logscale)
[ nodes/arcs | acC | BFP | GOR | GORI | DIKH | DIKBD | PAPE | TWO.Q | THRESH |
8192 0.13 2412 | 0.18 0.17 | 1047.35 54.60 185.55 154.47 66.83
131072 1.00 46695 | 2.00 2.00 | 9037.71 964.79 | 6188.81 | 4590.70 1453.33
16384 0.33 12398 | 0.42 0.42 DNF 266.25 DNF 823.41 325.61
262144 1.00 887.44 | 2.00 2.00 1841.51 9699.84 | 2797.25
32768 0.97 618.04 | 1.17 1.15 DNF DNF DNF DNF DNF
524288 1.00 | 172482 | 2.00 2.00
65536 2.87 DNF | 341 3.28 DNF DNF DNF DNF DNF
1048576 1.00 2.00 2.00
131072 744 DNF | 8.65 8.51 DNF DNF DNF DNF DNF
2097152 1.00 2.00 2.00

rithms changes dramatically if arc lengths in an acyclic graph are negated. We study

Fig. 20. Acyc-Neg family data.

this phenomenon further by varying the fraction of negative length arcs.

For the Acyc-P2N family, the problem size is fixed and all arc lengths are selected
uniformly at random from the interval [ L, U], where the values of L and U determine
the expected fraction f of negative length arcs. Note that unlike the previous experiments

with acyclic networks, the path arc lengths are random in this experiment.

Fig. 21 summarizes the results. As expected from theory and the previous experi-
ments, the performance of ACC and GORI shows almost no dependence on f. Also as
expected, the implementations of Dijkstra’s algorithms perform poorly when the fraction

ol negative length arcs is large.



160 BV, Cherkassky et al./Mathematical Programming 73 (1996) 129-174

1000 1 e iR
DIKH —— Fooo B
TWO_Q =
DIKBD u- .
THRESH = /,”'”"""“"‘ T TR
BFP -+
GOR —x--
B00{  GORI -2~
S
g‘“
<
ﬂ(’_)/
=
£10
o
=] il
g
1 .
PPN Y o R e
40 50 60 100
percentage of negative arcs
| [ (%) ]| acc ] BrP | GOR | GORl DIKH [ DIKBD | PAPE | TWO.Q | THRESH |
0 0.35 0.35 0.56 0.38 0.45 0.32 0.39 0.41 0.30
1.00 .66 2.61 2.00 1.00 1.00 1.83 1.83 1.01
10 0.35 044 0.60 0.39 0.51 0.32 0.49 0.50 0.32
1.00 221 3.01 2.00 1,14 1.14 2.64 2.64 1.29
20 0.36 1.03 1.01 0.39 2.07 1.05 1.25 1.36 1.05
1.00 6.78 6.29 2.00 6.58 7.28 10.92 10.53 7.06
0 0.37 3.88 1.86 0.41 17.13 571 5.78 6.28 5.30
1.00 28.65 12.49 2.00 63.54 4131 69.27 59.79 40.28
40 0.38 23.62 3.50 0.42 257.13 44.78 66.90 59.80 42.87

1.00 179.75 | 22.81 2.00 | 978.74 32584 940.89 641.19 339.58
50 0.37 135.64 4.99 0.43 DNF 337.62 874.90 742.54 355.35

1.00 | 1056.25 | 3081 2.00 2450.04 | 12088.96 | 9510.17 | 2862.66

60 0.40 285.63 5.29 0.43 DNF 843.39 DNF DNF 754.70
1.00 | 2149.88 | 33.52 2.00 5634.02 5918.05

100 0.38 313.34 0.43 0.43 DNF | 1078.63 DNF DNF 939.29
1.00 | 2349.75 2.00 2.00 6975.15 711446

Fig. 21. Acyc-P2N family data.

Performance of PAPE and TWO_Q in this test is similar. The performance degrades
dramatically as the fraction of negative length arcs increases. Performance of BFP and
THRESH also significantly degrades, although not as dramatically.

Performance of GOR degrades somewhat until the fraction of negative length arcs
becomes very large, at which point the performance improves.
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8192

16384

32768

65536
number of nodes (logscale)

131072

262144

524288

| nodes/arcs || DIKH | DIKF | DIKR | DIKB

| DIKBM | DIKBA | DIKBD

8193 0.08 0.14 0.09 0.03 0.05 0.03 0.05
24576 1.00 1.00 1.00 1.00 1.00 1.00 1.00
16385 0.20 0.35 0.22 0.08 0.11 0.07 0.10
49152 1.00 1.00 1.00 1.00 1.00 1.00 1.00
32769 0.50 0.87 0.50 0.22 0.27 0.22 0.26
98304 1.00 1.00 1.00 1.00 1.00 1.00 1.00
65537 1.29 2.17 1.13 0.53 0.62 0.53 0.59

196608 1.00 1.00 1.00 1.00 1.00 1.00 1.00
131073 3.58 5.41 2.73 1.32 1.52 1.30 145
393216 1.00 1.00 1.00 1.00 1.00 1.00 1.00
262145 976 | 13.95 6.80 3.27 391 3.16 3.53
786432 1.00 1.00 1.00 1.00 1.00 1.00 1.00
524289 || 23.68 | 33.32 | 1583 7.57 9.24 7.03 7.94
1572864 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Fig. 22. Performance of Dijkstra’s implementations on Grid-SWide problems.

161

The above experiments involve two implementations of Dijkstra’s algorithm, the “clas-
sical” k-ary heap implementation DIKH and our double bucket implementation DIKBD.
In this section we compare these implementations with several other implementations on
problem families Grid-SWide, Grid-SLong, Grid-SSquare-S, Grid-PHard, and Rand-Len.
The problem families are chosen to emphasize differences in the codes’ performance.
The additional implementations we evaluate are the R-heap implementation DIKR, the
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8192 16384 32768 63536 131072 262144 5247288
number of nodes {logscale)

[ nodes/arcs [] DIKH | DIKF | DIKR | DIKB | DIKBM | DIKBA | DIKBD

8193 0.05 0.09 0.08 0.37 0.33 0.06 0.05
24576 1.00 1.00 1.00 1.00 1.00 1.00 1.00
16385 0.10 0.19 0.17 0.73 0.63 0.13 0.10
49152 1.00 1.00 1.00 1.00 1.00 1.00 1.00
32769 0.23 0.42 0.37 1.47 1.30 0.28 0.22
98304 1.00 1.00 1.00 1.00 1.00 1.00 1.00
63537 0.48 0.90 0.75 2.95 2.62 0.58 0.45

196608 1.00 1.00 1.00 1.00 1.00 1.00 1.00
131073 0.97 1.80 1.49 6.06 5.45 1.17 0.92
393216 1.00 1.00 1.00 1.00 1.00 1.00 1.00
262145 1.93 3.65 298 | 11.99 10.52 2.33 1.82
786432 1.00 1.00 1.00 1.00 1.00 1.00 1.00
524289 3.85 7.48 596 | 23.67 21.03 4.68 3.68
1572864 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Fig. 23. Performance of Dijkstra’s implementations on Grid-SLong problems.

Fibonacci heap implementation DIKE, Dial's implementation DIKB, the overflow bag
implementation DIKBM, and the approximate bucket implementation DIKBA.

Fig. 22 presents data for the Grid-SWide family. Here DIKBA performs best, with
DIKB, DIKBD, and DIKBM close behind. Note that DIKBA makes only one scan per
node on these problems. The heap implementations DIKR and DIKH are somewhat
slower than the bucket implementations, with DIKR is a little faster than DIKH except
for the smaller problem sizes. The slowest code in this test is DIKF.

Fig. 23 presents data for the Grid-SLong family. On this family, DIKH and DIKBD
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0.1

4096 16384 65536 262144 1048576
number of nodes (logscale)

[ nodes/arcs J] DIKH | DIKF | DIKR | DIKBM | DIKBA | DIKBD |

4098 0.07 0.07 0.05 0.15 0.03 0.08
16385 1.00 1.00 1.00 1.00 1.82 1.00
16386 0.34 0.37 0.24 0.41 0.13 0.23
65537 1.00 1.00 1.00 1.00 1.75 1.00
65538 1.85 2.00 113 1.95 0.65 0.83

262145 1.00 1.00 1.00 1.00 1.72 1.00
262146 || 10.29 9.51 4.87 17.03 2.92 3.09

1048577 1.00 1.00 1.00 1.00 1.70 1.00
1048578 || 53.86 | 45.60 | 21.62 | 129.90 12.88 12.78
4194305 1.00 1.00 1.00 1.00 1.70 1.00

Fig. 24. Performance of Dijkstra’s implementations on Grid-SSquare-S problems. On these problems, DIKB
requires too many buckets and does not run.

are the fastest codes. The third-fastest code is DIKBA, with DIKR close behind it and
not far behind the fastest codes. Only slightly slower than DIKR is DIKF. The remaining
two codes, DIKB and DIKBM, are significantly slower.

Fig. 24 presents data for the Grid-SSquare-S family. Here DIKBA performs best and
DIKBD is somewhat worse on smaller problems but catches up with DIKBA on the larger
problems. The code DIKR is somewhat slower; DIKF and DIKH are significantly slower
than the fastest codes, and DIKBM is slower than DIKH.

Fig. 25 presents data for the Grid-PHard family. Here DIKR performs best, with DIKBD
a very close second. Another code that does very well on these problems is DIKBM.
The performance of DIKH and DIKF is reasonably good, and these codes perform very
similarly. The worst code. DIKBA, loses to the best by about a factor of 3.
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running time in secs (logscale)

g
x

8192

16384

32768

65536

131072

number of nodes (logscale)

262144

[ nodes/arcs || DikH | DIKF [ DIKR | DIKBM | DIKBA | DIKBD

g193 0.21 0.20 0.13 0.14 0.37 0.12
63808 1.00 1.00 1.00 1.00 6.50 1.00
16385 042 | 042 0.25 0.28 0.74 0.26

129344 1.00 1.00 1.00 1.00 6.42 1.00
32769 085 | 0.88 0.52 0.58 1.53 0.52
260416 1.00 1.00 1.00 1.00 6.54 1.00
65537 1.71 1.75 1.04 1.17 3.04 1.05
522560 1.00 1.00 1.00 1.00 6.47 1.00
131073 348 | 357 2.08 2.30 6.12 211
1046848 1.00 1.00 1.00 1.00 6.51 1.00
262145 686 | 7.13 4.16 4.59 12.21 4.23
2095424 1.00 1.00 1.00 1.00 6.47 1.00

Fig. 25. Performance of Dijkstra’s implementations on Grid-PHard problems. On these problems, DIKB requires
too many buckets and does not run.

Fig. 26 presents data for the Rand-Len family. On problems with small lengths, DIKB,
DIKBA, and DIKBD are the fastest codes and on problems with big lengths, DIKBM is
the fasiest. However, the difference among all these codes is small, except that DIKB
exceeds its limit on the number of bucket and does not run on the problems with the
biggest arc length range. Somewhat slower than the fastest codes is DIKH. The code
DIKF is the slowest except on the problem with the biggest arc lengths, where it is the

second slowest.




B.V. Cherkassky et al. /Mathematical Programming 73 (1996) 129-174 165

running time in secs

1 10 100 10000 1000000
bound on arc lengths

[ |L,U] [ DIkH | DIKF | DIKR | DIKB | DIKBM | DIKBA | DIKBD |

[1,1] 271 | 4.01 2.16 1.61 2,14 1.62 1.77
1.00 1.00 1.00 1.00 1.00 1.00 1.00
[0, 10] 388 | 434 2.51 1.91 2.14 1.91 2.7
1.00 1.00 1.00 1.00 1.00 1.00 1.00
[0, 100] 4.66 | 545 2.67 2.18 2.03 2.20 2.18
1.00 1.00 1.00 1.00 1.00 1.00 1.00
{0, 10000] 5.80 [ 6.07 2.48 2.4 2.07 230 2.23
1.00 1.00 1.00 1.00 1.00 1.00 1.00
| 0, 1000000) 623 | 535 2.33 | DNF 1.73 227 223
1.00 1.00 1.00 1.00 1.05 1.00

Fig. 26. Performance of Dijkstra’s implementations on Rand-Len problems. All problems have 131072 nodes
and 524288 arcs. For the largest length interval, DIKB requires too many buckets and does not run.

11. A theoretical result

Our experimental data motivated an interesting theoretical discovery which we de-
scribe in this section. We say that two instances of the shortest path problem are
equivalent if the underlying networks, including their representations, are identical and
the two length functions, £ and ¢, satisfy £, = ¢’ for some potential function d. (If
networks are given in the adjacency list representations, identical representations have
the corresponding nodes and arcs appearing in the same order.) A labeling shortest
paths algorithm is potential-invariant if it performs the same sequence of node scans on
two equivalent problem instances, Fig. 18 shows that GOR, DIKH, DIKBD, and THRESH
algorithms are not potential-invariant and suggests that the other algorithms in the figure
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are potential-invariant.
Theorem 17. Algorithins BF, BFP, GOR1, PAPL, and TWO_Q are potential-invariant.

The proof of this theorem is straightforward from the following lemma. The lemma
follows from the fact that replacing arc lengths by reduced costs with respect to a
potential function does not change the difference in lengths of two paths between the
same pair of nodes.

Lemma 18. If on any fixed representation of a graph the behavior of a labeling algo-
rithin depends only on the relative lengths of paths from the source node to other nodes,
than the algorithm is potential-invariant.

Note that GOR is not potential-invariant because, for example, during the first depth-
first search an arc may or may not belong (o the admissible graph depending on its
input length.

Theorem 17 is powerful and useful. For example, it shows that no heuristic for comput-
ing a “good” initial potential function can improve performance of a potential-invariant
algorithm such as BF. Note that any feasible shortest paths problem has an equivalent one
with nonnegative arc lengths. If the problem with nonnegative arc lengths is computa-
tionally simpler than the general problem. the theorem suggests that a potential-invariant
algorithm cannot be superior to all other algorithms on problems with nonnegative arc
lengths.

12. Summary of experimental results

In this section we summarize and discuss performance of the algorithms we study.
For each problem class. we give two scores to each implementation. Recall that the
classes are parameterized (by network size, length function range, etc.). The first score
is for performance on the problems with the smallest parameter value, and the second
score is for the problems with the largest parameter value. Scores are integers from 0 to
5 computed as follows. Let ¢ be the running time of the fastest algorithm for the given
class and parameter value and let T be the time of the algorithm we are evaluating. We
compute g =35 — log, (7/1) and round g 1o 0 if g is negative and to the nearest integer
otherwise. Thus the fastest algorithm gets 5 points, and other algorithms lose a point
for each factor of 4 in their running time. If an algorithm did not terminate within the
CPU limit, it gets O points.

Fig. 27 gives the scores for BFP, GOR, GORI, DIKH. DIKBD, PAPE, TWO.Q, and
THRESH. Note that some experiments involve other codes, which may determine ¢ in
our score computation. For example, the ACC code is the best for small problems in
Acyc-Pos family: see Fig. 19.

Fig. 28 gives the scores for implementations of Dijkstra’s algorithms in our additional
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Problem class BFP GOR GOR] DIKH DIKBD PAPE TwO.Q THRESH

Grid-SSquare 5 S 4 4 5 5 R 5
2 5 3 4 4 5 S 5

Grid-SSquare-S 5 5 5 4 4 3 4 5
3 3 4 4 5 0 0 5

Grid-SWide 5 3 4 4 4 5 5 5
5 5 5 4 5 5 5 5

Grid-SLong 3 5 4 4 4 5 5 5
0 S 3 4 4 5 S S

Grid-PHard 2 4 4 5 5 0 1 3
0 4 4 5 5 0 0 4]

Grid-NHard 2 N 5 0 2 0 2 2
0 5 5 0 0 0 0 0

Rand-4 4 4 4 4 5 4 4 4
3 3 4 4 5 3 3 3

Rand-1:4 4 4 4 5 5 4 4 4
4 4 4 ) 5 3 3 4

Rand-Len 5 4 5 5 5 5 5
3 4 4 5 3 3 3

Rand-P 3 3 4 5 5 3 3 4
N 5 5 3 4 5 3 4

Acyc-Pos 4 4 5 4 5 4 4 4
4 3 3 5 5 3 3 4

Acyc-Neg 1 5 5 0 1 0 0 |
0 5 5 0 0 0 0 0

Acyc-P2N 5 5 5 5 5 5 5 5
0 5 5 0 0 0 0 0

Fig. 27. Performance scores for the main experiments, The upper score is for the smallest parameter value,
the lower score for the largest value.

experiments. Again, the value of r used to compute the scores is determined by the

fastest of all the algorithms we evaluated, including those not listed in the figure. We

give a score of 0 to the DIKB implementation when it requires oo many buckets to run.
Next we discuss performance of individual algorithms.

12.1. Bellman-Ford-Moore algorithm

In this section we discuss the BFP code. This discussion also applies to BF.

Theorem 1 suggests that the number of passes of BFP depends on the depth of the
shortest paths tree. The wide and long grid experiments (Figs. 11 and 12) show how
much the tree depth affects the performance. For the wide grids, the tree is likely to be
very shallow, while for the long grids with n + [ nodes the tree depth must be at least
n/16. The performance difference is as the theory suggests: BFP is asymptotically much
faster on the wide grids than on the long ones.

The number of node scans is usually a good measure of performance of BF and BFP.
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Problem class DIKH DIKF  DIKR DIKB DIKBM DIKBA DIKBD

Grid-SSquare-S 4 4 5 0 4 5 4
4 4 5 0 4 5 5
Giid-SWide 4 4 4 4 4 5 4
4 4 4 5 4 5 5
Grid-SLong 4 4 4 3 3 4 4
4 4 4 3 3 4 4
Grid-PHard 5 5 hl ) 5 4 5
] 5 5 5 5 4 5
Rand-Len 5 4 S 5 5 5 5
4 4 5 0 5 5 5

Fig. 28. Performance scores of Dijkstra’s algorithm implementations. The upper score is for the smallest
parameter value, the lower score—for the largest value.

The number of scans depends on both the number of passes over the queue (related to
the shortest paths tree depth) and on the average number of nodes scanned during a
pass. Our parent-checking heuristic tries to reduce the latter parameter.

On problems with unit arc engths, BF behaves like breadth-first search and does one
scan per node reachable from the source, and BFP behaves in exactly the same way but
is slightly slower because of the parent checks (which always come out negative). See
Fig. 5. The number of scans does not depend on the number of passes; if the number
of passes is large, the average number of nodes in the queue is small.

The Belliman-Ford-Moore algorithm works well on networks with small shortest paths
tree depth. This algorithm also works well on networks with highly “metric” arc lengths,
such as small nonnegative lengths. (See Section 12.3 for a discussion of “metric” length
functions.) In general, however, the algorithm does not perform very well relative to
the best codes. It performs especially poorly on Grid-SLong, Grid-PHard, Grid-NHard,
and Acyc-Neg problem families. We note that GOR never loses to BFP by more than a
factor of 2 in our experiments and performs reasonably where BFP does poorly.

12.2. Dijkstra’s algorithm

First we discuss relative performance of the implementations of Dijkstra’s algorithm
on networks with nonnegative length functions (Figs. 23-26). On these networks, all
implementations we consider except for DIKBA do one scan per node reachable from
the source. The difference in the running time of these implementations is due to the
different work involved in selecting a labeled node with the minimum distance label.
Note that on dense graphs this work is small compared to the work involved in the node
scans, so the code performance is nearly identical. (Compare DIKH and DIKBD on the
Rand-1:4 family.)

The k-ary heap implementation, DIKH, is the second-worst on Grid-SWide, Grid-
SSquare-S, and Rand-Len problems. This is because the heap operations are relatively
expensive unless the number of elements on the heap is small. The number of elements
on the heap is large on Grid-SWide and Grid-SSquare-S problems and small on Grid-
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SLong problems. On the latter problems, the implementation works very well, being
just a little slower than the fastest code. The implementation performs reasonably on
Grid-PHard problems.

The R-heap implementation, DIKR, is usually better than the DIKH implementation ex-
cept on GRID-SLONG tamily. This implementation is the best on Grid-PHard problems.
The tmplementation, however, is noticeably worse than the best ones on Grid-SWide
and Grid-SSquare-S problems.

The Fibonacci heap code, DIKF, is usually slower than the DIKH code and is always
slower than DIKR in our tests.

The potential for large memory requirements is one of the problems of the bucket im-
plementation DIKB. Because of this, the implementation does not run on Grid-SSquare-S
problems, Grid-PHard problems, and the Rand-Len problems with the biggest length
range. Another problem of this implementation is that it may examine a large number
of empty buckets. This is the case, for example, on Grid-SLong problems, where DIKB
is the slowest code. The code worked reasonably well on Grid-SWide and Grid-PHard
families, and on those Rand-Len problems on which it ran.

The drawback of the overflow bag implementation, DIKBM, is that the bag size can
be large and the bag may be examined many times. This happens on Grid-SSquare-S
problems where all nodes (except for the source) are placed in the bag at the beginning
of the computation and relatively few are removed at each stage. This also happens on
Grid-SLong problems where the graph has long paths. The implementation performs
poorly on hese problems. The implementation works very well on Rand-Len problems,
and reasonably well on Grid-SWide and Grid-PHard problems.

The DIKBA implementation works very well on all the problem families except Grid-
PHard. Unlike DIKB, this implementation has to look at fewer buckets. On the negative
side, nodes may be scanned more than once, but on most of our problem classes the
number of scans per node is small. Grid-PHard problems have many arcs of smail
length and DIKBA makes about 6.5 scans per node on these problems. As a result,
DIKBA performed poorly on this family.

The DIKBD is the best or nearly the best code on all problems except Grid-SSquare-S
problems of small sizes, where it is slower than DIKBA. But even on these problems
DIKBD loses by less than a factor of 3. This code works well because if a high-level
bucket is empty, the code skips it, and if the bucket is full, the code deals with it in a
way that is in general more efficient compared to DIKBA. The reason for the relatively
poor performance of DIKBD on small Grid-SSquare-S problems is that the value of
C is very large only because of the artificial arcs, and the choice of A made by the
implementation is much larger than it should be ideally. As a result, on small problems
the work involved in examining empty buckets dominates.

The DIKBD code is the best overall implementation of Dijkstra’s algorithm in our
study. If the length function is nonnegative, DIKBD performs well. It is fastest or nearly
fastest on the Grid-PHard, Rand-4, Rand-1:4, Rand-Len, Acyc-Pos families and the large
Grid-SSquare-S problems. On other problems with nonnegative arc lengths, DIKBD is
always within a factor of 4 from the fastest code.
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On problems with many negative arcs DIKBD may be extremely slow (see the results
for Grid-NHard and Acyc-Neg problems). However, if the fraction of negative arcs is
small, DIKBD may work well, as Rand-P and Acyc-P2N experiments show.

Although bucket-based implementations of Dijkstra’s algorithm usually work only
with integral lengths, the approximate bucket algorithm works with real-valued lengths
as well. If the lengths are nonnegative and the fraction of relatively short arcs is small,
this algorithm is likely to perform very well.

In practice, a good bound on the maximum arc length is often available. Some other
characteristics of the length function, such as the minimum arc length and the fractions
of big and small length arcs, may also be known. This information can be used to
select better values for the parameters in the bucket-based implementations of Dijkstra’s
algorithm and improve performance of these implementations.

12.3. The incremental-graph algorithms

The performance of the incremental-graph codes PAPE and TWO.Q is mixed: excellent
on some problem families and terrible on others.

These codes perform extremely well on simple grid problems without the artificial
source, where they average at about 1 to [.5 scans per node. Since in these codes the
overhead of selecting the next node to be scanned is very small, it is hard to beat these
algorithms by more than 33% on such a family.

For unit arc length networks in the Rand-Len experiments both incremental-graph
algorithms, and also the threshold algorithm, make one scan per node. In general, these
algorithms make at most one scan per node on networks with arc unit length. One can
show this using the fact that the low priority set is maintained as a FIFO queue and
checking the high priority set is irrelevant in this case. (The high priority set in PAPE
and TWO_Q is always empty. If the high priority set NOW in THRESH becomes empty,
it acquires all nodes from the low priority set NEXT.) Thus on networks with unit arc
length these algorithms work essentially in the same way as BF.

On the other hand, the incremental-graph codes perform poorly on Grid-SSquare-
S. Grid-PHard, Grid-NHard, Rand-4, Rand-1:4, and acyclic graph problems. The poor
performance of the codes on the Grid-SSquare-S family is due to the fact that all nodes
become labeled during the scan of the artificial source, which is the first scan performed
by the algorithms. As a result, on this family (and any other problem with an artificial
source), PAPE works like STACK and TWO_Q works like BF. Since STACK and BF
work poorly on Grid-SSquare-S problems, so do PAPE and TWO.Q.

In general, PAPE and TWO_Q seem to perform poorly on graphs with highly “non-
metric” length functions, i.e., length functions with many violations of the triangle
inequality. For example, on Acyc-Pos graphs, a violation of the triangle inequality is
possible since a sum of two random numbers can be less then the third number picked
from the same nonnegative distribution. For Acyc-Neg graphs this violation is much more
likely, however, because the distribution is nonpositive, and the algorithms perform much
worse. Intuitively, if £(u.v) + £(v,w) < £(u,w) and an incremental-graph algorithm
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places 1 and w into the high-priority set before v, adding ¢ to this set is likely to cause
the algorithm to recompute the distance label values of w and its successors in the
current shortest path tree. If the number of violations of the triangle inequality is large,
the number of scans per node is likely to be high. Although we are unable to prove
formally that non-metric length functions are bad for PAPE and TWO.Q, this seems to
be the case.

We would like to note that when PAPE and TWO_Q perform well, they seem to do a
similar number of scans per node and their running times are close, with PAPE usually
slightly faster because of a simpler low-level implementation. When the codes perform
poorly, TWO_Q is significantly faster than PAPE.

12.4. The threshold algorithm

The performance of THRESH is also mixed. This code performed well on the simple
grid networks and the unit length networks. However, the code performed poorly on
Grid-PHard, Grid-NHard, Rand-4, Rand-1:4, and acyclic graph problems.

We would like to note that since THRESH examines the NEXT list at every iteration
but does not, in general, scan all the nodes on NEXT, the running time of THRESH is
not necessarily proportional to the number of scans. The threshold parameter, however,
is computed in such a way that the algorithm tends to scan a constant fraction of the
nodes on NEXT at each iteration, so often the number of scans is a good measure of
the algorithm performance.

In a sense, THRESH is a compromise between the Bellman-Ford-Moore algorithm
(which scans all labeled nodes at each iteration) and Dijkstra’s algorithm (which scans a
labeled node with the minimum distance label). Although THRESH compares favorably
with the former algorithm, never losing to BFP by more than a factor of 2 except for the
Acyc-Neg and Acyc-P2N families in our tests, it does not look as good when compared
with DIKBD. While THRESH is never faster than DIKBD by more than a factor of 3,
the latter code is orders of magnitude faster on problem families such as Grid-PHard,
Rand-4, and Rand-1:4.

We did not attempt to improve the performance of THRESH by adjusting its param-
eters, and it may be possible to improve the overall performance of the algorithm by
fine-tuning. It is unlikely, however, that this will make the algorithm competitive on the
problems where it performs poorly in our tests.

12.5. The topological ordering algorithms

The topological ordering algorithms GOR and GORI are the most robust algorithms
in our study. These are the only algorithms, for example, that solved all Grid-NHard
problems within the time limit.

An examination of Figs. 9-21 shows that GOR never loses to BFP, PAPE, or TWO_Q
by more than a factor of 3 while it often wins by orders of magnitude. The performance
of GOR is good on all SPGRID families we consider except the Grid-PHard family. The
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code also works very well on the Acyc-Neg lamily: it can be shown that GOR does at
most two scans per node on an acyclic network with nonpositive length function.

Although GOR never loses by two orders of magnitude or more in our tests, it is
slower than the fastest codes by about an order of magnitude for some problem sizes
on the Rand-4, Rand-1:4, Rand-Len, Acyc-Neg, and Acyc-P2N families

On acyclic networks, GORI works well and Theorem 13 proves that this must be the
case. The code is also the best on Grid-NHard problems and it performs reasonably
well on Grid-SSquare-S and Grid-SWide problems. The code performs poorly on Grid-
SSquare, Grid-SLong, Rand-4, and Rand-1:4 families, where it loses by an order of
magnitude for some problem sizes.

13. Concluding remarks

Our study does not produce a singie best code for all classes of shortest paths
problems. We can, however, suggest two algorithms, one for networks with negative
arcs and one for networks without negative arcs. These algorithms may not be the best
on a particular problem class, but their running time is likely to be of the same order
of magnitude as that of the fastest algorithm and often will be much closer.

For problems with nonnegative arc lengths, Dijkstra’s algorithm is robust and an
appropriate implementation of this algorithm is usually quite competitive. In our tests,
the double bucket implementation, DIKBD, is the best overall. This implementation also
seems to work reasonably well if the network has a small number of negative length
arcs.

The folklore is that multi-level bucket implementations do not work well in practice.
However, [5] is the only study we found that includes a multi-level bucket imple-
mentation. In this study, the two-level bucket implementation was uniformly worse
than implementations of Pape-Levit and Bellman-Ford-Moore algorithms, although not
much worse. This study, however, was done on restricted classes of graphs and small
(by modern standards) problem sizes. In view of these facts, the results of [5] do not
contradict our results.

For problems with many negative length arcs, GOR and GORI appear to be good
choices. The GORI code also works well on graphs that have large node-induced acyclic
subgraphs.

In practice, problems often have a very specific structure, and algorithms that can
take advantage of this structure may perform very well. For example, practical problems
are often quite “metric” and incremental-graph algorithms may work well on these
problems. Our experiments suggest, however, that extra care is needed if one decides
to use these algorithms because small changes (such as addition of an artificial source)
may drastically decrease performance of these algorithms. Our experiments give strong
evidence that TWO_Q is more robust than PAPE and is a safer choice in practice.

The relatively good performance of the R-heap and the double-bucket implementa-
tions compared to the k-ary heap and bucket implementations, respectively, show that
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sophisticated data structures may be worth implementing. R-heaps are very promising
for other algorithms using the priority queue data structure, such as the minimum-cost
spanning tree algorithms. On the other hand, the relatively poor performance of the Fi-
bonacci heap implementation compared to the k-ary heap implementation shows that a
sophisticated data structure with a better theoretical worst-case bound is not necessarily
better in practice.

We compared several heap and bucket based implementations of Dijkstra’s algorithm.
We did not, however, attempt a detailed study of efficiency and a count of elementary op-
erations of the underlying data structures. Such a study may give a better understanding
of these data structures and give ideas for performance-improving modifications.

We evaluated the classical algorithms and the new algorithms that we considered to
be most interesting and promising. We also implemented a scaling algorithm of [17].
Performance of our implementation was not especially good, but a better implementa-
tion may be possible. A careful experimental study of several other methods, such as
variations of the threshold algorithm [14,16], may produce interesting results as well.

We experimented with networks without negative cycles. An interesting question is
which algorithms are best at detecting a negative cycle if there is one.
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