
Mathematical Programming 72 (1996) 125-145

Packing Steiner trees: a cutting plane algorithm
and computational results

M. GriStschel *, A. Martin, R. Weismantel
Konrad-Zuse-Zentrum fiir Injbrmationstechnik Berlin, Takustraj~e 7. 14195 Berlin, Germany

Received 14 January 1993; revised manuscript received 28 August i995

Abstract

In this paper we describe a cutting plane algorithm for the Steiner tree packing problem. We
use our algorithm to solve some switchbox routing problems of VLSI-design and report on our
computational experience. This includes a brief discussion of separation algorithms, a new
LP-based primal heuristic and implementation details. The paper is based on the polyhedral theory
for the Steiner tree packing polyhedron developed in our companion paper (this issue) and meant
to turn this theory into an algorithmic tool for the solution of practical problems.

Keywords: Branch and cut; Packing; Routing; Separation; Steiner tree; VLSLdesign

1. Introduction

Given a graph G = (V, E) and a node set T__c_ V, we call an edge set SC_E a Steiner

tree f o r T if, for each pair of nodes u, v E T, S contains a [u, v]-path. The Steiner tree

packing problem, as introduced in [12], can be stated as fol lows. Given an undirected

graph G = (V , E) with edge capacit ies c C ~ / N for all e ~ E and a list o f node sets

,4/'= {T~ TN}, N E ~1, find Steiner trees S k for T k, k = 1 N, such that each edge

e ~ E is contained in at most c e of the edge sets S~ S N. Every col lect ion of Steiner

trees S I S u with this property is cal led a Steiner tree packing. If a weight ing o f the

edges is g iven in addit ion and a (with respect to this weight ing) min imal Steiner tree

packing must be found, we call this the weighted Steiner tree packing problem.

The mot iva t ion for s tudying this problem arises f rom the design o f e lectronic circuits,

i.e., the task of casting a given (complex) logic funct ion in silicon. In a first phase

" Corresponding author.

0025-5610 �9 1996 - The Mathematical Programming Society, Inc. All rights reserved
SSDI 0025-5610(95)00038-0

126 M. Gri;Lwhel et al. / Mathematical Pro k, rammink, 72 (1996) 125-145

(logical design) it is specified which of tile given basic logical operations are combined

to logical units (so-called cells) and which of these cells must be connected via wires.

The points at which wires have to contact the cells are called terminals, and a set of

terminals that must be connected is called a net. The list of cells and the list of nets ale

file input of the second phase, the physical design. The task here consists in assigning

(placing) the cells to a given area and connecting (routing) the nets via wires. The

problem, in fact. is more complicated than sketched above, since various company given

design rules and technical constraints have to be taken into account and an objective

function like the resulting area has to be minimized. Due to the inherent complexity, the

problem is usually decomposed into the placement problem and the routing problem.

We are interested in the routing problem. Roughly speaking, this problem can be stated

as follows.

Given an area (typically a rectangle with some "" forbidden zones" occupied by the

cells) and a list of nets. The routing problem is to connect (route) the tennh~als of

each net by wires on the area such that certain technical side constraints are

satisfied and some objective function is minimized.

The routing problem strongly depends on the used fabrication technology and the

underlying design rules. The design rules specify, for instance, the routing area (i.e., the
area that is available for connecting the nets) or the objective function (possible choices

are, for example, the wiring length or the resulting area). The routing itself takes place

on so-called layers. Each layer is divided into gracks on which the wires run. The tracks
and the uias, the points where wires change the layers, must meet certain distance

requirements.

The routing problem in its general form is still too complex to be solved in one step.
In practice, the problem is generally decomposed into two subproblems. In a first step,
one determines how wires "'maneuver around the cells" (.~lobal routing). Here, the

design rules are only partially considered. Thereafter, the wires are assigned to the layers
and tracks according to the homotopy which was specified in the global routing phase

(detailed routing). This decomposition scheme gives rise to many variants of the routing

problem.
A number of tile routing problems resulting from this approach can be modelled as a

(weighted) Steiner tree packing problem. We will illustrate two examples in the

following.

For modelling the global routing problem, the routing area is subdivided into
subareas and these are represented by nodes in a graph. Of course, there are many ways

to do this. One possible way of subdividing the routing area is illustrated in Fig. 1. The
enclosing rectangle represents the given area. The rectangular units with a diagonal

between their lower left and upper right corner denote the cells. The routing area is

subdivided into rectangular subareas (by means of the additional dotted lines in Fig. l).
This subdivision of the routing area is represented by a graph as follows. We define a

node for each subarea and introduce an edge between two nodes, if the corresponding
subareas are adjacent. Let G = (V, E) denote the resulting graph. Additionally, a

M. Griitschel et al. / Mathematical Programming 72 (1996) 125-145 127

. - ' ~ 2 - i

Fig. 1.

capacity c,, L, ~ N is assigned to an edge uv ~ E limiting the number of nets that may run

between the subareas associated with the two nodes u and v. The weight of an edge w,,~.

corresponds to the distance between the two midpoints of the according subareas. The

terminals of a net are assigned to those nodes, whose corresponding subareas contain the

tem]inal or are as close as possible to the position of the terminal, l~ne global routing

15

14

13

11

24

1

9

2

17

12

16

4

10

324

2 4 12 7 6 9 5 8 13 15 14 15 21 20 1 2 19 1

17 16 4 7 6 5 9 8 9 12 15 24 15 I0 23 I

Fig. 2.

18 15

3

I9

24

20

18

20
i

11

21

18

23

2

22

18
22 18

128 M. Gr3t.schL'l et al. / MathemaHcal Programming 72 (1996) 125-145

problem consists in routing all nets in G such that the capacity constraints are satisfied
and the total wiring length is as small as possible. Obviously, this task defines an
instance of the Steiner tree packing problem.

The second example we want to mention is a variant of the detailed routing problem,
called switchbox routing problem (see Fig. 2). Here, the underlying graph is a complete
rectangular grid graph and the terminal sets are located on the four sides of the grid.
Remember that the task of detailed routing is to assign the wires to layers and tracks.

Detailed routing problems, and thus also switchbox routing problems, are classified by

distinguishing whether or to which extent the layers are taken into account while the
nets are assigned to tracks. Here, the following models are of special interest.

Multiple layer model. Given a k layered grid graph (that is a graph obtained by
stacking k copies of a grid graph on top of each other and connecting related nodes by

perpendicular lines), where k denotes the number of layers. The nets have to be routed
in a node disjoint fashion. The multiple layer model is well suited to reflect reality. The
disadvantage is that in general the resulting graphs are very large.

Manha t t an model. Given a (subgraph of a) complete rectangular grid graph. The nets
must be routed in an edge disjoint fashion with the additional restriction that nets that
meet at some node are not allowed to bend at this node, i.e., so-called knock-knees (cf.
Fig. 3) are not allowed. This restriction guarantees that the resulting routing can be
realized on two layers at the possible expense of causing long detours.

Knoek-knee model. Again, a (subgraph of a) complete rectangular grid graph is given
and the task is to find an edge disjoint routing of the nets. In this model knock-knees are
possible. Very frequently, the wiring length of a solution in this case is smaller than in
the Manhattan model. The main drawback is that the assignment to layers is neglected.
Brady and Brown [2] have designed an algorithm that guarantees that any solution in

" i

Fig. 3.

M. Gr&schel et al. / Mathematical Programming 72 (1996) 125-145 129

this model can be routed on four layers. It was shown in [18] that it is , / f '~-complete to

decide whether a realization on three layers is possible.

As in the case of the global routing problem the weighted Steiner tree packing

problem is a natural mathematical model of the switchbox routing problem in the

knock-knee mode. All examples that this computational study reports on are instances of

this type of switchbox routing problems. Of course, we only sketched some of the

routing problems arising in the design of electronic circuits and that can be modelled as

Steiner tree packing problems. For more details on this subject we refer to the excellent

book of Lengauer [17].

The paper is organized as follows. In Section 2 we briefly discuss the separation

problem for several classes of inequalities introduced in [12]. Implementation issues of

our branch and cut algorithm will be mentioned in Section 3. Finally, we report on

computational results for several switchbox routing instances in Section 4.

Notation

We use the same notation as in [12]. Thus, we restrict ourselves in this subsection to

briefly summarize the main notation concerning the (weighted) Steiner tree packing

problem.

Let G = (V, E) be a graph and T___ V a node set of G. An edge set S is called a Steiner

tree.[or T, if the subgraph (V(S) , S) contains a path from s to t for all pairs of nodes

s , t ~ T , s4=t.

P r o b l e m 1.1 (The weighted Steiner tree packing problem).

Instance: A graph G = (V, E) with positive, integer capacities c e E N and non-nega-

tive weights w e e ~ + , e ~ E. A list of node sets Jf '~= {T~ Tx}, N > 1, with T k c_ V

for all k = 1 N.

Problem: Find edge sets S~ S,v c_ E such that

(i) S k is a Steiner tree in G for T k for all k = 1 N,

(ii) ~xk=l [S k A {e}[_< c c for all e E E,

(iii) ~xk= t 52 ~ &w e is minimal.

If requirement (iii) in Problem 1.1 is omitted we call the corresponding problem the

Steiner tree packing problem without the prefix '" weighted" . The list of node sets ./r is

called a net list. Any element T k ~ JP is called a set o[terminals and the nodes t ~ T~

are called terminals. Instead of terminal set T k we will often simple say net k. We call

an N-tuple (S~ S N) of edge sets a Steiner tree packing or packing o f Steiner trees if

the sets S 1 S u statisfy (i) and (ii) of Problem 1.1. We will refer to an instance of the

weighted Steiner tree packing problem by (G, ,/r c, w) and to an instance of the

Steiner tree packing problem by (G, ,~v', c). E , ' • denotes the N .] E]-dimensional

vector space ~ E X . . . • ~ E where the components of each vector x ~ ~.w• are

k for k E {1 N}, e e E. The Steiner tree packing polyhedron indexed by x e

STP(G, ~ ' , c) c ~ , • is the convex hull of all incidence vectors of Steiner tree

packings.

130 M, GriJtschel ct al. / Mathematical Programming 72 (19961 125-145

We assume throughout the paper that every terminal set of the net list ,4/" has at least

cardinality two and that N > 1.

Note that the Steiner tree packing problem as well as its weighted variant are

J ' -~-complete or A~~a-hard, respectively (see. for example, [8,15,16]). The problem

remains hard in the case of switchbox routing problems in the knock-knee model (see

[22]).

2. The separation problem for several classes of inequalities

In this section we briefly sketch some of the ideas tor separating the classes of

inequalities presented in [12]. The separation algorithms and the associated correctness

proofs are quite complicated. For details of this issue we refer the reader to [20] and

[11]. Formally, the separation problem for a given class of inequalities can be stated as
follows.

Given an instance (G, J,~, c) of the Steiner tree packing problem, a vector y r N.~rxe,

y > 0, and a class of valid inequalities for STP (G, S , c). Decide, whether y satisfies

all inequalities of the given class and, if not, find an inequality of this class violated by
y.

2.1. Separation of the Steiner partition inequalities

Due to [12, Theorem 5.3] every facet-defining inequality for the Steiner tree

polyhedron yields a valid and, in case G is complete and the net list is disjoint, a
facet-defining inequality for STP (G, ,..l", c). We focus here on one class of facet-defi-

ning inequalities that was characterized in [13]. Let G be a graph and Tc_V be a
terminal set. We call a partition V~ V~,, p > 2, of V a Steiner partition with respect
to T, if V i N T:# ~3 for i = 1 p. The inequality

, - (6 (V, V,,)) _> p - 1

is called Steiner partition inequalio,. It is valid for STP (G, {T}, lq) and Gr6tschel and

Monma have characterized conditions under which it defines a facet. Though the

corresponding separation problem is . , r in general [14], there exist special
cases for which it can be solved in polynomial time. One of these special cases is

obtained if we restrict the graph G to be planar and the set of terminal nodes T to lie on
the outer face of G. This special case is of particular practical interest, because it

includes the switchbox routing problem. The main idea of the algorithm for solving the

separation problem in this case is as follows.

Without loss of generality we can assume that G is 2-node connected (otherwise the

graph can be decomposed). Thus, the edge set that encloses the outer face of G is a
cycle. Suppose the terminal set T - {t c t~} is numbered in a clockwise fashion along

this cycle. Now, consider the dual graph G* = (V ", E) of G and subdivide the node

representing the outer face in z nodes d~ , d~. such that every edge belonging to a

M, Gr&schel et al /Mathen aticz I Programn b g 72 (1996) 12.5-145 131

tt t 2

r-~--r-~--~-~
J ! I I ! i

t 3
I I I I I I

t5 ~-- ~ - - r - - ~ - - r - n
I I I I I I
L - - J - - L - - . ~ I - - - - L - - - J

t4

(a)

d !

t 5 1 ~ "

d5

.J
I
1

' ' 1

d2

d3

I I I
I- "" -I - i - '

d4

(b)

d l

t>,

t5~
,(v4,. ,

d5

(c)

Fig, 4.

d2

d3

- ' "{, - - 1

I I
I- " ' - I r

d4

(d)

path in G from t i to ti+ i on the outer face is now incident to di+ ~ for / = t z,. Let

G D = (V D, E) denote the resulting graph and set D = {d I d=} (cf. Figs. 4(a) and

4(b)).
It turns out that under mild assumptions every edge set S = 6(V] V i) induced by

Steiner partition V 1 V i is in one-to-one correspondence with an edge-minimal

Steiner tree in G O with respect to some subset J _ D (cf. Figs. 4(c) and 4(d)).

This equivalence yields that the problem of separating the class of Sleiner partition

inequalities reduces to the problem of finding a subset J of D and ~ edge-minimal

Steiner tree in G D with respect to J. Given J. we can determine an optimal Steiner tree

in G o with respect to J by applying the dynamic programming approach proposed in

[6,7]. Thus, the crucial point is to find the subset . I c D . In [11] we show that we can

locally decide which terminal belongs to an optimal solution. This observation can be

taken into account by modifying the recursion formula of the dynamic program

appropriately.

The algorithm for separating the Steiner partition inequalities gives rise to several

heuristic procedures. Instead of calculating the optimal Steiner tree in G D we heuristi-

call)' determine Steiner trees. For more details, we again refer to our paper [11].

132 M. Gri'~tschel et al. /Mathematical Programmin.e 72 (1996) 125-145

2.2. Separation of the alternating cycle inequalities

Given an instance (G, ,/f', c) of a Steiner tree packing problem with J = {T i, T 2}
and a vector y e~ . , r • y > 0 , decide, whether y satisfies all alternating cycle

inequalities (see [12, Theorem 6.2]). If this is not the case, find an alternating cycle

inequality that is violated by y.

Yet not proved, we strongly conjecture that, in general, this problem is not solvable

in polynomial time. Instead, we restrict our attention to the case where G is planar and

all terminals lie on the outer face of G. Here, our idea to separate alternating cycle

inequalities is to apply dynamic programming techniques in a similar way as was done

for finding Steiner partition inequalities.

Again, we show that alternating cycle inequalities are in one-to-one mapping with

Steiner trees in an appropriate dual graph. In this case, however, these Steiner trees have

to satisfy many technical conditions.

In particular, these technical conditions cause that some edges are evaluated differ-

ently for different nets. This is due to the fact that for the alternating cycle inequality,

edge sets F (edges which have a zero coefficient for both nets), F I (edges which have

zero coefficient just for net 1) and F 2 (edges which have a zero coefficient just for net

2) are involved (cf. [12, Theorem 6.2]). Unfortunately, taking all these constraints into
account we obtain a dynamic program, whose optimum solution does not necessarily
correspond to the most violated alternating cycle inequality. Rather, the optimum value

found by the dynamic program provides just a lower bound for the most violated
alternating cycle inequality. If this value is nonnegative, we can guarantee that there

does not exist a violated inequality of this type. Otherwise, there may exist a violated

alternating cycle inequality, but the algorithm terminates with an edge set that does not
correspond to an alternating cycle inequality (see [11]).

Beyond that the relationship between alternating cycle inequalities and Steiner trees
satisfying certain technical conditions in the appropriate dual graph gives rise to many
heuristics. Again, we have implemented an algorithm that determines heuristically such

Steiner trees and checks whether the corresponding alternating cycle inequalities are
violated.

2.3. Finding critical cuts

Remember that a cut induced by a set of nodes W is critical, if s (W):= c (6(W)) -

IS(W)I _< l, where S (W) : = { k ~ { 1 N}IT, n W # O , TkC~(V\W)--g~}. In the
following we briefly explain why we concentrate on the problem of finding critical cuts

rather than on the separation problem for the critical cut inequalities itself.

First, let us point out that, from a practical point of view, we are interested in Steiner

tree packings where each of the single Steiner trees is edge-minimal. Since a positive

objective function is minimized, we know in advance that the weight-minimal Steiner
trees are also edge-minimal, and we exploit this property to reduce the problem size.

Suppose Wc_ V is a node set and T k is a set of terminals with T k __c_ W or T k c_ V \ W .

M. Grftschel et al. / Mathematical Programming 72 (1996) 125-145 133

Then any edge-minimal Steiner tree for T k that uses one edge of 6(W) has to contain at

least two of these edges. But, if 6(W) is a critical cut then at most one edge of 6(W)
can be used by the Steiner tree for T k. Hence, the following variables can be fixed

accordingly, i.e.,

x e ~ = 0 , f o r a l l k ~ { 1 N } \ S (W) , TkCW,_ e ~ E (V \ W) O r (W) "

x,.'*=0, fo ra l l k e { 1 U } \ S (W) , T, cV\W_ e ~ E (W) U 6 (W) .

Let us now point out the relationship to the critical cut inequality. Consider the

situation in [12, Definition 6.9(b)], where V 1, V 2, V 3 is a partition of V such that 8(V 1)
is a critical cut and T~ 71 V~ = ~J and T~ N V i 4=- ~, i = 2, 3. Since 8(V~) is critical, we

can fix all variables x e to zero for e ~ 6(V~). Thus, by fixing these variables we can

separate the critical cut inequalities via separating the Steiner cut inequalities. For

example, a Steiner cut inequality for T~ of the instance described in [12, Definition

6.9(b)] is xl(6(V2)) = xl([V2 : Vl]) + xl([V2 : V3]) > 1. By taking the fixed variables

into account we obtain the critical cut inequality x~([V2 : V3]) > 1.

In the remainder of this subsection we briefly sketch the ideas, how to find critical

cuts. We restrict ourselves to instances (G, J , [) , where G is a complete rectangular

g i d graph and all terminal sets of the net list JY" lie on the outer face of G. Here, we

can show [20] that, if there exists a node set W c V, W 4= r that induces a critical cut,

there exists

(i) a node w ~ V such that 6 (w) is a critical cut with respect to (G, J , ~.) or

(ii) a horizontal or vertical critical cut with respect to (G, ./P, ~). (A cut F is called

horizontal if there exists some i ~ {1 h - 1} such that F = {uv ~ EI u = (i, j) and

v = (i + 1, j) for some j ~ {1 b}}; a vertical cut is defined accordingly).

Based on this observation we can now develop an algorithm for finding critical cuts.

We check, for all nodes v ~ V, whether 6(v) is critical. In addition, we also check

whether there exists critical vertical or horizontal cuts. If we do not succeed in finding a

critical cut, we can conclude that none exists. Otherwise, we fix the corresponding

variables. In order to find further critical cuts, we inductively enlarge the node set

W = {v} in all four possible directions of the grid in a greedy like fashion. The variables

of the critical cuts found this way are fixed accordingly.

Finally, we have developed a heuristic for separating grid inequalities that proceeds

in a greedy-like fashion. Details can be found in [10].

3. Implementation of the cutting plane algorithm

In this section we discuss further features of our cutting plane algorithm for the

(weighted) Steiner tree packing problem. Since we assume the reader being familiar with

this method, we can avoid outlining how cutting plane algorithms work in general.

We next introduce a primal heuristic for the switchbox routing problem. Thereafter,

some implementation details are discussed that are indispensable is solving switchbox

routing problem instances.

134 M. Gri i tschel et al. / Ma themat i ca l Pro,~ramming 72 (1996) 1 2 5 - 1 4 5

3.1. A primal heuristic

This section is devoted to describing our primal heuristic. The idea of our heuristic is

to make use of the information given be the actual solution of the cutting plane phase.

We have developed a sequential algorithm. We consider each terminal of a net to be

an (isolated) component. We iteratively connect two components of a net according to

an a priori determined sequence. However, we do not apply this scheme by routing one

net completely after another, but we connect only two components in each iteration. The

success of such a procedure strongly depends on the predefined sequence. In our
algorithm this sequence is mainly determined by the solution y of the actual linear

program. More precisely, we define a function f depending on y according to which the

subsequent two components are selected. (A detailed explanation of the function f is

given after the algorithmic description of the heuristic.) We try to connect the two

selected components via a shortest path. Since in a complete rectangular grid graph a

shortest path is not unique in general, we have implemented further criteria according to

which the choice is made. Besides others, these criteria depend on the location of the

terminals of the other nets, the position of the not yet connected terminals of the same

net and, again, on the solution y. For a detailed description of these criteria we refer the

reader to [20]. If it is possible to connect the two components on a shortest path by

taking the mentioned criterion into account, we connect these two components and

choose the next pair of components. Otherwise, we recompute the function f and the
sequence by taking the already connected components into account. This iterative

procedure is continued until all nets are connected or no further components can be
connected. In detail, the algorithm can be described as follows.

Algori ihm 3.1 (A primal heuristic).
Input: A complete rectangular h X b grid graph G = (V, E) with edge capacities c<, = 1

and edge weights w<. ~ I~+, e ~ E. Furthermore, a net list ~,v" = {T~ T~,} and a vector
y ~ [R I • y > 0 .

Output: A feasible solution of the weighted Steiner tree packing problem (G, Jl ,',]1, w)
or the message " N o feasible solution found".

(1) Set S k ~= ~3 for k = 1 N.
(2) Determine the graph C~ = (V, ~#) with /~ ~= {e ~ EI c~ > 0}.

(3) Compute shortest paths for all pairs of nodes in G.
(4) For k = 1 N perform the following steps:

(15) If S k = (3, then

determine s k, t k ~ T~ such that

L~(sk , t k) = rain f ~ (s , t) ;
.~. I ~ TI, "

set 7 7 ~= T ~ \ (t ~) .
(6) Else

determine s~ ~ T~, t k E V(S k) such that

f ? (s k, t~) = rain f ? (s , t) .
~ T ~ , I ~ V (S ~) "

M. Grbtschel et al. / Mathematical Programming 72 (1996) 125-145 135

(7) As long as further connections are possible perform the following steps:

(8) Determine k 0 e { 1 N} with

f,,,,,(S,o, t,,,) = min{,t~,,~(s , , tk) I k = 1 N}.

(9) Try to connect Sko with t,~, via a shortest path by taking the above criteria into

account.

(10) If the connection via a shortest path is possible, then

let W be the chosen path;

set &o := Sk, ' U W, T~o := T~0\{s,o} and c~, := 0 for all e e W;

if T~o -= ~J, set f,.,,,(Sko, t <) : = zc;
else determine another pair (s~ , tk0) similar to (6).

(11) Else goto (2);

(12) If all terminal sets are connected, return the feasible solution (S~ S.,v.).

(13) Otherwise, print the message " N o feasible solution found".
(14) STOP.

Let us now define the function f ? : V • V ~ N+ for some k ~ {1 N}. We give a

formal definition first and explain the underlying heuristic idea afterwards. For the ease

of exposition let the nodes be numbered such that V = {(i, j)] i = 1 h, j = 1 b}
,and let V/.r.,.j := {(i, j)] i = l r, j = t d} for l, r ~ { 1 b}, l < r and t, d e

{1 h}, t < d. Suppose we want to exectite step (5) (resp. (6)) in Algorithm 3.1. Let

S k be the edge set that was already determined for connecting T k, T' k the set of not yet
connected terminals and (~ the underlying graph.

We consider file case S k 4= 0 (in the case S k = ~ the function f / is defined similarly)

and let s , = (i , . , . ~) E T ~ and t k = (i , , j ,) E V (S k) be given. Determine l, r E

{1 b}, l < r and t, d ~ {1 h}, t < d such that sk, V (S k) ~ Vt.,.~.c I and] Vt.r,,, a] is
minimal. Set Ej.r.,. a = {e E F,(VI.~.,.j)] y~ > 0} and suppose (V,., E,) is the component in

(Vt.r.,.a, Et ~l) with s k ~ V~. Set

pC- E,~

where W (s k , t~) is a shortest path from s~ to t k in G (with respect to w),

The heuristic idea of this function is the following. We determine a graph

(Vl.,.r.a, E t j) which is the smallest rectangular grid graph containing both components
(often designated as the "'minimal enclosing rectangle"). Inside the minimal enclosing
rectangle we compute the weighted sum (= co) of those edges that are in the same

component as s k, where only edges with y~ > 0 are considered. The value w is

compared to the length (= h) of a shortest path between the two nodes. If w is smaller
than h, we assume that the information from 3 ,4 is too poor to decide how to connect

the two nodes. The smaller the difference, the less information and the greater the value

of f. On the other hand, if ~o is greater than A the two nodes will be probably connected

via a detour. The greater the difference, the greater the value of f. Thus, we choose the
components with value eo close to a first.

136

Table 1

M. Griitschel et al , /Mathematical Programming 72 (1996) 125 145

Iterations Perturbed objective function Original objective function

LP value Pivots CPU-time LP value Pivots CPU-time

1 0,000 0 0:53 0.000 0 0:52
2 456.562 1163 3:25 456,850 2646 5:35
3 457.571 420 5:07 457.100 4656 19:49
4 457.589 548 7:28 457.350 5995 40:39
5 457.746 800 10:25 457.417 7001 67:37
6 457.793 1224 I4:36 457.417 7657 97:55
7 458.0[4 3175 24:03 457,515 11367 149:21
8 458.314 2007 3I :07 457,748 23718 244:11
9 458.625 2554 40:19 458.149 49393 456:26

Obviously all ideas mentioned so far are of heuristic nature and there is no guarantee

that we will obtain good results. However, due to many tests we have performed this

strategy seems to be reasonable.

3.2. Imp lemen ta t ion detai ls

In this section we want to focus on some little " t r icks" that enter into our cutting

plane algorithm. The underlying ideas might appear easy and not very deep to the

reader. However, it turns out that these ideas ,are very effective and indespensible for

solving practical problems. We want to illustrate the effects of the ideas on an example

called "difficult switchbox" (for the data of this problem see the next section).

Let us mention here that we use the code CPLEX ~ for solving the linear programs

that come up. Without such a fast and robust code we would not have been able to solve

the given problem instances. The linear programs we encountered appeared to be quite

difficult. One of the reasons for this is probably that our linear programs have many

alternative optimum solutions and are simultaneously primally and dually highly degen-

erate.

A frequently used method to overcome such difficulties is to perturb the right hand

side of the linear program. Since we are solving the problems with the dual simplex

method we must perturb the objective function of the weighted Steiner tree packing

problem. After many experiments and discussions with R.E. Bixby (Rice University,
k Houston, TX) we decided to proceed as follows. Let co ~ [R "4"• e with w,, = w c for all

e ~ E, k = 1 N be the original objective function. For each terminal set T k, we

compute a Steiner tree S~ by applying a heuristic procedure and determine random

numbers e~, ~ ~ [0, 1]. Then we use the objective function vector ~' ~ IR "4• defined by

b~'~! "q, if e E S k , for k = 1 N; ~,e k := (,o e --
(3.1)

fi"k := a)~ - b~:, ~', if e ~ S k , for k = I N,

CPLEX is a registered trademark of CPLEX optimization, Inc.

M. Griit ~'chel et a l / Mathematical Progran n ing 72 (1996) 125-145 137

where r / = 1 / 2 (n + l) and b = m i n { 1 0 -5, 1 / 2 (n + l) } with n = [E l in the actual

implementation. It is easy to see that, if the given objective function is integer, an

optimal Steiner tree packing with respect to g' is also optimal with respect to co and vice

versa.

Table 1 demonstrates the success of the perturbation trick for the "diff icul t switch-

box" routing problem. Column 1 gives the number of cutting plane iterations, column 2,

3 and 4 (resp. 5, 6 and 7) contain the LP objective value, the number of pivots and the

accumulated CPU-time by using the perturbed (resp. original) objective function. The

numbers are very impressive, in particular if one considers the last rows. The running

time is reduced to less than one tenth of the original time.

Another (polyhedral) preprocessing trick helped to increase the lower bounds and to

decrease the running time considerably. After " s o l v i n g " the trivial initial linear

program by setting all variables to zero we do not call our general separation routines;

rather, we generate a particular class of Steiner cut and Steiner partition inequalities for

which we have heuristic reasons to believe that they form a sensible set of " g o o d "

initial cutting planes.

Since the underlying graph is a complete rectangular grid graph, we add all Steiner

cut inequalities that are induced by a horizontal or vertical cut. The advantage is that

these inequalities have pairwise different support. In addition, for multiterminal nets we

extend each Steiner cut inequality to a Steiner partition inequality with right hand side

greater than two. For example, let [Tk I = p > 3, F = 6(W) , W c V be a vertical cut

that induces a Steiner cut inequality. First, we determine a Steiner partition W~ Wq

of W such that [W i : Wi+ l] is a horizontal cut in (W, E(W)) for i = 1 q - 1 and q

is maximal. The only node sets of Wj Wq that possibly contain more than one

terminal are W t and Wq. For these two node sets we again determine a Steiner partition

Wr L , W/r for r = 1 and r = q such that [W,/: Wr i+ l] is a vertical cut in (Wr, E(W,))

and I r is maximal. The same procedure is applied to the node set V \ W . Taking both

together we obtain (after renumbering) a Steiner partition W 1 IV.,. with s = p, and

x(6(W~ W,)) > p - 1 defines a Steiner partition inequality. We extend each horizon-

tal and vertical cut that defines a Steiner cut inequality in this way. Obviously, the

Table 2

Iterations With special
Steiner partition inequalities

Without special
Steiner partition inequalities

LP-value CPU-time LP-value CPU-time

1 0.000 0:52 0.000 0:52
2 456.562 3:24 394.725 3:29
3 457.574 5:38 397.335 6:23
4 457.741 I0:21 401.075 17:05
5 457.862 22:39 407.586 43:05
6 458.070 45:53 416.256 67:43
7 458.551 76:13 423.642 103:58
8 458.983 107:28 428.051 158:42
9 459.615 142:39 431.740 203:22

138 M. Gri*~tschel et al. / Mathematical Programming 72 (1996) 125-145

resulting inequalities do not necessarily have different support, but the right hand side is

quite large. Let us denote all inequalities constructed this way and the Steiner cut

inequalities induced by a horizontal or vertical cut by special Steiner partition inequali-
ties.

Table 2 illustrates the progress we obtain by using the special Steiner partition

inequalities after solving the initial linear program. Column 1 presents the number of

cutting plane iterations. Columns 2 and 3 (resp. 4 and 5) give the LP objective value and

the accumulated CPU-time by using (resp. not using) the special Steiner partition

inequalities after the first iteration. The results are impressive. The lower bound we

obtain within three minutes after the second iteration by adding the special Steiner

partition inequalities is much better than after running the algorithm with the separation

algorithms for the Steiner partition inequalities discussed in Section 2 for more than 3 h.

Next, we want to deal with the separation of the alternating cycle inequalities. The

separation algorithms we have outlined in Section 2 (the dynamic program as well as the

heuristics) need a pair of nets as input. The problem we are concerned with is to choose

one (or several) " g o o d " pairs of terminal sets for which we want to execute the

separation algorithms. If we would call one of these algorithms for all net pairs, we

would obtain a non-acceptable running time, because the number of calls is quadratic in

the number of nets.
In order to overcome this problem, we try to exploit the information given by the

primal heuristic 3.1. Remember that two components are gradually connected in this

heuristic. More precisely, in step (9) it is tried to connect two components via a shortest
path. If this is not possible, another net must block this path. Obviously the two nets
concurrently prefer certain edges in this case. Moreover, this situation indicates that the

information provided by the linear programming solution is too poor to decide which of

the nets is forced to make a detour. Hence. we conclude that more inequalities
combining these nets are necessary. Thus, we call the separation algorithms for the
alternating cycle inequalities for nets that are in conflict due to the information of the

primal heuristic. Practical experiments have shown that the number of such conflicts is
sublinear in dae number of nets and that strongly violated alternating cycle inequalities

can be obtained for such conflicting net pairs.
We want to point out that not only the linear program solution supplies important

information for the primal heuristic. But also conversely, the primal heuristic indicates

which type of inequalities are promising for a further execution of the cutting plane
algorithm. In our opinion this interplay of the methods for determining the lower and
upper bound is essential in order to solve large scale problems.

Let us now summarize the overall algorithm.

Algori thm 3.2 (Branch and cut algorithm for tile switchbox routing problem)
Input: A complete rectangular grid graph G = {V, E) with edge capacities c, = 1 and

edge weights w~, E i~0, e E E; a net list .,,f" = {T 1 T~,} where the terminal sets are on

the outer face of G.

M. Gr~itschel et al. / Mathematical Programming 72 (1996) 125-145 139

Output: An optimal solution of the weighted Steiner tree packing problem.

Initialization

(1) Determine the perturbed objective function vector g' according to (3.1).

(2) Determine critical cuts by applying the ideas presented in Section 2 and fix the

corresponding variables.
(3) Initialize the branching tree with the whole problem.
(4) Solve the following (trivial) linear program

min wTx
N

~_, x~ <_ c e, forall e e E,
k = l

x ~ > 0 , forall e ~ E, k = 1 N.

(5) Try to determine a feasible solution by applying primal heuristic 3.1.
(6) If a feasible solution was found

set b to the objective flmction value of the solution.

Else
set b = ~c.

(7) Add the special Steiner partition inequalities to the linear program.
Solution and evaluation o f the linear program

(8) Determine an optimal solution y of the actual linear program.
(9) If y is the incidence vector of a Steiner tree packing and ~,ry < b, then

set b = i~Vy.

(10) Else

try to improve the upper bound b by applying primal heuristic 3.1.
(11) If [#T Yl = [b], then perform the following step:

If there still exists an unsolved subproblem in the branching tree, choose
one and goto (8).
Else print the optimal solution corresponding to b, STOP.

(12) Eliminate all inequalities aVx> c~ with a T y < c~ from the actual linear
program.

Separation

(13) Determine violated constraints from the '~pool' (for an explanation of the

(14)
(15)

(16)
Branching

(17)
(18)

(19)
(2o)

pool see below) as well as by applying the separation heuristics mentioned in
Section 2.
If violated constraints are found, add them to the linear program and goto (8).
Try to find violated Steiner partition inequalities and alternating cycle
inequalities by using the dynamic programs.
If violated constraints are found, add them to the linear program and goto (8).

Determine a variable index (e, k) with y~ r {0, 1}.

.k 0 and the other Generate two subproblems, one by adding the constraint ~ =
by adding the constraint .:t-~ = 1.
Add both subproblems to the branching tree.

Choose a subproblem from the branching tree and goto (8).

140 M. Gri')tschel et al. / Mathematical Programming 72 (1996) 125-145

The cutting plane algorithm itself encloses (up to the initialization) steps (8) to (16).

We have embedded this method into a general branch and cut framework developed by

M. Jfinger (Universit~t Kaln). The enumeration scheme is only sketched in steps (4) and

(17)-(20). In fact, an efficient implementation of such a scheme is a very difficult and

complex task. For more details concerning the branch and cut framework the interested

reader is refered to the software package of Ji~nger.

In step (12) we delete all inequalities (up to the capacity and trivial inequalities) that

are not satisfied with equality from the linear program, in order to keep the size of the

linear program small. The eliminated constraints are stored in a so-called " p o o l " , which

is checked during the separation phase.

If step (17) is executed, we are sure that there exists an index such that 0 < y k < 1
e

This is true, because y is not the incidence vector of a Steiner tree packing and in step

(13) the Steiner cut inequalities are exactly separated by our separation algorithms.

According to (3.2) in [12] the existence of such an index is guaranteed.

Algorithm 3.2 can be used, in principle, to determine an optimal solution of a given

switchbox routing problem or to detect that no feasible solution exists. However, it may

not be possible to guarantee this in acceptable time. For that reason we provide an

option in our algorithm to limit the running time. If this limit is exceeded, the algorithm

stops and prints the best lower and upper bound.

4. Computa t ional results

In this section we report on our computational experiences with the algorithm
introduced in Section 3. We have tested our algorithm on switchbox routing problems

that are discussed in the literature. Table 3 summarizes the data. Column 1 presents the
name used in the literature. In columns 2 and 3 the height and width of the underlying

grid graph is given. Column 4 contains the number of nets. Columns 5 to 9 provide
information about the distribution of the nets; more precisely, column 5 gives the

Table 3

Name h b N Distribution of the nets Reference

2 3 4 5 6

Difficult switchbox 15 23 24 15
More difficult 15 22 24 15

switchbox
Terminal intensive 16 23 24 8

switchbox

Dense switchbox 17 15 19 3
Augmented dense 18 16 19 3

switchbox

Modified dense 17 16 I9 3
switchbox

Pedagogical 16 15 22 14
switchbox

3 4

3 5

7 5

I 5
1 5

1 5

4 4

[3]
1 [41

[191

[19]

[4]

[4]

M. Grfitschel et al. / Mathematical Programming 72 (1996) 125-145 141

2

3

1

2

4

5

5 6

6,1 3 1 2,3

1 1

2 2

4 4

5,1 2 4 5 6,5

4

(a) (b)

Fig. 5.

number of 2-terminal nets, column 6 gives the number of 3-terminal nets and so on.

Finally, the last column states the reference to the paper the example is taken from.
In all examples as they were originally introduced in the literature, the underlying

graph is given as follows. The graph is obtained from a complete rectangular grid graph
by removing the outer cycle, see Fig. 5(a). Hence, every terminal is incident to a unique
edge, and obviously every Steiner tree must contain this edge. It is easy to see that by
contracting all pending edges an equivalent problem is obtained, see Fig. 5(b). The
graph resulting this way is a complete rectangular grid graph with terminals on the outer

face. This instance is the input to our problem.
The first example "difficult switchbox" was introduced by Burstein and Pelavin. The

second one "more difficult switchbox" is derived from the first one be deleting the last
column. (More precisely, the edges [(i, 23), (i, 24)] of the first grid graph are contracted
for i = 1 15 and parallel edges are deleted.) The net list is the same. The difference
in the distribution occurs (see columns 7 and 8), because an edge whose endpoints
belong to the same net is contracted. The third problem instance was introduced by Luk,
here each outer face node is occupied by a terminal. The fourth switchbox routing
problem is again due to Luk. Up to now it is not known whether a solution for this
example exists, if the Manhattan or 2-layer model is used. Based on this example two
variants can be obtained. One, called "augmented dense switchbox", has an additional
column on the right, the other, called "modified dense switchbox", has an additional
column near the middle and an additional row on the buttom. The last example was
introduced by Cohoon and Heck [6]. They illustrated their algorithm on this problem.

in all examples the edge weights as well as the edge capacities are equal to one.
Unfortunately, the problem instances do not fix the routing model (Manhattan, knock-
knee or multiple layer model). To our knowledge all methods from the literature use the
Manhattan model or 2-layer model. The choice of the underlying model strongly
influences the solvability of the problems. For example, there may exist a solution in the

2-layer model, whereas it does not in the knock-knee model. Fig. 5 illustrates such an
example (this example is taken from [6]). Moreover, there exist problem instances where
shorter connections are possible in the 2-layer model than in the knock-knee model. The

142

Table 4

M. Gri'~t schel et al. / Mathematical Programming 72 (1996) 125~ 145

Example Variables Fixed variables Remaining variables

Difficult switchbox 15 648 2224 13 424
More difficult 14952 2450 12502

switchbox
Terminal intensive 16728 4913 11 815

switchbox
Dense switchbox 9082 4831 4251
Augmented dense 10 298 2678 7620

switchbox
Modified dense 9709 4057 5652

switchbox
Pedagogical switchbox 9878 2039 7839

same is true for a compar i son of the knock-knee mode l with the Manhat tan model . Thus,

a compar ison of a lgor i thms for the different models is not possible. So we confine

ourselves to report on the results we have obtained by applying our algori thm.

Table 4 informs about the size of the problems and about the success o f f ixing

variables with the a lgor i thm discussed in the last subsect ion o f Sect ion 2. Co lunm 2

states the total number o f 0 / 1 variables, co lumn 3 gives the number of f ixed variables

and the last co lumn contains the number of remaining variables. Table 4 illustrates that

many variables can be fixed, for example more than one half of the variables for

problem " d e n s e s w i t c h b o x " . Never theless , tile number of remaining var iables is still

large (see the last colunm).

In Table 5 the results we have obtained with our branch and cut a lgor i thm are

summarized. Co lumn 2 gives the best feasible solution. The values are not integer due to

the perturbed object ive function. To obtain the real value with respect to the original

object ive function the entries must be rounded up. The entries in co lumn 3 are the

objec t ive function values o f the l inear program when no further violated constraints are

found, i.e., when branching (steps (17) - (20) in Algor i thm 3.2.) is per formed for file first

time. This values are obvious ly lower bounds for the whole problem. In co lumn 4 the

Table 5

Example Best solution LP value Gap Iterations B&C CPU-time

Difficult switchbox 463.71 I 463.709 0.0% 69 3 1564:15
More difficult 451.712 451.708 0.09~, 53 1 983:23

switchbox
Terminal intensive 536.694 535.196 0.2% 163 13 3755:44

switchbox
Dense switehbox " 440.60l 437.579 0.7% 119 4 1017:43
Augmented dense 468.600 '466.006 0.4% 105 1 4561 : 41

switchbox "
Modified dense 45 1.585 451.009 0.0% 51 I 387 : 03

switchbox
Pedagogical 330.770 330.760 0.0% 77 5 251 : 58

switchbox

M. Gr6tschel et al . / Mathematical Programming 72 (1996) 125-145 143

percentage deviation of the best solution from the lower bound is given; more precisely,

column 4 contains the value ([~r~ 2] - [g'3])/[~'3], where r (resp. r is the correspond-

ing value of column 2 (resp. 3). Column 5 (resp. 6) gives the number of cutting plane

iterations (resp. the number of nodes in the branching tree). Finally, the last colunm

reports on the running times. The values are stated in minutes obtained on a SUN 4/50.

The two examples "dense switchbox" and "'augmented dense switchbox" marked with

a star are stopped after the time given in the last column, because no further process

could be achieved. We claim that the values given in column 2 are optimal, but we are

yet not able to prove this with the cutting plane algorithm. All other problem instances

are solved to optimality.
The numbers in Table 5 are quite encouraging. For all problem instances the lower

bound in column 3 guarantees that the best feasible solution deviates at most 0.7% from

the optimal solution. In our opinion the main advantage of our algorithm is that the

quality of an heuristically determined solution can be evaluated with the lower bound.

Especially, for problem instances arising in VLSI-Design, where in general only

heuristics are at hand, a cutting plane algorithm helps in analyzing the heuristics and

simultanously delivers a lot of knowledge about the problem itself.
Nevertheless, one major problem with our algorithm is its running time. The numbers

in the last column of Table 5 are very high. One reason is that we are interested in an

optimal solution or at least in the best lower and upper bound for each of the problems
that we can achieve with our approach. This is time consuming. In practice, heuristics

usually find feasible solutions for these instances in a few seconds. These running times

are certainly not reachable with our algorithm. However, the main advantage of the
cutting plane approach is to give a solution guarantee for the best known feasible

solution. We are not aware of any method used in practice that is able to guarantee a

certain quality of the feasible solutions found. From this point of view, we have

analyzed our results also. Table 6 presents the time (measured in minutes), after which
the lower bound deviates at most 5, 2, 1 and, if obtained, 0% from the best feasible

solution.
It can be seen from eolmnn 2 that, for all problem instances, the lower bound deviates

from the best feasible solution by at most 5% after no more than 6 rain. Table 6

Table 6

E x a m p l e 5% 2% 1% 0%

Difficul t swi tchbox 3 : 24 3 : 24 90 : 12

More difficult 3 : 2 0 3 : 20 3 8 : 1 9

swi tchbox

Te rmina l in tensive 5 : 44 83 : 24 239 : 10

swi tchbox

Dense swi tchbox ~ 2 : 00 2 : 00 103 : 07

A u g m e n t e d dense 2 : 04 2: 04 269 : 20

swi tchbox "

Modif ied dense 2 : 04 2 : 04 2 : 04

swi tchbox

Pedagog ica l swi tchbox 1 : 46 2 : 27 15 : 04

6 8 8 : 4 9

530 :11

3 8 7 : 0 3

1 1 7 : 5 5

144 M. Gri~t.~chel et a l . / Mathematical Programming 72 f 1996) 125-145

illustrates in addition that the amount of time increases strongly to obtain a quality

below 1%.

In our opinion the times in column 1 of Table 6 are acceptable. However, we would

like to point out that these examples are quite small in comparison to problem sizes

arising in other practical applications for the design of electronic circuits. Our long-term

goal is to apply the branch and cut algorithm to instances of larger scale, too. In order to

achieve this, we surely must reduce the running times. We have analyzed our algorithm

concerning the question where most of the time is spent. It turns out that about 90% of

the time is used to solve the linear programs. To our present knowledge two possibilities

arise to overcome this problem.

(1) Reducing the number of variables, we consider the problem only on a subset of
the set of variables, solve the problem on this subset and check whether this solution is

also optimal for the whole problem. If not, we add some variables and solve the

extended problem again. This method is commonly used to solve large scale practical

problems by a cutting plane algorithm (see, for instance [9,21]).

(2) Decompose the linear programs, the constraint matrices of our problems are of

very special structure. Due to this structure it seems to be promising to decompose the

linear program. Methods for decomposing linear programs were suggested by Dantzig

and Wolfe [5] or by Benders [1]. Up to now these methods are not used in practice,

because the problems can be solved faster directly. However, with the help of parallel
computers these methods may get competitive, especially for our problem instances.

5. Conclusion

In this paper we have developed a cutting plane algorithm for the Steiner tree packing

problem. We have introduced some separation methods for special problem instances
where the underlying graph is planar and all terminal sets lie on the outer face of the

graph. This special instances include an important subproblem in VLSI-Design, the
so-called switchbox routing problem. We have reported on computational results we

have obtained with our branch and cut algorithm for this type of problems. The results
are encouraging. Most of the problems discussed in the literature are solved to

optimality. Thus, we have good hopes that this approach may also be applicable to large
scale problem instances as they occur in practice. To achieve this long-term goal there

surely remain a lot of problems to be solved.

References

[1] J.F. Benders, "Partitioning procedures for solving mixed-variables programming problems," Numerische
Mathematik 4 (1962) 238-252.

[2] M.L. Brady and DJ. Brown, "'VLSI routing: Four layers suffice," in: F.P. Preparata, ed., Advances in
Computing Research. Vol. 2: VLSI Theory, (Jai Press, London, 1984)pp. 245-258.

[3] M. Burstein and R. Pelavin, "Hierarchical wire routing," 1EEE Transactions on Computer-Aided-Design
CAD-2 (1983) 223-234.

M. Griktschel et al. / Mathematical Programming 72 (1996) 125-145 145

[4] J.P. Cohoon and P.L. Heck, "BEAVER: A computational-geometry-based tool for switchbox routing,"
IEEE Transactions on Computer-Aided-Design CAD-7 (1988) 684-697.

[5] G.B. Dantzig and P. Wolfe, "'Decomposition principle for linear programs," Operations Research 8
(1960) 101-111.

[6] S.E.Dreyfus and R.A. Wagner, "The Steiner problem in graphs," Networks 1 (1971) 195-207.
[7] R.E. Erickson, C.L. Monma and A.F. Veinott, "Send-and-split method Ior minimum concave-cost

network flows," Mathematics o f Operations Research 12 (1987) 634-664.
[8] M.R. Garey and D.S. Johnson, ' T h e rectilinear Steiner tree problem is J.?/~-complete,'" SlAM Journal

on Applied Mathematics 32 (1977) 826-834.
[9] M. Gr~Stschel and O. Holland, "'Solution of large-scale symmetric travelling salesman problems,"

Mathematical Programming 51 (1991) 141-202.
[10] M. Grbtschel, A. Martin and R. Weismantel, "Routing in Grid Graphs by Cutting Planes," Zeitschrifif~r

Operations Research 41 (1995) 255-275.
[I1] M. Gr6tschel, A. Martin and R. Weismantel, "Packing Steiner trees: separation algorithms," SlAM

Journal on Discrete Mathematics, to appear.
[12] M. Gr~Stschel, A. Martin and R. Weismantel, "'Packing Steiner trees: polyhedral investigations,"

Mathematical Programming 72 (1996) (this issue).
[13] M. Grbtschel and C.L. Monma, "Integer polyhedra associated with certain network design problems with

connectivity constraints," SIAM Journal on Discrete Mathematics 3 (1990) 502-523.
[14] M. Gr~tschel, C.L. Monma and M. Stoer, "Computational results with a cutting plane algorithm for

designing communication networks with low-connectivity constraints," Operations Research 40 (1992)
309-330.

[15] R.M. Karp, "Reducibility among combinational problems," in: R.E. Miller and J.W. Thatcher, eds.,
Complexity e~l'Computer Computations) (Plenum, New York, 1972) pp. 85-103.

[I6] M.R. Kramer and J. van Leeuwen, "The complexity of wire-routing and finding minimum area layouts
for arbitrary VLSI circuits," in: F.P. Preparata, ed , Advances in Computing Research, Vol. 2:VSL1
Theory (Jai Press, London, 1984) pp. 129-146.

[17] T. Lengauer, Combinatorial Algorithms (or Integrated Circuit Layout (Wiley, Chichester, 1990).
[18] W. Lipski, "'On the structure of three-layer wireable layouts," in: F.P. Preparata, ed., Advances in

Computing Research, VoL 2: VLSI Theory (Jai Press, London, 1984) pp. 231-244.
[19] W.K. Luk, "'A greedy switch-box router," Integration 3 (1985) 129 149.
[20] A. Martin, "'Packen von Steinerb~umen: Polyedrische Studien und Anwendung," Ph.D. Thesis, Technis-

che Universit~t Berlin,(1992).
[21] M. Padberg and G. Rinaldi, "A branch and cut algorithm for the resolution of large-scale symmetric

traveling salesman problems," SlAM Review 33 (1991) 60-100.
[22] M. Sarrafzadeh, "Channel-routing problem in the knock-knee mode is ,/PLY-complete," IEEE Transac-

tions on Computer-Aided-Design CAD-6 (1987) 503-506.

