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Abstract 

In this paper we describe a cutting plane algorithm for the Steiner tree packing problem. We 
use our algorithm to solve some switchbox routing problems of VLSI-design and report on our 
computational experience. This includes a brief discussion of separation algorithms, a new 
LP-based primal heuristic and implementation details. The paper is based on the polyhedral theory 
for the Steiner tree packing polyhedron developed in our companion paper (this issue) and meant 
to turn this theory into an algorithmic tool for the solution of practical problems. 
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1. Introduction 

Given a graph G = (V, E)  and a node set T__c_ V, we call an edge  set SC_E a Steiner 

tree f o r  T if, for  each pair of  nodes u, v E T, S contains a [u, v]-path. The Steiner tree 

packing problem, as introduced in [12], can be stated as fol lows.  Given  an undirected 

graph G = ( V ,  E)  with edge capacit ies c C ~ / N  for all e ~ E  and a list o f  node sets 

,4/'= {T~ . . . . .  TN}, N E ~1, find Steiner trees S k for T k, k = 1 . . . . .  N, such that each edge 

e ~ E is contained in at most  c e of  the edge sets S~ . . . . .  S N. Every  col lect ion of  Steiner  

trees S I . . . . .  S u with this property is cal led a Steiner  tree packing.  If  a weight ing  o f  the 

edges is g iven  in addit ion and a (with respect to this weight ing)  min imal  Steiner  tree 

packing must  be found, we call this the weighted Steiner tree packing problem. 

The mot iva t ion  for s tudying this problem arises f rom the design o f  e lectronic  circuits,  

i.e., the task of  casting a given (complex)  logic funct ion in silicon. In a first phase 
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(logical design) it is specified which of tile given basic logical operations are combined 

to logical units (so-called cells) and which of  these cells must be connected via wires. 

The points at which wires have to contact the cells are called terminals, and a set of 

terminals that must be connected is called a net. The list of  cells and the list of nets ale 

file input of the second phase, the physical design. The task here consists in assigning 

(placing) the cells to a given area and connecting (routing) the nets via wires. The 

problem, in fact. is more complicated than sketched above, since various company given 

design rules and technical constraints have to be taken into account and an objective 

function like the resulting area has to be minimized. Due to the inherent complexity, the 

problem is usually decomposed into the placement problem and the routing problem. 

We are interested in the routing problem. Roughly speaking, this problem can be stated 

as follows. 

Given an area (typically a rectangle with some "" forbidden zones" occupied by the 

cells) and a list of nets. The routing problem is to connect (route) the tennh~als of 

each net by wires on the area such that certain technical side constraints are 

satisfied and some objective function is minimized. 

The routing problem strongly depends on the used fabrication technology and the 

underlying design rules. The design rules specify, for instance, the routing area (i.e., the 
area that is available for connecting the nets) or the objective function (possible choices 

are, for example, the wiring length or the resulting area). The routing itself takes place 

on so-called layers. Each layer is divided into gracks on which the wires run. The tracks 
and the uias, the points where wires change the layers, must meet certain distance 

requirements. 

The routing problem in its general form is still too complex to be solved in one step. 
In practice, the problem is generally decomposed into two subproblems. In a first step, 
one determines how wires "'maneuver around the cells" (.~lobal routing). Here, the 

design rules are only partially considered. Thereafter, the wires are assigned to the layers 
and tracks according to the homotopy which was specified in the global routing phase 

(detailed routing). This decomposition scheme gives rise to many variants of the routing 

problem. 
A number of tile routing problems resulting from this approach can be modelled as a 

(weighted) Steiner tree packing problem. We will illustrate two examples in the 

following. 

For modelling the global routing problem, the routing area is subdivided into 
subareas and these are represented by nodes in a graph. Of course, there are many ways 

to do this. One possible way of subdividing the routing area is illustrated in Fig. 1. The 
enclosing rectangle represents the given area. The rectangular units with a diagonal 

between their lower left and upper right corner denote the cells. The routing area is 

subdivided into rectangular subareas (by means of the additional dotted lines in Fig. l). 
This subdivision of the routing area is represented by a graph as follows. We define a 

node for each subarea and introduce an edge between two nodes, if the corresponding 
subareas are adjacent. Let G = (V, E) denote the resulting graph. Additionally, a 
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Fig.  1. 

capacity c,, L, ~ N is assigned to an edge uv  ~ E limiting the number of nets that may run 

between the subareas associated with the two nodes u and v. The weight of an edge w,,~. 

corresponds to the distance between the two midpoints of the according subareas. The 

terminals of  a net are assigned to those nodes, whose corresponding subareas contain the 

tem]inal or are as close as possible to the position of the terminal, l~ne global routing 
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problem consists in routing all nets in G such that the capacity constraints are satisfied 
and the total wiring length is as small as possible. Obviously, this task defines an 
instance of the Steiner tree packing problem. 

The second example we want to mention is a variant of the detailed routing problem, 
called switchbox routing problem (see Fig. 2). Here, the underlying graph is a complete 
rectangular grid graph and the terminal sets are located on the four sides of the grid. 
Remember that the task of detailed routing is to assign the wires to layers and tracks. 

Detailed routing problems, and thus also switchbox routing problems, are classified by 

distinguishing whether or to which extent the layers are taken into account while the 
nets are assigned to tracks. Here, the following models are of special interest. 

Multiple layer  model.  Given a k layered grid graph (that is a graph obtained by 
stacking k copies of a grid graph on top of each other and connecting related nodes by 

perpendicular lines), where k denotes the number of layers. The nets have to be routed 
in a node disjoint fashion. The multiple layer model is well suited to reflect reality. The 
disadvantage is that in general the resulting graphs are very large. 

Manha t t an  model.  Given a (subgraph of a) complete rectangular grid graph. The nets 
must be routed in an edge disjoint fashion with the additional restriction that nets that 
meet at some node are not allowed to bend at this node, i.e., so-called knock-knees (cf. 
Fig. 3) are not allowed. This restriction guarantees that the resulting routing can be 
realized on two layers at the possible expense of causing long detours. 

Knoek-knee  model.  Again, a (subgraph of a) complete rectangular grid graph is given 
and the task is to find an edge disjoint routing of the nets. In this model knock-knees are 
possible. Very frequently, the wiring length of a solution in this case is smaller than in 
the Manhattan model. The main drawback is that the assignment to layers is neglected. 
Brady and Brown [2] have designed an algorithm that guarantees that any solution in 

" i 

Fig. 3. 
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this model can be routed on four layers. It was shown in [18] that it is , / f '~-complete  to 

decide whether a realization on three layers is possible. 

As in the case of the global routing problem the weighted Steiner tree packing 

problem is a natural mathematical model of  the switchbox routing problem in the 

knock-knee mode. All examples that this computational study reports on are instances of 

this type of switchbox routing problems. Of course, we only sketched some of the 

routing problems arising in the design of electronic circuits and that can be modelled as 

Steiner tree packing problems. For more details on this subject we refer to the excellent 

book of  Lengauer [17]. 

The paper is organized as follows. In Section 2 we briefly discuss the separation 

problem for several classes of inequalities introduced in [12]. Implementation issues of 

our branch and cut algorithm will be mentioned in Section 3. Finally, we report on 

computational results for several switchbox routing instances in Section 4. 

Notation 

We use the same notation as in [12]. Thus, we restrict ourselves in this subsection to 

briefly summarize the main notation concerning the (weighted) Steiner tree packing 

problem. 

Let G = (V, E)  be a graph and T___ V a node set of  G. An edge set S is called a Steiner 

tree.[or T, if the subgraph (V(S) ,  S) contains a path from s to t for all pairs of nodes 

s , t ~ T ,  s4=t. 

P r o b l e m  1.1 (The weighted Steiner tree packing problem). 

Instance: A graph G = (V, E)  with positive, integer capacities c e E N and non-nega- 

tive weights w e e ~ + ,  e ~ E. A list of node sets Jf '~= {T~ . . . . .  Tx}, N >  1, with T k c_ V 

for all k =  1 . . . . .  N. 

Problem: Find edge sets S~ . . . . .  S,v c_ E such that 

(i) S k is a Steiner tree in G for T k for all k = 1 . . . . .  N, 

(ii) ~xk=l [ S k A {e}[ _< c c for all e E E, 

(iii) ~xk= t 52 ~ &w e is minimal. 

If requirement (iii) in Problem 1.1 is omitted we call the corresponding problem the 

Steiner tree packing problem without the prefix '" weighted" .  The list of node sets ./r is 

called a net list. Any element T k ~ JP  is called a set o[ terminals and the nodes t ~ T~ 

are called terminals. Instead of terminal set T k we will often simple say net k. We call 

an N-tuple (S~ . . . . .  S N) of edge sets a Steiner tree packing or packing o f  Steiner trees if 

the sets S 1 . . . . .  S u statisfy (i) and (ii) of Problem 1.1. We will refer to an instance of the 

weighted Steiner tree packing problem by (G,  ,/r c, w) and to an instance of the 

Steiner tree packing problem by (G, ,~v', c). E , ' •  denotes the N .  ] E]-dimensional  

vector space ~ E X  . . .  • ~ E  where the components of each vector x ~  ~.w• are 

k for k E {1 . . . . .  N}, e e  E. The Steiner tree packing polyhedron indexed by x e 

STP(G, ~ ' ,  c ) c  ~ , •  is the convex hull of all incidence vectors of Steiner tree 

packings. 
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We assume throughout the paper that every terminal set of the net list ,4/" has at least 

cardinality two and that N > 1. 

Note that the Steiner tree packing problem as well as its weighted variant are 

J ' -~-complete  or A~~a-hard, respectively (see. for example, [8,15,16]). The problem 

remains hard in the case of switchbox routing problems in the knock-knee model (see 

[22]). 

2. The separation problem for several classes of inequalities 

In this section we briefly sketch some of the ideas tor separating the classes of  

inequalities presented in [12]. The separation algorithms and the associated correctness 

proofs are quite complicated. For details of this issue we refer the reader to [20] and 

[11]. Formally, the separation problem for a given class of inequalities can be stated as 
follows. 

Given an instance (G, J,~, c) of the Steiner tree packing problem, a vector y r N.~rxe, 

y > 0, and a class of valid inequalities for STP (G, S ,  c). Decide, whether y satisfies 

all inequalities of the given class and, if not, find an inequality of this class violated by 
y. 

2.1. Separation of the Steiner partition inequalities 

Due to [12, Theorem 5.3] every facet-defining inequality for the Steiner tree 

polyhedron yields a valid and, in case G is complete and the net list is disjoint, a 
facet-defining inequality for STP (G, ,..l", c). We focus here on one class of facet-defi- 

ning inequalities that was characterized in [13]. Let G be a graph and Tc_V be a 
terminal set. We call a partition V~ . . . . .  V~,, p > 2, of V a Steiner partition with respect 
to T, if V i N T:# ~3 for i = 1 . . . . .  p. The inequality 

, - (6 (V, . . . . .  V,,)) _> p -  1 

is called Steiner partition inequalio,. It is valid for STP (G, {T}, lq) and Gr6tschel and 

Monma have characterized conditions under which it defines a facet. Though the 

corresponding separation problem is . , r  in general [14], there exist special 
cases for which it can be solved in polynomial time. One of  these special cases is 

obtained if we restrict the graph G to be planar and the set of  terminal nodes T to lie on 
the outer face of G. This special case is of particular practical interest, because it 

includes the switchbox routing problem. The main idea of the algorithm for solving the 

separation problem in this case is as follows. 

Without loss of generality we can assume that G is 2-node connected (otherwise the 

graph can be decomposed). Thus, the edge set that encloses the outer face of G is a 
cycle. Suppose the terminal set T -  {t c . . . . .  t~} is numbered in a clockwise fashion along 

this cycle. Now, consider the dual graph G* = (V ", E) of G and subdivide the node 

representing the outer face in z nodes d~ . . . .  , d~. such that every edge belonging to a 
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path in G from t i to ti+ i on the outer face is now incident to di+ ~ for / = t . . . . .  z,. Let 

G D = (V D, E) denote the resulting graph and set D = {d I . . . . .  d=} (cf. Figs. 4(a) and 

4(b)). 
It turns out that under mild assumptions every edge set S = 6(V] ..... V i) induced by 

Steiner partition V 1 . . . . .  V i is in one-to-one correspondence with an edge-minimal 

Steiner tree in G O with respect to some subset J _ D (cf. Figs. 4(c) and 4(d)). 

This equivalence yields that the problem of separating the class of Sleiner partition 

inequalities reduces to the problem of finding a subset J of D and ~ edge-minimal 

Steiner tree in G D with respect to J. Given J.  we can determine an optimal Steiner tree 

in G o with respect to J by applying the dynamic programming approach proposed in 

[6,7]. Thus, the crucial point is to find the subset . I c D .  In [11] we show that we can 

locally decide which terminal belongs to an optimal solution. This observation can be 

taken into account by modifying the recursion formula of the dynamic program 

appropriately. 

The algorithm for separating the Steiner partition inequalities gives rise to several 

heuristic procedures. Instead of calculating the optimal Steiner tree in G D we heuristi- 

call)' determine Steiner trees. For more details, we again refer to our paper [11]. 
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2.2. Separation of the alternating cycle inequalities 

Given an instance (G, ,/f', c) of  a Steiner tree packing problem with J =  {T i, T 2} 
and a vector y e~ . , r •  y > 0 ,  decide, whether y satisfies all alternating cycle 

inequalities (see [12, Theorem 6.2]). If this is not the case, find an alternating cycle 

inequality that is violated by y. 

Yet not proved, we strongly conjecture that, in general, this problem is not solvable 

in polynomial time. Instead, we restrict our attention to the case where G is planar and 

all terminals lie on the outer face of G. Here, our idea to separate alternating cycle 

inequalities is to apply dynamic programming techniques in a similar way as was done 

for finding Steiner partition inequalities. 

Again, we show that alternating cycle inequalities are in one-to-one mapping with 

Steiner trees in an appropriate dual graph. In this case, however, these Steiner trees have 

to satisfy many technical conditions. 

In particular, these technical conditions cause that some edges are evaluated differ- 

ently for different nets. This is due to the fact that for the alternating cycle inequality, 

edge sets F (edges which have a zero coefficient for both nets), F I (edges which have 

zero coefficient just for net 1) and F 2 (edges which have a zero coefficient just for net 

2) are involved (cf. [12, Theorem 6.2]). Unfortunately, taking all these constraints into 
account we obtain a dynamic program, whose optimum solution does not necessarily 
correspond to the most violated alternating cycle inequality. Rather, the optimum value 

found by the dynamic program provides just a lower bound for the most violated 
alternating cycle inequality. If  this value is nonnegative, we can guarantee that there 

does not exist a violated inequality of  this type. Otherwise, there may exist a violated 

alternating cycle inequality, but the algorithm terminates with an edge set that does not 
correspond to an alternating cycle inequality (see [11]). 

Beyond that the relationship between alternating cycle inequalities and Steiner trees 
satisfying certain technical conditions in the appropriate dual graph gives rise to many 
heuristics. Again, we have implemented an algorithm that determines heuristically such 

Steiner trees and checks whether the corresponding alternating cycle inequalities are 
violated. 

2.3. Finding critical cuts 

Remember that a cut induced by a set of  nodes W is critical, if s (W):= c (6(W))  - 

IS(W)I  _< l, where S ( W ) : = { k ~ { 1  . . . . .  N}IT,  n W # O ,  TkC~(V\W)--g~}.  In the 
following we briefly explain why we concentrate on the problem of finding critical cuts 

rather than on the separation problem for the critical cut inequalities itself. 

First, let us point out that, from a practical point of view, we are interested in Steiner 

tree packings where each of the single Steiner trees is edge-minimal. Since a positive 

objective function is minimized, we know in advance that the weight-minimal Steiner 
trees are also edge-minimal, and we exploit this property to reduce the problem size. 

Suppose Wc_ V is a node set and T k is a set of terminals with T k __c_ W or T k c_ V \ W .  
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Then any edge-minimal Steiner tree for T k that uses one edge of  6(W) has to contain at 

least two of these edges. But, if 6(W) is a critical cut then at most one edge of 6(W) 
can be used by the Steiner tree for T k. Hence, the following variables can be fixed 

accordingly, i.e., 

x e ~ = 0 ,  f o r a l l  k ~ { 1  . . . . .  N } \ S ( W ) ,  TkCW,_ e ~ E ( V \ W ) O r ( W ) "  

x,.'*=0, fo ra l l  k e { 1  . . . . .  U } \ S ( W ) ,  T, cV\W_ e ~ E ( W ) U 6 ( W ) .  

Let us now point out the relationship to the critical cut inequality. Consider the 

situation in [12, Definition 6.9(b)], where V 1, V 2, V 3 is a partition of  V such that 8(V 1) 
is a critical cut and T~ 71 V~ = ~J and T~ N V i 4=- ~, i = 2, 3. Since 8(V~) is critical, we 

can fix all variables x e to zero for e ~ 6(V~). Thus, by fixing these variables we can 

separate the critical cut inequalities via separating the Steiner cut inequalities. For 

example,  a Steiner cut inequality for T~ of the instance described in [12, Definition 

6.9(b)] is xl(6(V2)) = xl([V2 : Vl]) + xl([V2 : V3]) > 1. By taking the fixed variables 

into account we obtain the critical cut inequality x~([V2 : V3]) > 1. 

In the remainder of this subsection we briefly sketch the ideas, how to find critical 

cuts. We restrict ourselves to instances (G, J ,  [ ) ,  where G is a complete rectangular 

g i d  graph and all terminal sets of  the net list JY" lie on the outer face of G. Here, we 

can show [20] that, if there exists a node set W c V, W 4= r that induces a critical cut, 

there exists 

(i) a node w ~ V such that 6 (w)  is a critical cut with respect to (G, J ,  ~.) or 

(ii) a horizontal or vertical critical cut with respect to (G, ./P, ~). (A cut F is called 

horizontal if there exists some i ~ {1 . . . . .  h - 1} such that F = {uv ~ EI u = (i, j) and 

v = ( i  + 1, j )  for some j ~ {1 . . . . .  b}}; a vertical cut is defined accordingly). 

Based on this observation we can now develop an algorithm for finding critical cuts. 

We check, for all nodes v ~ V, whether 6(v) is critical. In addition, we also check 

whether there exists critical vertical or horizontal cuts. If  we do not succeed in finding a 

critical cut, we can conclude that none exists. Otherwise, we fix the corresponding 

variables. In order to find further critical cuts, we inductively enlarge the node set 

W = {v} in all four possible directions of  the grid in a greedy like fashion. The variables 

of the critical cuts found this way are fixed accordingly. 

Finally, we have developed a heuristic for separating grid inequalities that proceeds 

in a greedy-like fashion. Details can be found in [10]. 

3. Implementation of the cutting plane algorithm 

In this section we discuss further features of our cutting plane algorithm for the 

(weighted) Steiner tree packing problem. Since we assume the reader being familiar with 

this method, we can avoid outlining how cutting plane algorithms work in general. 

We next introduce a primal heuristic for the switchbox routing problem. Thereafter, 

some implementation details are discussed that are indispensable is solving switchbox 

routing problem instances. 
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3.1. A primal heuristic 

This section is devoted to describing our primal heuristic. The idea of  our heuristic is 

to make use of  the information given be the actual solution of the cutting plane phase. 

We have developed a sequential algorithm. We consider each terminal of a net to be 

an (isolated) component. We iteratively connect two components of  a net according to 

an a priori determined sequence. However, we do not apply this scheme by routing one 

net completely after another, but we connect only two components in each iteration. The 

success of such a procedure strongly depends on the predefined sequence. In our 
algorithm this sequence is mainly determined by the solution y of the actual linear 

program. More precisely, we define a function f depending on y according to which the 

subsequent two components are selected. (A detailed explanation of  the function f is 

given after the algorithmic description of the heuristic.) We try to connect the two 

selected components via a shortest path. Since in a complete rectangular grid graph a 

shortest path is not unique in general, we have implemented further criteria according to 

which the choice is made. Besides others, these criteria depend on the location of the 

terminals of the other nets, the position of the not yet connected terminals of  the same 

net and, again, on the solution y. For a detailed description of these criteria we refer the 

reader to [20]. If it is possible to connect the two components on a shortest path by 

taking the mentioned criterion into account, we connect these two components and 

choose the next pair of  components. Otherwise, we recompute the function f and the 
sequence by taking the already connected components into account. This iterative 

procedure is continued until all nets are connected or no further components can be 
connected. In detail, the algorithm can be described as follows. 

Algori ihm 3.1 (A primal heuristic). 
Input: A complete rectangular h X b grid graph G = (V, E) with edge capacities c<, = 1 

and edge weights w<. ~ I~+, e ~ E. Furthermore, a net list ~,v" = {T~ . . . . .  T~,} and a vector 
y ~ [ R  I •  y > 0 .  

Output: A feasible solution of  the weighted Steiner tree packing problem (G, Jl ,', ]1, w) 
or the message " N o  feasible solution found".  

(1) Set S k ~= ~3 for k = 1 . . . . .  N. 
(2) Determine the graph C~ = (V, ~#) with /~ ~= {e ~ EI c~ > 0}. 

(3) Compute shortest paths for all pairs of nodes in G. 
(4) For k = 1 . . . . .  N perform the following steps: 

(15) If S k = (3, then 

determine s k, t k ~ T~ such that 

L~(sk ,  t k ) =  rain f ~ ( s ,  t ) ;  
.~. I ~ TI, " 

set 7 7 ~= T ~ \ ( t ~ ) .  
(6) Else 

determine s~ ~ T~, t k E V( S k) such that 

f ? ( s  k, t~) = rain f ? ( s ,  t ) .  
~ T ~ , I ~ V ( S ~ )  " 
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(7) As long as further connections are possible perform the following steps: 

(8) Determine k 0 e { 1 . . . . .  N} with 

f,,,,,(S,o, t,,,) = min{,t~,,~( s , ,  tk) I k = 1 . . . . .  N}. 

(9) Try to connect Sko with t,~, via a shortest path by taking the above criteria into 

account. 

(10) If  the connection via a shortest path is possible, then 

let W be the chosen path; 

set &o := Sk, ' U W, T~o := T~0\{s,o} and c~, := 0 for all e e W; 

if T~o -= ~J, set f,.,,,(Sko, t < ) : =  zc; 
else determine another pair ( s~ ,  tk0) similar to (6). 

(11) Else goto (2); 

(12) If  all terminal sets are connected, return the feasible solution (S~ . . . . .  S.,v.). 

(13) Otherwise, print the message " N o  feasible solution found".  
(14) STOP. 

Let us now define the function f ?  : V • V ~ N+ for some k ~ {1 . . . . .  N}. We give a 

formal definition first and explain the underlying heuristic idea afterwards. For the ease 

of exposition let the nodes be numbered such that V = {(i, j)  ] i = 1 . . . . .  h, j = 1 . . . . .  b} 
,and let V/.r.,.j := {(i, j ) ] i = l  . . . . .  r, j = t  . . . . .  d} for l, r ~ { 1  . . . . .  b}, l < r  and t, d e  

{1 . . . . .  h}, t < d. Suppose we want to exectite step (5) (resp. (6)) in Algorithm 3.1. Let 

S k be the edge set that was already determined for connecting T k, T' k the set of not yet 
connected terminals and (~ the underlying graph. 

We consider file case S k 4= 0 (in the case S k = ~ the function f /  is defined similarly) 

and let s , = ( i , . , . ~ ) E T ~  and t k = ( i , ,  j , ) E V ( S  k) be given. Determine l, r E  

{1 . . . . .  b}, l < r and t, d ~ {1 . . . . .  h}, t < d such that sk, V ( S  k) ~ Vt.,.~.c I and ] Vt.r,,, a ] is 
minimal. Set Ej.r.,. a = {e E F,(VI.~.,.j)] y~ > 0} and suppose (V,., E,) is the component in 

(Vt.r.,.a, Et ..... ~l) with s k ~ V~. Set 

pC- E,~ 

where W ( s k ,  t~) is a shortest path from s~ to t k in G (with respect to w), 

The heuristic idea of  this function is the following. We determine a graph 

(Vl.,.r.a, E t ..... j )  which is the smallest rectangular grid graph containing both components 
(often designated as the "'minimal enclosing rectangle"). Inside the minimal enclosing 
rectangle we compute the weighted sum ( =  co) of those edges that are in the same 

component as s k, where only edges with y~ > 0 are considered. The value w is 

compared to the length ( =  h) of a shortest path between the two nodes. If w is smaller 
than h, we assume that the information from 3 ,4 is too poor to decide how to connect 

the two nodes. The smaller the difference, the less information and the greater the value 

of f. On the other hand, if ~o is greater than A the two nodes will be probably connected 

via a detour. The greater the difference, the greater the value of f. Thus, we choose the 
components with value eo close to a first. 
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Iterations Perturbed objective function Original objective function 

LP value Pivots CPU-time LP value Pivots CPU-time 

1 0,000 0 0:53 0.000 0 0:52 
2 456.562 1163 3:25 456,850 2646 5:35 
3 457.571 420 5:07 457.100 4656 19:49 
4 457.589 548 7:28 457.350 5995 40:39 
5 457.746 800 10:25 457.417 7001 67:37 
6 457.793 1224 I4:36 457.417 7657 97:55 
7 458.0[4 3175 24:03 457,515 11367 149:21 
8 458.314 2007 3I :07 457,748 23718 244:11 
9 458.625 2554 40:19 458.149 49393 456:26 

Obviously all ideas mentioned so far are of heuristic nature and there is no guarantee 

that we will obtain good results. However, due to many tests we have performed this 

strategy seems to be reasonable. 

3.2. Imp lemen ta t ion  detai ls  

In this section we want to focus on some little " t r icks"  that enter into our cutting 

plane algorithm. The underlying ideas might appear easy and not very deep to the 

reader. However, it turns out that these ideas ,are very effective and indespensible for 

solving practical problems. We want to illustrate the effects of the ideas on an example 

called "difficult switchbox" (for the data of this problem see the next section). 

Let us mention here that we use the code CPLEX ~ for solving the linear programs 

that come up. Without such a fast and robust code we would not have been able to solve 

the given problem instances. The linear programs we encountered appeared to be quite 

difficult. One of the reasons for this is probably that our linear programs have many 

alternative optimum solutions and are simultaneously primally and dually highly degen- 

erate. 

A frequently used method to overcome such difficulties is to perturb the right hand 

side of the linear program. Since we are solving the problems with the dual simplex 

method we must perturb the objective function of the weighted Steiner tree packing 

problem. After many experiments and discussions with R.E. Bixby (Rice University, 
k Houston, TX) we decided to proceed as follows. Let co ~ [R "4"• e with w,, = w c for all 

e ~ E, k = 1 . . . . .  N be the original objective function. For each terminal set T k, we 

compute a Steiner tree S~ by applying a heuristic procedure and determine random 

numbers e~, ~ ~ [0, 1]. Then we use the objective function vector ~' ~ IR "4• defined by 

b~'~! "q, if e E S k ,  for k =  1 . . . . .  N; ~,e k := (,o e -- 
(3.1) 

fi"k := a)~ - b~:, ~', if e ~ S k , for k = I . . . . .  N, 

CPLEX is a registered trademark of CPLEX optimization, Inc. 
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where r / =  1 / 2 ( n + l )  and b = m i n { 1 0  -5,  1 / 2 ( n + l ) }  with n =  [ E l  in the actual 

implementation. It is easy to see that, if the given objective function is integer, an 

optimal Steiner tree packing with respect to g' is also optimal with respect to co and vice 

versa. 

Table 1 demonstrates the success of the perturbation trick for the "diff icul t  switch- 

box"  routing problem. Column 1 gives the number of cutting plane iterations, column 2, 

3 and 4 (resp. 5, 6 and 7) contain the LP objective value, the number of  pivots and the 

accumulated CPU-time by using the perturbed (resp. original) objective function. The 

numbers are very impressive, in particular if one considers the last rows. The running 

time is reduced to less than one tenth of  the original time. 

Another (polyhedral)  preprocessing trick helped to increase the lower bounds and to 

decrease the running time considerably. After " s o l v i n g "  the trivial initial linear 

program by setting all variables to zero we do not call our general separation routines; 

rather, we generate a particular class of  Steiner cut and Steiner partition inequalities for 

which we have heuristic reasons to believe that they form a sensible set of " g o o d "  

initial cutting planes. 

Since the underlying graph is a complete rectangular grid graph, we add all Steiner 

cut inequalities that are induced by a horizontal or vertical cut. The advantage is that 

these inequalities have pairwise different support. In addition, for multiterminal nets we 

extend each Steiner cut inequality to a Steiner partition inequality with right hand side 

greater than two. For example,  let [ Tk I = p > 3, F = 6(W) ,  W c V be a vertical cut 

that induces a Steiner cut inequality. First, we determine a Steiner partition W~ . . . . .  Wq 

of W such that [W i : Wi+ l] is a horizontal cut in (W, E(W))  for i = 1 . . . . .  q - 1 and q 

is maximal.  The only node sets of Wj . . . . .  Wq that possibly contain more than one 

terminal are W t and Wq. For these two node sets we again determine a Steiner partition 

Wr L . . . .  , W/r for r = 1 and r = q such that [W,/: Wr i+ l] is a vertical cut in (Wr, E(W,)) 

and I r is maximal.  The same procedure is applied to the node set V \ W .  Taking both 

together we obtain (after renumbering) a Steiner partition W 1 . . . . .  IV.,. with s = p, and 

x(6(W~ . . . . .  W,)) > p - 1 defines a Steiner partition inequality. We extend each horizon- 

tal and vertical cut that defines a Steiner cut inequality in this way. Obviously,  the 

Table 2 

Iterations With special 
Steiner partition inequalities 

Without special 
Steiner partition inequalities 

LP-value CPU-time LP-value CPU-time 

1 0.000 0:52 0.000 0:52 
2 456.562 3:24 394.725 3:29 
3 457.574 5:38 397.335 6:23 
4 457.741 I0:21 401.075 17:05 
5 457.862 22:39 407.586 43:05 
6 458.070 45:53 416.256 67:43 
7 458.551 76:13 423.642 103:58 
8 458.983 107:28 428.051 158:42 
9 459.615 142:39 431.740 203:22 
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resulting inequalities do not necessarily have different support, but the right hand side is 

quite large. Let us denote all inequalities constructed this way and the Steiner cut 

inequalities induced by a horizontal or vertical cut by special Steiner partition inequali- 
ties. 

Table 2 illustrates the progress we obtain by using the special Steiner partition 

inequalities after solving the initial linear program. Column 1 presents the number of 

cutting plane iterations. Columns 2 and 3 (resp. 4 and 5) give the LP objective value and 

the accumulated CPU-time by using (resp. not using) the special Steiner partition 

inequalities after the first iteration. The results are impressive. The lower bound we 

obtain within three minutes after the second iteration by adding the special Steiner 

partition inequalities is much better than after running the algorithm with the separation 

algorithms for the Steiner partition inequalities discussed in Section 2 for more than 3 h. 

Next, we want to deal with the separation of the alternating cycle inequalities. The 

separation algorithms we have outlined in Section 2 (the dynamic program as well as the 

heuristics) need a pair of nets as input. The problem we are concerned with is to choose 

one (or several) " g o o d "  pairs of terminal sets for which we want to execute the 

separation algorithms. If  we would call one of these algorithms for all net pairs, we 

would obtain a non-acceptable running time, because the number of calls is quadratic in 

the number of nets. 
In order to overcome this problem, we try to exploit the information given by the 

primal heuristic 3.1. Remember that two components are gradually connected in this 

heuristic. More precisely, in step (9) it is tried to connect two components via a shortest 
path. If  this is not possible, another net must block this path. Obviously the two nets 
concurrently prefer certain edges in this case. Moreover, this situation indicates that the 

information provided by the linear programming solution is too poor to decide which of  

the nets is forced to make a detour. Hence. we conclude that more inequalities 
combining these nets are necessary. Thus, we call the separation algorithms for the 
alternating cycle inequalities for nets that are in conflict due to the information of  the 

primal heuristic. Practical experiments have shown that the number of such conflicts is 
sublinear in dae number of nets and that strongly violated alternating cycle inequalities 

can be obtained for such conflicting net pairs. 
We want to point out that not only the linear program solution supplies important 

information for the primal heuristic. But also conversely, the primal heuristic indicates 

which type of inequalities are promising for a further execution of  the cutting plane 
algorithm. In our opinion this interplay of the methods for determining the lower and 
upper bound is essential in order to solve large scale problems. 

Let us now summarize the overall algorithm. 

Algori thm 3.2 (Branch and cut algorithm for tile switchbox routing problem) 
Input: A complete rectangular grid graph G = {V, E) with edge capacities c, = 1 and 

edge weights w~, E i~0, e E E; a net list .,,f" = {T 1 . . . . .  T~,} where the terminal sets are on 

the outer face of G. 
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Output: An optimal solution of the weighted Steiner tree packing problem. 

Initialization 

(1) Determine the perturbed objective function vector g' according to (3.1). 

(2) Determine critical cuts by applying the ideas presented in Section 2 and fix the 

corresponding variables. 
(3) Initialize the branching tree with the whole problem. 
(4) Solve the following (trivial) linear program 

min wTx 
N 

~_, x~ <_ c e, forall  e e E, 
k = l  

x ~ > 0 ,  forall  e ~ E, k = 1 . . . . .  N.  

(5) Try to determine a feasible solution by applying primal heuristic 3.1. 
(6) If a feasible solution was found 

set b to the objective flmction value of the solution. 

Else 
set b = ~c. 

(7) Add the special Steiner partition inequalities to the linear program. 
Solution and evaluation o f  the linear program 

(8) Determine an optimal solution y of the actual linear program. 
(9) If y is the incidence vector of a Steiner tree packing and ~,ry < b, then 

set b = i~Vy. 

(10) Else 

try to improve the upper bound b by applying primal heuristic 3.1. 
(11) If [ #T Yl = [ b], then perform the following step: 

If there still exists an unsolved subproblem in the branching tree, choose 
one and goto (8). 
Else print the optimal solution corresponding to b, STOP. 

(12) Eliminate all inequalities aVx> c~ with a T y <  c~ from the actual linear 
program. 

Separation 

(13) Determine violated constraints from the '~pool' (for an explanation of the 

(14) 
(15) 

(16) 
Branching 

(17) 
(18) 

(19) 
(2o) 

pool see below) as well as by applying the separation heuristics mentioned in 
Section 2. 
If violated constraints are found, add them to the linear program and goto (8). 
Try to find violated Steiner partition inequalities and alternating cycle 
inequalities by using the dynamic programs. 
If violated constraints are found, add them to the linear program and goto (8). 

Determine a variable index (e, k) with y~ r {0, 1}. 

.k 0 and the other Generate two subproblems, one by adding the constraint ~ = 
by adding the constraint .:t-~ = 1. 
Add both subproblems to the branching tree. 

Choose a subproblem from the branching tree and goto (8). 
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The cutting plane algorithm itself encloses (up to the initialization) steps (8) to (16). 

We have embedded this method into a general branch and cut framework developed by 

M. Jfinger (Universit~t Kaln). The enumeration scheme is only sketched in steps (4) and 

(17)-(20). In fact, an efficient implementation of such a scheme is a very difficult and 

complex task. For more details concerning the branch and cut framework the interested 

reader is refered to the software package of Ji~nger. 

In step (12) we delete all inequalities (up to the capacity and trivial inequalities) that 

are not satisfied with equality from the linear program, in order to keep the size of  the 

linear program small. The eliminated constraints are stored in a so-called " p o o l " ,  which 

is checked during the separation phase. 

If  step (17) is executed, we are sure that there exists an index such that 0 < y k  < 1 
e 

This is true, because y is not the incidence vector of a Steiner tree packing and in step 

(13) the Steiner cut inequalities are exactly separated by our separation algorithms. 

According to (3.2) in [12] the existence of such an index is guaranteed. 

Algorithm 3.2 can be used, in principle, to determine an optimal solution of  a given 

switchbox routing problem or to detect that no feasible solution exists. However, it may 

not be possible to guarantee this in acceptable time. For that reason we provide an 

option in our algorithm to limit the running time. If this limit is exceeded, the algorithm 

stops and prints the best lower and upper bound. 

4. Computa t ional  results 

In this section we report on our computational experiences with the algorithm 
introduced in Section 3. We have tested our algorithm on switchbox routing problems 

that are discussed in the literature. Table 3 summarizes the data. Column 1 presents the 
name used in the literature. In columns 2 and 3 the height and width of the underlying 

grid graph is given. Column 4 contains the number of  nets. Columns 5 to 9 provide 
information about the distribution of the nets; more precisely, column 5 gives the 

Table 3 

Name h b N Distribution of the nets Reference 

2 3 4 5 6 

Difficult switchbox 15 23 24 15 
More difficult 15 22 24 15 

switchbox 
Terminal intensive 16 23 24 8 

switchbox 

Dense switchbox 17 15 19 3 
Augmented dense 18 16 19 3 

switchbox 

Modified dense 17 16 I9 3 
switchbox 

Pedagogical 16 15 22 14 
switchbox 

3 4 

3 5 

7 5 

I 5 
1 5 

1 5 

4 4 

[3] 
1 [41 

[191 

[19] 

[4] 

[4] 
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2 

3 

1 

2 

4 

5 

5 6 

6,1 3 1 2,3 

1 1 

2 2 

4 4 

5,1 2 4 5 6,5 

4 

(a) (b) 

Fig. 5. 

number of 2-terminal nets, column 6 gives the number of 3-terminal nets and so on. 

Finally, the last column states the reference to the paper the example is taken from. 
In all examples as they were originally introduced in the literature, the underlying 

graph is given as follows. The graph is obtained from a complete rectangular grid graph 
by removing the outer cycle, see Fig. 5(a). Hence, every terminal is incident to a unique 
edge, and obviously every Steiner tree must contain this edge. It is easy to see that by 
contracting all pending edges an equivalent problem is obtained, see Fig. 5(b). The 
graph resulting this way is a complete rectangular grid graph with terminals on the outer 

face. This instance is the input to our problem. 
The first example "difficult switchbox" was introduced by Burstein and Pelavin. The 

second one "more  difficult switchbox" is derived from the first one be deleting the last 
column. (More precisely, the edges [(i, 23), (i, 24)] of the first grid graph are contracted 
for i = 1 . . . . .  15 and parallel edges are deleted.) The net list is the same. The difference 
in the distribution occurs (see columns 7 and 8), because an edge whose endpoints 
belong to the same net is contracted. The third problem instance was introduced by Luk, 
here each outer face node is occupied by a terminal. The fourth switchbox routing 
problem is again due to Luk. Up to now it is not known whether a solution for this 
example exists, if the Manhattan or 2-layer model is used. Based on this example two 
variants can be obtained. One, called "augmented dense switchbox", has an additional 
column on the right, the other, called "modified dense switchbox", has an additional 
column near the middle and an additional row on the buttom. The last example was 
introduced by Cohoon and Heck [6]. They illustrated their algorithm on this problem. 

in all examples the edge weights as well as the edge capacities are equal to one. 
Unfortunately, the problem instances do not fix the routing model (Manhattan, knock- 
knee or multiple layer model). To our knowledge all methods from the literature use the 
Manhattan model or 2-layer model. The choice of the underlying model strongly 
influences the solvability of the problems. For example, there may exist a solution in the 

2-layer model, whereas it does not in the knock-knee model. Fig. 5 illustrates such an 
example (this example is taken from [6]). Moreover, there exist problem instances where 
shorter connections are possible in the 2-layer model than in the knock-knee model. The 
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Example Variables Fixed variables Remaining variables 

Difficult switchbox 15 648 2224 13 424 
More difficult 14952 2450 12502 

switchbox 
Terminal intensive 16728 4913 11 815 

switchbox 
Dense switchbox 9082 4831 4251 
Augmented dense 10 298 2678 7620 

switchbox 
Modified dense 9709 4057 5652 

switchbox 
Pedagogical switchbox 9878 2039 7839 

same is true for a compar i son  of  the knock-knee  mode l  with the Manhat tan model .  Thus, 

a compar ison  of  a lgor i thms for the different models  is not  possible.  So we confine 

ourselves  to report on the results we have obtained by applying our algori thm. 

Table  4 informs about the size of  the problems and about  the success o f  f ixing 

variables  with the a lgor i thm discussed in the last subsect ion o f  Sect ion 2. Co lunm 2 

states the total number  o f  0 / 1  variables,  co lumn 3 gives the number  of  f ixed variables  

and the last co lumn contains  the number  of  remaining variables.  Table  4 illustrates that 

many variables can be fixed, for example  more  than one half  of  the variables  for 

problem " d e n s e  s w i t c h b o x " .  Never theless ,  tile number  of  remaining  var iables  is still 

large (see the last colunm).  

In Table  5 the results we have obtained with our branch and cut a lgor i thm are 

summarized.  Co lumn 2 gives  the best feasible solution. The  values  are not  integer  due to 

the perturbed object ive  function.  To obtain the real value with respect  to the original 

object ive  function the entries must be rounded up. The entries in co lumn 3 are the 

objec t ive  function values o f  the l inear program when  no further violated constraints are 

found, i.e., when branching (steps (17 ) - (20 )  in Algor i thm 3.2.) is per formed for file first 

time. This  values are obvious ly  lower  bounds for the whole  problem. In co lumn 4 the 

Table 5 

Example Best solution LP value Gap Iterations B&C CPU-time 

Difficult switchbox 463.71 I 463.709 0.0% 69 3 1564:15 
More difficult 451.712 451.708 0.09~, 53 1 983:23 

switchbox 
Terminal intensive 536.694 535.196 0.2% 163 13 3755:44 

switchbox 
Dense switehbox " 440.60l 437.579 0.7% 119 4 1017:43 
Augmented dense 468.600 '466.006 0.4% 105 1 4561 : 41 

switchbox " 
Modified dense 45 1.585 451.009 0.0% 51 I 387 : 03 

switchbox 
Pedagogical 330.770 330.760 0.0% 77 5 251 : 58 

switchbox 
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percentage deviation of the best solution from the lower bound is given; more precisely, 

column 4 contains the value ([~r~ 2] - [g'3])/[~'3], where r (resp. r is the correspond- 

ing value of column 2 (resp. 3). Column 5 (resp. 6) gives the number of cutting plane 

iterations (resp. the number of nodes in the branching tree). Finally, the last colunm 

reports on the running times. The values are stated in minutes obtained on a SUN 4/50.  

The two examples "dense switchbox" and "'augmented dense switchbox" marked with 

a star are stopped after the time given in the last column, because no further process 

could be achieved. We claim that the values given in column 2 are optimal, but we are 

yet not able to prove this with the cutting plane algorithm. All other problem instances 

are solved to optimality. 
The numbers in Table 5 are quite encouraging. For all problem instances the lower 

bound in column 3 guarantees that the best feasible solution deviates at most 0.7% from 

the optimal solution. In our opinion the main advantage of our algorithm is that the 

quality of an heuristically determined solution can be evaluated with the lower bound. 

Especially, for problem instances arising in VLSI-Design, where in general only 

heuristics are at hand, a cutting plane algorithm helps in analyzing the heuristics and 

simultanously delivers a lot of knowledge about the problem itself. 
Nevertheless, one major problem with our algorithm is its running time. The numbers 

in the last column of Table 5 are very high. One reason is that we are interested in an 

optimal solution or at least in the best lower and upper bound for each of the problems 
that we can achieve with our approach. This is time consuming. In practice, heuristics 

usually find feasible solutions for these instances in a few seconds. These running times 

are certainly not reachable with our algorithm. However, the main advantage of the 
cutting plane approach is to give a solution guarantee for the best known feasible 

solution. We are not aware of any method used in practice that is able to guarantee a 

certain quality of the feasible solutions found. From this point of view, we have 

analyzed our results also. Table 6 presents the time (measured in minutes), after which 
the lower bound deviates at most 5, 2, 1 and, if obtained, 0% from the best feasible 

solution. 
It can be seen from eolmnn 2 that, for all problem instances, the lower bound deviates 

from the best feasible solution by at most 5% after no more than 6 rain. Table 6 

Table  6 

E x a m p l e  5% 2% 1% 0% 

Difficul t  swi tchbox  3 : 24 3 : 24 90 : 12 

More  difficult  3 : 2 0  3 : 20 3 8 : 1 9  

swi tchbox  

Te rmina l  in tensive  5 : 44 83 : 24 239 : 10 

swi tchbox  

Dense  swi tchbox  ~ 2 : 00 2 : 00 103 : 07 

A u g m e n t e d  dense  2 : 04 2: 04  269 : 20 

swi tchbox  " 

Modif ied  dense  2 : 04  2 : 04  2 : 04  

swi tchbox  

Pedagog ica l  swi tchbox  1 : 46 2 : 27 15 : 04  

6 8 8 : 4 9  

530 :11  

3 8 7 : 0 3  

1 1 7 : 5 5  
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illustrates in addition that the amount of time increases strongly to obtain a quality 

below 1%. 

In our opinion the times in column 1 of Table 6 are acceptable. However, we would 

like to point out that these examples are quite small in comparison to problem sizes 

arising in other practical applications for the design of electronic circuits. Our long-term 

goal is to apply the branch and cut algorithm to instances of larger scale, too. In order to 

achieve this, we surely must reduce the running times. We have analyzed our algorithm 

concerning the question where most of  the time is spent. It turns out that about 90% of 

the time is used to solve the linear programs. To our present knowledge two possibilities 

arise to overcome this problem. 

(1) Reducing the number of  variables, we consider the problem only on a subset of 
the set of variables, solve the problem on this subset and check whether this solution is 

also optimal for the whole problem. If not, we add some variables and solve the 

extended problem again. This method is commonly used to solve large scale practical 

problems by a cutting plane algorithm (see, for instance [9,21]). 

(2) Decompose the linear programs, the constraint matrices of  our problems are of  

very special structure. Due to this structure it seems to be promising to decompose the 

linear program. Methods for decomposing linear programs were suggested by Dantzig 

and Wolfe [5] or by Benders [1]. Up to now these methods are not used in practice, 

because the problems can be solved faster directly. However, with the help of parallel 
computers these methods may get competitive, especially for our problem instances. 

5. Conclusion 

In this paper we have developed a cutting plane algorithm for the Steiner tree packing 

problem. We have introduced some separation methods for special problem instances 
where the underlying graph is planar and all terminal sets lie on the outer face of the 

graph. This special instances include an important subproblem in VLSI-Design, the 
so-called switchbox routing problem. We have reported on computational results we 

have obtained with our branch and cut algorithm for this type of  problems. The results 
are encouraging. Most of the problems discussed in the literature are solved to 

optimality. Thus, we have good hopes that this approach may also be applicable to large 
scale problem instances as they occur in practice. To achieve this long-term goal there 

surely remain a lot of problems to be solved. 
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